memcontrol.c 190.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
77

78 79 80
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

81 82 83
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

84
/* Whether the swap controller is active */
A
Andrew Morton 已提交
85
#ifdef CONFIG_MEMCG_SWAP
86 87
int do_swap_account __read_mostly;
#else
88
#define do_swap_account		0
89 90
#endif

91 92 93 94
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
103

104 105 106 107 108
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

109
struct mem_cgroup_tree_per_node {
110
	struct rb_root rb_root;
111
	struct rb_node *rb_rightmost;
112 113 114 115 116 117 118 119 120
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
121 122 123 124 125
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
126

127 128 129
/*
 * cgroup_event represents events which userspace want to receive.
 */
130
struct mem_cgroup_event {
131
	/*
132
	 * memcg which the event belongs to.
133
	 */
134
	struct mem_cgroup *memcg;
135 136 137 138 139 140 141 142
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
143 144 145 146 147
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
148
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
149
			      struct eventfd_ctx *eventfd, const char *args);
150 151 152 153 154
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
155
	void (*unregister_event)(struct mem_cgroup *memcg,
156
				 struct eventfd_ctx *eventfd);
157 158 159 160 161 162
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
163
	wait_queue_entry_t wait;
164 165 166
	struct work_struct remove;
};

167 168
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169

170 171
/* Stuffs for move charges at task migration. */
/*
172
 * Types of charges to be moved.
173
 */
174 175 176
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177

178 179
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
180
	spinlock_t	  lock; /* for from, to */
181
	struct mm_struct  *mm;
182 183
	struct mem_cgroup *from;
	struct mem_cgroup *to;
184
	unsigned long flags;
185
	unsigned long precharge;
186
	unsigned long moved_charge;
187
	unsigned long moved_swap;
188 189 190
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
191
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 193
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
194

195 196 197 198
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
199
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201

202 203
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
205
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
206
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 208 209
	NR_CHARGE_TYPE,
};

210
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
211 212 213 214
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
215
	_KMEM,
V
Vladimir Davydov 已提交
216
	_TCP,
G
Glauber Costa 已提交
217 218
};

219 220
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
222 223
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

240 241 242 243 244 245
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

246 247 248 249 250 251 252 253 254 255 256 257 258
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

259
#ifdef CONFIG_MEMCG_KMEM
260
/*
261
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
262 263 264 265 266
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
267
 *
268 269
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
270
 */
271 272
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
273

274 275 276 277 278 279 280 281 282 283 284 285 286
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

287 288 289 290 291 292
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
293
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 295
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
296
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 298 299
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
300
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301

302 303 304 305 306 307
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
308
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309
EXPORT_SYMBOL(memcg_kmem_enabled_key);
310

311
struct workqueue_struct *memcg_kmem_cache_wq;
312
#endif
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

337
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
381
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 413
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
414
			goto unlock;
415
		}
416 417 418 419 420 421 422
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
423 424 425 426 427 428 429 430

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 432
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
433 434 435 436 437
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

455
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 457 458 459 460
		memcg = root_mem_cgroup;

	return &memcg->css;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
480
	if (PageSlab(page) && !PageTail(page))
481 482 483
		memcg = memcg_from_slab_page(page);
	else
		memcg = READ_ONCE(page->mem_cgroup);
484 485 486 487 488 489 490 491
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

492 493
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494
{
495
	int nid = page_to_nid(page);
496

497
	return memcg->nodeinfo[nid];
498 499
}

500 501
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
502
{
503
	return soft_limit_tree.rb_tree_per_node[nid];
504 505
}

506
static struct mem_cgroup_tree_per_node *
507 508 509 510
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

511
	return soft_limit_tree.rb_tree_per_node[nid];
512 513
}

514 515
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
516
					 unsigned long new_usage_in_excess)
517 518 519
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
520
	struct mem_cgroup_per_node *mz_node;
521
	bool rightmost = true;
522 523 524 525 526 527 528 529 530

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
531
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532
					tree_node);
533
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534
			p = &(*p)->rb_left;
535 536 537
			rightmost = false;
		}

538 539 540 541 542 543 544
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
545 546 547 548

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

549 550 551 552 553
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

554 555
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
556 557 558
{
	if (!mz->on_tree)
		return;
559 560 561 562

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

563 564 565 566
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

567 568
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
569
{
570 571 572
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
573
	__mem_cgroup_remove_exceeded(mz, mctz);
574
	spin_unlock_irqrestore(&mctz->lock, flags);
575 576
}

577 578 579
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
580
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 582 583 584 585 586 587
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
588 589 590

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
591
	unsigned long excess;
592 593
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
594

595
	mctz = soft_limit_tree_from_page(page);
596 597
	if (!mctz)
		return;
598 599 600 601 602
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603
		mz = mem_cgroup_page_nodeinfo(memcg, page);
604
		excess = soft_limit_excess(memcg);
605 606 607 608 609
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
610 611 612
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
613 614
			/* if on-tree, remove it */
			if (mz->on_tree)
615
				__mem_cgroup_remove_exceeded(mz, mctz);
616 617 618 619
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
620
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621
			spin_unlock_irqrestore(&mctz->lock, flags);
622 623 624 625 626 627
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
628 629 630
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
631

632
	for_each_node(nid) {
633 634
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
635 636
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
637 638 639
	}
}

640 641
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642
{
643
	struct mem_cgroup_per_node *mz;
644 645 646

retry:
	mz = NULL;
647
	if (!mctz->rb_rightmost)
648 649
		goto done;		/* Nothing to reclaim from */

650 651
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
652 653 654 655 656
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
657
	__mem_cgroup_remove_exceeded(mz, mctz);
658
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
659
	    !css_tryget(&mz->memcg->css))
660 661 662 663 664
		goto retry;
done:
	return mz;
}

665 666
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667
{
668
	struct mem_cgroup_per_node *mz;
669

670
	spin_lock_irq(&mctz->lock);
671
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672
	spin_unlock_irq(&mctz->lock);
673 674 675
	return mz;
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	long x;

	if (mem_cgroup_disabled())
		return;

	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 692
		struct mem_cgroup *mi;

693 694 695 696 697
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 699
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
700 701 702 703 704
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

705 706 707 708 709 710 711 712 713 714 715
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
729
	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730
	struct mem_cgroup_per_node *pn;
731
	struct mem_cgroup *memcg;
732 733 734
	long x;

	/* Update node */
735
	__mod_node_page_state(pgdat, idx, val);
736 737 738 739 740

	if (mem_cgroup_disabled())
		return;

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741
	memcg = pn->memcg;
742 743

	/* Update memcg */
744
	__mod_memcg_state(memcg, idx, val);
745

746 747 748
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

749 750
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 752 753 754
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 756 757 758 759
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

760 761
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
762
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 764 765 766
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
767
	memcg = mem_cgroup_from_obj(p);
768 769 770 771 772

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
773
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 775 776 777 778
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

779 780 781 782 783 784 785 786 787 788 789
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 807
		struct mem_cgroup *mi;

808 809 810 811 812
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
813 814
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
815 816 817 818 819
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

820
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821
{
822
	return atomic_long_read(&memcg->vmevents[event]);
823 824
}

825 826
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
827 828 829 830 831 832
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
833 834
}

835
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836
					 struct page *page,
837
					 int nr_pages)
838
{
839 840 841 842
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
843
	if (PageAnon(page))
844
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
845
	else {
846
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
847
		if (PageSwapBacked(page))
848
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
849
	}
850

851
	if (abs(nr_pages) > 1) {
852
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
853
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
854
	}
855

856 857
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
858
		__count_memcg_events(memcg, PGPGIN, 1);
859
	else {
860
		__count_memcg_events(memcg, PGPGOUT, 1);
861 862
		nr_pages = -nr_pages; /* for event */
	}
863

864
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
865 866
}

867 868
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
869 870 871
{
	unsigned long val, next;

872 873
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
874
	/* from time_after() in jiffies.h */
875
	if ((long)(next - val) < 0) {
876 877 878 879
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
880 881 882
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
883 884 885
		default:
			break;
		}
886
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887
		return true;
888
	}
889
	return false;
890 891 892 893 894 895
}

/*
 * Check events in order.
 *
 */
896
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897 898
{
	/* threshold event is triggered in finer grain than soft limit */
899 900
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
901
		bool do_softlimit;
902

903 904
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
905
		mem_cgroup_threshold(memcg);
906 907
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
908
	}
909 910
}

911
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
912
{
913 914 915 916 917 918 919 920
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

921
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
922
}
M
Michal Hocko 已提交
923
EXPORT_SYMBOL(mem_cgroup_from_task);
924

925 926 927 928 929 930 931 932 933
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
934
{
935 936 937 938
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
939

940 941
	rcu_read_lock();
	do {
942 943 944 945 946 947
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
948
			memcg = root_mem_cgroup;
949 950 951 952 953
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
954
	} while (!css_tryget(&memcg->css));
955
	rcu_read_unlock();
956
	return memcg;
957
}
958 959
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
975 976
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
977 978 979 980 981 982
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

983 984 985 986 987 988
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
S
Shakeel Butt 已提交
989
		struct mem_cgroup *memcg;
990 991

		rcu_read_lock();
S
Shakeel Butt 已提交
992 993 994 995
		/* current->active_memcg must hold a ref. */
		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
			memcg = root_mem_cgroup;
		else
996 997 998 999 1000 1001
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1016
 * Reclaimers can specify a node and a priority level in @reclaim to
1017
 * divide up the memcgs in the hierarchy among all concurrent
1018
 * reclaimers operating on the same node and priority.
1019
 */
1020
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1021
				   struct mem_cgroup *prev,
1022
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1023
{
M
Michal Hocko 已提交
1024
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1025
	struct cgroup_subsys_state *css = NULL;
1026
	struct mem_cgroup *memcg = NULL;
1027
	struct mem_cgroup *pos = NULL;
1028

1029 1030
	if (mem_cgroup_disabled())
		return NULL;
1031

1032 1033
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1034

1035
	if (prev && !reclaim)
1036
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1037

1038 1039
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1040
			goto out;
1041
		return root;
1042
	}
K
KAMEZAWA Hiroyuki 已提交
1043

1044
	rcu_read_lock();
M
Michal Hocko 已提交
1045

1046
	if (reclaim) {
1047
		struct mem_cgroup_per_node *mz;
1048

1049
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1050
		iter = &mz->iter;
1051 1052 1053 1054

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1055
		while (1) {
1056
			pos = READ_ONCE(iter->position);
1057 1058
			if (!pos || css_tryget(&pos->css))
				break;
1059
			/*
1060 1061 1062 1063 1064 1065
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1066
			 */
1067 1068
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1086
		}
K
KAMEZAWA Hiroyuki 已提交
1087

1088 1089 1090 1091 1092 1093
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1094

1095 1096
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1097

1098 1099
		if (css_tryget(css))
			break;
1100

1101
		memcg = NULL;
1102
	}
1103 1104 1105

	if (reclaim) {
		/*
1106 1107 1108
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1109
		 */
1110 1111
		(void)cmpxchg(&iter->position, pos, memcg);

1112 1113 1114 1115 1116 1117 1118
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1119
	}
1120

1121 1122
out_unlock:
	rcu_read_unlock();
1123
out:
1124 1125 1126
	if (prev && prev != root)
		css_put(&prev->css);

1127
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1128
}
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131 1132 1133 1134 1135 1136
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1137 1138 1139 1140 1141 1142
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1143

1144 1145
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1146 1147
{
	struct mem_cgroup_reclaim_iter *iter;
1148 1149
	struct mem_cgroup_per_node *mz;
	int nid;
1150

1151 1152
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1153 1154
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1155 1156 1157
	}
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1204
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1216
/**
1217
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1218
 * @page: the page
1219
 * @pgdat: pgdat of the page
1220 1221 1222 1223
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1224
 */
M
Mel Gorman 已提交
1225
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1226
{
1227
	struct mem_cgroup_per_node *mz;
1228
	struct mem_cgroup *memcg;
1229
	struct lruvec *lruvec;
1230

1231
	if (mem_cgroup_disabled()) {
1232
		lruvec = &pgdat->__lruvec;
1233 1234
		goto out;
	}
1235

1236
	memcg = page->mem_cgroup;
1237
	/*
1238
	 * Swapcache readahead pages are added to the LRU - and
1239
	 * possibly migrated - before they are charged.
1240
	 */
1241 1242
	if (!memcg)
		memcg = root_mem_cgroup;
1243

1244
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1245 1246 1247 1248 1249 1250 1251
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1252 1253
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1254
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1255
}
1256

1257
/**
1258 1259 1260
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1261
 * @zid: zone id of the accounted pages
1262
 * @nr_pages: positive when adding or negative when removing
1263
 *
1264 1265 1266
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1267
 */
1268
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1269
				int zid, int nr_pages)
1270
{
1271
	struct mem_cgroup_per_node *mz;
1272
	unsigned long *lru_size;
1273
	long size;
1274 1275 1276 1277

	if (mem_cgroup_disabled())
		return;

1278
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1279
	lru_size = &mz->lru_zone_size[zid][lru];
1280 1281 1282 1283 1284

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1285 1286 1287
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1288 1289 1290 1291 1292 1293
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1294
}
1295

1296
/**
1297
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1298
 * @memcg: the memory cgroup
1299
 *
1300
 * Returns the maximum amount of memory @mem can be charged with, in
1301
 * pages.
1302
 */
1303
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1304
{
1305 1306 1307
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1308

1309
	count = page_counter_read(&memcg->memory);
1310
	limit = READ_ONCE(memcg->memory.max);
1311 1312 1313
	if (count < limit)
		margin = limit - count;

1314
	if (do_memsw_account()) {
1315
		count = page_counter_read(&memcg->memsw);
1316
		limit = READ_ONCE(memcg->memsw.max);
1317
		if (count < limit)
1318
			margin = min(margin, limit - count);
1319 1320
		else
			margin = 0;
1321 1322 1323
	}

	return margin;
1324 1325
}

1326
/*
Q
Qiang Huang 已提交
1327
 * A routine for checking "mem" is under move_account() or not.
1328
 *
Q
Qiang Huang 已提交
1329 1330 1331
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1332
 */
1333
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1334
{
1335 1336
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1337
	bool ret = false;
1338 1339 1340 1341 1342 1343 1344 1345 1346
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1347

1348 1349
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1350 1351
unlock:
	spin_unlock(&mc.lock);
1352 1353 1354
	return ret;
}

1355
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1356 1357
{
	if (mc.moving_task && current != mc.moving_task) {
1358
		if (mem_cgroup_under_move(memcg)) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1371 1372 1373 1374
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_buf_printf(&s, "anon_thp %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
		       PAGE_SIZE);

	for (i = 0; i < NR_LRU_LISTS; i++)
1432
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
		       PAGE_SIZE);

	/* Accumulated memory events */

1445 1446 1447 1448
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1449 1450 1451 1452 1453

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1454 1455
	seq_buf_printf(&s, "workingset_restore %lu\n",
		       memcg_page_state(memcg, WORKINGSET_RESTORE));
1456 1457 1458
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1459 1460
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1461 1462 1463 1464 1465 1466
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1467 1468 1469 1470 1471 1472 1473 1474
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1475 1476

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1478
		       memcg_events(memcg, THP_FAULT_ALLOC));
1479
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1480 1481 1482 1483 1484 1485 1486 1487
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1488

1489
#define K(x) ((x) << (PAGE_SHIFT-10))
1490
/**
1491 1492
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1493 1494 1495 1496 1497 1498
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1499
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1500 1501 1502
{
	rcu_read_lock();

1503 1504 1505 1506 1507
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1508
	if (p) {
1509
		pr_cont(",task_memcg=");
1510 1511
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1512
	rcu_read_unlock();
1513 1514 1515 1516 1517 1518 1519 1520 1521
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1522
	char *buf;
1523

1524 1525
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1526
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1527 1528 1529
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1530
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1531 1532 1533 1534 1535 1536 1537
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1538
	}
1539 1540 1541 1542 1543 1544 1545 1546 1547

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1548 1549
}

D
David Rientjes 已提交
1550 1551 1552
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1553
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1554
{
1555
	unsigned long max;
1556

1557
	max = READ_ONCE(memcg->memory.max);
1558
	if (mem_cgroup_swappiness(memcg)) {
1559 1560
		unsigned long memsw_max;
		unsigned long swap_max;
1561

1562
		memsw_max = memcg->memsw.max;
1563
		swap_max = READ_ONCE(memcg->swap.max);
1564 1565
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1566
	}
1567
	return max;
D
David Rientjes 已提交
1568 1569
}

1570 1571 1572 1573 1574
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1575
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1576
				     int order)
1577
{
1578 1579 1580
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1581
		.memcg = memcg,
1582 1583 1584
		.gfp_mask = gfp_mask,
		.order = order,
	};
1585
	bool ret;
1586

1587 1588 1589 1590 1591 1592 1593
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1594
	mutex_unlock(&oom_lock);
1595
	return ret;
1596 1597
}

1598
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1599
				   pg_data_t *pgdat,
1600 1601 1602 1603 1604 1605 1606 1607 1608
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1609
		.pgdat = pgdat,
1610 1611
	};

1612
	excess = soft_limit_excess(root_memcg);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1638
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1639
					pgdat, &nr_scanned);
1640
		*total_scanned += nr_scanned;
1641
		if (!soft_limit_excess(root_memcg))
1642
			break;
1643
	}
1644 1645
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1646 1647
}

1648 1649 1650 1651 1652 1653
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1654 1655
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1656 1657 1658 1659
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1660
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1661
{
1662
	struct mem_cgroup *iter, *failed = NULL;
1663

1664 1665
	spin_lock(&memcg_oom_lock);

1666
	for_each_mem_cgroup_tree(iter, memcg) {
1667
		if (iter->oom_lock) {
1668 1669 1670 1671 1672
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1673 1674
			mem_cgroup_iter_break(memcg, iter);
			break;
1675 1676
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1677
	}
K
KAMEZAWA Hiroyuki 已提交
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1690
		}
1691 1692
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1693 1694 1695 1696

	spin_unlock(&memcg_oom_lock);

	return !failed;
1697
}
1698

1699
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1700
{
K
KAMEZAWA Hiroyuki 已提交
1701 1702
	struct mem_cgroup *iter;

1703
	spin_lock(&memcg_oom_lock);
1704
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1705
	for_each_mem_cgroup_tree(iter, memcg)
1706
		iter->oom_lock = false;
1707
	spin_unlock(&memcg_oom_lock);
1708 1709
}

1710
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1711 1712 1713
{
	struct mem_cgroup *iter;

1714
	spin_lock(&memcg_oom_lock);
1715
	for_each_mem_cgroup_tree(iter, memcg)
1716 1717
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1718 1719
}

1720
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1721 1722 1723
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1724 1725
	/*
	 * When a new child is created while the hierarchy is under oom,
1726
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1727
	 */
1728
	spin_lock(&memcg_oom_lock);
1729
	for_each_mem_cgroup_tree(iter, memcg)
1730 1731 1732
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1733 1734
}

K
KAMEZAWA Hiroyuki 已提交
1735 1736
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1737
struct oom_wait_info {
1738
	struct mem_cgroup *memcg;
1739
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1740 1741
};

1742
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1743 1744
	unsigned mode, int sync, void *arg)
{
1745 1746
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1747 1748 1749
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1750
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1751

1752 1753
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1754 1755 1756 1757
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1758
static void memcg_oom_recover(struct mem_cgroup *memcg)
1759
{
1760 1761 1762 1763 1764 1765 1766 1767 1768
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1769
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1770 1771
}

1772 1773 1774 1775 1776 1777 1778 1779
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1780
{
1781 1782 1783
	enum oom_status ret;
	bool locked;

1784 1785 1786
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1787 1788
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1789
	/*
1790 1791 1792 1793
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1794 1795 1796 1797
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1798
	 *
1799 1800 1801 1802 1803 1804 1805
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1806
	 */
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1818 1819 1820 1821 1822 1823 1824 1825
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1826
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1827 1828 1829 1830 1831 1832
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1833

1834
	return ret;
1835 1836 1837 1838
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1839
 * @handle: actually kill/wait or just clean up the OOM state
1840
 *
1841 1842
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1843
 *
1844
 * Memcg supports userspace OOM handling where failed allocations must
1845 1846 1847 1848
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1849
 * the end of the page fault to complete the OOM handling.
1850 1851
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1852
 * completed, %false otherwise.
1853
 */
1854
bool mem_cgroup_oom_synchronize(bool handle)
1855
{
T
Tejun Heo 已提交
1856
	struct mem_cgroup *memcg = current->memcg_in_oom;
1857
	struct oom_wait_info owait;
1858
	bool locked;
1859 1860 1861

	/* OOM is global, do not handle */
	if (!memcg)
1862
		return false;
1863

1864
	if (!handle)
1865
		goto cleanup;
1866 1867 1868 1869 1870

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1871
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1872

1873
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1884 1885
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1886
	} else {
1887
		schedule();
1888 1889 1890 1891 1892
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1893 1894 1895 1896 1897 1898 1899 1900
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1901
cleanup:
T
Tejun Heo 已提交
1902
	current->memcg_in_oom = NULL;
1903
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1904
	return true;
1905 1906
}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

1935 1936 1937 1938 1939 1940 1941 1942
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1971
/**
1972 1973
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1974
 *
1975
 * This function protects unlocked LRU pages from being moved to
1976 1977 1978 1979 1980
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1981
 */
1982
struct mem_cgroup *lock_page_memcg(struct page *page)
1983 1984
{
	struct mem_cgroup *memcg;
1985
	unsigned long flags;
1986

1987 1988 1989 1990
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1991 1992 1993 1994 1995 1996 1997
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1998 1999 2000
	rcu_read_lock();

	if (mem_cgroup_disabled())
2001
		return NULL;
2002
again:
2003
	memcg = page->mem_cgroup;
2004
	if (unlikely(!memcg))
2005
		return NULL;
2006

Q
Qiang Huang 已提交
2007
	if (atomic_read(&memcg->moving_account) <= 0)
2008
		return memcg;
2009

2010
	spin_lock_irqsave(&memcg->move_lock, flags);
2011
	if (memcg != page->mem_cgroup) {
2012
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2013 2014
		goto again;
	}
2015 2016 2017 2018

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2019
	 * the task who has the lock for unlock_page_memcg().
2020 2021 2022
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2023

2024
	return memcg;
2025
}
2026
EXPORT_SYMBOL(lock_page_memcg);
2027

2028
/**
2029 2030 2031 2032
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2033
 */
2034
void __unlock_page_memcg(struct mem_cgroup *memcg)
2035
{
2036 2037 2038 2039 2040 2041 2042 2043
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2044

2045
	rcu_read_unlock();
2046
}
2047 2048 2049 2050 2051 2052 2053 2054 2055

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
2056
EXPORT_SYMBOL(unlock_page_memcg);
2057

2058 2059
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2060
	unsigned int nr_pages;
2061
	struct work_struct work;
2062
	unsigned long flags;
2063
#define FLUSHING_CACHED_CHARGE	0
2064 2065
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2066
static DEFINE_MUTEX(percpu_charge_mutex);
2067

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2078
 */
2079
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2080 2081
{
	struct memcg_stock_pcp *stock;
2082
	unsigned long flags;
2083
	bool ret = false;
2084

2085
	if (nr_pages > MEMCG_CHARGE_BATCH)
2086
		return ret;
2087

2088 2089 2090
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2091
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2092
		stock->nr_pages -= nr_pages;
2093 2094
		ret = true;
	}
2095 2096 2097

	local_irq_restore(flags);

2098 2099 2100 2101
	return ret;
}

/*
2102
 * Returns stocks cached in percpu and reset cached information.
2103 2104 2105 2106 2107
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2108
	if (stock->nr_pages) {
2109
		page_counter_uncharge(&old->memory, stock->nr_pages);
2110
		if (do_memsw_account())
2111
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2112
		css_put_many(&old->css, stock->nr_pages);
2113
		stock->nr_pages = 0;
2114 2115 2116 2117 2118 2119
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2120 2121 2122
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2123 2124 2125 2126
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2127 2128 2129
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2130
	drain_stock(stock);
2131
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2132 2133

	local_irq_restore(flags);
2134 2135 2136
}

/*
2137
 * Cache charges(val) to local per_cpu area.
2138
 * This will be consumed by consume_stock() function, later.
2139
 */
2140
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2141
{
2142 2143 2144 2145
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2146

2147
	stock = this_cpu_ptr(&memcg_stock);
2148
	if (stock->cached != memcg) { /* reset if necessary */
2149
		drain_stock(stock);
2150
		stock->cached = memcg;
2151
	}
2152
	stock->nr_pages += nr_pages;
2153

2154
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2155 2156
		drain_stock(stock);

2157
	local_irq_restore(flags);
2158 2159 2160
}

/*
2161
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2162
 * of the hierarchy under it.
2163
 */
2164
static void drain_all_stock(struct mem_cgroup *root_memcg)
2165
{
2166
	int cpu, curcpu;
2167

2168 2169 2170
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2171 2172 2173 2174 2175 2176
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2177
	curcpu = get_cpu();
2178 2179
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2180
		struct mem_cgroup *memcg;
2181
		bool flush = false;
2182

2183
		rcu_read_lock();
2184
		memcg = stock->cached;
2185 2186 2187 2188 2189 2190 2191
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2192 2193 2194 2195 2196
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2197
	}
2198
	put_cpu();
2199
	mutex_unlock(&percpu_charge_mutex);
2200 2201
}

2202
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2203 2204
{
	struct memcg_stock_pcp *stock;
2205
	struct mem_cgroup *memcg, *mi;
2206 2207 2208

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2209 2210 2211 2212 2213 2214 2215 2216

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2217
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2218
			if (x)
2219 2220
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2221 2222 2223 2224 2225 2226 2227 2228 2229

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2230
				if (x)
2231 2232 2233
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2234 2235 2236
			}
		}

2237
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2238 2239
			long x;

2240
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2241
			if (x)
2242 2243
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2244 2245 2246
		}
	}

2247
	return 0;
2248 2249
}

2250 2251 2252 2253 2254
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
2255 2256
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2257
			continue;
2258
		memcg_memory_event(memcg, MEMCG_HIGH);
2259
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2260 2261
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2262 2263 2264 2265 2266 2267 2268
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2269
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2270 2271
}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2325
static u64 calculate_overage(unsigned long usage, unsigned long high)
2326
{
2327
	u64 overage;
2328

2329 2330
	if (usage <= high)
		return 0;
2331

2332 2333 2334 2335 2336
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2337

2338 2339 2340 2341
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2342

2343 2344 2345
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2346

2347 2348
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2349
					    READ_ONCE(memcg->memory.high));
2350
		max_overage = max(overage, max_overage);
2351 2352 2353
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2354 2355 2356
	return max_overage;
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2383 2384
	if (!max_overage)
		return 0;
2385 2386 2387 2388 2389 2390 2391 2392 2393

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2394 2395 2396
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2397 2398 2399 2400 2401 2402 2403 2404 2405

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2406
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg;

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
	current->memcg_nr_pages_over_high = 0;

	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2431 2432
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2433

2434 2435 2436
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2437 2438 2439 2440 2441 2442 2443
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2464 2465
}

2466 2467
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2468
{
2469
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2470
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2471
	struct mem_cgroup *mem_over_limit;
2472
	struct page_counter *counter;
2473
	unsigned long nr_reclaimed;
2474 2475
	bool may_swap = true;
	bool drained = false;
2476
	enum oom_status oom_status;
2477

2478
	if (mem_cgroup_is_root(memcg))
2479
		return 0;
2480
retry:
2481
	if (consume_stock(memcg, nr_pages))
2482
		return 0;
2483

2484
	if (!do_memsw_account() ||
2485 2486
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2487
			goto done_restock;
2488
		if (do_memsw_account())
2489 2490
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2491
	} else {
2492
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2493
		may_swap = false;
2494
	}
2495

2496 2497 2498 2499
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2500

2501 2502 2503 2504 2505 2506 2507 2508 2509
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2510 2511 2512 2513 2514 2515
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2516
	if (unlikely(should_force_charge()))
2517
		goto force;
2518

2519 2520 2521 2522 2523 2524 2525 2526 2527
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2528 2529 2530
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2531
	if (!gfpflags_allow_blocking(gfp_mask))
2532
		goto nomem;
2533

2534
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2535

2536 2537
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2538

2539
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2540
		goto retry;
2541

2542
	if (!drained) {
2543
		drain_all_stock(mem_over_limit);
2544 2545 2546 2547
		drained = true;
		goto retry;
	}

2548 2549
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2550 2551 2552 2553 2554 2555 2556 2557 2558
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2559
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2560 2561 2562 2563 2564 2565 2566 2567
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2568 2569 2570
	if (nr_retries--)
		goto retry;

2571
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2572 2573
		goto nomem;

2574
	if (gfp_mask & __GFP_NOFAIL)
2575
		goto force;
2576

2577
	if (fatal_signal_pending(current))
2578
		goto force;
2579

2580 2581 2582 2583 2584 2585
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2586
		       get_order(nr_pages * PAGE_SIZE));
2587 2588 2589 2590 2591 2592 2593 2594 2595
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2596
nomem:
2597
	if (!(gfp_mask & __GFP_NOFAIL))
2598
		return -ENOMEM;
2599 2600 2601 2602 2603 2604 2605
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2606
	if (do_memsw_account())
2607 2608 2609 2610
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2611 2612

done_restock:
2613
	css_get_many(&memcg->css, batch);
2614 2615
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2616

2617
	/*
2618 2619
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2620
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2621 2622 2623 2624
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2625 2626
	 */
	do {
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2637 2638 2639
				schedule_work(&memcg->high_work);
				break;
			}
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2653
			current->memcg_nr_pages_over_high += batch;
2654 2655 2656
			set_notify_resume(current);
			break;
		}
2657
	} while ((memcg = parent_mem_cgroup(memcg)));
2658 2659

	return 0;
2660
}
2661

2662
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2663
{
2664 2665 2666
	if (mem_cgroup_is_root(memcg))
		return;

2667
	page_counter_uncharge(&memcg->memory, nr_pages);
2668
	if (do_memsw_account())
2669
		page_counter_uncharge(&memcg->memsw, nr_pages);
2670

2671
	css_put_many(&memcg->css, nr_pages);
2672 2673
}

2674 2675
static void lock_page_lru(struct page *page, int *isolated)
{
2676
	pg_data_t *pgdat = page_pgdat(page);
2677

2678
	spin_lock_irq(&pgdat->lru_lock);
2679 2680 2681
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2682
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2683 2684 2685 2686 2687 2688 2689 2690 2691
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2692
	pg_data_t *pgdat = page_pgdat(page);
2693 2694 2695 2696

	if (isolated) {
		struct lruvec *lruvec;

2697
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2698 2699 2700 2701
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2702
	spin_unlock_irq(&pgdat->lru_lock);
2703 2704
}

2705
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2706
			  bool lrucare)
2707
{
2708
	int isolated;
2709

2710
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2711 2712 2713 2714 2715

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2716 2717
	if (lrucare)
		lock_page_lru(page, &isolated);
2718

2719 2720
	/*
	 * Nobody should be changing or seriously looking at
2721
	 * page->mem_cgroup at this point:
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2733
	page->mem_cgroup = memcg;
2734

2735 2736
	if (lrucare)
		unlock_page_lru(page, isolated);
2737
}
2738

2739
#ifdef CONFIG_MEMCG_KMEM
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
	 * Slab pages don't have page->mem_cgroup set because corresponding
	 * kmem caches can be reparented during the lifetime. That's why
	 * memcg_from_slab_page() should be used instead.
	 */
	if (PageSlab(page))
		return memcg_from_slab_page(page);

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

2767
static int memcg_alloc_cache_id(void)
2768
{
2769 2770 2771
	int id, size;
	int err;

2772
	id = ida_simple_get(&memcg_cache_ida,
2773 2774 2775
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2776

2777
	if (id < memcg_nr_cache_ids)
2778 2779 2780 2781 2782 2783
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2784
	down_write(&memcg_cache_ids_sem);
2785 2786

	size = 2 * (id + 1);
2787 2788 2789 2790 2791
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2792
	err = memcg_update_all_caches(size);
2793 2794
	if (!err)
		err = memcg_update_all_list_lrus(size);
2795 2796 2797 2798 2799
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2800
	if (err) {
2801
		ida_simple_remove(&memcg_cache_ida, id);
2802 2803 2804 2805 2806 2807 2808
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2809
	ida_simple_remove(&memcg_cache_ida, id);
2810 2811
}

2812
struct memcg_kmem_cache_create_work {
2813 2814 2815 2816 2817
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2818
static void memcg_kmem_cache_create_func(struct work_struct *w)
2819
{
2820 2821
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2822 2823
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2824

2825
	memcg_create_kmem_cache(memcg, cachep);
2826

2827
	css_put(&memcg->css);
2828 2829 2830 2831 2832 2833
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2834
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2835
					       struct kmem_cache *cachep)
2836
{
2837
	struct memcg_kmem_cache_create_work *cw;
2838

2839 2840 2841
	if (!css_tryget_online(&memcg->css))
		return;

2842
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2843
	if (!cw)
2844
		return;
2845

2846 2847
	cw->memcg = memcg;
	cw->cachep = cachep;
2848
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2849

2850
	queue_work(memcg_kmem_cache_wq, &cw->work);
2851 2852
}

2853 2854
static inline bool memcg_kmem_bypass(void)
{
2855 2856 2857 2858 2859 2860
	if (in_interrupt())
		return true;

	/* Allow remote memcg charging in kthread contexts. */
	if ((!current->mm || (current->flags & PF_KTHREAD)) &&
	     !current->active_memcg)
2861 2862 2863 2864 2865 2866 2867 2868
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2869 2870 2871
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2872 2873 2874
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2875
 *
2876 2877 2878 2879
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2880
 */
2881
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2882 2883
{
	struct mem_cgroup *memcg;
2884
	struct kmem_cache *memcg_cachep;
2885
	struct memcg_cache_array *arr;
2886
	int kmemcg_id;
2887

2888
	VM_BUG_ON(!is_root_cache(cachep));
2889

2890
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2891 2892
		return cachep;

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	rcu_read_lock();

	if (unlikely(current->active_memcg))
		memcg = current->active_memcg;
	else
		memcg = mem_cgroup_from_task(current);

	if (!memcg || memcg == root_mem_cgroup)
		goto out_unlock;

2903
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2904
	if (kmemcg_id < 0)
2905
		goto out_unlock;
2906

2907 2908 2909 2910 2911 2912 2913 2914
	arr = rcu_dereference(cachep->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match the data dependency
	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
	 */
	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2915 2916 2917 2918 2919 2920 2921 2922 2923

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2924 2925 2926
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2927 2928 2929 2930 2931 2932 2933
	 *
	 * If the memcg is dying or memcg_cache is about to be released,
	 * don't bother creating new kmem_caches. Because memcg_cachep
	 * is ZEROed as the fist step of kmem offlining, we don't need
	 * percpu_ref_tryget_live() here. css_tryget_online() check in
	 * memcg_schedule_kmem_cache_create() will prevent us from
	 * creation of a new kmem_cache.
2934
	 */
2935 2936 2937 2938 2939 2940
	if (unlikely(!memcg_cachep))
		memcg_schedule_kmem_cache_create(memcg, cachep);
	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
		cachep = memcg_cachep;
out_unlock:
	rcu_read_unlock();
2941
	return cachep;
2942 2943
}

2944 2945 2946 2947 2948
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2949 2950
{
	if (!is_root_cache(cachep))
2951
		percpu_ref_put(&cachep->memcg_params.refcnt);
2952 2953
}

2954
/**
2955
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2956
 * @memcg: memory cgroup to charge
2957
 * @gfp: reclaim mode
2958
 * @nr_pages: number of pages to charge
2959 2960 2961
 *
 * Returns 0 on success, an error code on failure.
 */
2962 2963
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
2964
{
2965
	struct page_counter *counter;
2966 2967
	int ret;

2968
	ret = try_charge(memcg, gfp, nr_pages);
2969
	if (ret)
2970
		return ret;
2971 2972 2973

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
2984 2985
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2986
	}
2987
	return 0;
2988 2989
}

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3005
/**
3006
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3007 3008 3009 3010 3011 3012
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3013
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3014
{
3015
	struct mem_cgroup *memcg;
3016
	int ret = 0;
3017

3018
	if (memcg_kmem_bypass())
3019 3020
		return 0;

3021
	memcg = get_mem_cgroup_from_current();
3022
	if (!mem_cgroup_is_root(memcg)) {
3023
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3024 3025
		if (!ret) {
			page->mem_cgroup = memcg;
3026
			__SetPageKmemcg(page);
3027
		}
3028
	}
3029
	css_put(&memcg->css);
3030
	return ret;
3031
}
3032

3033
/**
3034
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3035 3036 3037
 * @page: page to uncharge
 * @order: allocation order
 */
3038
void __memcg_kmem_uncharge_page(struct page *page, int order)
3039
{
3040
	struct mem_cgroup *memcg = page->mem_cgroup;
3041
	unsigned int nr_pages = 1 << order;
3042 3043 3044 3045

	if (!memcg)
		return;

3046
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3047
	__memcg_kmem_uncharge(memcg, nr_pages);
3048
	page->mem_cgroup = NULL;
3049 3050 3051 3052 3053

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

3054
	css_put_many(&memcg->css, nr_pages);
3055
}
3056
#endif /* CONFIG_MEMCG_KMEM */
3057

3058 3059 3060 3061
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3062
 * pgdat->lru_lock and migration entries setup in all page mappings.
3063
 */
3064
void mem_cgroup_split_huge_fixup(struct page *head)
3065
{
3066
	int i;
3067

3068 3069
	if (mem_cgroup_disabled())
		return;
3070

3071
	for (i = 1; i < HPAGE_PMD_NR; i++)
3072
		head[i].mem_cgroup = head->mem_cgroup;
3073

3074
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3075
}
3076
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3077

A
Andrew Morton 已提交
3078
#ifdef CONFIG_MEMCG_SWAP
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3090
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3091 3092 3093
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3094
				struct mem_cgroup *from, struct mem_cgroup *to)
3095 3096 3097
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3098 3099
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3100 3101

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3102 3103
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3104 3105 3106 3107 3108 3109
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3110
				struct mem_cgroup *from, struct mem_cgroup *to)
3111 3112 3113
{
	return -EINVAL;
}
3114
#endif
K
KAMEZAWA Hiroyuki 已提交
3115

3116
static DEFINE_MUTEX(memcg_max_mutex);
3117

3118 3119
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3120
{
3121
	bool enlarge = false;
3122
	bool drained = false;
3123
	int ret;
3124 3125
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3126

3127
	do {
3128 3129 3130 3131
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3132

3133
		mutex_lock(&memcg_max_mutex);
3134 3135
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3136
		 * break our basic invariant rule memory.max <= memsw.max.
3137
		 */
3138
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3139
					   max <= memcg->memsw.max;
3140
		if (!limits_invariant) {
3141
			mutex_unlock(&memcg_max_mutex);
3142 3143 3144
			ret = -EINVAL;
			break;
		}
3145
		if (max > counter->max)
3146
			enlarge = true;
3147 3148
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3149 3150 3151 3152

		if (!ret)
			break;

3153 3154 3155 3156 3157 3158
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3159 3160 3161 3162 3163 3164
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3165

3166 3167
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3168

3169 3170 3171
	return ret;
}

3172
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3173 3174 3175 3176
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3177
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3178 3179
	unsigned long reclaimed;
	int loop = 0;
3180
	struct mem_cgroup_tree_per_node *mctz;
3181
	unsigned long excess;
3182 3183 3184 3185 3186
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3187
	mctz = soft_limit_tree_node(pgdat->node_id);
3188 3189 3190 3191 3192 3193

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3194
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3195 3196
		return 0;

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3211
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3212 3213 3214
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3215
		spin_lock_irq(&mctz->lock);
3216
		__mem_cgroup_remove_exceeded(mz, mctz);
3217 3218 3219 3220 3221 3222

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3223 3224 3225
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3226
		excess = soft_limit_excess(mz->memcg);
3227 3228 3229 3230 3231 3232 3233 3234 3235
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3236
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3237
		spin_unlock_irq(&mctz->lock);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3255 3256 3257 3258 3259 3260
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3261 3262
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3263 3264 3265 3266 3267 3268
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3269 3270
}

3271
/*
3272
 * Reclaims as many pages from the given memcg as possible.
3273 3274 3275 3276 3277 3278 3279
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3280 3281
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3282 3283 3284

	drain_all_stock(memcg);

3285
	/* try to free all pages in this cgroup */
3286
	while (nr_retries && page_counter_read(&memcg->memory)) {
3287
		int progress;
3288

3289 3290 3291
		if (signal_pending(current))
			return -EINTR;

3292 3293
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3294
		if (!progress) {
3295
			nr_retries--;
3296
			/* maybe some writeback is necessary */
3297
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3298
		}
3299 3300

	}
3301 3302

	return 0;
3303 3304
}

3305 3306 3307
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3308
{
3309
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3310

3311 3312
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3313
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3314 3315
}

3316 3317
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3318
{
3319
	return mem_cgroup_from_css(css)->use_hierarchy;
3320 3321
}

3322 3323
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3324 3325
{
	int retval = 0;
3326
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3327
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3328

3329
	if (memcg->use_hierarchy == val)
3330
		return 0;
3331

3332
	/*
3333
	 * If parent's use_hierarchy is set, we can't make any modifications
3334 3335 3336 3337 3338 3339
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3340
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3341
				(val == 1 || val == 0)) {
3342
		if (!memcg_has_children(memcg))
3343
			memcg->use_hierarchy = val;
3344 3345 3346 3347
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3348

3349 3350 3351
	return retval;
}

3352
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3353
{
3354
	unsigned long val;
3355

3356
	if (mem_cgroup_is_root(memcg)) {
3357 3358 3359 3360
		val = memcg_page_state(memcg, MEMCG_CACHE) +
			memcg_page_state(memcg, MEMCG_RSS);
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3361
	} else {
3362
		if (!swap)
3363
			val = page_counter_read(&memcg->memory);
3364
		else
3365
			val = page_counter_read(&memcg->memsw);
3366
	}
3367
	return val;
3368 3369
}

3370 3371 3372 3373 3374 3375 3376
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3377

3378
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3379
			       struct cftype *cft)
B
Balbir Singh 已提交
3380
{
3381
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3382
	struct page_counter *counter;
3383

3384
	switch (MEMFILE_TYPE(cft->private)) {
3385
	case _MEM:
3386 3387
		counter = &memcg->memory;
		break;
3388
	case _MEMSWAP:
3389 3390
		counter = &memcg->memsw;
		break;
3391
	case _KMEM:
3392
		counter = &memcg->kmem;
3393
		break;
V
Vladimir Davydov 已提交
3394
	case _TCP:
3395
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3396
		break;
3397 3398 3399
	default:
		BUG();
	}
3400 3401 3402 3403

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3404
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3405
		if (counter == &memcg->memsw)
3406
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3407 3408
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3409
		return (u64)counter->max * PAGE_SIZE;
3410 3411 3412 3413 3414 3415 3416 3417 3418
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3419
}
3420

3421
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3422
{
3423
	unsigned long stat[MEMCG_NR_STAT] = {0};
3424 3425 3426 3427
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3428
		for (i = 0; i < MEMCG_NR_STAT; i++)
3429
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3430 3431

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3432
		for (i = 0; i < MEMCG_NR_STAT; i++)
3433 3434 3435 3436 3437 3438
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3439
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3440 3441 3442
			stat[i] = 0;

		for_each_online_cpu(cpu)
3443
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3444 3445
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3446 3447

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3448
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3449 3450 3451 3452
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3464 3465
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3466 3467 3468 3469 3470 3471

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3472
#ifdef CONFIG_MEMCG_KMEM
3473
static int memcg_online_kmem(struct mem_cgroup *memcg)
3474 3475 3476
{
	int memcg_id;

3477 3478 3479
	if (cgroup_memory_nokmem)
		return 0;

3480
	BUG_ON(memcg->kmemcg_id >= 0);
3481
	BUG_ON(memcg->kmem_state);
3482

3483
	memcg_id = memcg_alloc_cache_id();
3484 3485
	if (memcg_id < 0)
		return memcg_id;
3486

3487
	static_branch_inc(&memcg_kmem_enabled_key);
3488
	/*
3489
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3490
	 * kmemcg_id. Setting the id after enabling static branching will
3491 3492 3493
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3494
	memcg->kmemcg_id = memcg_id;
3495
	memcg->kmem_state = KMEM_ONLINE;
3496
	INIT_LIST_HEAD(&memcg->kmem_caches);
3497 3498

	return 0;
3499 3500
}

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3521
	/*
3522
	 * Deactivate and reparent kmem_caches.
3523
	 */
3524 3525 3526 3527 3528
	memcg_deactivate_kmem_caches(memcg, parent);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3529 3530 3531 3532 3533 3534 3535 3536
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3537
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3538 3539 3540 3541 3542 3543 3544
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3545 3546
	rcu_read_unlock();

3547
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3548 3549 3550 3551 3552 3553

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3554 3555 3556 3557
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3558
	if (memcg->kmem_state == KMEM_ALLOCATED) {
3559
		WARN_ON(!list_empty(&memcg->kmem_caches));
3560 3561 3562
		static_branch_dec(&memcg_kmem_enabled_key);
	}
}
3563
#else
3564
static int memcg_online_kmem(struct mem_cgroup *memcg)
3565 3566 3567 3568 3569 3570 3571 3572 3573
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3574
#endif /* CONFIG_MEMCG_KMEM */
3575

3576 3577
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3578
{
3579
	int ret;
3580

3581 3582 3583
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3584
	return ret;
3585
}
3586

3587
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3588 3589 3590
{
	int ret;

3591
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3592

3593
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3594 3595 3596
	if (ret)
		goto out;

3597
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3598 3599 3600
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3601 3602 3603
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3604 3605 3606 3607 3608 3609
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3610
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3611 3612 3613 3614
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3615
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3616 3617
	}
out:
3618
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3619 3620 3621
	return ret;
}

3622 3623 3624 3625
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3626 3627
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3628
{
3629
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3630
	unsigned long nr_pages;
3631 3632
	int ret;

3633
	buf = strstrip(buf);
3634
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3635 3636
	if (ret)
		return ret;
3637

3638
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3639
	case RES_LIMIT:
3640 3641 3642 3643
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3644 3645
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3646
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3647
			break;
3648
		case _MEMSWAP:
3649
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3650
			break;
3651
		case _KMEM:
3652 3653 3654
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3655
			ret = memcg_update_kmem_max(memcg, nr_pages);
3656
			break;
V
Vladimir Davydov 已提交
3657
		case _TCP:
3658
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3659
			break;
3660
		}
3661
		break;
3662 3663 3664
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3665 3666
		break;
	}
3667
	return ret ?: nbytes;
B
Balbir Singh 已提交
3668 3669
}

3670 3671
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3672
{
3673
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3674
	struct page_counter *counter;
3675

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3686
	case _TCP:
3687
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3688
		break;
3689 3690 3691
	default:
		BUG();
	}
3692

3693
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3694
	case RES_MAX_USAGE:
3695
		page_counter_reset_watermark(counter);
3696 3697
		break;
	case RES_FAILCNT:
3698
		counter->failcnt = 0;
3699
		break;
3700 3701
	default:
		BUG();
3702
	}
3703

3704
	return nbytes;
3705 3706
}

3707
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3708 3709
					struct cftype *cft)
{
3710
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3711 3712
}

3713
#ifdef CONFIG_MMU
3714
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3715 3716
					struct cftype *cft, u64 val)
{
3717
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3718

3719
	if (val & ~MOVE_MASK)
3720
		return -EINVAL;
3721

3722
	/*
3723 3724 3725 3726
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3727
	 */
3728
	memcg->move_charge_at_immigrate = val;
3729 3730
	return 0;
}
3731
#else
3732
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3733 3734 3735 3736 3737
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3738

3739
#ifdef CONFIG_NUMA
3740 3741 3742 3743 3744 3745

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3746
				int nid, unsigned int lru_mask, bool tree)
3747
{
3748
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3749 3750 3751 3752 3753 3754 3755 3756
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3757 3758 3759 3760
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3761 3762 3763 3764 3765
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3766 3767
					     unsigned int lru_mask,
					     bool tree)
3768 3769 3770 3771 3772 3773 3774
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3775 3776 3777 3778
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3779 3780 3781 3782
	}
	return nr;
}

3783
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3784
{
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3797
	int nid;
3798
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3799

3800
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3801 3802 3803 3804 3805 3806 3807
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3808
		seq_putc(m, '\n');
3809 3810
	}

3811
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3812 3813 3814 3815 3816 3817 3818 3819

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3820
		seq_putc(m, '\n');
3821 3822 3823 3824 3825 3826
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
static const unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3849
/* Universal VM events cgroup1 shows, original sort order */
3850
static const unsigned int memcg1_events[] = {
3851 3852 3853 3854 3855 3856
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3857
static int memcg_stat_show(struct seq_file *m, void *v)
3858
{
3859
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3860
	unsigned long memory, memsw;
3861 3862
	struct mem_cgroup *mi;
	unsigned int i;
3863

3864
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3865

3866 3867
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3868
			continue;
3869
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3870
			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3871
			   PAGE_SIZE);
3872
	}
L
Lee Schermerhorn 已提交
3873

3874
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3875
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3876
			   memcg_events_local(memcg, memcg1_events[i]));
3877 3878

	for (i = 0; i < NR_LRU_LISTS; i++)
3879
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3880
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3881
			   PAGE_SIZE);
3882

K
KAMEZAWA Hiroyuki 已提交
3883
	/* Hierarchical information */
3884 3885
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3886 3887
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3888
	}
3889 3890
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3891
	if (do_memsw_account())
3892 3893
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3894

3895
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3896
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3897
			continue;
3898
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3899 3900
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
3901 3902
	}

3903
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3904 3905
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
3906
			   (u64)memcg_events(memcg, memcg1_events[i]));
3907

3908
	for (i = 0; i < NR_LRU_LISTS; i++)
3909
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3910 3911
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3912

K
KOSAKI Motohiro 已提交
3913 3914
#ifdef CONFIG_DEBUG_VM
	{
3915 3916
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3917
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3918 3919 3920
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3921 3922 3923
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3924

3925 3926 3927 3928 3929
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3930 3931 3932 3933
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3934 3935 3936
	}
#endif

3937 3938 3939
	return 0;
}

3940 3941
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3942
{
3943
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3944

3945
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3946 3947
}

3948 3949
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3950
{
3951
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3952

3953
	if (val > 100)
K
KOSAKI Motohiro 已提交
3954 3955
		return -EINVAL;

3956
	if (css->parent)
3957 3958 3959
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3960

K
KOSAKI Motohiro 已提交
3961 3962 3963
	return 0;
}

3964 3965 3966
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3967
	unsigned long usage;
3968 3969 3970 3971
	int i;

	rcu_read_lock();
	if (!swap)
3972
		t = rcu_dereference(memcg->thresholds.primary);
3973
	else
3974
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3975 3976 3977 3978

	if (!t)
		goto unlock;

3979
	usage = mem_cgroup_usage(memcg, swap);
3980 3981

	/*
3982
	 * current_threshold points to threshold just below or equal to usage.
3983 3984 3985
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3986
	i = t->current_threshold;
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4010
	t->current_threshold = i - 1;
4011 4012 4013 4014 4015 4016
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4017 4018
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4019
		if (do_memsw_account())
4020 4021 4022 4023
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4024 4025 4026 4027 4028 4029 4030
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4031 4032 4033 4034 4035 4036 4037
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4038 4039
}

4040
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4041 4042 4043
{
	struct mem_cgroup_eventfd_list *ev;

4044 4045
	spin_lock(&memcg_oom_lock);

4046
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4047
		eventfd_signal(ev->eventfd, 1);
4048 4049

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4050 4051 4052
	return 0;
}

4053
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4054
{
K
KAMEZAWA Hiroyuki 已提交
4055 4056
	struct mem_cgroup *iter;

4057
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4058
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4059 4060
}

4061
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4062
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4063
{
4064 4065
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4066 4067
	unsigned long threshold;
	unsigned long usage;
4068
	int i, size, ret;
4069

4070
	ret = page_counter_memparse(args, "-1", &threshold);
4071 4072 4073 4074
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4075

4076
	if (type == _MEM) {
4077
		thresholds = &memcg->thresholds;
4078
		usage = mem_cgroup_usage(memcg, false);
4079
	} else if (type == _MEMSWAP) {
4080
		thresholds = &memcg->memsw_thresholds;
4081
		usage = mem_cgroup_usage(memcg, true);
4082
	} else
4083 4084 4085
		BUG();

	/* Check if a threshold crossed before adding a new one */
4086
	if (thresholds->primary)
4087 4088
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4089
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4090 4091

	/* Allocate memory for new array of thresholds */
4092
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4093
	if (!new) {
4094 4095 4096
		ret = -ENOMEM;
		goto unlock;
	}
4097
	new->size = size;
4098 4099

	/* Copy thresholds (if any) to new array */
4100 4101
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4102
				sizeof(struct mem_cgroup_threshold));
4103 4104
	}

4105
	/* Add new threshold */
4106 4107
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4108 4109

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4110
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4111 4112 4113
			compare_thresholds, NULL);

	/* Find current threshold */
4114
	new->current_threshold = -1;
4115
	for (i = 0; i < size; i++) {
4116
		if (new->entries[i].threshold <= usage) {
4117
			/*
4118 4119
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4120 4121
			 * it here.
			 */
4122
			++new->current_threshold;
4123 4124
		} else
			break;
4125 4126
	}

4127 4128 4129 4130 4131
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4132

4133
	/* To be sure that nobody uses thresholds */
4134 4135 4136 4137 4138 4139 4140 4141
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4142
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4143 4144
	struct eventfd_ctx *eventfd, const char *args)
{
4145
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4146 4147
}

4148
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4149 4150
	struct eventfd_ctx *eventfd, const char *args)
{
4151
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4152 4153
}

4154
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4155
	struct eventfd_ctx *eventfd, enum res_type type)
4156
{
4157 4158
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4159
	unsigned long usage;
4160
	int i, j, size, entries;
4161 4162

	mutex_lock(&memcg->thresholds_lock);
4163 4164

	if (type == _MEM) {
4165
		thresholds = &memcg->thresholds;
4166
		usage = mem_cgroup_usage(memcg, false);
4167
	} else if (type == _MEMSWAP) {
4168
		thresholds = &memcg->memsw_thresholds;
4169
		usage = mem_cgroup_usage(memcg, true);
4170
	} else
4171 4172
		BUG();

4173 4174 4175
	if (!thresholds->primary)
		goto unlock;

4176 4177 4178 4179
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4180
	size = entries = 0;
4181 4182
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4183
			size++;
4184 4185
		else
			entries++;
4186 4187
	}

4188
	new = thresholds->spare;
4189

4190 4191 4192 4193
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4194 4195
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4196 4197
		kfree(new);
		new = NULL;
4198
		goto swap_buffers;
4199 4200
	}

4201
	new->size = size;
4202 4203

	/* Copy thresholds and find current threshold */
4204 4205 4206
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4207 4208
			continue;

4209
		new->entries[j] = thresholds->primary->entries[i];
4210
		if (new->entries[j].threshold <= usage) {
4211
			/*
4212
			 * new->current_threshold will not be used
4213 4214 4215
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4216
			++new->current_threshold;
4217 4218 4219 4220
		}
		j++;
	}

4221
swap_buffers:
4222 4223
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4224

4225
	rcu_assign_pointer(thresholds->primary, new);
4226

4227
	/* To be sure that nobody uses thresholds */
4228
	synchronize_rcu();
4229 4230 4231 4232 4233 4234

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4235
unlock:
4236 4237
	mutex_unlock(&memcg->thresholds_lock);
}
4238

4239
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4240 4241
	struct eventfd_ctx *eventfd)
{
4242
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4243 4244
}

4245
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4246 4247
	struct eventfd_ctx *eventfd)
{
4248
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4249 4250
}

4251
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4252
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4253 4254 4255 4256 4257 4258 4259
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4260
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4261 4262 4263 4264 4265

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4266
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4267
		eventfd_signal(eventfd, 1);
4268
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4269 4270 4271 4272

	return 0;
}

4273
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4274
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4275 4276 4277
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4278
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4279

4280
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4281 4282 4283 4284 4285 4286
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4287
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4288 4289
}

4290
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4291
{
4292
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4293

4294
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4295
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4296 4297
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4298 4299 4300
	return 0;
}

4301
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4302 4303
	struct cftype *cft, u64 val)
{
4304
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4305 4306

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4307
	if (!css->parent || !((val == 0) || (val == 1)))
4308 4309
		return -EINVAL;

4310
	memcg->oom_kill_disable = val;
4311
	if (!val)
4312
		memcg_oom_recover(memcg);
4313

4314 4315 4316
	return 0;
}

4317 4318
#ifdef CONFIG_CGROUP_WRITEBACK

4319 4320
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4331 4332 4333 4334 4335
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4346 4347 4348 4349 4350 4351
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4352
	long x = atomic_long_read(&memcg->vmstats[idx]);
4353 4354 4355
	int cpu;

	for_each_online_cpu(cpu)
4356
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4357 4358 4359 4360 4361
	if (x < 0)
		x = 0;
	return x;
}

4362 4363 4364
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4365 4366
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4367 4368 4369
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4370 4371 4372
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4373
 *
4374 4375 4376 4377 4378
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4379
 */
4380 4381 4382
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4383 4384 4385 4386
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4387
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4388

4389
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4390 4391
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4392
	*pheadroom = PAGE_COUNTER_MAX;
4393 4394

	while ((parent = parent_mem_cgroup(memcg))) {
4395
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4396
					    READ_ONCE(memcg->memory.high));
4397 4398
		unsigned long used = page_counter_read(&memcg->memory);

4399
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4400 4401 4402 4403
		memcg = parent;
	}
}

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4458 4459
	trace_track_foreign_dirty(page, wb);

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4520
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4521 4522 4523 4524 4525 4526 4527
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4539 4540 4541 4542
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4543 4544
#endif	/* CONFIG_CGROUP_WRITEBACK */

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4558 4559 4560 4561 4562
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4563
static void memcg_event_remove(struct work_struct *work)
4564
{
4565 4566
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4567
	struct mem_cgroup *memcg = event->memcg;
4568 4569 4570

	remove_wait_queue(event->wqh, &event->wait);

4571
	event->unregister_event(memcg, event->eventfd);
4572 4573 4574 4575 4576 4577

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4578
	css_put(&memcg->css);
4579 4580 4581
}

/*
4582
 * Gets called on EPOLLHUP on eventfd when user closes it.
4583 4584 4585
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4586
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4587
			    int sync, void *key)
4588
{
4589 4590
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4591
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4592
	__poll_t flags = key_to_poll(key);
4593

4594
	if (flags & EPOLLHUP) {
4595 4596 4597 4598 4599 4600 4601 4602 4603
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4604
		spin_lock(&memcg->event_list_lock);
4605 4606 4607 4608 4609 4610 4611 4612
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4613
		spin_unlock(&memcg->event_list_lock);
4614 4615 4616 4617 4618
	}

	return 0;
}

4619
static void memcg_event_ptable_queue_proc(struct file *file,
4620 4621
		wait_queue_head_t *wqh, poll_table *pt)
{
4622 4623
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4624 4625 4626 4627 4628 4629

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4630 4631
 * DO NOT USE IN NEW FILES.
 *
4632 4633 4634 4635 4636
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4637 4638
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4639
{
4640
	struct cgroup_subsys_state *css = of_css(of);
4641
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4642
	struct mem_cgroup_event *event;
4643 4644 4645 4646
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4647
	const char *name;
4648 4649 4650
	char *endp;
	int ret;

4651 4652 4653
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4654 4655
	if (*endp != ' ')
		return -EINVAL;
4656
	buf = endp + 1;
4657

4658
	cfd = simple_strtoul(buf, &endp, 10);
4659 4660
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4661
	buf = endp + 1;
4662 4663 4664 4665 4666

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4667
	event->memcg = memcg;
4668
	INIT_LIST_HEAD(&event->list);
4669 4670 4671
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4697 4698 4699 4700 4701
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4702 4703
	 *
	 * DO NOT ADD NEW FILES.
4704
	 */
A
Al Viro 已提交
4705
	name = cfile.file->f_path.dentry->d_name.name;
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4717 4718
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4719 4720 4721 4722 4723
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4724
	/*
4725 4726 4727
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4728
	 */
A
Al Viro 已提交
4729
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4730
					       &memory_cgrp_subsys);
4731
	ret = -EINVAL;
4732
	if (IS_ERR(cfile_css))
4733
		goto out_put_cfile;
4734 4735
	if (cfile_css != css) {
		css_put(cfile_css);
4736
		goto out_put_cfile;
4737
	}
4738

4739
	ret = event->register_event(memcg, event->eventfd, buf);
4740 4741 4742
	if (ret)
		goto out_put_css;

4743
	vfs_poll(efile.file, &event->pt);
4744

4745 4746 4747
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4748 4749 4750 4751

	fdput(cfile);
	fdput(efile);

4752
	return nbytes;
4753 4754

out_put_css:
4755
	css_put(css);
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4768
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4769
	{
4770
		.name = "usage_in_bytes",
4771
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4772
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4773
	},
4774 4775
	{
		.name = "max_usage_in_bytes",
4776
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4777
		.write = mem_cgroup_reset,
4778
		.read_u64 = mem_cgroup_read_u64,
4779
	},
B
Balbir Singh 已提交
4780
	{
4781
		.name = "limit_in_bytes",
4782
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4783
		.write = mem_cgroup_write,
4784
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4785
	},
4786 4787 4788
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4789
		.write = mem_cgroup_write,
4790
		.read_u64 = mem_cgroup_read_u64,
4791
	},
B
Balbir Singh 已提交
4792 4793
	{
		.name = "failcnt",
4794
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4795
		.write = mem_cgroup_reset,
4796
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4797
	},
4798 4799
	{
		.name = "stat",
4800
		.seq_show = memcg_stat_show,
4801
	},
4802 4803
	{
		.name = "force_empty",
4804
		.write = mem_cgroup_force_empty_write,
4805
	},
4806 4807 4808 4809 4810
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4811
	{
4812
		.name = "cgroup.event_control",		/* XXX: for compat */
4813
		.write = memcg_write_event_control,
4814
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4815
	},
K
KOSAKI Motohiro 已提交
4816 4817 4818 4819 4820
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4821 4822 4823 4824 4825
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4826 4827
	{
		.name = "oom_control",
4828
		.seq_show = mem_cgroup_oom_control_read,
4829
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4830 4831
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4832 4833 4834
	{
		.name = "pressure_level",
	},
4835 4836 4837
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4838
		.seq_show = memcg_numa_stat_show,
4839 4840
	},
#endif
4841 4842 4843
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4844
		.write = mem_cgroup_write,
4845
		.read_u64 = mem_cgroup_read_u64,
4846 4847 4848 4849
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4850
		.read_u64 = mem_cgroup_read_u64,
4851 4852 4853 4854
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4855
		.write = mem_cgroup_reset,
4856
		.read_u64 = mem_cgroup_read_u64,
4857 4858 4859 4860
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4861
		.write = mem_cgroup_reset,
4862
		.read_u64 = mem_cgroup_read_u64,
4863
	},
4864 4865
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4866 4867
	{
		.name = "kmem.slabinfo",
4868 4869 4870
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4871
		.seq_show = memcg_slab_show,
4872 4873
	},
#endif
V
Vladimir Davydov 已提交
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4897
	{ },	/* terminate */
4898
};
4899

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4926 4927 4928 4929 4930 4931 4932 4933
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4934 4935
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
4936
{
4937
	refcount_add(n, &memcg->id.ref);
4938 4939
}

4940
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4941
{
4942
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4943
		mem_cgroup_id_remove(memcg);
4944 4945 4946 4947 4948 4949

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4950 4951 4952 4953 4954
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4967
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4968 4969
{
	struct mem_cgroup_per_node *pn;
4970
	int tmp = node;
4971 4972 4973 4974 4975 4976 4977 4978
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4979 4980
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4981
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4982 4983
	if (!pn)
		return 1;
4984

4985 4986 4987 4988 4989 4990
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

4991 4992
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4993
		free_percpu(pn->lruvec_stat_local);
4994 4995 4996 4997
		kfree(pn);
		return 1;
	}

4998 4999 5000 5001 5002
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5003
	memcg->nodeinfo[node] = pn;
5004 5005 5006
	return 0;
}

5007
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5008
{
5009 5010
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5011 5012 5013
	if (!pn)
		return;

5014
	free_percpu(pn->lruvec_stat_cpu);
5015
	free_percpu(pn->lruvec_stat_local);
5016
	kfree(pn);
5017 5018
}

5019
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5020
{
5021
	int node;
5022

5023
	for_each_node(node)
5024
		free_mem_cgroup_per_node_info(memcg, node);
5025
	free_percpu(memcg->vmstats_percpu);
5026
	free_percpu(memcg->vmstats_local);
5027
	kfree(memcg);
5028
}
5029

5030 5031 5032
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5033 5034 5035 5036
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5037
	memcg_flush_percpu_vmstats(memcg);
5038
	memcg_flush_percpu_vmevents(memcg);
5039 5040 5041
	__mem_cgroup_free(memcg);
}

5042
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5043
{
5044
	struct mem_cgroup *memcg;
5045
	unsigned int size;
5046
	int node;
5047
	int __maybe_unused i;
5048
	long error = -ENOMEM;
B
Balbir Singh 已提交
5049

5050 5051 5052 5053
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5054
	if (!memcg)
5055
		return ERR_PTR(error);
5056

5057 5058 5059
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5060 5061
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5062
		goto fail;
5063
	}
5064

5065 5066 5067 5068
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

5069 5070
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
5071
		goto fail;
5072

B
Bob Liu 已提交
5073
	for_each_node(node)
5074
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5075
			goto fail;
5076

5077 5078
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5079

5080
	INIT_WORK(&memcg->high_work, high_work_func);
5081 5082 5083
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5084
	vmpressure_init(&memcg->vmpressure);
5085 5086
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5087
	memcg->socket_pressure = jiffies;
5088
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5089 5090
	memcg->kmemcg_id = -1;
#endif
5091 5092
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5093 5094 5095
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5096 5097 5098 5099 5100
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5101
#endif
5102
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5103 5104
	return memcg;
fail:
5105
	mem_cgroup_id_remove(memcg);
5106
	__mem_cgroup_free(memcg);
5107
	return ERR_PTR(error);
5108 5109
}

5110 5111
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5112
{
5113 5114 5115
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5116

5117
	memcg = mem_cgroup_alloc();
5118 5119
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5120

5121
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5122
	memcg->soft_limit = PAGE_COUNTER_MAX;
5123
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5124 5125 5126 5127 5128 5129
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5130
		page_counter_init(&memcg->memory, &parent->memory);
5131
		page_counter_init(&memcg->swap, &parent->swap);
5132 5133
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5134
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5135
	} else {
5136
		page_counter_init(&memcg->memory, NULL);
5137
		page_counter_init(&memcg->swap, NULL);
5138 5139
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5140
		page_counter_init(&memcg->tcpmem, NULL);
5141 5142 5143 5144 5145
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5146
		if (parent != root_mem_cgroup)
5147
			memory_cgrp_subsys.broken_hierarchy = true;
5148
	}
5149

5150 5151
	/* The following stuff does not apply to the root */
	if (!parent) {
5152 5153 5154
#ifdef CONFIG_MEMCG_KMEM
		INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
5155 5156 5157 5158
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5159
	error = memcg_online_kmem(memcg);
5160 5161
	if (error)
		goto fail;
5162

5163
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5164
		static_branch_inc(&memcg_sockets_enabled_key);
5165

5166 5167
	return &memcg->css;
fail:
5168
	mem_cgroup_id_remove(memcg);
5169
	mem_cgroup_free(memcg);
5170
	return ERR_PTR(error);
5171 5172
}

5173
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5174
{
5175 5176
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5187
	/* Online state pins memcg ID, memcg ID pins CSS */
5188
	refcount_set(&memcg->id.ref, 1);
5189
	css_get(css);
5190
	return 0;
B
Balbir Singh 已提交
5191 5192
}

5193
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5194
{
5195
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5196
	struct mem_cgroup_event *event, *tmp;
5197 5198 5199 5200 5201 5202

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5203 5204
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5205 5206 5207
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5208
	spin_unlock(&memcg->event_list_lock);
5209

R
Roman Gushchin 已提交
5210
	page_counter_set_min(&memcg->memory, 0);
5211
	page_counter_set_low(&memcg->memory, 0);
5212

5213
	memcg_offline_kmem(memcg);
5214
	wb_memcg_offline(memcg);
5215

5216 5217
	drain_all_stock(memcg);

5218
	mem_cgroup_id_put(memcg);
5219 5220
}

5221 5222 5223 5224 5225 5226 5227
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5228
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5229
{
5230
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5231
	int __maybe_unused i;
5232

5233 5234 5235 5236
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5237
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5238
		static_branch_dec(&memcg_sockets_enabled_key);
5239

5240
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5241
		static_branch_dec(&memcg_sockets_enabled_key);
5242

5243 5244 5245
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5246
	memcg_free_shrinker_maps(memcg);
5247
	memcg_free_kmem(memcg);
5248
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5249 5250
}

5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5268 5269 5270 5271 5272
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5273
	page_counter_set_min(&memcg->memory, 0);
5274
	page_counter_set_low(&memcg->memory, 0);
5275
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5276
	memcg->soft_limit = PAGE_COUNTER_MAX;
5277
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5278
	memcg_wb_domain_size_changed(memcg);
5279 5280
}

5281
#ifdef CONFIG_MMU
5282
/* Handlers for move charge at task migration. */
5283
static int mem_cgroup_do_precharge(unsigned long count)
5284
{
5285
	int ret;
5286

5287 5288
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5289
	if (!ret) {
5290 5291 5292
		mc.precharge += count;
		return ret;
	}
5293

5294
	/* Try charges one by one with reclaim, but do not retry */
5295
	while (count--) {
5296
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5297 5298
		if (ret)
			return ret;
5299
		mc.precharge++;
5300
		cond_resched();
5301
	}
5302
	return 0;
5303 5304 5305 5306
}

union mc_target {
	struct page	*page;
5307
	swp_entry_t	ent;
5308 5309 5310
};

enum mc_target_type {
5311
	MC_TARGET_NONE = 0,
5312
	MC_TARGET_PAGE,
5313
	MC_TARGET_SWAP,
5314
	MC_TARGET_DEVICE,
5315 5316
};

D
Daisuke Nishimura 已提交
5317 5318
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5319
{
5320
	struct page *page = vm_normal_page(vma, addr, ptent);
5321

D
Daisuke Nishimura 已提交
5322 5323 5324
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5325
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5326
			return NULL;
5327 5328 5329 5330
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5331 5332 5333 5334 5335 5336
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5337
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5338
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5339
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5340 5341 5342 5343
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5344
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5345
		return NULL;
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5363 5364 5365 5366
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5367
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5368
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
5369 5370 5371 5372
		entry->val = ent.val;

	return page;
}
5373 5374
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5375
			pte_t ptent, swp_entry_t *entry)
5376 5377 5378 5379
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5380

5381 5382 5383 5384 5385 5386 5387 5388 5389
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5390
	if (!(mc.flags & MOVE_FILE))
5391 5392 5393
		return NULL;

	mapping = vma->vm_file->f_mapping;
5394
	pgoff = linear_page_index(vma, addr);
5395 5396

	/* page is moved even if it's not RSS of this task(page-faulted). */
5397 5398
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5399 5400
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5401
		if (xa_is_value(page)) {
5402
			swp_entry_t swp = radix_to_swp_entry(page);
5403
			if (do_memsw_account())
5404
				*entry = swp;
5405 5406
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5407 5408 5409 5410 5411
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5412
#endif
5413 5414 5415
	return page;
}

5416 5417 5418
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5419
 * @compound: charge the page as compound or small page
5420 5421 5422
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5423
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5424 5425 5426 5427 5428
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5429
				   bool compound,
5430 5431 5432
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5433 5434
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5435
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5436
	int ret;
5437
	bool anon;
5438 5439 5440

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5441
	VM_BUG_ON(compound && !PageTransHuge(page));
5442 5443

	/*
5444
	 * Prevent mem_cgroup_migrate() from looking at
5445
	 * page->mem_cgroup of its source page while we change it.
5446
	 */
5447
	ret = -EBUSY;
5448 5449 5450 5451 5452 5453 5454
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5455 5456
	anon = PageAnon(page);

5457
	pgdat = page_pgdat(page);
5458 5459
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5460

5461
	lock_page_memcg(page);
5462

5463
	if (!anon && page_mapped(page)) {
5464 5465
		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5466 5467
	}

5468 5469 5470 5471
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
5472 5473
			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5474 5475 5476
		}
	}

5477
	if (PageWriteback(page)) {
5478 5479
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5480 5481 5482
	}

	/*
5483 5484
	 * All state has been migrated, let's switch to the new memcg.
	 *
5485
	 * It is safe to change page->mem_cgroup here because the page
5486 5487 5488 5489 5490 5491 5492 5493
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5494
	 */
5495
	smp_mb();
5496

5497
	page->mem_cgroup = to; 	/* caller should have done css_get */
5498

5499
	__unlock_page_memcg(from);
5500 5501 5502 5503

	ret = 0;

	local_irq_disable();
5504
	mem_cgroup_charge_statistics(to, page, nr_pages);
5505
	memcg_check_events(to, page);
5506
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5507 5508 5509 5510 5511 5512 5513 5514
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5530 5531
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5532 5533 5534
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5535 5536
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5537 5538 5539 5540
 *
 * Called with pte lock held.
 */

5541
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5542 5543 5544
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5545
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5546 5547 5548 5549 5550
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5551
		page = mc_handle_swap_pte(vma, ptent, &ent);
5552
	else if (pte_none(ptent))
5553
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5554 5555

	if (!page && !ent.val)
5556
		return ret;
5557 5558
	if (page) {
		/*
5559
		 * Do only loose check w/o serialization.
5560
		 * mem_cgroup_move_account() checks the page is valid or
5561
		 * not under LRU exclusion.
5562
		 */
5563
		if (page->mem_cgroup == mc.from) {
5564
			ret = MC_TARGET_PAGE;
5565
			if (is_device_private_page(page))
5566
				ret = MC_TARGET_DEVICE;
5567 5568 5569 5570 5571 5572
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5573 5574 5575 5576 5577
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5578
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5579 5580 5581
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5582 5583 5584 5585
	}
	return ret;
}

5586 5587
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5588 5589
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5590 5591 5592 5593 5594 5595 5596 5597
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5598 5599 5600 5601 5602
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5603
	page = pmd_page(pmd);
5604
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5605
	if (!(mc.flags & MOVE_ANON))
5606
		return ret;
5607
	if (page->mem_cgroup == mc.from) {
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5624 5625 5626 5627
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5628
	struct vm_area_struct *vma = walk->vma;
5629 5630 5631
	pte_t *pte;
	spinlock_t *ptl;

5632 5633
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5634 5635
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5636 5637
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5638
		 */
5639 5640
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5641
		spin_unlock(ptl);
5642
		return 0;
5643
	}
5644

5645 5646
	if (pmd_trans_unstable(pmd))
		return 0;
5647 5648
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5649
		if (get_mctgt_type(vma, addr, *pte, NULL))
5650 5651 5652 5653
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5654 5655 5656
	return 0;
}

5657 5658 5659 5660
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5661 5662 5663 5664
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5665
	down_read(&mm->mmap_sem);
5666
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5667
	up_read(&mm->mmap_sem);
5668 5669 5670 5671 5672 5673 5674 5675 5676

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5677 5678 5679 5680 5681
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5682 5683
}

5684 5685
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5686
{
5687 5688 5689
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5690
	/* we must uncharge all the leftover precharges from mc.to */
5691
	if (mc.precharge) {
5692
		cancel_charge(mc.to, mc.precharge);
5693 5694 5695 5696 5697 5698 5699
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5700
		cancel_charge(mc.from, mc.moved_charge);
5701
		mc.moved_charge = 0;
5702
	}
5703 5704 5705
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5706
		if (!mem_cgroup_is_root(mc.from))
5707
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5708

5709 5710
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5711
		/*
5712 5713
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5714
		 */
5715
		if (!mem_cgroup_is_root(mc.to))
5716 5717
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5718 5719
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5720

5721 5722
		mc.moved_swap = 0;
	}
5723 5724 5725 5726 5727 5728 5729
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5730 5731
	struct mm_struct *mm = mc.mm;

5732 5733 5734 5735 5736 5737
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5738
	spin_lock(&mc.lock);
5739 5740
	mc.from = NULL;
	mc.to = NULL;
5741
	mc.mm = NULL;
5742
	spin_unlock(&mc.lock);
5743 5744

	mmput(mm);
5745 5746
}

5747
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5748
{
5749
	struct cgroup_subsys_state *css;
5750
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5751
	struct mem_cgroup *from;
5752
	struct task_struct *leader, *p;
5753
	struct mm_struct *mm;
5754
	unsigned long move_flags;
5755
	int ret = 0;
5756

5757 5758
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5759 5760
		return 0;

5761 5762 5763 5764 5765 5766 5767
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5768
	cgroup_taskset_for_each_leader(leader, css, tset) {
5769 5770
		WARN_ON_ONCE(p);
		p = leader;
5771
		memcg = mem_cgroup_from_css(css);
5772 5773 5774 5775
	}
	if (!p)
		return 0;

5776 5777 5778 5779 5780 5781 5782 5783 5784
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5801
		mc.mm = mm;
5802 5803 5804 5805 5806 5807 5808 5809 5810
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5811 5812
	} else {
		mmput(mm);
5813 5814 5815 5816
	}
	return ret;
}

5817
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5818
{
5819 5820
	if (mc.to)
		mem_cgroup_clear_mc();
5821 5822
}

5823 5824 5825
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5826
{
5827
	int ret = 0;
5828
	struct vm_area_struct *vma = walk->vma;
5829 5830
	pte_t *pte;
	spinlock_t *ptl;
5831 5832 5833
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5834

5835 5836
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5837
		if (mc.precharge < HPAGE_PMD_NR) {
5838
			spin_unlock(ptl);
5839 5840 5841 5842 5843 5844
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5845
				if (!mem_cgroup_move_account(page, true,
5846
							     mc.from, mc.to)) {
5847 5848 5849 5850 5851 5852
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5853 5854 5855 5856 5857 5858 5859 5860
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5861
		}
5862
		spin_unlock(ptl);
5863
		return 0;
5864 5865
	}

5866 5867
	if (pmd_trans_unstable(pmd))
		return 0;
5868 5869 5870 5871
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5872
		bool device = false;
5873
		swp_entry_t ent;
5874 5875 5876 5877

		if (!mc.precharge)
			break;

5878
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5879 5880
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
5881
			fallthrough;
5882 5883
		case MC_TARGET_PAGE:
			page = target.page;
5884 5885 5886 5887 5888 5889 5890 5891
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5892
			if (!device && isolate_lru_page(page))
5893
				goto put;
5894 5895
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5896
				mc.precharge--;
5897 5898
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5899
			}
5900 5901
			if (!device)
				putback_lru_page(page);
5902
put:			/* get_mctgt_type() gets the page */
5903 5904
			put_page(page);
			break;
5905 5906
		case MC_TARGET_SWAP:
			ent = target.ent;
5907
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5908
				mc.precharge--;
5909 5910 5911
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5912
			break;
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5927
		ret = mem_cgroup_do_precharge(1);
5928 5929 5930 5931 5932 5933 5934
		if (!ret)
			goto retry;
	}

	return ret;
}

5935 5936 5937 5938
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

5939
static void mem_cgroup_move_charge(void)
5940 5941
{
	lru_add_drain_all();
5942
	/*
5943 5944 5945
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5946 5947 5948
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5949
retry:
5950
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5962 5963 5964 5965
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5966 5967
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
5968

5969
	up_read(&mc.mm->mmap_sem);
5970
	atomic_dec(&mc.from->moving_account);
5971 5972
}

5973
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5974
{
5975 5976
	if (mc.to) {
		mem_cgroup_move_charge();
5977
		mem_cgroup_clear_mc();
5978
	}
B
Balbir Singh 已提交
5979
}
5980
#else	/* !CONFIG_MMU */
5981
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5982 5983 5984
{
	return 0;
}
5985
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5986 5987
{
}
5988
static void mem_cgroup_move_task(void)
5989 5990 5991
{
}
#endif
B
Balbir Singh 已提交
5992

5993 5994
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5995 5996
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5997
 */
5998
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5999 6000
{
	/*
6001
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6002 6003 6004
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6005
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6006 6007 6008
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
6009 6010
}

6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6021 6022 6023
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6024 6025 6026
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6027 6028
}

R
Roman Gushchin 已提交
6029 6030
static int memory_min_show(struct seq_file *m, void *v)
{
6031 6032
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6052 6053
static int memory_low_show(struct seq_file *m, void *v)
{
6054 6055
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6066
	err = page_counter_memparse(buf, "max", &low);
6067 6068 6069
	if (err)
		return err;

6070
	page_counter_set_low(&memcg->memory, low);
6071 6072 6073 6074 6075 6076

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6077 6078
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6079 6080 6081 6082 6083 6084
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6085 6086
	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6087 6088 6089 6090
	unsigned long high;
	int err;

	buf = strstrip(buf);
6091
	err = page_counter_memparse(buf, "max", &high);
6092 6093 6094
	if (err)
		return err;

6095
	page_counter_set_high(&memcg->memory, high);
6096

6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6119

6120 6121 6122 6123 6124
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6125 6126
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6127 6128 6129 6130 6131 6132
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6133 6134
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6135 6136 6137 6138
	unsigned long max;
	int err;

	buf = strstrip(buf);
6139
	err = page_counter_memparse(buf, "max", &max);
6140 6141 6142
	if (err)
		return err;

6143
	xchg(&memcg->memory.max, max);
6144 6145 6146 6147 6148 6149 6150

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6151
		if (signal_pending(current))
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6167
		memcg_memory_event(memcg, MEMCG_OOM);
6168 6169 6170
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6171

6172
	memcg_wb_domain_size_changed(memcg);
6173 6174 6175
	return nbytes;
}

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6186 6187
static int memory_events_show(struct seq_file *m, void *v)
{
6188
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6189

6190 6191 6192 6193 6194 6195 6196
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6197

6198
	__memory_events_show(m, memcg->memory_events_local);
6199 6200 6201
	return 0;
}

6202 6203
static int memory_stat_show(struct seq_file *m, void *v)
{
6204
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6205
	char *buf;
6206

6207 6208 6209 6210 6211
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6212 6213 6214
	return 0;
}

6215 6216
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6217
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6246 6247 6248
static struct cftype memory_files[] = {
	{
		.name = "current",
6249
		.flags = CFTYPE_NOT_ON_ROOT,
6250 6251
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6252 6253 6254 6255 6256 6257
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6279
		.file_offset = offsetof(struct mem_cgroup, events_file),
6280 6281
		.seq_show = memory_events_show,
	},
6282 6283 6284 6285 6286 6287
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6288 6289 6290 6291
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6292 6293 6294 6295 6296 6297
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6298 6299 6300
	{ }	/* terminate */
};

6301
struct cgroup_subsys memory_cgrp_subsys = {
6302
	.css_alloc = mem_cgroup_css_alloc,
6303
	.css_online = mem_cgroup_css_online,
6304
	.css_offline = mem_cgroup_css_offline,
6305
	.css_released = mem_cgroup_css_released,
6306
	.css_free = mem_cgroup_css_free,
6307
	.css_reset = mem_cgroup_css_reset,
6308 6309
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6310
	.post_attach = mem_cgroup_move_task,
6311
	.bind = mem_cgroup_bind,
6312 6313
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6314
	.early_init = 0,
B
Balbir Singh 已提交
6315
};
6316

6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6359 6360
 */
static unsigned long effective_protection(unsigned long usage,
6361
					  unsigned long parent_usage,
6362 6363 6364 6365 6366
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6367
	unsigned long ep;
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;

	if (parent_effective > siblings_protected && usage > protected) {
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6426 6427
}

6428
/**
R
Roman Gushchin 已提交
6429
 * mem_cgroup_protected - check if memory consumption is in the normal range
6430
 * @root: the top ancestor of the sub-tree being checked
6431 6432
 * @memcg: the memory cgroup to check
 *
6433 6434
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6435
 *
R
Roman Gushchin 已提交
6436 6437 6438 6439 6440
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
6441
 */
R
Roman Gushchin 已提交
6442 6443
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6444
{
6445
	unsigned long usage, parent_usage;
6446 6447
	struct mem_cgroup *parent;

6448
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6449
		return MEMCG_PROT_NONE;
6450

6451 6452 6453
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6454
		return MEMCG_PROT_NONE;
6455

6456
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6457 6458 6459 6460
	if (!usage)
		return MEMCG_PROT_NONE;

	parent = parent_mem_cgroup(memcg);
6461 6462 6463 6464
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6465
	if (parent == root) {
6466
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6467 6468
		memcg->memory.elow = memcg->memory.low;
		goto out;
R
Roman Gushchin 已提交
6469 6470
	}

6471 6472
	parent_usage = page_counter_read(&parent->memory);

6473
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6474 6475
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6476
			atomic_long_read(&parent->memory.children_min_usage)));
6477

6478
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6479
			memcg->memory.low, READ_ONCE(parent->memory.elow),
6480
			atomic_long_read(&parent->memory.children_low_usage)));
6481

6482 6483
out:
	if (usage <= memcg->memory.emin)
R
Roman Gushchin 已提交
6484
		return MEMCG_PROT_MIN;
6485
	else if (usage <= memcg->memory.elow)
R
Roman Gushchin 已提交
6486 6487 6488
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6489 6490
}

6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6509
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
6510
{
6511
	unsigned int nr_pages = hpage_nr_pages(page);
6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
6526
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6527
		if (compound_head(page)->mem_cgroup)
6528
			goto out;
6529

6530
		if (do_swap_account) {
6531 6532 6533 6534 6535 6536 6537 6538 6539
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

6553
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6554
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
6555 6556 6557
{
	int ret;

6558
	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp);
6559 6560
	if (*memcgp)
		cgroup_throttle_swaprate(page, gfp_mask);
6561 6562 6563
	return ret;
}

6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6581
			      bool lrucare)
6582
{
6583
	unsigned int nr_pages = hpage_nr_pages(page);
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6598 6599 6600
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6601
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6602 6603
	memcg_check_events(memcg, page);
	local_irq_enable();
6604

6605
	if (do_memsw_account() && PageSwapCache(page)) {
6606 6607 6608 6609 6610 6611
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6612
		mem_cgroup_uncharge_swap(entry, nr_pages);
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6623
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6624
{
6625
	unsigned int nr_pages = hpage_nr_pages(page);
6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
/**
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @lrucare: page might be on the LRU already
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success. Otherwise, an error code is returned.
 */
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask,
		      bool lrucare)
{
	struct mem_cgroup *memcg;
	int ret;

	VM_BUG_ON_PAGE(!page->mapping, page);

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, &memcg);
	if (ret)
		return ret;
	mem_cgroup_commit_charge(page, memcg, lrucare);
	return 0;
}

6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6679
{
6680 6681 6682 6683 6684 6685
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6686 6687
	unsigned long flags;

6688 6689
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6690
		if (do_memsw_account())
6691 6692 6693 6694
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6695
	}
6696 6697

	local_irq_save(flags);
6698 6699 6700 6701 6702
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6703
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6704
	memcg_check_events(ug->memcg, ug->dummy_page);
6705
	local_irq_restore(flags);
6706

6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
6736
			nr_pages = compound_nr(page);
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
6748
		ug->nr_kmem += compound_nr(page);
6749 6750 6751 6752 6753
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6754 6755 6756 6757
}

static void uncharge_list(struct list_head *page_list)
{
6758
	struct uncharge_gather ug;
6759
	struct list_head *next;
6760 6761

	uncharge_gather_clear(&ug);
6762

6763 6764 6765 6766
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6767 6768
	next = page_list->next;
	do {
6769 6770
		struct page *page;

6771 6772 6773
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6774
		uncharge_page(page, &ug);
6775 6776
	} while (next != page_list);

6777 6778
	if (ug.memcg)
		uncharge_batch(&ug);
6779 6780
}

6781 6782 6783 6784 6785 6786 6787 6788 6789
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6790 6791
	struct uncharge_gather ug;

6792 6793 6794
	if (mem_cgroup_disabled())
		return;

6795
	/* Don't touch page->lru of any random page, pre-check: */
6796
	if (!page->mem_cgroup)
6797 6798
		return;

6799 6800 6801
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6802
}
6803

6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6815

6816 6817
	if (!list_empty(page_list))
		uncharge_list(page_list);
6818 6819 6820
}

/**
6821 6822 6823
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6824
 *
6825 6826
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6827 6828 6829
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6830
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6831
{
6832
	struct mem_cgroup *memcg;
6833
	unsigned int nr_pages;
6834
	unsigned long flags;
6835 6836 6837 6838

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6839 6840
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6841 6842 6843 6844 6845

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6846
	if (newpage->mem_cgroup)
6847 6848
		return;

6849
	/* Swapcache readahead pages can get replaced before being charged */
6850
	memcg = oldpage->mem_cgroup;
6851
	if (!memcg)
6852 6853
		return;

6854
	/* Force-charge the new page. The old one will be freed soon */
6855
	nr_pages = hpage_nr_pages(newpage);
6856 6857 6858 6859 6860

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6861

6862
	commit_charge(newpage, memcg, false);
6863

6864
	local_irq_save(flags);
6865
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6866
	memcg_check_events(memcg, newpage);
6867
	local_irq_restore(flags);
6868 6869
}

6870
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6871 6872
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6873
void mem_cgroup_sk_alloc(struct sock *sk)
6874 6875 6876
{
	struct mem_cgroup *memcg;

6877 6878 6879
	if (!mem_cgroup_sockets_enabled)
		return;

6880 6881 6882 6883
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6884 6885
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6886 6887
	if (memcg == root_mem_cgroup)
		goto out;
6888
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6889
		goto out;
S
Shakeel Butt 已提交
6890
	if (css_tryget(&memcg->css))
6891
		sk->sk_memcg = memcg;
6892
out:
6893 6894 6895
	rcu_read_unlock();
}

6896
void mem_cgroup_sk_free(struct sock *sk)
6897
{
6898 6899
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6912
	gfp_t gfp_mask = GFP_KERNEL;
6913

6914
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6915
		struct page_counter *fail;
6916

6917 6918
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6919 6920
			return true;
		}
6921 6922
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6923
		return false;
6924
	}
6925

6926 6927 6928 6929
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6930
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6931

6932 6933 6934 6935
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6936 6937 6938 6939 6940
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6941 6942
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6943 6944 6945
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6946
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6947
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6948 6949
		return;
	}
6950

6951
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6952

6953
	refill_stock(memcg, nr_pages);
6954 6955
}

6956 6957 6958 6959 6960 6961 6962 6963 6964
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6965 6966
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6967 6968 6969 6970
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6971

6972
/*
6973 6974
 * subsys_initcall() for memory controller.
 *
6975 6976 6977 6978
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6979 6980 6981
 */
static int __init mem_cgroup_init(void)
{
6982 6983
	int cpu, node;

6984
#ifdef CONFIG_MEMCG_KMEM
6985 6986
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6987 6988 6989
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6990
	 */
6991 6992
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6993 6994
#endif

6995 6996
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7008
		rtpn->rb_root = RB_ROOT;
7009
		rtpn->rb_rightmost = NULL;
7010
		spin_lock_init(&rtpn->lock);
7011 7012 7013
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7014 7015 7016
	return 0;
}
subsys_initcall(mem_cgroup_init);
7017 7018

#ifdef CONFIG_MEMCG_SWAP
7019 7020
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7021
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7037 7038 7039 7040 7041 7042 7043 7044 7045
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7046
	struct mem_cgroup *memcg, *swap_memcg;
7047
	unsigned int nr_entries;
7048 7049 7050 7051 7052
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7053
	if (!do_memsw_account())
7054 7055 7056 7057 7058 7059 7060 7061
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7062 7063 7064 7065 7066 7067
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7068 7069 7070 7071 7072 7073
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7074
	VM_BUG_ON_PAGE(oldid, page);
7075
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7076 7077 7078 7079

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7080
		page_counter_uncharge(&memcg->memory, nr_entries);
7081

7082 7083
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
7084 7085
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7086 7087
	}

7088 7089
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7090
	 * i_pages lock which is taken with interrupts-off. It is
7091
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7092
	 * only synchronisation we have for updating the per-CPU variables.
7093 7094
	 */
	VM_BUG_ON(!irqs_disabled());
7095
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7096
	memcg_check_events(memcg, page);
7097 7098

	if (!mem_cgroup_is_root(memcg))
7099
		css_put_many(&memcg->css, nr_entries);
7100 7101
}

7102 7103
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7104 7105 7106
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7107
 * Try to charge @page's memcg for the swap space at @entry.
7108 7109 7110 7111 7112
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7113
	unsigned int nr_pages = hpage_nr_pages(page);
7114
	struct page_counter *counter;
7115
	struct mem_cgroup *memcg;
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7127 7128
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7129
		return 0;
7130
	}
7131

7132 7133
	memcg = mem_cgroup_id_get_online(memcg);

7134
	if (!mem_cgroup_is_root(memcg) &&
7135
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7136 7137
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7138
		mem_cgroup_id_put(memcg);
7139
		return -ENOMEM;
7140
	}
7141

7142 7143 7144 7145
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7146
	VM_BUG_ON_PAGE(oldid, page);
7147
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7148 7149 7150 7151

	return 0;
}

7152
/**
7153
 * mem_cgroup_uncharge_swap - uncharge swap space
7154
 * @entry: swap entry to uncharge
7155
 * @nr_pages: the amount of swap space to uncharge
7156
 */
7157
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7158 7159 7160 7161
{
	struct mem_cgroup *memcg;
	unsigned short id;

7162
	if (!do_swap_account)
7163 7164
		return;

7165
	id = swap_cgroup_record(entry, 0, nr_pages);
7166
	rcu_read_lock();
7167
	memcg = mem_cgroup_from_id(id);
7168
	if (memcg) {
7169 7170
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7171
				page_counter_uncharge(&memcg->swap, nr_pages);
7172
			else
7173
				page_counter_uncharge(&memcg->memsw, nr_pages);
7174
		}
7175
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7176
		mem_cgroup_id_put_many(memcg, nr_pages);
7177 7178 7179 7180
	}
	rcu_read_unlock();
}

7181 7182 7183 7184 7185 7186 7187 7188
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7189
				      READ_ONCE(memcg->swap.max) -
7190 7191 7192 7193
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7209 7210 7211 7212 7213
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7214
			return true;
7215
	}
7216 7217 7218 7219

	return false;
}

7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

7237 7238 7239 7240 7241 7242 7243 7244
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7268 7269
static int swap_max_show(struct seq_file *m, void *v)
{
7270 7271
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7286
	xchg(&memcg->swap.max, max);
7287 7288 7289 7290

	return nbytes;
}

7291 7292
static int swap_events_show(struct seq_file *m, void *v)
{
7293
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7294

7295 7296
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7297 7298 7299 7300 7301 7302 7303 7304
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7305 7306 7307 7308 7309 7310
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7311 7312 7313 7314 7315 7316
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7317 7318 7319 7320 7321 7322
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7323 7324 7325 7326 7327 7328
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7329 7330 7331
	{ }	/* terminate */
};

7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
7363 7364
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
7365 7366 7367 7368 7369 7370 7371 7372
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */