memcontrol.c 146.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
G
Glauber Costa 已提交
69
#include <net/tcp_memcontrol.h>
70
#include "slab.h"
B
Balbir Singh 已提交
71

72 73
#include <asm/uaccess.h>

74 75
#include <trace/events/vmscan.h>

76 77
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
78

79
#define MEM_CGROUP_RECLAIM_RETRIES	5
80
static struct mem_cgroup *root_mem_cgroup __read_mostly;
T
Tejun Heo 已提交
81
struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
B
Balbir Singh 已提交
82

83
/* Whether the swap controller is active */
A
Andrew Morton 已提交
84
#ifdef CONFIG_MEMCG_SWAP
85 86
int do_swap_account __read_mostly;
#else
87
#define do_swap_account		0
88 89
#endif

90 91 92
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
93
	"rss_huge",
94
	"mapped_file",
95
	"dirty",
96
	"writeback",
97 98 99 100 101 102 103 104 105 106
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

107 108 109 110 111 112 113 114
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

115 116 117
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
139 140 141 142 143
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
144

145 146 147
/*
 * cgroup_event represents events which userspace want to receive.
 */
148
struct mem_cgroup_event {
149
	/*
150
	 * memcg which the event belongs to.
151
	 */
152
	struct mem_cgroup *memcg;
153 154 155 156 157 158 159 160
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
161 162 163 164 165
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
166
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
167
			      struct eventfd_ctx *eventfd, const char *args);
168 169 170 171 172
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
173
	void (*unregister_event)(struct mem_cgroup *memcg,
174
				 struct eventfd_ctx *eventfd);
175 176 177 178 179 180 181 182 183 184
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

185 186
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187

188 189
/* Stuffs for move charges at task migration. */
/*
190
 * Types of charges to be moved.
191
 */
192 193 194
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
195

196 197
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
198
	spinlock_t	  lock; /* for from, to */
199 200
	struct mem_cgroup *from;
	struct mem_cgroup *to;
201
	unsigned long flags;
202
	unsigned long precharge;
203
	unsigned long moved_charge;
204
	unsigned long moved_swap;
205 206 207
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
208
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
209 210
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
211

212 213 214 215
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
216
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
217
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
218

219 220
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
221
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
222
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
223
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
224 225 226
	NR_CHARGE_TYPE,
};

227
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
228 229 230 231
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
232
	_KMEM,
G
Glauber Costa 已提交
233 234
};

235 236
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
237
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
238 239
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
240

241 242 243 244 245 246 247
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

248 249 250 251 252 253 254 255 256 257 258 259 260
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

261 262 263 264 265
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

266 267 268 269 270 271
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
272 273
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
274
	return memcg->css.id;
L
Li Zefan 已提交
275 276
}

277 278 279 280 281 282
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
283 284 285 286
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

287
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
288 289 290
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
291
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
292
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
293 294 295

void sock_update_memcg(struct sock *sk)
{
296
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
297
		struct mem_cgroup *memcg;
298
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
299 300 301

		BUG_ON(!sk->sk_prot->proto_cgroup);

302 303 304 305 306 307 308 309 310 311
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
312
			css_get(&sk->sk_cgrp->memcg->css);
313 314 315
			return;
		}

G
Glauber Costa 已提交
316 317
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
318
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
319
		if (cg_proto && cg_proto->active &&
320
		    css_tryget_online(&memcg->css)) {
321
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
322 323 324 325 326 327 328 329
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
330
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
331 332 333
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
334
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
335 336
	}
}
G
Glauber Costa 已提交
337 338 339 340 341 342

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

343
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
344 345
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
346

347 348
#endif

349
#ifdef CONFIG_MEMCG_KMEM
350
/*
351
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
352 353 354 355 356
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
357
 *
358 359
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
360
 */
361 362
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
363

364 365 366 367 368 369 370 371 372 373 374 375 376
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

377 378 379 380 381 382
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
383
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 385
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
386
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 388 389
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
390
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391

392 393 394 395 396 397
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
398
struct static_key memcg_kmem_enabled_key;
399
EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 401 402

#endif /* CONFIG_MEMCG_KMEM */

403
static struct mem_cgroup_per_zone *
404
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405
{
406 407 408
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

409
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
410 411
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

438
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
439 440 441 442 443 444
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

473
static struct mem_cgroup_per_zone *
474
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
475
{
476 477
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
478

479
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
480 481
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

497 498
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
499
					 unsigned long new_usage_in_excess)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

529 530
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
531 532 533 534 535 536 537
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

538 539
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
540
{
541 542 543
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
544
	__mem_cgroup_remove_exceeded(mz, mctz);
545
	spin_unlock_irqrestore(&mctz->lock, flags);
546 547
}

548 549 550
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
551
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
552 553 554 555 556 557 558
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
559 560 561

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
562
	unsigned long excess;
563 564 565
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

566
	mctz = soft_limit_tree_from_page(page);
567 568 569 570 571
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
572
		mz = mem_cgroup_page_zoneinfo(memcg, page);
573
		excess = soft_limit_excess(memcg);
574 575 576 577 578
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
579 580 581
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
582 583
			/* if on-tree, remove it */
			if (mz->on_tree)
584
				__mem_cgroup_remove_exceeded(mz, mctz);
585 586 587 588
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
589
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
590
			spin_unlock_irqrestore(&mctz->lock, flags);
591 592 593 594 595 596 597
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
598 599
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
600

601 602 603 604
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
605
			mem_cgroup_remove_exceeded(mz, mctz);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
628
	__mem_cgroup_remove_exceeded(mz, mctz);
629
	if (!soft_limit_excess(mz->memcg) ||
630
	    !css_tryget_online(&mz->memcg->css))
631 632 633 634 635 636 637 638 639 640
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

641
	spin_lock_irq(&mctz->lock);
642
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
643
	spin_unlock_irq(&mctz->lock);
644 645 646
	return mz;
}

647
/*
648 649
 * Return page count for single (non recursive) @memcg.
 *
650 651 652 653 654
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
655
 * a periodic synchronization of counter in memcg's counter.
656 657 658 659 660 661 662 663 664
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
665
 * common workload, threshold and synchronization as vmstat[] should be
666 667
 * implemented.
 */
668 669
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
670
{
671
	long val = 0;
672 673
	int cpu;

674
	/* Per-cpu values can be negative, use a signed accumulator */
675
	for_each_possible_cpu(cpu)
676
		val += per_cpu(memcg->stat->count[idx], cpu);
677 678 679 680 681 682
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
683 684 685
	return val;
}

686
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
687 688 689 690 691
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

692
	for_each_possible_cpu(cpu)
693
		val += per_cpu(memcg->stat->events[idx], cpu);
694 695 696
	return val;
}

697
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698
					 struct page *page,
699
					 int nr_pages)
700
{
701 702 703 704
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
705
	if (PageAnon(page))
706
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707
				nr_pages);
708
	else
709
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710
				nr_pages);
711

712 713 714 715
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

716 717
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
718
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
719
	else {
720
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
721 722
		nr_pages = -nr_pages; /* for event */
	}
723

724
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
725 726
}

727 728 729
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
730
{
731
	unsigned long nr = 0;
732 733
	int zid;

734
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
735

736 737 738 739 740 741 742 743 744 745 746 747
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
748
}
749

750
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
751
			unsigned int lru_mask)
752
{
753
	unsigned long nr = 0;
754
	int nid;
755

756
	for_each_node_state(nid, N_MEMORY)
757 758
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
759 760
}

761 762
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
763 764 765
{
	unsigned long val, next;

766
	val = __this_cpu_read(memcg->stat->nr_page_events);
767
	next = __this_cpu_read(memcg->stat->targets[target]);
768
	/* from time_after() in jiffies.h */
769 770 771 772 773
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
774 775 776
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
777 778 779 780 781 782 783 784
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
785
	}
786
	return false;
787 788 789 790 791 792
}

/*
 * Check events in order.
 *
 */
793
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
794 795
{
	/* threshold event is triggered in finer grain than soft limit */
796 797
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
798
		bool do_softlimit;
799
		bool do_numainfo __maybe_unused;
800

801 802
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
803 804 805 806
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
807
		mem_cgroup_threshold(memcg);
808 809
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
810
#if MAX_NUMNODES > 1
811
		if (unlikely(do_numainfo))
812
			atomic_inc(&memcg->numainfo_events);
813
#endif
814
	}
815 816
}

817
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
818
{
819 820 821 822 823 824 825 826
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

827
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
828
}
M
Michal Hocko 已提交
829
EXPORT_SYMBOL(mem_cgroup_from_task);
830

831
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
832
{
833
	struct mem_cgroup *memcg = NULL;
834

835 836
	rcu_read_lock();
	do {
837 838 839 840 841 842
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
843
			memcg = root_mem_cgroup;
844 845 846 847 848
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
849
	} while (!css_tryget_online(&memcg->css));
850
	rcu_read_unlock();
851
	return memcg;
852 853
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
871
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
872
				   struct mem_cgroup *prev,
873
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
874
{
M
Michal Hocko 已提交
875
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
876
	struct cgroup_subsys_state *css = NULL;
877
	struct mem_cgroup *memcg = NULL;
878
	struct mem_cgroup *pos = NULL;
879

880 881
	if (mem_cgroup_disabled())
		return NULL;
882

883 884
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
885

886
	if (prev && !reclaim)
887
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
888

889 890
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
891
			goto out;
892
		return root;
893
	}
K
KAMEZAWA Hiroyuki 已提交
894

895
	rcu_read_lock();
M
Michal Hocko 已提交
896

897 898 899 900 901 902 903 904 905
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

906
		while (1) {
907
			pos = READ_ONCE(iter->position);
908 909
			if (!pos || css_tryget(&pos->css))
				break;
910
			/*
911 912 913 914 915 916
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
917
			 */
918 919
			(void)cmpxchg(&iter->position, pos, NULL);
		}
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
937
		}
K
KAMEZAWA Hiroyuki 已提交
938

939 940 941 942 943 944
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
945

946 947
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
948

949
		if (css_tryget(css)) {
950 951 952 953 954 955 956
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
957

958
			css_put(css);
959
		}
960

961
		memcg = NULL;
962
	}
963 964 965

	if (reclaim) {
		/*
966 967 968
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
969
		 */
970 971
		(void)cmpxchg(&iter->position, pos, memcg);

972 973 974 975 976 977 978
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
979
	}
980

981 982
out_unlock:
	rcu_read_unlock();
983
out:
984 985 986
	if (prev && prev != root)
		css_put(&prev->css);

987
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
988
}
K
KAMEZAWA Hiroyuki 已提交
989

990 991 992 993 994 995 996
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
997 998 999 1000 1001 1002
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

1026 1027 1028 1029 1030 1031
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1032
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1033
	     iter != NULL;				\
1034
	     iter = mem_cgroup_iter(root, iter, NULL))
1035

1036
#define for_each_mem_cgroup(iter)			\
1037
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1038
	     iter != NULL;				\
1039
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1040

1041 1042 1043
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1044
 * @memcg: memcg of the wanted lruvec
1045 1046 1047 1048 1049 1050 1051 1052 1053
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1054
	struct lruvec *lruvec;
1055

1056 1057 1058 1059
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1060

1061
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1072 1073 1074
}

/**
1075
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1076
 * @page: the page
1077
 * @zone: zone of the page
1078 1079 1080 1081
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1082
 */
1083
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1084 1085
{
	struct mem_cgroup_per_zone *mz;
1086
	struct mem_cgroup *memcg;
1087
	struct lruvec *lruvec;
1088

1089 1090 1091 1092
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1093

1094
	memcg = page->mem_cgroup;
1095
	/*
1096
	 * Swapcache readahead pages are added to the LRU - and
1097
	 * possibly migrated - before they are charged.
1098
	 */
1099 1100
	if (!memcg)
		memcg = root_mem_cgroup;
1101

1102
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1113
}
1114

1115
/**
1116 1117 1118 1119
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1120
 *
1121 1122
 * This function must be called when a page is added to or removed from an
 * lru list.
1123
 */
1124 1125
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1126 1127
{
	struct mem_cgroup_per_zone *mz;
1128
	unsigned long *lru_size;
1129 1130 1131 1132

	if (mem_cgroup_disabled())
		return;

1133 1134 1135 1136
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1137
}
1138

1139
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1140
{
1141
	struct mem_cgroup *task_memcg;
1142
	struct task_struct *p;
1143
	bool ret;
1144

1145
	p = find_lock_task_mm(task);
1146
	if (p) {
1147
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1148 1149 1150 1151 1152 1153 1154
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1155
		rcu_read_lock();
1156 1157
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1158
		rcu_read_unlock();
1159
	}
1160 1161
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1162 1163 1164
	return ret;
}

1165
#define mem_cgroup_from_counter(counter, member)	\
1166 1167
	container_of(counter, struct mem_cgroup, member)

1168
/**
1169
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1170
 * @memcg: the memory cgroup
1171
 *
1172
 * Returns the maximum amount of memory @mem can be charged with, in
1173
 * pages.
1174
 */
1175
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1176
{
1177 1178 1179
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1180

1181
	count = page_counter_read(&memcg->memory);
1182
	limit = READ_ONCE(memcg->memory.limit);
1183 1184 1185 1186 1187
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1188
		limit = READ_ONCE(memcg->memsw.limit);
1189 1190 1191 1192 1193
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1194 1195
}

1196
/*
Q
Qiang Huang 已提交
1197
 * A routine for checking "mem" is under move_account() or not.
1198
 *
Q
Qiang Huang 已提交
1199 1200 1201
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1202
 */
1203
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1204
{
1205 1206
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1207
	bool ret = false;
1208 1209 1210 1211 1212 1213 1214 1215 1216
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1217

1218 1219
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1220 1221
unlock:
	spin_unlock(&mc.lock);
1222 1223 1224
	return ret;
}

1225
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1226 1227
{
	if (mc.moving_task && current != mc.moving_task) {
1228
		if (mem_cgroup_under_move(memcg)) {
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1241
#define K(x) ((x) << (PAGE_SHIFT-10))
1242
/**
1243
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1244 1245 1246 1247 1248 1249 1250 1251
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1252
	/* oom_info_lock ensures that parallel ooms do not interleave */
1253
	static DEFINE_MUTEX(oom_info_lock);
1254 1255
	struct mem_cgroup *iter;
	unsigned int i;
1256

1257
	mutex_lock(&oom_info_lock);
1258 1259
	rcu_read_lock();

1260 1261 1262 1263 1264 1265 1266 1267
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1268
	pr_cont_cgroup_path(memcg->css.cgroup);
1269
	pr_cont("\n");
1270 1271 1272

	rcu_read_unlock();

1273 1274 1275 1276 1277 1278 1279 1280 1281
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1282 1283

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1284 1285
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1286 1287 1288 1289 1290
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
1291
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1292 1293 1294 1295 1296 1297 1298 1299 1300
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1301
	mutex_unlock(&oom_info_lock);
1302 1303
}

1304 1305 1306 1307
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1308
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1309 1310
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1311 1312
	struct mem_cgroup *iter;

1313
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1314
		num++;
1315 1316 1317
	return num;
}

D
David Rientjes 已提交
1318 1319 1320
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1321
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1322
{
1323
	unsigned long limit;
1324

1325
	limit = memcg->memory.limit;
1326
	if (mem_cgroup_swappiness(memcg)) {
1327
		unsigned long memsw_limit;
1328

1329 1330
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1331 1332
	}
	return limit;
D
David Rientjes 已提交
1333 1334
}

1335 1336
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1337
{
1338 1339 1340 1341 1342 1343
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1344 1345 1346 1347 1348 1349
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1350 1351
	mutex_lock(&oom_lock);

1352
	/*
1353 1354 1355
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1356
	 */
1357
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1358
		mark_oom_victim(current);
1359
		goto unlock;
1360 1361
	}

1362
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1363
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1364
	for_each_mem_cgroup_tree(iter, memcg) {
1365
		struct css_task_iter it;
1366 1367
		struct task_struct *task;

1368 1369
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1370
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1381
				css_task_iter_end(&it);
1382 1383 1384
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1385
				goto unlock;
1386 1387 1388 1389
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1402
		}
1403
		css_task_iter_end(&it);
1404 1405
	}

1406 1407
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1408 1409
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1410 1411 1412
	}
unlock:
	mutex_unlock(&oom_lock);
1413 1414
}

1415 1416
#if MAX_NUMNODES > 1

1417 1418
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1419
 * @memcg: the target memcg
1420 1421 1422 1423 1424 1425 1426
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1427
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1428 1429
		int nid, bool noswap)
{
1430
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1431 1432 1433
		return true;
	if (noswap || !total_swap_pages)
		return false;
1434
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1435 1436 1437 1438
		return true;
	return false;

}
1439 1440 1441 1442 1443 1444 1445

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1446
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1447 1448
{
	int nid;
1449 1450 1451 1452
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1453
	if (!atomic_read(&memcg->numainfo_events))
1454
		return;
1455
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1456 1457 1458
		return;

	/* make a nodemask where this memcg uses memory from */
1459
	memcg->scan_nodes = node_states[N_MEMORY];
1460

1461
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1462

1463 1464
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1465
	}
1466

1467 1468
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1483
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1484 1485 1486
{
	int node;

1487 1488
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1489

1490
	node = next_node(node, memcg->scan_nodes);
1491
	if (node == MAX_NUMNODES)
1492
		node = first_node(memcg->scan_nodes);
1493 1494 1495 1496 1497 1498 1499 1500 1501
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1502
	memcg->last_scanned_node = node;
1503 1504 1505
	return node;
}
#else
1506
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1507 1508 1509 1510 1511
{
	return 0;
}
#endif

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1527
	excess = soft_limit_excess(root_memcg);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1556
		if (!soft_limit_excess(root_memcg))
1557
			break;
1558
	}
1559 1560
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1561 1562
}

1563 1564 1565 1566 1567 1568
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1569 1570
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1571 1572 1573 1574
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1575
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1576
{
1577
	struct mem_cgroup *iter, *failed = NULL;
1578

1579 1580
	spin_lock(&memcg_oom_lock);

1581
	for_each_mem_cgroup_tree(iter, memcg) {
1582
		if (iter->oom_lock) {
1583 1584 1585 1586 1587
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1588 1589
			mem_cgroup_iter_break(memcg, iter);
			break;
1590 1591
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1592
	}
K
KAMEZAWA Hiroyuki 已提交
1593

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1605
		}
1606 1607
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1608 1609 1610 1611

	spin_unlock(&memcg_oom_lock);

	return !failed;
1612
}
1613

1614
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1615
{
K
KAMEZAWA Hiroyuki 已提交
1616 1617
	struct mem_cgroup *iter;

1618
	spin_lock(&memcg_oom_lock);
1619
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1620
	for_each_mem_cgroup_tree(iter, memcg)
1621
		iter->oom_lock = false;
1622
	spin_unlock(&memcg_oom_lock);
1623 1624
}

1625
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1626 1627 1628
{
	struct mem_cgroup *iter;

1629
	spin_lock(&memcg_oom_lock);
1630
	for_each_mem_cgroup_tree(iter, memcg)
1631 1632
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1633 1634
}

1635
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1636 1637 1638
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1639 1640
	/*
	 * When a new child is created while the hierarchy is under oom,
1641
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1642
	 */
1643
	spin_lock(&memcg_oom_lock);
1644
	for_each_mem_cgroup_tree(iter, memcg)
1645 1646 1647
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1648 1649
}

K
KAMEZAWA Hiroyuki 已提交
1650 1651
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1652
struct oom_wait_info {
1653
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1654 1655 1656 1657 1658 1659
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1660 1661
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1662 1663 1664
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1665
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1666

1667 1668
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1669 1670 1671 1672
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1673
static void memcg_oom_recover(struct mem_cgroup *memcg)
1674
{
1675 1676 1677 1678 1679 1680 1681 1682 1683
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1684
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1685 1686
}

1687
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1688
{
T
Tejun Heo 已提交
1689
	if (!current->memcg_may_oom)
1690
		return;
K
KAMEZAWA Hiroyuki 已提交
1691
	/*
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1704
	 */
1705
	css_get(&memcg->css);
T
Tejun Heo 已提交
1706 1707 1708
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1709 1710 1711 1712
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1713
 * @handle: actually kill/wait or just clean up the OOM state
1714
 *
1715 1716
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1717
 *
1718
 * Memcg supports userspace OOM handling where failed allocations must
1719 1720 1721 1722
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1723
 * the end of the page fault to complete the OOM handling.
1724 1725
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1726
 * completed, %false otherwise.
1727
 */
1728
bool mem_cgroup_oom_synchronize(bool handle)
1729
{
T
Tejun Heo 已提交
1730
	struct mem_cgroup *memcg = current->memcg_in_oom;
1731
	struct oom_wait_info owait;
1732
	bool locked;
1733 1734 1735

	/* OOM is global, do not handle */
	if (!memcg)
1736
		return false;
1737

1738
	if (!handle || oom_killer_disabled)
1739
		goto cleanup;
1740 1741 1742 1743 1744 1745

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1746

1747
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1758 1759
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1760
	} else {
1761
		schedule();
1762 1763 1764 1765 1766
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1767 1768 1769 1770 1771 1772 1773 1774
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1775
cleanup:
T
Tejun Heo 已提交
1776
	current->memcg_in_oom = NULL;
1777
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1778
	return true;
1779 1780
}

1781 1782 1783
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1784
 *
1785 1786 1787
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1788
 *
1789
 *   memcg = mem_cgroup_begin_page_stat(page);
1790 1791
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1792
 *   mem_cgroup_end_page_stat(memcg);
1793
 */
1794
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1795 1796
{
	struct mem_cgroup *memcg;
1797
	unsigned long flags;
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1811 1812 1813 1814
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1815
again:
1816
	memcg = page->mem_cgroup;
1817
	if (unlikely(!memcg))
1818 1819
		return NULL;

Q
Qiang Huang 已提交
1820
	if (atomic_read(&memcg->moving_account) <= 0)
1821
		return memcg;
1822

1823
	spin_lock_irqsave(&memcg->move_lock, flags);
1824
	if (memcg != page->mem_cgroup) {
1825
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1826 1827
		goto again;
	}
1828 1829 1830 1831 1832 1833 1834 1835

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1836 1837

	return memcg;
1838
}
1839
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1840

1841 1842 1843 1844
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1845
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1846
{
1847 1848 1849 1850 1851 1852 1853 1854
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1855

1856
	rcu_read_unlock();
1857
}
1858
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1859

1860 1861 1862 1863
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1864
#define CHARGE_BATCH	32U
1865 1866
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1867
	unsigned int nr_pages;
1868
	struct work_struct work;
1869
	unsigned long flags;
1870
#define FLUSHING_CACHED_CHARGE	0
1871 1872
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1873
static DEFINE_MUTEX(percpu_charge_mutex);
1874

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1885
 */
1886
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1887 1888
{
	struct memcg_stock_pcp *stock;
1889
	bool ret = false;
1890

1891
	if (nr_pages > CHARGE_BATCH)
1892
		return ret;
1893

1894
	stock = &get_cpu_var(memcg_stock);
1895
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1896
		stock->nr_pages -= nr_pages;
1897 1898
		ret = true;
	}
1899 1900 1901 1902 1903
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1904
 * Returns stocks cached in percpu and reset cached information.
1905 1906 1907 1908 1909
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1910
	if (stock->nr_pages) {
1911
		page_counter_uncharge(&old->memory, stock->nr_pages);
1912
		if (do_swap_account)
1913
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1914
		css_put_many(&old->css, stock->nr_pages);
1915
		stock->nr_pages = 0;
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1926
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1927
	drain_stock(stock);
1928
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1929 1930 1931
}

/*
1932
 * Cache charges(val) to local per_cpu area.
1933
 * This will be consumed by consume_stock() function, later.
1934
 */
1935
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1936 1937 1938
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1939
	if (stock->cached != memcg) { /* reset if necessary */
1940
		drain_stock(stock);
1941
		stock->cached = memcg;
1942
	}
1943
	stock->nr_pages += nr_pages;
1944 1945 1946 1947
	put_cpu_var(memcg_stock);
}

/*
1948
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1949
 * of the hierarchy under it.
1950
 */
1951
static void drain_all_stock(struct mem_cgroup *root_memcg)
1952
{
1953
	int cpu, curcpu;
1954

1955 1956 1957
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1958 1959
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1960
	curcpu = get_cpu();
1961 1962
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1963
		struct mem_cgroup *memcg;
1964

1965 1966
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1967
			continue;
1968
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1969
			continue;
1970 1971 1972 1973 1974 1975
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1976
	}
1977
	put_cpu();
A
Andrew Morton 已提交
1978
	put_online_cpus();
1979
	mutex_unlock(&percpu_charge_mutex);
1980 1981
}

1982
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1983 1984 1985 1986 1987 1988
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1989
	if (action == CPU_ONLINE)
1990 1991
		return NOTIFY_OK;

1992
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1993
		return NOTIFY_OK;
1994

1995 1996 1997 1998 1999
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg, *pos;

	if (likely(!nr_pages))
		return;

	pos = memcg = get_mem_cgroup_from_mm(current->mm);

	do {
		if (page_counter_read(&pos->memory) <= pos->high)
			continue;
		mem_cgroup_events(pos, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
	} while ((pos = parent_mem_cgroup(pos)));

	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2025 2026
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2027
{
2028
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2029
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2030
	struct mem_cgroup *mem_over_limit;
2031
	struct page_counter *counter;
2032
	unsigned long nr_reclaimed;
2033 2034
	bool may_swap = true;
	bool drained = false;
2035

2036
	if (mem_cgroup_is_root(memcg))
2037
		return 0;
2038
retry:
2039
	if (consume_stock(memcg, nr_pages))
2040
		return 0;
2041

2042
	if (!do_swap_account ||
2043 2044
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2045
			goto done_restock;
2046
		if (do_swap_account)
2047 2048
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2049
	} else {
2050
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2051
		may_swap = false;
2052
	}
2053

2054 2055 2056 2057
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2068
		goto force;
2069 2070 2071 2072

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2073
	if (!gfpflags_allow_blocking(gfp_mask))
2074
		goto nomem;
2075

2076 2077
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2078 2079
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2080

2081
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2082
		goto retry;
2083

2084
	if (!drained) {
2085
		drain_all_stock(mem_over_limit);
2086 2087 2088 2089
		drained = true;
		goto retry;
	}

2090 2091
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2092 2093 2094 2095 2096 2097 2098 2099 2100
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2101
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2102 2103 2104 2105 2106 2107 2108 2109
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2110 2111 2112
	if (nr_retries--)
		goto retry;

2113
	if (gfp_mask & __GFP_NOFAIL)
2114
		goto force;
2115

2116
	if (fatal_signal_pending(current))
2117
		goto force;
2118

2119 2120
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2121 2122
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2123
nomem:
2124
	if (!(gfp_mask & __GFP_NOFAIL))
2125
		return -ENOMEM;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
	if (do_swap_account)
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2138 2139

done_restock:
2140
	css_get_many(&memcg->css, batch);
2141 2142
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2143

2144
	/*
2145 2146
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2147
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2148 2149 2150 2151
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2152 2153
	 */
	do {
2154
		if (page_counter_read(&memcg->memory) > memcg->high) {
V
Vladimir Davydov 已提交
2155
			current->memcg_nr_pages_over_high += batch;
2156 2157 2158
			set_notify_resume(current);
			break;
		}
2159
	} while ((memcg = parent_mem_cgroup(memcg)));
2160 2161

	return 0;
2162
}
2163

2164
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2165
{
2166 2167 2168
	if (mem_cgroup_is_root(memcg))
		return;

2169
	page_counter_uncharge(&memcg->memory, nr_pages);
2170
	if (do_swap_account)
2171
		page_counter_uncharge(&memcg->memsw, nr_pages);
2172

2173
	css_put_many(&memcg->css, nr_pages);
2174 2175
}

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2207
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2208
			  bool lrucare)
2209
{
2210
	int isolated;
2211

2212
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2213 2214 2215 2216 2217

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2218 2219
	if (lrucare)
		lock_page_lru(page, &isolated);
2220

2221 2222
	/*
	 * Nobody should be changing or seriously looking at
2223
	 * page->mem_cgroup at this point:
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2235
	page->mem_cgroup = memcg;
2236

2237 2238
	if (lrucare)
		unlock_page_lru(page, isolated);
2239
}
2240

2241
#ifdef CONFIG_MEMCG_KMEM
2242
static int memcg_alloc_cache_id(void)
2243
{
2244 2245 2246
	int id, size;
	int err;

2247
	id = ida_simple_get(&memcg_cache_ida,
2248 2249 2250
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2251

2252
	if (id < memcg_nr_cache_ids)
2253 2254 2255 2256 2257 2258
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2259
	down_write(&memcg_cache_ids_sem);
2260 2261

	size = 2 * (id + 1);
2262 2263 2264 2265 2266
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2267
	err = memcg_update_all_caches(size);
2268 2269
	if (!err)
		err = memcg_update_all_list_lrus(size);
2270 2271 2272 2273 2274
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2275
	if (err) {
2276
		ida_simple_remove(&memcg_cache_ida, id);
2277 2278 2279 2280 2281 2282 2283
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2284
	ida_simple_remove(&memcg_cache_ida, id);
2285 2286
}

2287
struct memcg_kmem_cache_create_work {
2288 2289 2290 2291 2292
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2293
static void memcg_kmem_cache_create_func(struct work_struct *w)
2294
{
2295 2296
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2297 2298
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2299

2300
	memcg_create_kmem_cache(memcg, cachep);
2301

2302
	css_put(&memcg->css);
2303 2304 2305 2306 2307 2308
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2309 2310
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2311
{
2312
	struct memcg_kmem_cache_create_work *cw;
2313

2314
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2315
	if (!cw)
2316
		return;
2317 2318

	css_get(&memcg->css);
2319 2320 2321

	cw->memcg = memcg;
	cw->cachep = cachep;
2322
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2323 2324 2325 2326

	schedule_work(&cw->work);
}

2327 2328
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2329 2330 2331 2332
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2333
	 * in __memcg_schedule_kmem_cache_create will recurse.
2334 2335 2336 2337 2338 2339 2340
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2341
	current->memcg_kmem_skip_account = 1;
2342
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2343
	current->memcg_kmem_skip_account = 0;
2344
}
2345

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2359
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2360 2361
{
	struct mem_cgroup *memcg;
2362
	struct kmem_cache *memcg_cachep;
2363
	int kmemcg_id;
2364

2365
	VM_BUG_ON(!is_root_cache(cachep));
2366

V
Vladimir Davydov 已提交
2367 2368 2369 2370 2371 2372
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2373
	if (current->memcg_kmem_skip_account)
2374 2375
		return cachep;

2376
	memcg = get_mem_cgroup_from_mm(current->mm);
2377
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2378
	if (kmemcg_id < 0)
2379
		goto out;
2380

2381
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2382 2383
	if (likely(memcg_cachep))
		return memcg_cachep;
2384 2385 2386 2387 2388 2389 2390 2391 2392

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2393 2394 2395
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2396
	 */
2397
	memcg_schedule_kmem_cache_create(memcg, cachep);
2398
out:
2399
	css_put(&memcg->css);
2400
	return cachep;
2401 2402
}

2403 2404 2405
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2406
		css_put(&cachep->memcg_params.memcg->css);
2407 2408
}

2409 2410
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2411
{
2412 2413
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2414 2415
	int ret;

2416
	if (!memcg_kmem_is_active(memcg))
2417
		return 0;
2418

2419 2420
	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
		return -ENOMEM;
2421

2422 2423 2424 2425
	ret = try_charge(memcg, gfp, nr_pages);
	if (ret) {
		page_counter_uncharge(&memcg->kmem, nr_pages);
		return ret;
2426 2427
	}

2428
	page->mem_cgroup = memcg;
2429

2430
	return 0;
2431 2432
}

2433
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2434
{
2435 2436
	struct mem_cgroup *memcg;
	int ret;
2437

2438 2439
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2440
	css_put(&memcg->css);
2441
	return ret;
2442 2443
}

2444
void __memcg_kmem_uncharge(struct page *page, int order)
2445
{
2446
	struct mem_cgroup *memcg = page->mem_cgroup;
2447
	unsigned int nr_pages = 1 << order;
2448 2449 2450 2451

	if (!memcg)
		return;

2452
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2453

2454 2455 2456 2457
	page_counter_uncharge(&memcg->kmem, nr_pages);
	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_swap_account)
		page_counter_uncharge(&memcg->memsw, nr_pages);
2458

2459
	page->mem_cgroup = NULL;
2460
	css_put_many(&memcg->css, nr_pages);
2461
}
2462 2463
#endif /* CONFIG_MEMCG_KMEM */

2464 2465 2466 2467
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2468 2469 2470
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2471
 */
2472
void mem_cgroup_split_huge_fixup(struct page *head)
2473
{
2474
	int i;
2475

2476 2477
	if (mem_cgroup_disabled())
		return;
2478

2479
	for (i = 1; i < HPAGE_PMD_NR; i++)
2480
		head[i].mem_cgroup = head->mem_cgroup;
2481

2482
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2483
		       HPAGE_PMD_NR);
2484
}
2485
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2486

A
Andrew Morton 已提交
2487
#ifdef CONFIG_MEMCG_SWAP
2488 2489
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2490
{
2491 2492
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2493
}
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2506
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2507 2508 2509
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2510
				struct mem_cgroup *from, struct mem_cgroup *to)
2511 2512 2513
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2514 2515
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2516 2517 2518

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2519
		mem_cgroup_swap_statistics(to, true);
2520 2521 2522 2523 2524 2525
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2526
				struct mem_cgroup *from, struct mem_cgroup *to)
2527 2528 2529
{
	return -EINVAL;
}
2530
#endif
K
KAMEZAWA Hiroyuki 已提交
2531

2532
static DEFINE_MUTEX(memcg_limit_mutex);
2533

2534
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2535
				   unsigned long limit)
2536
{
2537 2538 2539
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2540
	int retry_count;
2541
	int ret;
2542 2543 2544 2545 2546 2547

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2548 2549
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2550

2551
	oldusage = page_counter_read(&memcg->memory);
2552

2553
	do {
2554 2555 2556 2557
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2558 2559 2560 2561

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2562
			ret = -EINVAL;
2563 2564
			break;
		}
2565 2566 2567 2568
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2569 2570 2571 2572

		if (!ret)
			break;

2573 2574
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2575
		curusage = page_counter_read(&memcg->memory);
2576
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2577
		if (curusage >= oldusage)
2578 2579 2580
			retry_count--;
		else
			oldusage = curusage;
2581 2582
	} while (retry_count);

2583 2584
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2585

2586 2587 2588
	return ret;
}

L
Li Zefan 已提交
2589
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2590
					 unsigned long limit)
2591
{
2592 2593 2594
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2595
	int retry_count;
2596
	int ret;
2597

2598
	/* see mem_cgroup_resize_res_limit */
2599 2600 2601 2602 2603 2604
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2605 2606 2607 2608
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2609 2610 2611 2612

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2613 2614 2615
			ret = -EINVAL;
			break;
		}
2616 2617 2618 2619
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2620 2621 2622 2623

		if (!ret)
			break;

2624 2625
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2626
		curusage = page_counter_read(&memcg->memsw);
2627
		/* Usage is reduced ? */
2628
		if (curusage >= oldusage)
2629
			retry_count--;
2630 2631
		else
			oldusage = curusage;
2632 2633
	} while (retry_count);

2634 2635
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2636

2637 2638 2639
	return ret;
}

2640 2641 2642 2643 2644 2645 2646 2647 2648
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2649
	unsigned long excess;
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2674
		spin_lock_irq(&mctz->lock);
2675
		__mem_cgroup_remove_exceeded(mz, mctz);
2676 2677 2678 2679 2680 2681

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2682 2683 2684
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2685
		excess = soft_limit_excess(mz->memcg);
2686 2687 2688 2689 2690 2691 2692 2693 2694
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2695
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2696
		spin_unlock_irq(&mctz->lock);
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2714 2715 2716 2717 2718 2719
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2720 2721
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2722 2723
	bool ret;

2724
	/*
2725 2726 2727 2728
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2729
	 */
2730 2731 2732 2733 2734 2735
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2736 2737
}

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2748 2749
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2750
	/* try to free all pages in this cgroup */
2751
	while (nr_retries && page_counter_read(&memcg->memory)) {
2752
		int progress;
2753

2754 2755 2756
		if (signal_pending(current))
			return -EINTR;

2757 2758
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2759
		if (!progress) {
2760
			nr_retries--;
2761
			/* maybe some writeback is necessary */
2762
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2763
		}
2764 2765

	}
2766 2767

	return 0;
2768 2769
}

2770 2771 2772
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2773
{
2774
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2775

2776 2777
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2778
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2779 2780
}

2781 2782
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2783
{
2784
	return mem_cgroup_from_css(css)->use_hierarchy;
2785 2786
}

2787 2788
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2789 2790
{
	int retval = 0;
2791
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2792
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2793

2794
	mutex_lock(&memcg_create_mutex);
2795 2796 2797 2798

	if (memcg->use_hierarchy == val)
		goto out;

2799
	/*
2800
	 * If parent's use_hierarchy is set, we can't make any modifications
2801 2802 2803 2804 2805 2806
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2807
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2808
				(val == 1 || val == 0)) {
2809
		if (!memcg_has_children(memcg))
2810
			memcg->use_hierarchy = val;
2811 2812 2813 2814
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2815 2816

out:
2817
	mutex_unlock(&memcg_create_mutex);
2818 2819 2820 2821

	return retval;
}

2822 2823
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2824 2825
{
	struct mem_cgroup *iter;
2826
	unsigned long val = 0;
2827 2828 2829 2830 2831 2832 2833

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2834
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2835
{
2836
	unsigned long val;
2837

2838 2839 2840 2841 2842 2843
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2844
		if (!swap)
2845
			val = page_counter_read(&memcg->memory);
2846
		else
2847
			val = page_counter_read(&memcg->memsw);
2848
	}
2849
	return val;
2850 2851
}

2852 2853 2854 2855 2856 2857 2858
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2859

2860
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2861
			       struct cftype *cft)
B
Balbir Singh 已提交
2862
{
2863
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2864
	struct page_counter *counter;
2865

2866
	switch (MEMFILE_TYPE(cft->private)) {
2867
	case _MEM:
2868 2869
		counter = &memcg->memory;
		break;
2870
	case _MEMSWAP:
2871 2872
		counter = &memcg->memsw;
		break;
2873
	case _KMEM:
2874
		counter = &memcg->kmem;
2875
		break;
2876 2877 2878
	default:
		BUG();
	}
2879 2880 2881 2882

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2883
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2884
		if (counter == &memcg->memsw)
2885
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2898
}
2899 2900

#ifdef CONFIG_MEMCG_KMEM
2901 2902
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
2903 2904 2905 2906
{
	int err = 0;
	int memcg_id;

2907
	BUG_ON(memcg->kmemcg_id >= 0);
2908
	BUG_ON(memcg->kmem_acct_activated);
2909
	BUG_ON(memcg->kmem_acct_active);
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2923
	mutex_lock(&memcg_create_mutex);
2924
	if (cgroup_is_populated(memcg->css.cgroup) ||
2925
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2926 2927 2928 2929
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2930

2931
	memcg_id = memcg_alloc_cache_id();
2932 2933 2934 2935 2936 2937
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
2938 2939
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
2940
	 */
2941
	err = page_counter_limit(&memcg->kmem, nr_pages);
2942 2943 2944 2945
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
2946 2947
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
2948 2949 2950
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2951
	memcg->kmemcg_id = memcg_id;
2952
	memcg->kmem_acct_activated = true;
2953
	memcg->kmem_acct_active = true;
2954
out:
2955 2956 2957 2958
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2959
				   unsigned long limit)
2960 2961 2962
{
	int ret;

2963
	mutex_lock(&memcg_limit_mutex);
2964
	if (!memcg_kmem_is_active(memcg))
2965
		ret = memcg_activate_kmem(memcg, limit);
2966
	else
2967 2968
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
2969 2970 2971
	return ret;
}

2972
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2973
{
2974
	int ret = 0;
2975
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2976

2977 2978
	if (!parent)
		return 0;
2979

2980
	mutex_lock(&memcg_limit_mutex);
2981
	/*
2982 2983
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
2984
	 */
2985
	if (memcg_kmem_is_active(parent))
2986 2987
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
2988
	return ret;
2989
}
2990 2991
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2992
				   unsigned long limit)
2993 2994 2995
{
	return -EINVAL;
}
2996
#endif /* CONFIG_MEMCG_KMEM */
2997

2998 2999 3000 3001
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3002 3003
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3004
{
3005
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3006
	unsigned long nr_pages;
3007 3008
	int ret;

3009
	buf = strstrip(buf);
3010
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3011 3012
	if (ret)
		return ret;
3013

3014
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3015
	case RES_LIMIT:
3016 3017 3018 3019
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3020 3021 3022
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3023
			break;
3024 3025
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3026
			break;
3027 3028 3029 3030
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3031
		break;
3032 3033 3034
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3035 3036
		break;
	}
3037
	return ret ?: nbytes;
B
Balbir Singh 已提交
3038 3039
}

3040 3041
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3042
{
3043
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3044
	struct page_counter *counter;
3045

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3059

3060
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3061
	case RES_MAX_USAGE:
3062
		page_counter_reset_watermark(counter);
3063 3064
		break;
	case RES_FAILCNT:
3065
		counter->failcnt = 0;
3066
		break;
3067 3068
	default:
		BUG();
3069
	}
3070

3071
	return nbytes;
3072 3073
}

3074
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3075 3076
					struct cftype *cft)
{
3077
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3078 3079
}

3080
#ifdef CONFIG_MMU
3081
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3082 3083
					struct cftype *cft, u64 val)
{
3084
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3085

3086
	if (val & ~MOVE_MASK)
3087
		return -EINVAL;
3088

3089
	/*
3090 3091 3092 3093
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3094
	 */
3095
	memcg->move_charge_at_immigrate = val;
3096 3097
	return 0;
}
3098
#else
3099
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3100 3101 3102 3103 3104
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3105

3106
#ifdef CONFIG_NUMA
3107
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3108
{
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3121
	int nid;
3122
	unsigned long nr;
3123
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3124

3125 3126 3127 3128 3129 3130 3131 3132 3133
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3134 3135
	}

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3151 3152 3153 3154 3155 3156
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3157
static int memcg_stat_show(struct seq_file *m, void *v)
3158
{
3159
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3160
	unsigned long memory, memsw;
3161 3162
	struct mem_cgroup *mi;
	unsigned int i;
3163

3164 3165 3166 3167
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3168 3169
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3170
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3171
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3172
			continue;
3173
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3174
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3175
	}
L
Lee Schermerhorn 已提交
3176

3177 3178 3179 3180 3181 3182 3183 3184
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3185
	/* Hierarchical information */
3186 3187 3188 3189
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3190
	}
3191 3192 3193 3194 3195
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3196

3197
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3198
		unsigned long long val = 0;
3199

3200
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3201
			continue;
3202 3203
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3204
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3222
	}
K
KAMEZAWA Hiroyuki 已提交
3223

K
KOSAKI Motohiro 已提交
3224 3225 3226 3227
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3228
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3229 3230 3231 3232 3233
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3234
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3235
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3236

3237 3238 3239 3240
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3241
			}
3242 3243 3244 3245
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3246 3247 3248
	}
#endif

3249 3250 3251
	return 0;
}

3252 3253
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3254
{
3255
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3256

3257
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3258 3259
}

3260 3261
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3262
{
3263
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3264

3265
	if (val > 100)
K
KOSAKI Motohiro 已提交
3266 3267
		return -EINVAL;

3268
	if (css->parent)
3269 3270 3271
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3272

K
KOSAKI Motohiro 已提交
3273 3274 3275
	return 0;
}

3276 3277 3278
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3279
	unsigned long usage;
3280 3281 3282 3283
	int i;

	rcu_read_lock();
	if (!swap)
3284
		t = rcu_dereference(memcg->thresholds.primary);
3285
	else
3286
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3287 3288 3289 3290

	if (!t)
		goto unlock;

3291
	usage = mem_cgroup_usage(memcg, swap);
3292 3293

	/*
3294
	 * current_threshold points to threshold just below or equal to usage.
3295 3296 3297
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3298
	i = t->current_threshold;
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3322
	t->current_threshold = i - 1;
3323 3324 3325 3326 3327 3328
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3329 3330 3331 3332 3333 3334 3335
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3336 3337 3338 3339 3340 3341 3342
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3343 3344 3345 3346 3347 3348 3349
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3350 3351
}

3352
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3353 3354 3355
{
	struct mem_cgroup_eventfd_list *ev;

3356 3357
	spin_lock(&memcg_oom_lock);

3358
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3359
		eventfd_signal(ev->eventfd, 1);
3360 3361

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3362 3363 3364
	return 0;
}

3365
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3366
{
K
KAMEZAWA Hiroyuki 已提交
3367 3368
	struct mem_cgroup *iter;

3369
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3370
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3371 3372
}

3373
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3374
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3375
{
3376 3377
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3378 3379
	unsigned long threshold;
	unsigned long usage;
3380
	int i, size, ret;
3381

3382
	ret = page_counter_memparse(args, "-1", &threshold);
3383 3384 3385 3386
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3387

3388
	if (type == _MEM) {
3389
		thresholds = &memcg->thresholds;
3390
		usage = mem_cgroup_usage(memcg, false);
3391
	} else if (type == _MEMSWAP) {
3392
		thresholds = &memcg->memsw_thresholds;
3393
		usage = mem_cgroup_usage(memcg, true);
3394
	} else
3395 3396 3397
		BUG();

	/* Check if a threshold crossed before adding a new one */
3398
	if (thresholds->primary)
3399 3400
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3401
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3402 3403

	/* Allocate memory for new array of thresholds */
3404
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3405
			GFP_KERNEL);
3406
	if (!new) {
3407 3408 3409
		ret = -ENOMEM;
		goto unlock;
	}
3410
	new->size = size;
3411 3412

	/* Copy thresholds (if any) to new array */
3413 3414
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3415
				sizeof(struct mem_cgroup_threshold));
3416 3417
	}

3418
	/* Add new threshold */
3419 3420
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3421 3422

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3423
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3424 3425 3426
			compare_thresholds, NULL);

	/* Find current threshold */
3427
	new->current_threshold = -1;
3428
	for (i = 0; i < size; i++) {
3429
		if (new->entries[i].threshold <= usage) {
3430
			/*
3431 3432
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3433 3434
			 * it here.
			 */
3435
			++new->current_threshold;
3436 3437
		} else
			break;
3438 3439
	}

3440 3441 3442 3443 3444
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3445

3446
	/* To be sure that nobody uses thresholds */
3447 3448 3449 3450 3451 3452 3453 3454
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3455
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3456 3457
	struct eventfd_ctx *eventfd, const char *args)
{
3458
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3459 3460
}

3461
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3462 3463
	struct eventfd_ctx *eventfd, const char *args)
{
3464
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3465 3466
}

3467
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3468
	struct eventfd_ctx *eventfd, enum res_type type)
3469
{
3470 3471
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3472
	unsigned long usage;
3473
	int i, j, size;
3474 3475

	mutex_lock(&memcg->thresholds_lock);
3476 3477

	if (type == _MEM) {
3478
		thresholds = &memcg->thresholds;
3479
		usage = mem_cgroup_usage(memcg, false);
3480
	} else if (type == _MEMSWAP) {
3481
		thresholds = &memcg->memsw_thresholds;
3482
		usage = mem_cgroup_usage(memcg, true);
3483
	} else
3484 3485
		BUG();

3486 3487 3488
	if (!thresholds->primary)
		goto unlock;

3489 3490 3491 3492
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3493 3494 3495
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3496 3497 3498
			size++;
	}

3499
	new = thresholds->spare;
3500

3501 3502
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3503 3504
		kfree(new);
		new = NULL;
3505
		goto swap_buffers;
3506 3507
	}

3508
	new->size = size;
3509 3510

	/* Copy thresholds and find current threshold */
3511 3512 3513
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3514 3515
			continue;

3516
		new->entries[j] = thresholds->primary->entries[i];
3517
		if (new->entries[j].threshold <= usage) {
3518
			/*
3519
			 * new->current_threshold will not be used
3520 3521 3522
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3523
			++new->current_threshold;
3524 3525 3526 3527
		}
		j++;
	}

3528
swap_buffers:
3529 3530
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3531 3532 3533 3534 3535 3536
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3537
	rcu_assign_pointer(thresholds->primary, new);
3538

3539
	/* To be sure that nobody uses thresholds */
3540
	synchronize_rcu();
3541
unlock:
3542 3543
	mutex_unlock(&memcg->thresholds_lock);
}
3544

3545
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3546 3547
	struct eventfd_ctx *eventfd)
{
3548
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3549 3550
}

3551
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3552 3553
	struct eventfd_ctx *eventfd)
{
3554
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3555 3556
}

3557
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3558
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3559 3560 3561 3562 3563 3564 3565
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3566
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3567 3568 3569 3570 3571

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3572
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3573
		eventfd_signal(eventfd, 1);
3574
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3575 3576 3577 3578

	return 0;
}

3579
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3580
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3581 3582 3583
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3584
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3585

3586
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3587 3588 3589 3590 3591 3592
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3593
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3594 3595
}

3596
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3597
{
3598
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3599

3600
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3601
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3602 3603 3604
	return 0;
}

3605
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3606 3607
	struct cftype *cft, u64 val)
{
3608
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3609 3610

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3611
	if (!css->parent || !((val == 0) || (val == 1)))
3612 3613
		return -EINVAL;

3614
	memcg->oom_kill_disable = val;
3615
	if (!val)
3616
		memcg_oom_recover(memcg);
3617

3618 3619 3620
	return 0;
}

A
Andrew Morton 已提交
3621
#ifdef CONFIG_MEMCG_KMEM
3622
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3623
{
3624 3625 3626 3627 3628
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3629

3630
	return mem_cgroup_sockets_init(memcg, ss);
3631
}
3632

3633 3634
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3635 3636 3637 3638
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3677 3678
}

3679
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3680
{
3681 3682 3683 3684 3685
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3686
	mem_cgroup_sockets_destroy(memcg);
3687
}
3688
#else
3689
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3690 3691 3692
{
	return 0;
}
G
Glauber Costa 已提交
3693

3694 3695 3696 3697
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3698 3699 3700
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3701 3702
#endif

3703 3704 3705 3706 3707 3708 3709
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3720 3721 3722 3723 3724
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3735 3736 3737
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3738 3739
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3740 3741 3742
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3743 3744 3745
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3746
 *
3747 3748 3749 3750 3751
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3752
 */
3753 3754 3755
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3756 3757 3758 3759 3760 3761 3762 3763
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3764 3765 3766
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3767 3768 3769 3770 3771

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3772
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3773 3774 3775 3776
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3788 3789 3790 3791
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3792 3793
#endif	/* CONFIG_CGROUP_WRITEBACK */

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3807 3808 3809 3810 3811
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3812
static void memcg_event_remove(struct work_struct *work)
3813
{
3814 3815
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3816
	struct mem_cgroup *memcg = event->memcg;
3817 3818 3819

	remove_wait_queue(event->wqh, &event->wait);

3820
	event->unregister_event(memcg, event->eventfd);
3821 3822 3823 3824 3825 3826

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3827
	css_put(&memcg->css);
3828 3829 3830 3831 3832 3833 3834
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3835 3836
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3837
{
3838 3839
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3840
	struct mem_cgroup *memcg = event->memcg;
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3853
		spin_lock(&memcg->event_list_lock);
3854 3855 3856 3857 3858 3859 3860 3861
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3862
		spin_unlock(&memcg->event_list_lock);
3863 3864 3865 3866 3867
	}

	return 0;
}

3868
static void memcg_event_ptable_queue_proc(struct file *file,
3869 3870
		wait_queue_head_t *wqh, poll_table *pt)
{
3871 3872
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3873 3874 3875 3876 3877 3878

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3879 3880
 * DO NOT USE IN NEW FILES.
 *
3881 3882 3883 3884 3885
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3886 3887
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3888
{
3889
	struct cgroup_subsys_state *css = of_css(of);
3890
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3891
	struct mem_cgroup_event *event;
3892 3893 3894 3895
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3896
	const char *name;
3897 3898 3899
	char *endp;
	int ret;

3900 3901 3902
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3903 3904
	if (*endp != ' ')
		return -EINVAL;
3905
	buf = endp + 1;
3906

3907
	cfd = simple_strtoul(buf, &endp, 10);
3908 3909
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3910
	buf = endp + 1;
3911 3912 3913 3914 3915

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3916
	event->memcg = memcg;
3917
	INIT_LIST_HEAD(&event->list);
3918 3919 3920
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3946 3947 3948 3949 3950
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3951 3952
	 *
	 * DO NOT ADD NEW FILES.
3953
	 */
A
Al Viro 已提交
3954
	name = cfile.file->f_path.dentry->d_name.name;
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3966 3967
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3968 3969 3970 3971 3972
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3973
	/*
3974 3975 3976
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3977
	 */
A
Al Viro 已提交
3978
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3979
					       &memory_cgrp_subsys);
3980
	ret = -EINVAL;
3981
	if (IS_ERR(cfile_css))
3982
		goto out_put_cfile;
3983 3984
	if (cfile_css != css) {
		css_put(cfile_css);
3985
		goto out_put_cfile;
3986
	}
3987

3988
	ret = event->register_event(memcg, event->eventfd, buf);
3989 3990 3991 3992 3993
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3994 3995 3996
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3997 3998 3999 4000

	fdput(cfile);
	fdput(efile);

4001
	return nbytes;
4002 4003

out_put_css:
4004
	css_put(css);
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4017
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4018
	{
4019
		.name = "usage_in_bytes",
4020
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4021
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4022
	},
4023 4024
	{
		.name = "max_usage_in_bytes",
4025
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4026
		.write = mem_cgroup_reset,
4027
		.read_u64 = mem_cgroup_read_u64,
4028
	},
B
Balbir Singh 已提交
4029
	{
4030
		.name = "limit_in_bytes",
4031
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4032
		.write = mem_cgroup_write,
4033
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4034
	},
4035 4036 4037
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4038
		.write = mem_cgroup_write,
4039
		.read_u64 = mem_cgroup_read_u64,
4040
	},
B
Balbir Singh 已提交
4041 4042
	{
		.name = "failcnt",
4043
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4044
		.write = mem_cgroup_reset,
4045
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4046
	},
4047 4048
	{
		.name = "stat",
4049
		.seq_show = memcg_stat_show,
4050
	},
4051 4052
	{
		.name = "force_empty",
4053
		.write = mem_cgroup_force_empty_write,
4054
	},
4055 4056 4057 4058 4059
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4060
	{
4061
		.name = "cgroup.event_control",		/* XXX: for compat */
4062
		.write = memcg_write_event_control,
4063
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4064
	},
K
KOSAKI Motohiro 已提交
4065 4066 4067 4068 4069
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4070 4071 4072 4073 4074
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4075 4076
	{
		.name = "oom_control",
4077
		.seq_show = mem_cgroup_oom_control_read,
4078
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4079 4080
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4081 4082 4083
	{
		.name = "pressure_level",
	},
4084 4085 4086
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4087
		.seq_show = memcg_numa_stat_show,
4088 4089
	},
#endif
4090 4091 4092 4093
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4094
		.write = mem_cgroup_write,
4095
		.read_u64 = mem_cgroup_read_u64,
4096 4097 4098 4099
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4100
		.read_u64 = mem_cgroup_read_u64,
4101 4102 4103 4104
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4105
		.write = mem_cgroup_reset,
4106
		.read_u64 = mem_cgroup_read_u64,
4107 4108 4109 4110
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4111
		.write = mem_cgroup_reset,
4112
		.read_u64 = mem_cgroup_read_u64,
4113
	},
4114 4115 4116
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4117 4118 4119 4120
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4121 4122
	},
#endif
4123
#endif
4124
	{ },	/* terminate */
4125
};
4126

4127
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4128 4129
{
	struct mem_cgroup_per_node *pn;
4130
	struct mem_cgroup_per_zone *mz;
4131
	int zone, tmp = node;
4132 4133 4134 4135 4136 4137 4138 4139
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4140 4141
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4142
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4143 4144
	if (!pn)
		return 1;
4145 4146 4147

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4148
		lruvec_init(&mz->lruvec);
4149 4150
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4151
		mz->memcg = memcg;
4152
	}
4153
	memcg->nodeinfo[node] = pn;
4154 4155 4156
	return 0;
}

4157
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4158
{
4159
	kfree(memcg->nodeinfo[node]);
4160 4161
}

4162 4163
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4164
	struct mem_cgroup *memcg;
4165
	size_t size;
4166

4167 4168
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4169

4170
	memcg = kzalloc(size, GFP_KERNEL);
4171
	if (!memcg)
4172 4173
		return NULL;

4174 4175
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4176
		goto out_free;
T
Tejun Heo 已提交
4177 4178 4179 4180

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4181
	return memcg;
4182

T
Tejun Heo 已提交
4183 4184
out_free_stat:
	free_percpu(memcg->stat);
4185
out_free:
4186
	kfree(memcg);
4187
	return NULL;
4188 4189
}

4190
/*
4191 4192 4193 4194 4195 4196 4197 4198
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4199
 */
4200 4201

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4202
{
4203
	int node;
4204

4205
	mem_cgroup_remove_from_trees(memcg);
4206 4207 4208 4209 4210

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4211
	memcg_wb_domain_exit(memcg);
4212
	kfree(memcg);
4213
}
4214

4215 4216 4217
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4218
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4219
{
4220
	if (!memcg->memory.parent)
4221
		return NULL;
4222
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4223
}
G
Glauber Costa 已提交
4224
EXPORT_SYMBOL(parent_mem_cgroup);
4225

L
Li Zefan 已提交
4226
static struct cgroup_subsys_state * __ref
4227
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4228
{
4229
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4230
	long error = -ENOMEM;
4231
	int node;
B
Balbir Singh 已提交
4232

4233 4234
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4235
		return ERR_PTR(error);
4236

B
Bob Liu 已提交
4237
	for_each_node(node)
4238
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4239
			goto free_out;
4240

4241
	/* root ? */
4242
	if (parent_css == NULL) {
4243
		root_mem_cgroup = memcg;
T
Tejun Heo 已提交
4244
		mem_cgroup_root_css = &memcg->css;
4245
		page_counter_init(&memcg->memory, NULL);
4246
		memcg->high = PAGE_COUNTER_MAX;
4247
		memcg->soft_limit = PAGE_COUNTER_MAX;
4248 4249
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4250
	}
4251

4252 4253 4254 4255 4256
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4257
	vmpressure_init(&memcg->vmpressure);
4258 4259
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4260 4261 4262
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4263 4264 4265
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4266 4267 4268 4269 4270 4271 4272 4273
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4274
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4275
{
4276
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4277
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4278
	int ret;
4279

4280
	if (css->id > MEM_CGROUP_ID_MAX)
4281 4282
		return -ENOSPC;

T
Tejun Heo 已提交
4283
	if (!parent)
4284 4285
		return 0;

4286
	mutex_lock(&memcg_create_mutex);
4287 4288 4289 4290 4291 4292

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4293
		page_counter_init(&memcg->memory, &parent->memory);
4294
		memcg->high = PAGE_COUNTER_MAX;
4295
		memcg->soft_limit = PAGE_COUNTER_MAX;
4296 4297
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4298

4299
		/*
4300 4301
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4302
		 */
4303
	} else {
4304
		page_counter_init(&memcg->memory, NULL);
4305
		memcg->high = PAGE_COUNTER_MAX;
4306
		memcg->soft_limit = PAGE_COUNTER_MAX;
4307 4308
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4309 4310 4311 4312 4313
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4314
		if (parent != root_mem_cgroup)
4315
			memory_cgrp_subsys.broken_hierarchy = true;
4316
	}
4317
	mutex_unlock(&memcg_create_mutex);
4318

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4331 4332
}

4333
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4334
{
4335
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4336
	struct mem_cgroup_event *event, *tmp;
4337 4338 4339 4340 4341 4342

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4343 4344
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4345 4346 4347
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4348
	spin_unlock(&memcg->event_list_lock);
4349

4350
	vmpressure_cleanup(&memcg->vmpressure);
4351 4352

	memcg_deactivate_kmem(memcg);
4353 4354

	wb_memcg_offline(memcg);
4355 4356
}

4357 4358 4359 4360 4361 4362 4363
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4364
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4365
{
4366
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4367

4368
	memcg_destroy_kmem(memcg);
4369
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4370 4371
}

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4389 4390 4391
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4392 4393
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4394
	memcg->soft_limit = PAGE_COUNTER_MAX;
4395
	memcg_wb_domain_size_changed(memcg);
4396 4397
}

4398
#ifdef CONFIG_MMU
4399
/* Handlers for move charge at task migration. */
4400
static int mem_cgroup_do_precharge(unsigned long count)
4401
{
4402
	int ret;
4403

4404 4405
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4406
	if (!ret) {
4407 4408 4409
		mc.precharge += count;
		return ret;
	}
4410 4411

	/* Try charges one by one with reclaim */
4412
	while (count--) {
4413
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4414 4415
		if (ret)
			return ret;
4416
		mc.precharge++;
4417
		cond_resched();
4418
	}
4419
	return 0;
4420 4421 4422
}

/**
4423
 * get_mctgt_type - get target type of moving charge
4424 4425 4426
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4427
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4428 4429 4430 4431 4432 4433
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4434 4435 4436
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4437 4438 4439 4440 4441
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4442
	swp_entry_t	ent;
4443 4444 4445
};

enum mc_target_type {
4446
	MC_TARGET_NONE = 0,
4447
	MC_TARGET_PAGE,
4448
	MC_TARGET_SWAP,
4449 4450
};

D
Daisuke Nishimura 已提交
4451 4452
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4453
{
D
Daisuke Nishimura 已提交
4454
	struct page *page = vm_normal_page(vma, addr, ptent);
4455

D
Daisuke Nishimura 已提交
4456 4457 4458
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4459
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4460
			return NULL;
4461 4462 4463 4464
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4465 4466 4467 4468 4469 4470
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4471
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4472 4473 4474 4475 4476 4477
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4478
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4479
		return NULL;
4480 4481 4482 4483
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4484
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4485 4486 4487 4488 4489
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4490 4491 4492 4493 4494 4495 4496
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4497

4498 4499 4500 4501 4502 4503 4504 4505 4506
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4507
	if (!(mc.flags & MOVE_FILE))
4508 4509 4510
		return NULL;

	mapping = vma->vm_file->f_mapping;
4511
	pgoff = linear_page_index(vma, addr);
4512 4513

	/* page is moved even if it's not RSS of this task(page-faulted). */
4514 4515
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4528
#endif
4529 4530 4531
	return page;
}

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4553
	bool anon;
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
4568 4569
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4570 4571 4572 4573 4574 4575 4576 4577
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4578 4579
	anon = PageAnon(page);

4580 4581
	spin_lock_irqsave(&from->move_lock, flags);

4582
	if (!anon && page_mapped(page)) {
4583 4584 4585 4586 4587 4588
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4636
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4637 4638 4639
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4640
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4641 4642 4643 4644 4645 4646
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4647
	else if (pte_none(ptent))
4648
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4649 4650

	if (!page && !ent.val)
4651
		return ret;
4652 4653
	if (page) {
		/*
4654
		 * Do only loose check w/o serialization.
4655
		 * mem_cgroup_move_account() checks the page is valid or
4656
		 * not under LRU exclusion.
4657
		 */
4658
		if (page->mem_cgroup == mc.from) {
4659 4660 4661 4662 4663 4664 4665
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4666 4667
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4668
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4669 4670 4671
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4672 4673 4674 4675
	}
	return ret;
}

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4689
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4690
	if (!(mc.flags & MOVE_ANON))
4691
		return ret;
4692
	if (page->mem_cgroup == mc.from) {
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4709 4710 4711 4712
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4713
	struct vm_area_struct *vma = walk->vma;
4714 4715 4716
	pte_t *pte;
	spinlock_t *ptl;

4717
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4718 4719
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4720
		spin_unlock(ptl);
4721
		return 0;
4722
	}
4723

4724 4725
	if (pmd_trans_unstable(pmd))
		return 0;
4726 4727
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4728
		if (get_mctgt_type(vma, addr, *pte, NULL))
4729 4730 4731 4732
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4733 4734 4735
	return 0;
}

4736 4737 4738 4739
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4740 4741 4742 4743
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4744
	down_read(&mm->mmap_sem);
4745
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4746
	up_read(&mm->mmap_sem);
4747 4748 4749 4750 4751 4752 4753 4754 4755

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4756 4757 4758 4759 4760
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4761 4762
}

4763 4764
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4765
{
4766 4767 4768
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4769
	/* we must uncharge all the leftover precharges from mc.to */
4770
	if (mc.precharge) {
4771
		cancel_charge(mc.to, mc.precharge);
4772 4773 4774 4775 4776 4777 4778
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4779
		cancel_charge(mc.from, mc.moved_charge);
4780
		mc.moved_charge = 0;
4781
	}
4782 4783 4784
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4785
		if (!mem_cgroup_is_root(mc.from))
4786
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4787

4788
		/*
4789 4790
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4791
		 */
4792
		if (!mem_cgroup_is_root(mc.to))
4793 4794
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4795
		css_put_many(&mc.from->css, mc.moved_swap);
4796

L
Li Zefan 已提交
4797
		/* we've already done css_get(mc.to) */
4798 4799
		mc.moved_swap = 0;
	}
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4813
	spin_lock(&mc.lock);
4814 4815
	mc.from = NULL;
	mc.to = NULL;
4816
	spin_unlock(&mc.lock);
4817 4818
}

4819
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4820
{
4821
	struct cgroup_subsys_state *css;
4822
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4823
	struct mem_cgroup *from;
4824
	struct task_struct *leader, *p;
4825
	struct mm_struct *mm;
4826
	unsigned long move_flags;
4827
	int ret = 0;
4828

4829 4830
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4831 4832
		return 0;

4833 4834 4835 4836 4837 4838 4839
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4840
	cgroup_taskset_for_each_leader(leader, css, tset) {
4841 4842
		WARN_ON_ONCE(p);
		p = leader;
4843
		memcg = mem_cgroup_from_css(css);
4844 4845 4846 4847
	}
	if (!p)
		return 0;

4848 4849 4850 4851 4852 4853 4854 4855 4856
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4882
	}
4883
	mmput(mm);
4884 4885 4886
	return ret;
}

4887
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4888
{
4889 4890
	if (mc.to)
		mem_cgroup_clear_mc();
4891 4892
}

4893 4894 4895
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4896
{
4897
	int ret = 0;
4898
	struct vm_area_struct *vma = walk->vma;
4899 4900
	pte_t *pte;
	spinlock_t *ptl;
4901 4902 4903
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4904

4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
4915
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4916
		if (mc.precharge < HPAGE_PMD_NR) {
4917
			spin_unlock(ptl);
4918 4919 4920 4921 4922 4923 4924
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4925
							     mc.from, mc.to)) {
4926 4927 4928 4929 4930 4931 4932
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4933
		spin_unlock(ptl);
4934
		return 0;
4935 4936
	}

4937 4938
	if (pmd_trans_unstable(pmd))
		return 0;
4939 4940 4941 4942
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4943
		swp_entry_t ent;
4944 4945 4946 4947

		if (!mc.precharge)
			break;

4948
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4949 4950 4951 4952
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
4953
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4954
				mc.precharge--;
4955 4956
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4957 4958
			}
			putback_lru_page(page);
4959
put:			/* get_mctgt_type() gets the page */
4960 4961
			put_page(page);
			break;
4962 4963
		case MC_TARGET_SWAP:
			ent = target.ent;
4964
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4965
				mc.precharge--;
4966 4967 4968
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4969
			break;
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4984
		ret = mem_cgroup_do_precharge(1);
4985 4986 4987 4988 4989 4990 4991 4992 4993
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4994 4995 4996 4997
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4998 4999

	lru_add_drain_all();
5000 5001 5002 5003 5004 5005 5006
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5020 5021 5022 5023 5024
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5025
	up_read(&mm->mmap_sem);
5026
	atomic_dec(&mc.from->moving_account);
5027 5028
}

5029
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5030
{
5031 5032
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
5033
	struct mm_struct *mm = get_task_mm(p);
5034 5035

	if (mm) {
5036 5037
		if (mc.to)
			mem_cgroup_move_charge(mm);
5038 5039
		mmput(mm);
	}
5040 5041
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5042
}
5043
#else	/* !CONFIG_MMU */
5044
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5045 5046 5047
{
	return 0;
}
5048
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5049 5050
{
}
5051
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5052 5053 5054
{
}
#endif
B
Balbir Singh 已提交
5055

5056 5057
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5058 5059
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5060
 */
5061
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5062 5063
{
	/*
5064
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5065 5066 5067
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5068
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5069 5070 5071
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5072 5073
}

5074 5075 5076
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5077 5078 5079
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5080 5081 5082 5083 5084
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5085
	unsigned long low = READ_ONCE(memcg->low);
5086 5087

	if (low == PAGE_COUNTER_MAX)
5088
		seq_puts(m, "max\n");
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5103
	err = page_counter_memparse(buf, "max", &low);
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5115
	unsigned long high = READ_ONCE(memcg->high);
5116 5117

	if (high == PAGE_COUNTER_MAX)
5118
		seq_puts(m, "max\n");
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5133
	err = page_counter_memparse(buf, "max", &high);
5134 5135 5136 5137 5138
	if (err)
		return err;

	memcg->high = high;

5139
	memcg_wb_domain_size_changed(memcg);
5140 5141 5142 5143 5144 5145
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5146
	unsigned long max = READ_ONCE(memcg->memory.limit);
5147 5148

	if (max == PAGE_COUNTER_MAX)
5149
		seq_puts(m, "max\n");
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5164
	err = page_counter_memparse(buf, "max", &max);
5165 5166 5167 5168 5169 5170 5171
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5172
	memcg_wb_domain_size_changed(memcg);
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
5191
		.flags = CFTYPE_NOT_ON_ROOT,
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5215
		.file_offset = offsetof(struct mem_cgroup, events_file),
5216 5217 5218 5219 5220
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5221
struct cgroup_subsys memory_cgrp_subsys = {
5222
	.css_alloc = mem_cgroup_css_alloc,
5223
	.css_online = mem_cgroup_css_online,
5224
	.css_offline = mem_cgroup_css_offline,
5225
	.css_released = mem_cgroup_css_released,
5226
	.css_free = mem_cgroup_css_free,
5227
	.css_reset = mem_cgroup_css_reset,
5228 5229
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5230
	.attach = mem_cgroup_move_task,
5231
	.bind = mem_cgroup_bind,
5232 5233
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5234
	.early_init = 0,
B
Balbir Singh 已提交
5235
};
5236

5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5259
	if (page_counter_read(&memcg->memory) >= memcg->low)
5260 5261 5262 5263 5264 5265 5266 5267
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5268
		if (page_counter_read(&memcg->memory) >= memcg->low)
5269 5270 5271 5272 5273
			return false;
	}
	return true;
}

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5309
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5310
		if (page->mem_cgroup)
5311
			goto out;
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322

		if (do_swap_account) {
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5375 5376
	commit_charge(page, memcg, lrucare);

5377 5378 5379 5380 5381
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5382 5383 5384 5385
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5427 5428 5429 5430
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5431
	unsigned long nr_pages = nr_anon + nr_file;
5432 5433
	unsigned long flags;

5434
	if (!mem_cgroup_is_root(memcg)) {
5435 5436 5437
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5438 5439
		memcg_oom_recover(memcg);
	}
5440 5441 5442 5443 5444 5445

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5446
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5447 5448
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5449 5450

	if (!mem_cgroup_is_root(memcg))
5451
		css_put_many(&memcg->css, nr_pages);
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5474
		if (!page->mem_cgroup)
5475 5476 5477 5478
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5479
		 * page->mem_cgroup at this point, we have fully
5480
		 * exclusive access to the page.
5481 5482
		 */

5483
		if (memcg != page->mem_cgroup) {
5484
			if (memcg) {
5485 5486 5487
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5488
			}
5489
			memcg = page->mem_cgroup;
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5503
		page->mem_cgroup = NULL;
5504 5505 5506 5507 5508

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5509 5510
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5511 5512
}

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5525
	/* Don't touch page->lru of any random page, pre-check: */
5526
	if (!page->mem_cgroup)
5527 5528
		return;

5529 5530 5531
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5532

5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5544

5545 5546
	if (!list_empty(page_list))
		uncharge_list(page_list);
5547 5548 5549
}

/**
5550
 * mem_cgroup_replace_page - migrate a charge to another page
5551 5552 5553 5554 5555 5556
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
5557
 * Either or both pages might be on the LRU already.
5558
 */
5559
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5560
{
5561
	struct mem_cgroup *memcg;
5562 5563 5564 5565 5566
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5567 5568
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5569 5570 5571 5572 5573

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5574
	if (newpage->mem_cgroup)
5575 5576
		return;

5577
	/* Swapcache readahead pages can get replaced before being charged */
5578
	memcg = oldpage->mem_cgroup;
5579
	if (!memcg)
5580 5581
		return;

5582
	lock_page_lru(oldpage, &isolated);
5583
	oldpage->mem_cgroup = NULL;
5584
	unlock_page_lru(oldpage, isolated);
5585

5586
	commit_charge(newpage, memcg, true);
5587 5588
}

5589
/*
5590 5591 5592 5593 5594 5595
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5596 5597 5598
 */
static int __init mem_cgroup_init(void)
{
5599 5600
	int cpu, node;

5601
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5624 5625 5626
	return 0;
}
subsys_initcall(mem_cgroup_init);
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5662 5663 5664 5665 5666 5667 5668
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5689
	memcg = mem_cgroup_from_id(id);
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */