memcontrol.c 189.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76 77 78
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);

79 80 81
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

82 83 84
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

85
/* Whether the swap controller is active */
A
Andrew Morton 已提交
86
#ifdef CONFIG_MEMCG_SWAP
87
bool cgroup_memory_noswap __read_mostly;
88
#else
89
#define cgroup_memory_noswap		1
90
#endif
91

92 93 94 95
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

96 97 98
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
99
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 101
}

102 103
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
104

105 106 107 108 109
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

110
struct mem_cgroup_tree_per_node {
111
	struct rb_root rb_root;
112
	struct rb_node *rb_rightmost;
113 114 115 116 117 118 119 120 121
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
122 123 124 125 126
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
127

128 129 130
/*
 * cgroup_event represents events which userspace want to receive.
 */
131
struct mem_cgroup_event {
132
	/*
133
	 * memcg which the event belongs to.
134
	 */
135
	struct mem_cgroup *memcg;
136 137 138 139 140 141 142 143
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
144 145 146 147 148
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
149
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
150
			      struct eventfd_ctx *eventfd, const char *args);
151 152 153 154 155
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
156
	void (*unregister_event)(struct mem_cgroup *memcg,
157
				 struct eventfd_ctx *eventfd);
158 159 160 161 162 163
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
164
	wait_queue_entry_t wait;
165 166 167
	struct work_struct remove;
};

168 169
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170

171 172
/* Stuffs for move charges at task migration. */
/*
173
 * Types of charges to be moved.
174
 */
175 176 177
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
178

179 180
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
181
	spinlock_t	  lock; /* for from, to */
182
	struct mm_struct  *mm;
183 184
	struct mem_cgroup *from;
	struct mem_cgroup *to;
185
	unsigned long flags;
186
	unsigned long precharge;
187
	unsigned long moved_charge;
188
	unsigned long moved_swap;
189 190 191
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
192
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 194
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
195

196 197 198 199
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
200
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
201
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
202

203
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
204 205 206 207
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
208
	_KMEM,
V
Vladimir Davydov 已提交
209
	_TCP,
G
Glauber Costa 已提交
210 211
};

212 213
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
214
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
215 216
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

233 234 235 236 237 238
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

239 240 241 242 243 244 245 246 247 248 249 250 251
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

252
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

345
/*
346
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
347 348 349 350 351
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
352
 *
353 354
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
355
 */
356 357
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
358

359 360 361 362 363 364 365 366 367 368 369 370 371
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

372 373 374 375 376 377
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
378
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379 380
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
381
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
382 383 384
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
385
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386

387 388
/*
 * A lot of the calls to the cache allocation functions are expected to be
389
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390 391 392
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
393
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394
EXPORT_SYMBOL(memcg_kmem_enabled_key);
395
#endif
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

420
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
464
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 496
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
497
			goto unlock;
498
		}
499 500 501 502 503 504 505
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
506 507 508 509 510 511 512 513

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 515
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
516 517 518 519 520
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

538
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 540 541 542 543
		memcg = root_mem_cgroup;

	return &memcg->css;
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
563
	memcg = page->mem_cgroup;
564

565 566 567 568 569 570 571 572
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
573

574 575 576 577 578 579 580 581
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

582 583
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584
{
585
	int nid = page_to_nid(page);
586

587
	return memcg->nodeinfo[nid];
588 589
}

590 591
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
592
{
593
	return soft_limit_tree.rb_tree_per_node[nid];
594 595
}

596
static struct mem_cgroup_tree_per_node *
597 598 599 600
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

601
	return soft_limit_tree.rb_tree_per_node[nid];
602 603
}

604 605
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
606
					 unsigned long new_usage_in_excess)
607 608 609
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
610
	struct mem_cgroup_per_node *mz_node;
611
	bool rightmost = true;
612 613 614 615 616 617 618 619 620

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
621
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622
					tree_node);
623
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
624
			p = &(*p)->rb_left;
625
			rightmost = false;
626
		} else {
627
			p = &(*p)->rb_right;
628
		}
629
	}
630 631 632 633

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

634 635 636 637 638
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

639 640
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
641 642 643
{
	if (!mz->on_tree)
		return;
644 645 646 647

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

648 649 650 651
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

652 653
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
654
{
655 656 657
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
658
	__mem_cgroup_remove_exceeded(mz, mctz);
659
	spin_unlock_irqrestore(&mctz->lock, flags);
660 661
}

662 663 664
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
665
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
666 667 668 669 670 671 672
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
673 674 675

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
676
	unsigned long excess;
677 678
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
679

680
	mctz = soft_limit_tree_from_page(page);
681 682
	if (!mctz)
		return;
683 684 685 686 687
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
688
		mz = mem_cgroup_page_nodeinfo(memcg, page);
689
		excess = soft_limit_excess(memcg);
690 691 692 693 694
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
695 696 697
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
698 699
			/* if on-tree, remove it */
			if (mz->on_tree)
700
				__mem_cgroup_remove_exceeded(mz, mctz);
701 702 703 704
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
705
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
706
			spin_unlock_irqrestore(&mctz->lock, flags);
707 708 709 710 711 712
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
713 714 715
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
716

717
	for_each_node(nid) {
718 719
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
720 721
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
722 723 724
	}
}

725 726
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
727
{
728
	struct mem_cgroup_per_node *mz;
729 730 731

retry:
	mz = NULL;
732
	if (!mctz->rb_rightmost)
733 734
		goto done;		/* Nothing to reclaim from */

735 736
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
737 738 739 740 741
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
742
	__mem_cgroup_remove_exceeded(mz, mctz);
743
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
744
	    !css_tryget(&mz->memcg->css))
745 746 747 748 749
		goto retry;
done:
	return mz;
}

750 751
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
752
{
753
	struct mem_cgroup_per_node *mz;
754

755
	spin_lock_irq(&mctz->lock);
756
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
757
	spin_unlock_irq(&mctz->lock);
758 759 760
	return mz;
}

761 762 763 764 765 766 767 768
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
769
	long x, threshold = MEMCG_CHARGE_BATCH;
770 771 772 773

	if (mem_cgroup_disabled())
		return;

774
	if (memcg_stat_item_in_bytes(idx))
775 776
		threshold <<= PAGE_SHIFT;

777
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
778
	if (unlikely(abs(x) > threshold)) {
779 780
		struct mem_cgroup *mi;

781 782 783 784 785
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
786 787
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
788 789 790 791 792
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

793 794 795 796 797 798 799 800 801 802 803
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

804 805
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
806 807
{
	struct mem_cgroup_per_node *pn;
808
	struct mem_cgroup *memcg;
809
	long x, threshold = MEMCG_CHARGE_BATCH;
810 811

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
812
	memcg = pn->memcg;
813 814

	/* Update memcg */
815
	__mod_memcg_state(memcg, idx, val);
816

817 818 819
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

820 821 822
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

823
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
824
	if (unlikely(abs(x) > threshold)) {
825
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
826 827 828 829
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
830 831 832 833 834
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

856
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
857
{
858
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
859 860 861 862
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
863
	memcg = mem_cgroup_from_obj(p);
864

865 866 867 868 869 870 871
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
872 873
		__mod_node_page_state(pgdat, idx, val);
	} else {
874
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
875 876 877 878 879
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
896 897
		struct mem_cgroup *mi;

898 899 900 901 902
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
903 904
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
905 906 907 908 909
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

910
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
911
{
912
	return atomic_long_read(&memcg->vmevents[event]);
913 914
}

915 916
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
917 918 919 920 921 922
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
923 924
}

925
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
926
					 struct page *page,
927
					 int nr_pages)
928
{
929 930
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
931
		__count_memcg_events(memcg, PGPGIN, 1);
932
	else {
933
		__count_memcg_events(memcg, PGPGOUT, 1);
934 935
		nr_pages = -nr_pages; /* for event */
	}
936

937
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
938 939
}

940 941
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
942 943 944
{
	unsigned long val, next;

945 946
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
947
	/* from time_after() in jiffies.h */
948
	if ((long)(next - val) < 0) {
949 950 951 952
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
953 954 955
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
956 957 958
		default:
			break;
		}
959
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
960
		return true;
961
	}
962
	return false;
963 964 965 966 967 968
}

/*
 * Check events in order.
 *
 */
969
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
970 971
{
	/* threshold event is triggered in finer grain than soft limit */
972 973
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
974
		bool do_softlimit;
975

976 977
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
978
		mem_cgroup_threshold(memcg);
979 980
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
981
	}
982 983
}

984
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
985
{
986 987 988 989 990 991 992 993
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

994
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
995
}
M
Michal Hocko 已提交
996
EXPORT_SYMBOL(mem_cgroup_from_task);
997

998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1007
{
1008 1009 1010 1011
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1012

1013 1014
	rcu_read_lock();
	do {
1015 1016 1017 1018 1019 1020
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1021
			memcg = root_mem_cgroup;
1022 1023 1024 1025 1026
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1027
	} while (!css_tryget(&memcg->css));
1028
	rcu_read_unlock();
1029
	return memcg;
1030
}
1031 1032
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1048 1049
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1050 1051 1052 1053 1054 1055
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1056
static __always_inline struct mem_cgroup *active_memcg(void)
1057
{
1058 1059 1060 1061 1062
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}
1063

1064 1065 1066
static __always_inline struct mem_cgroup *get_active_memcg(void)
{
	struct mem_cgroup *memcg;
1067

1068 1069 1070
	rcu_read_lock();
	memcg = active_memcg();
	if (memcg) {
S
Shakeel Butt 已提交
1071
		/* current->active_memcg must hold a ref. */
1072
		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
S
Shakeel Butt 已提交
1073 1074
			memcg = root_mem_cgroup;
		else
1075 1076
			memcg = current->active_memcg;
	}
1077 1078 1079 1080 1081
	rcu_read_unlock();

	return memcg;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/**
 * If active memcg is set, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (memcg_kmem_bypass())
		return NULL;

	if (unlikely(active_memcg()))
		return get_active_memcg();

1106 1107
	return get_mem_cgroup_from_mm(current->mm);
}
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1122 1123 1124
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1125
 */
1126
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1127
				   struct mem_cgroup *prev,
1128
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1129
{
1130
	struct mem_cgroup_reclaim_iter *iter;
1131
	struct cgroup_subsys_state *css = NULL;
1132
	struct mem_cgroup *memcg = NULL;
1133
	struct mem_cgroup *pos = NULL;
1134

1135 1136
	if (mem_cgroup_disabled())
		return NULL;
1137

1138 1139
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1140

1141
	if (prev && !reclaim)
1142
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1143

1144
	rcu_read_lock();
M
Michal Hocko 已提交
1145

1146
	if (reclaim) {
1147
		struct mem_cgroup_per_node *mz;
1148

1149
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1150
		iter = &mz->iter;
1151 1152 1153 1154

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1155
		while (1) {
1156
			pos = READ_ONCE(iter->position);
1157 1158
			if (!pos || css_tryget(&pos->css))
				break;
1159
			/*
1160 1161 1162 1163 1164 1165
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1166
			 */
1167 1168
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1186
		}
K
KAMEZAWA Hiroyuki 已提交
1187

1188 1189 1190 1191 1192 1193
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1194

1195 1196
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1197

1198 1199
		if (css_tryget(css))
			break;
1200

1201
		memcg = NULL;
1202
	}
1203 1204 1205

	if (reclaim) {
		/*
1206 1207 1208
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1209
		 */
1210 1211
		(void)cmpxchg(&iter->position, pos, memcg);

1212 1213 1214 1215 1216 1217 1218
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1219
	}
1220

1221 1222
out_unlock:
	rcu_read_unlock();
1223 1224 1225
	if (prev && prev != root)
		css_put(&prev->css);

1226
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1227
}
K
KAMEZAWA Hiroyuki 已提交
1228

1229 1230 1231 1232 1233 1234 1235
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1236 1237 1238 1239 1240 1241
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1242

1243 1244
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1245 1246
{
	struct mem_cgroup_reclaim_iter *iter;
1247 1248
	struct mem_cgroup_per_node *mz;
	int nid;
1249

1250 1251
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1252 1253
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1254 1255 1256
	}
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1303
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1315
/**
1316
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1317
 * @page: the page
1318
 * @pgdat: pgdat of the page
1319
 *
1320
 * This function relies on page's memcg being stable - see the
1321
 * access rules in commit_charge().
1322
 */
M
Mel Gorman 已提交
1323
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1324
{
1325
	struct mem_cgroup_per_node *mz;
1326
	struct mem_cgroup *memcg;
1327
	struct lruvec *lruvec;
1328

1329
	if (mem_cgroup_disabled()) {
1330
		lruvec = &pgdat->__lruvec;
1331 1332
		goto out;
	}
1333

1334
	memcg = page->mem_cgroup;
1335
	/*
1336
	 * Swapcache readahead pages are added to the LRU - and
1337
	 * possibly migrated - before they are charged.
1338
	 */
1339 1340
	if (!memcg)
		memcg = root_mem_cgroup;
1341

1342
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1343 1344 1345 1346 1347 1348 1349
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1350 1351
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1352
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1353
}
1354

1355
/**
1356 1357 1358
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1359
 * @zid: zone id of the accounted pages
1360
 * @nr_pages: positive when adding or negative when removing
1361
 *
1362 1363 1364
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1365
 */
1366
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1367
				int zid, int nr_pages)
1368
{
1369
	struct mem_cgroup_per_node *mz;
1370
	unsigned long *lru_size;
1371
	long size;
1372 1373 1374 1375

	if (mem_cgroup_disabled())
		return;

1376
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1377
	lru_size = &mz->lru_zone_size[zid][lru];
1378 1379 1380 1381 1382

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1383 1384 1385
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1386 1387 1388 1389 1390 1391
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1392
}
1393

1394
/**
1395
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1396
 * @memcg: the memory cgroup
1397
 *
1398
 * Returns the maximum amount of memory @mem can be charged with, in
1399
 * pages.
1400
 */
1401
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1402
{
1403 1404 1405
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1406

1407
	count = page_counter_read(&memcg->memory);
1408
	limit = READ_ONCE(memcg->memory.max);
1409 1410 1411
	if (count < limit)
		margin = limit - count;

1412
	if (do_memsw_account()) {
1413
		count = page_counter_read(&memcg->memsw);
1414
		limit = READ_ONCE(memcg->memsw.max);
1415
		if (count < limit)
1416
			margin = min(margin, limit - count);
1417 1418
		else
			margin = 0;
1419 1420 1421
	}

	return margin;
1422 1423
}

1424
/*
Q
Qiang Huang 已提交
1425
 * A routine for checking "mem" is under move_account() or not.
1426
 *
Q
Qiang Huang 已提交
1427 1428 1429
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1430
 */
1431
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1432
{
1433 1434
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1435
	bool ret = false;
1436 1437 1438 1439 1440 1441 1442 1443 1444
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1445

1446 1447
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1448 1449
unlock:
	spin_unlock(&mc.lock);
1450 1451 1452
	return ret;
}

1453
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1454 1455
{
	if (mc.moving_task && current != mc.moving_task) {
1456
		if (mem_cgroup_under_move(memcg)) {
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
struct memory_stat {
	const char *name;
	unsigned int ratio;
	unsigned int idx;
};

static struct memory_stat memory_stats[] = {
	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
	{ "file", PAGE_SIZE, NR_FILE_PAGES },
	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
	{ "percpu", 1, MEMCG_PERCPU_B },
	{ "sock", PAGE_SIZE, MEMCG_SOCK },
	{ "shmem", PAGE_SIZE, NR_SHMEM },
	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/*
	 * The ratio will be initialized in memory_stats_init(). Because
	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
	 * constant(e.g. powerpc).
	 */
	{ "anon_thp", 0, NR_ANON_THPS },
1492 1493
	{ "file_thp", 0, NR_FILE_THPS },
	{ "shmem_thp", 0, NR_SHMEM_THPS },
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
#endif
	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },

	/*
	 * Note: The slab_reclaimable and slab_unreclaimable must be
	 * together and slab_reclaimable must be in front.
	 */
	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },

	/* The memory events */
	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
};

static int __init memory_stats_init(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1524 1525 1526
		if (memory_stats[i].idx == NR_ANON_THPS ||
		    memory_stats[i].idx == NR_FILE_THPS ||
		    memory_stats[i].idx == NR_SHMEM_THPS)
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
			memory_stats[i].ratio = HPAGE_PMD_SIZE;
#endif
		VM_BUG_ON(!memory_stats[i].ratio);
		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
	}

	return 0;
}
pure_initcall(memory_stats_init);

1537 1538 1539 1540
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

1557 1558
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1559

1560 1561 1562
		size = memcg_page_state(memcg, memory_stats[i].idx);
		size *= memory_stats[i].ratio;
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1563

1564 1565 1566 1567 1568 1569
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1570 1571 1572

	/* Accumulated memory events */

1573 1574 1575 1576 1577 1578
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1579 1580 1581 1582 1583 1584
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1585 1586 1587 1588 1589 1590 1591 1592
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1593 1594

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1595
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1596
		       memcg_events(memcg, THP_FAULT_ALLOC));
1597
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1598 1599 1600 1601 1602 1603 1604 1605
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1606

1607
#define K(x) ((x) << (PAGE_SHIFT-10))
1608
/**
1609 1610
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1611 1612 1613 1614 1615 1616
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1617
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1618 1619 1620
{
	rcu_read_lock();

1621 1622 1623 1624 1625
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1626
	if (p) {
1627
		pr_cont(",task_memcg=");
1628 1629
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1630
	rcu_read_unlock();
1631 1632 1633 1634 1635 1636 1637 1638 1639
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1640
	char *buf;
1641

1642 1643
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1644
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1645 1646 1647
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1648
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1649 1650 1651 1652 1653 1654 1655
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1656
	}
1657 1658 1659 1660 1661 1662 1663 1664 1665

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1666 1667
}

D
David Rientjes 已提交
1668 1669 1670
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1671
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1672
{
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1686
	}
1687
	return max;
D
David Rientjes 已提交
1688 1689
}

1690 1691 1692 1693 1694
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1695
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1696
				     int order)
1697
{
1698 1699 1700
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1701
		.memcg = memcg,
1702 1703 1704
		.gfp_mask = gfp_mask,
		.order = order,
	};
1705
	bool ret = true;
1706

1707 1708
	if (mutex_lock_killable(&oom_lock))
		return true;
1709 1710 1711 1712

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1713 1714 1715 1716 1717
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1718 1719

unlock:
1720
	mutex_unlock(&oom_lock);
1721
	return ret;
1722 1723
}

1724
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1725
				   pg_data_t *pgdat,
1726 1727 1728 1729 1730 1731 1732 1733 1734
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1735
		.pgdat = pgdat,
1736 1737
	};

1738
	excess = soft_limit_excess(root_memcg);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1764
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1765
					pgdat, &nr_scanned);
1766
		*total_scanned += nr_scanned;
1767
		if (!soft_limit_excess(root_memcg))
1768
			break;
1769
	}
1770 1771
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1772 1773
}

1774 1775 1776 1777 1778 1779
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1780 1781
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1782 1783 1784 1785
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1786
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1787
{
1788
	struct mem_cgroup *iter, *failed = NULL;
1789

1790 1791
	spin_lock(&memcg_oom_lock);

1792
	for_each_mem_cgroup_tree(iter, memcg) {
1793
		if (iter->oom_lock) {
1794 1795 1796 1797 1798
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1799 1800
			mem_cgroup_iter_break(memcg, iter);
			break;
1801 1802
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1803
	}
K
KAMEZAWA Hiroyuki 已提交
1804

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1816
		}
1817 1818
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1819 1820 1821 1822

	spin_unlock(&memcg_oom_lock);

	return !failed;
1823
}
1824

1825
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1826
{
K
KAMEZAWA Hiroyuki 已提交
1827 1828
	struct mem_cgroup *iter;

1829
	spin_lock(&memcg_oom_lock);
1830
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1831
	for_each_mem_cgroup_tree(iter, memcg)
1832
		iter->oom_lock = false;
1833
	spin_unlock(&memcg_oom_lock);
1834 1835
}

1836
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1837 1838 1839
{
	struct mem_cgroup *iter;

1840
	spin_lock(&memcg_oom_lock);
1841
	for_each_mem_cgroup_tree(iter, memcg)
1842 1843
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1844 1845
}

1846
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1847 1848 1849
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1850
	/*
1851 1852
	 * Be careful about under_oom underflows becase a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1853
	 */
1854
	spin_lock(&memcg_oom_lock);
1855
	for_each_mem_cgroup_tree(iter, memcg)
1856 1857 1858
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1859 1860
}

K
KAMEZAWA Hiroyuki 已提交
1861 1862
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1863
struct oom_wait_info {
1864
	struct mem_cgroup *memcg;
1865
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1866 1867
};

1868
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1869 1870
	unsigned mode, int sync, void *arg)
{
1871 1872
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1873 1874 1875
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1876
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1877

1878 1879
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1880 1881 1882 1883
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1884
static void memcg_oom_recover(struct mem_cgroup *memcg)
1885
{
1886 1887 1888 1889 1890 1891 1892 1893 1894
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1895
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1896 1897
}

1898 1899 1900 1901 1902 1903 1904 1905
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1906
{
1907 1908 1909
	enum oom_status ret;
	bool locked;

1910 1911 1912
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1913 1914
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1915
	/*
1916 1917 1918 1919
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1920 1921 1922 1923
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1924
	 *
1925 1926 1927 1928 1929 1930 1931
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1932
	 */
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1944 1945 1946 1947 1948 1949 1950 1951
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1952
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1953 1954 1955 1956 1957 1958
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1959

1960
	return ret;
1961 1962 1963 1964
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1965
 * @handle: actually kill/wait or just clean up the OOM state
1966
 *
1967 1968
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1969
 *
1970
 * Memcg supports userspace OOM handling where failed allocations must
1971 1972 1973 1974
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1975
 * the end of the page fault to complete the OOM handling.
1976 1977
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1978
 * completed, %false otherwise.
1979
 */
1980
bool mem_cgroup_oom_synchronize(bool handle)
1981
{
T
Tejun Heo 已提交
1982
	struct mem_cgroup *memcg = current->memcg_in_oom;
1983
	struct oom_wait_info owait;
1984
	bool locked;
1985 1986 1987

	/* OOM is global, do not handle */
	if (!memcg)
1988
		return false;
1989

1990
	if (!handle)
1991
		goto cleanup;
1992 1993 1994 1995 1996

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1997
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1998

1999
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
2010 2011
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
2012
	} else {
2013
		schedule();
2014 2015 2016 2017 2018
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2019 2020 2021 2022 2023 2024 2025 2026
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2027
cleanup:
T
Tejun Heo 已提交
2028
	current->memcg_in_oom = NULL;
2029
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2030
	return true;
2031 2032
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2061 2062 2063 2064 2065 2066 2067 2068
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2097
/**
2098 2099
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2100
 *
2101
 * This function protects unlocked LRU pages from being moved to
2102 2103 2104 2105 2106
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2107
 */
2108
struct mem_cgroup *lock_page_memcg(struct page *page)
2109
{
2110
	struct page *head = compound_head(page); /* rmap on tail pages */
2111
	struct mem_cgroup *memcg;
2112
	unsigned long flags;
2113

2114 2115 2116 2117
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2118 2119 2120 2121 2122 2123 2124
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2125 2126 2127
	rcu_read_lock();

	if (mem_cgroup_disabled())
2128
		return NULL;
2129
again:
2130
	memcg = head->mem_cgroup;
2131
	if (unlikely(!memcg))
2132
		return NULL;
2133

Q
Qiang Huang 已提交
2134
	if (atomic_read(&memcg->moving_account) <= 0)
2135
		return memcg;
2136

2137
	spin_lock_irqsave(&memcg->move_lock, flags);
2138
	if (memcg != head->mem_cgroup) {
2139
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2140 2141
		goto again;
	}
2142 2143 2144 2145

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2146
	 * the task who has the lock for unlock_page_memcg().
2147 2148 2149
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2150

2151
	return memcg;
2152
}
2153
EXPORT_SYMBOL(lock_page_memcg);
2154

2155
/**
2156 2157 2158 2159
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2160
 */
2161
void __unlock_page_memcg(struct mem_cgroup *memcg)
2162
{
2163 2164 2165 2166 2167 2168 2169 2170
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2171

2172
	rcu_read_unlock();
2173
}
2174 2175 2176 2177 2178 2179 2180

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2181 2182 2183
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2184
}
2185
EXPORT_SYMBOL(unlock_page_memcg);
2186

2187 2188
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2189
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2190 2191 2192 2193 2194 2195

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2196
	struct work_struct work;
2197
	unsigned long flags;
2198
#define FLUSHING_CACHED_CHARGE	0
2199 2200
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2201
static DEFINE_MUTEX(percpu_charge_mutex);
2202

R
Roman Gushchin 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2229
 */
2230
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2231 2232
{
	struct memcg_stock_pcp *stock;
2233
	unsigned long flags;
2234
	bool ret = false;
2235

2236
	if (nr_pages > MEMCG_CHARGE_BATCH)
2237
		return ret;
2238

2239 2240 2241
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2242
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2243
		stock->nr_pages -= nr_pages;
2244 2245
		ret = true;
	}
2246 2247 2248

	local_irq_restore(flags);

2249 2250 2251 2252
	return ret;
}

/*
2253
 * Returns stocks cached in percpu and reset cached information.
2254 2255 2256 2257 2258
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2259 2260 2261
	if (!old)
		return;

2262
	if (stock->nr_pages) {
2263
		page_counter_uncharge(&old->memory, stock->nr_pages);
2264
		if (do_memsw_account())
2265
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2266
		stock->nr_pages = 0;
2267
	}
2268 2269

	css_put(&old->css);
2270 2271 2272 2273 2274
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2275 2276 2277
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2278 2279 2280 2281
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2282 2283 2284
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2285
	drain_obj_stock(stock);
2286
	drain_stock(stock);
2287
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2288 2289

	local_irq_restore(flags);
2290 2291 2292
}

/*
2293
 * Cache charges(val) to local per_cpu area.
2294
 * This will be consumed by consume_stock() function, later.
2295
 */
2296
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2297
{
2298 2299 2300 2301
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2302

2303
	stock = this_cpu_ptr(&memcg_stock);
2304
	if (stock->cached != memcg) { /* reset if necessary */
2305
		drain_stock(stock);
2306
		css_get(&memcg->css);
2307
		stock->cached = memcg;
2308
	}
2309
	stock->nr_pages += nr_pages;
2310

2311
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2312 2313
		drain_stock(stock);

2314
	local_irq_restore(flags);
2315 2316 2317
}

/*
2318
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2319
 * of the hierarchy under it.
2320
 */
2321
static void drain_all_stock(struct mem_cgroup *root_memcg)
2322
{
2323
	int cpu, curcpu;
2324

2325 2326 2327
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2328 2329 2330 2331 2332 2333
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2334
	curcpu = get_cpu();
2335 2336
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2337
		struct mem_cgroup *memcg;
2338
		bool flush = false;
2339

2340
		rcu_read_lock();
2341
		memcg = stock->cached;
2342 2343 2344
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2345 2346
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2347 2348 2349 2350
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2351 2352 2353 2354 2355
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2356
	}
2357
	put_cpu();
2358
	mutex_unlock(&percpu_charge_mutex);
2359 2360
}

2361
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2362 2363
{
	struct memcg_stock_pcp *stock;
2364
	struct mem_cgroup *memcg, *mi;
2365 2366 2367

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2368 2369 2370 2371 2372 2373 2374 2375

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2376
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2377
			if (x)
2378 2379
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2380 2381 2382 2383 2384 2385 2386 2387 2388

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2389
				if (x)
2390 2391 2392
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2393 2394 2395
			}
		}

2396
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2397 2398
			long x;

2399
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2400
			if (x)
2401 2402
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2403 2404 2405
		}
	}

2406
	return 0;
2407 2408
}

2409 2410 2411
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2412
{
2413 2414
	unsigned long nr_reclaimed = 0;

2415
	do {
2416 2417
		unsigned long pflags;

2418 2419
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2420
			continue;
2421

2422
		memcg_memory_event(memcg, MEMCG_HIGH);
2423 2424

		psi_memstall_enter(&pflags);
2425 2426
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2427
		psi_memstall_leave(&pflags);
2428 2429
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2430 2431

	return nr_reclaimed;
2432 2433 2434 2435 2436 2437 2438
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2439
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2456
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2495
static u64 calculate_overage(unsigned long usage, unsigned long high)
2496
{
2497
	u64 overage;
2498

2499 2500
	if (usage <= high)
		return 0;
2501

2502 2503 2504 2505 2506
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2507

2508 2509 2510 2511
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2512

2513 2514 2515
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2516

2517 2518
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2519
					    READ_ONCE(memcg->memory.high));
2520
		max_overage = max(overage, max_overage);
2521 2522 2523
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2524 2525 2526
	return max_overage;
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2553 2554
	if (!max_overage)
		return 0;
2555 2556 2557 2558 2559 2560 2561 2562 2563

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2564 2565 2566
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2567 2568 2569 2570 2571 2572 2573 2574 2575

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2576
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2587
	unsigned long nr_reclaimed;
2588
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2589
	int nr_retries = MAX_RECLAIM_RETRIES;
2590
	struct mem_cgroup *memcg;
2591
	bool in_retry = false;
2592 2593 2594 2595 2596 2597 2598

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2613 2614 2615 2616
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2617 2618
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2619

2620 2621 2622
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2623 2624 2625 2626 2627 2628 2629
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2630 2631 2632 2633 2634 2635 2636 2637 2638
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2660 2661
}

2662 2663
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2664
{
2665
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2666
	int nr_retries = MAX_RECLAIM_RETRIES;
2667
	struct mem_cgroup *mem_over_limit;
2668
	struct page_counter *counter;
2669
	enum oom_status oom_status;
2670
	unsigned long nr_reclaimed;
2671 2672
	bool may_swap = true;
	bool drained = false;
2673
	unsigned long pflags;
2674

2675
	if (mem_cgroup_is_root(memcg))
2676
		return 0;
2677
retry:
2678
	if (consume_stock(memcg, nr_pages))
2679
		return 0;
2680

2681
	if (!do_memsw_account() ||
2682 2683
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2684
			goto done_restock;
2685
		if (do_memsw_account())
2686 2687
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2688
	} else {
2689
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2690
		may_swap = false;
2691
	}
2692

2693 2694 2695 2696
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2697

2698 2699 2700 2701 2702 2703 2704 2705 2706
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2707 2708 2709 2710 2711 2712
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2713
	if (unlikely(should_force_charge()))
2714
		goto force;
2715

2716 2717 2718 2719 2720 2721 2722 2723 2724
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2725 2726 2727
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2728
	if (!gfpflags_allow_blocking(gfp_mask))
2729
		goto nomem;
2730

2731
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2732

2733
	psi_memstall_enter(&pflags);
2734 2735
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2736
	psi_memstall_leave(&pflags);
2737

2738
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2739
		goto retry;
2740

2741
	if (!drained) {
2742
		drain_all_stock(mem_over_limit);
2743 2744 2745 2746
		drained = true;
		goto retry;
	}

2747 2748
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2749 2750 2751 2752 2753 2754 2755 2756 2757
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2758
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2759 2760 2761 2762 2763 2764 2765 2766
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2767 2768 2769
	if (nr_retries--)
		goto retry;

2770
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2771 2772
		goto nomem;

2773
	if (gfp_mask & __GFP_NOFAIL)
2774
		goto force;
2775

2776
	if (fatal_signal_pending(current))
2777
		goto force;
2778

2779 2780 2781 2782 2783 2784
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2785
		       get_order(nr_pages * PAGE_SIZE));
2786 2787
	switch (oom_status) {
	case OOM_SUCCESS:
2788
		nr_retries = MAX_RECLAIM_RETRIES;
2789 2790 2791 2792 2793 2794
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2795
nomem:
2796
	if (!(gfp_mask & __GFP_NOFAIL))
2797
		return -ENOMEM;
2798 2799 2800 2801 2802 2803 2804
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2805
	if (do_memsw_account())
2806 2807 2808
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2809 2810 2811 2812

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2813

2814
	/*
2815 2816
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2817
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2818 2819 2820 2821
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2822 2823
	 */
	do {
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2834 2835 2836
				schedule_work(&memcg->high_work);
				break;
			}
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2850
			current->memcg_nr_pages_over_high += batch;
2851 2852 2853
			set_notify_resume(current);
			break;
		}
2854
	} while ((memcg = parent_mem_cgroup(memcg)));
2855 2856

	return 0;
2857
}
2858

2859
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2860
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2861
{
2862 2863 2864
	if (mem_cgroup_is_root(memcg))
		return;

2865
	page_counter_uncharge(&memcg->memory, nr_pages);
2866
	if (do_memsw_account())
2867
		page_counter_uncharge(&memcg->memsw, nr_pages);
2868
}
2869
#endif
2870

2871
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2872
{
2873
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2874
	/*
2875
	 * Any of the following ensures page's memcg stability:
2876
	 *
2877 2878 2879 2880
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2881
	 */
2882
	page->mem_cgroup = memcg;
2883
}
2884

2885
#ifdef CONFIG_MEMCG_KMEM
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	/*
	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
	 * or a pointer to obj_cgroup vector. In the latter case the lowest
	 * bit of the pointer is set.
	 * The page->mem_cgroup pointer can be asynchronously changed
	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
	 * from a valid memcg pointer to objcg vector or back.
	 */
	if (!page->mem_cgroup)
		return NULL;

2932
	/*
2933 2934 2935
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2936
	 */
2937 2938 2939 2940 2941 2942
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2943 2944 2945 2946
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2947
	}
2948 2949 2950 2951 2952

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2953 2954 2955 2956 2957
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2958 2959 2960
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2961
	rcu_read_lock();
2962 2963
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2964 2965 2966 2967 2968 2969 2970
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2971
		objcg = NULL;
R
Roman Gushchin 已提交
2972 2973 2974 2975 2976 2977
	}
	rcu_read_unlock();

	return objcg;
}

2978
static int memcg_alloc_cache_id(void)
2979
{
2980 2981 2982
	int id, size;
	int err;

2983
	id = ida_simple_get(&memcg_cache_ida,
2984 2985 2986
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2987

2988
	if (id < memcg_nr_cache_ids)
2989 2990 2991 2992 2993 2994
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2995
	down_write(&memcg_cache_ids_sem);
2996 2997

	size = 2 * (id + 1);
2998 2999 3000 3001 3002
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

3003
	err = memcg_update_all_list_lrus(size);
3004 3005 3006 3007 3008
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

3009
	if (err) {
3010
		ida_simple_remove(&memcg_cache_ida, id);
3011 3012 3013 3014 3015 3016 3017
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
3018
	ida_simple_remove(&memcg_cache_ida, id);
3019 3020
}

3021
/**
3022
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3023
 * @memcg: memory cgroup to charge
3024
 * @gfp: reclaim mode
3025
 * @nr_pages: number of pages to charge
3026 3027 3028
 *
 * Returns 0 on success, an error code on failure.
 */
3029 3030
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
3031
{
3032
	struct page_counter *counter;
3033 3034
	int ret;

3035
	ret = try_charge(memcg, gfp, nr_pages);
3036
	if (ret)
3037
		return ret;
3038 3039 3040

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3051 3052
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3053
	}
3054
	return 0;
3055 3056
}

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3072
/**
3073
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3074 3075 3076 3077 3078 3079
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3080
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3081
{
3082
	struct mem_cgroup *memcg;
3083
	int ret = 0;
3084

3085
	memcg = get_mem_cgroup_from_current();
3086
	if (memcg && !mem_cgroup_is_root(memcg)) {
3087
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3088 3089
		if (!ret) {
			page->mem_cgroup = memcg;
3090
			__SetPageKmemcg(page);
3091
			return 0;
3092
		}
3093
		css_put(&memcg->css);
3094
	}
3095
	return ret;
3096
}
3097

3098
/**
3099
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3100 3101 3102
 * @page: page to uncharge
 * @order: allocation order
 */
3103
void __memcg_kmem_uncharge_page(struct page *page, int order)
3104
{
3105
	struct mem_cgroup *memcg = page->mem_cgroup;
3106
	unsigned int nr_pages = 1 << order;
3107 3108 3109 3110

	if (!memcg)
		return;

3111
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3112
	__memcg_kmem_uncharge(memcg, nr_pages);
3113
	page->mem_cgroup = NULL;
3114
	css_put(&memcg->css);
3115 3116 3117 3118

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3119
}
R
Roman Gushchin 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
3231
retry:
R
Roman Gushchin 已提交
3232
	memcg = obj_cgroup_memcg(objcg);
3233 3234
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
R
Roman Gushchin 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3256
#endif /* CONFIG_MEMCG_KMEM */
3257

3258 3259 3260 3261
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3262
 * pgdat->lru_lock and migration entries setup in all page mappings.
3263
 */
3264
void mem_cgroup_split_huge_fixup(struct page *head)
3265
{
3266
	struct mem_cgroup *memcg = head->mem_cgroup;
3267
	int i;
3268

3269 3270
	if (mem_cgroup_disabled())
		return;
3271

3272 3273 3274 3275
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3276
}
3277
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3278

A
Andrew Morton 已提交
3279
#ifdef CONFIG_MEMCG_SWAP
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3291
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3292 3293 3294
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3295
				struct mem_cgroup *from, struct mem_cgroup *to)
3296 3297 3298
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3299 3300
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3301 3302

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3303 3304
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3305 3306 3307 3308 3309 3310
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3311
				struct mem_cgroup *from, struct mem_cgroup *to)
3312 3313 3314
{
	return -EINVAL;
}
3315
#endif
K
KAMEZAWA Hiroyuki 已提交
3316

3317
static DEFINE_MUTEX(memcg_max_mutex);
3318

3319 3320
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3321
{
3322
	bool enlarge = false;
3323
	bool drained = false;
3324
	int ret;
3325 3326
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3327

3328
	do {
3329 3330 3331 3332
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3333

3334
		mutex_lock(&memcg_max_mutex);
3335 3336
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3337
		 * break our basic invariant rule memory.max <= memsw.max.
3338
		 */
3339
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3340
					   max <= memcg->memsw.max;
3341
		if (!limits_invariant) {
3342
			mutex_unlock(&memcg_max_mutex);
3343 3344 3345
			ret = -EINVAL;
			break;
		}
3346
		if (max > counter->max)
3347
			enlarge = true;
3348 3349
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3350 3351 3352 3353

		if (!ret)
			break;

3354 3355 3356 3357 3358 3359
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3360 3361 3362 3363 3364 3365
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3366

3367 3368
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3369

3370 3371 3372
	return ret;
}

3373
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3374 3375 3376 3377
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3378
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3379 3380
	unsigned long reclaimed;
	int loop = 0;
3381
	struct mem_cgroup_tree_per_node *mctz;
3382
	unsigned long excess;
3383 3384 3385 3386 3387
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3388
	mctz = soft_limit_tree_node(pgdat->node_id);
3389 3390 3391 3392 3393 3394

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3395
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3396 3397
		return 0;

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3412
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3413 3414 3415
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3416
		spin_lock_irq(&mctz->lock);
3417
		__mem_cgroup_remove_exceeded(mz, mctz);
3418 3419 3420 3421 3422 3423

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3424 3425 3426
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3427
		excess = soft_limit_excess(mz->memcg);
3428 3429 3430 3431 3432 3433 3434 3435 3436
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3437
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3438
		spin_unlock_irq(&mctz->lock);
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3456
/*
3457
 * Reclaims as many pages from the given memcg as possible.
3458 3459 3460 3461 3462
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3463
	int nr_retries = MAX_RECLAIM_RETRIES;
3464

3465 3466
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3467 3468 3469

	drain_all_stock(memcg);

3470
	/* try to free all pages in this cgroup */
3471
	while (nr_retries && page_counter_read(&memcg->memory)) {
3472
		int progress;
3473

3474 3475 3476
		if (signal_pending(current))
			return -EINTR;

3477 3478
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3479
		if (!progress) {
3480
			nr_retries--;
3481
			/* maybe some writeback is necessary */
3482
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3483
		}
3484 3485

	}
3486 3487

	return 0;
3488 3489
}

3490 3491 3492
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3493
{
3494
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3495

3496 3497
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3498
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3499 3500
}

3501 3502
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3503
{
3504
	return 1;
3505 3506
}

3507 3508
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3509
{
3510
	if (val == 1)
3511
		return 0;
3512

3513 3514 3515
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3516

3517
	return -EINVAL;
3518 3519
}

3520
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3521
{
3522
	unsigned long val;
3523

3524
	if (mem_cgroup_is_root(memcg)) {
3525
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3526
			memcg_page_state(memcg, NR_ANON_MAPPED);
3527 3528
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3529
	} else {
3530
		if (!swap)
3531
			val = page_counter_read(&memcg->memory);
3532
		else
3533
			val = page_counter_read(&memcg->memsw);
3534
	}
3535
	return val;
3536 3537
}

3538 3539 3540 3541 3542 3543 3544
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3545

3546
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3547
			       struct cftype *cft)
B
Balbir Singh 已提交
3548
{
3549
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3550
	struct page_counter *counter;
3551

3552
	switch (MEMFILE_TYPE(cft->private)) {
3553
	case _MEM:
3554 3555
		counter = &memcg->memory;
		break;
3556
	case _MEMSWAP:
3557 3558
		counter = &memcg->memsw;
		break;
3559
	case _KMEM:
3560
		counter = &memcg->kmem;
3561
		break;
V
Vladimir Davydov 已提交
3562
	case _TCP:
3563
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3564
		break;
3565 3566 3567
	default:
		BUG();
	}
3568 3569 3570 3571

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3572
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3573
		if (counter == &memcg->memsw)
3574
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3575 3576
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3577
		return (u64)counter->max * PAGE_SIZE;
3578 3579 3580 3581 3582 3583 3584 3585 3586
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3587
}
3588

3589
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3590
{
3591
	unsigned long stat[MEMCG_NR_STAT] = {0};
3592 3593 3594 3595
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3596
		for (i = 0; i < MEMCG_NR_STAT; i++)
3597
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3598 3599

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3600
		for (i = 0; i < MEMCG_NR_STAT; i++)
3601 3602 3603 3604 3605 3606
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3607
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3608 3609 3610
			stat[i] = 0;

		for_each_online_cpu(cpu)
3611
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3612 3613
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3614 3615

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3616
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3617 3618 3619 3620
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3632 3633
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3634 3635 3636 3637 3638 3639

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3640
#ifdef CONFIG_MEMCG_KMEM
3641
static int memcg_online_kmem(struct mem_cgroup *memcg)
3642
{
R
Roman Gushchin 已提交
3643
	struct obj_cgroup *objcg;
3644 3645
	int memcg_id;

3646 3647 3648
	if (cgroup_memory_nokmem)
		return 0;

3649
	BUG_ON(memcg->kmemcg_id >= 0);
3650
	BUG_ON(memcg->kmem_state);
3651

3652
	memcg_id = memcg_alloc_cache_id();
3653 3654
	if (memcg_id < 0)
		return memcg_id;
3655

R
Roman Gushchin 已提交
3656 3657 3658 3659 3660 3661 3662 3663
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3664 3665
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3666
	memcg->kmemcg_id = memcg_id;
3667
	memcg->kmem_state = KMEM_ONLINE;
3668 3669

	return 0;
3670 3671
}

3672 3673 3674 3675 3676 3677 3678 3679
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3680

3681 3682 3683 3684 3685 3686
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3687
	memcg_reparent_objcgs(memcg, parent);
3688 3689 3690 3691

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3692 3693 3694 3695 3696 3697 3698 3699
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3700
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3701 3702 3703 3704 3705
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3706 3707
	rcu_read_unlock();

3708
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3709 3710 3711 3712 3713 3714

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3715 3716 3717
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3718
}
3719
#else
3720
static int memcg_online_kmem(struct mem_cgroup *memcg)
3721 3722 3723 3724 3725 3726 3727 3728 3729
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3730
#endif /* CONFIG_MEMCG_KMEM */
3731

3732 3733
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3734
{
3735
	int ret;
3736

3737 3738 3739
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3740
	return ret;
3741
}
3742

3743
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3744 3745 3746
{
	int ret;

3747
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3748

3749
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3750 3751 3752
	if (ret)
		goto out;

3753
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3754 3755 3756
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3757 3758 3759
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3760 3761 3762 3763 3764 3765
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3766
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3767 3768 3769 3770
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3771
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3772 3773
	}
out:
3774
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3775 3776 3777
	return ret;
}

3778 3779 3780 3781
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3782 3783
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3784
{
3785
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3786
	unsigned long nr_pages;
3787 3788
	int ret;

3789
	buf = strstrip(buf);
3790
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3791 3792
	if (ret)
		return ret;
3793

3794
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3795
	case RES_LIMIT:
3796 3797 3798 3799
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3800 3801
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3802
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3803
			break;
3804
		case _MEMSWAP:
3805
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3806
			break;
3807
		case _KMEM:
3808 3809 3810
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3811
			ret = memcg_update_kmem_max(memcg, nr_pages);
3812
			break;
V
Vladimir Davydov 已提交
3813
		case _TCP:
3814
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3815
			break;
3816
		}
3817
		break;
3818 3819 3820
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3821 3822
		break;
	}
3823
	return ret ?: nbytes;
B
Balbir Singh 已提交
3824 3825
}

3826 3827
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3828
{
3829
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3830
	struct page_counter *counter;
3831

3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3842
	case _TCP:
3843
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3844
		break;
3845 3846 3847
	default:
		BUG();
	}
3848

3849
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3850
	case RES_MAX_USAGE:
3851
		page_counter_reset_watermark(counter);
3852 3853
		break;
	case RES_FAILCNT:
3854
		counter->failcnt = 0;
3855
		break;
3856 3857
	default:
		BUG();
3858
	}
3859

3860
	return nbytes;
3861 3862
}

3863
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3864 3865
					struct cftype *cft)
{
3866
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3867 3868
}

3869
#ifdef CONFIG_MMU
3870
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3871 3872
					struct cftype *cft, u64 val)
{
3873
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3874

3875
	if (val & ~MOVE_MASK)
3876
		return -EINVAL;
3877

3878
	/*
3879 3880 3881 3882
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3883
	 */
3884
	memcg->move_charge_at_immigrate = val;
3885 3886
	return 0;
}
3887
#else
3888
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3889 3890 3891 3892 3893
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3894

3895
#ifdef CONFIG_NUMA
3896 3897 3898 3899 3900 3901

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3902
				int nid, unsigned int lru_mask, bool tree)
3903
{
3904
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3905 3906 3907 3908 3909 3910 3911 3912
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3913 3914 3915 3916
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3917 3918 3919 3920 3921
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3922 3923
					     unsigned int lru_mask,
					     bool tree)
3924 3925 3926 3927 3928 3929 3930
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3931 3932 3933 3934
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3935 3936 3937 3938
	}
	return nr;
}

3939
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3940
{
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3953
	int nid;
3954
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3955

3956
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3957 3958 3959 3960 3961 3962 3963
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3964
		seq_putc(m, '\n');
3965 3966
	}

3967
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3968 3969 3970 3971 3972 3973 3974 3975

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3976
		seq_putc(m, '\n');
3977 3978 3979 3980 3981 3982
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3983
static const unsigned int memcg1_stats[] = {
3984
	NR_FILE_PAGES,
3985
	NR_ANON_MAPPED,
3986 3987 3988
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3999
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4000
	"rss_huge",
4001
#endif
4002 4003 4004 4005 4006 4007 4008
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4009
/* Universal VM events cgroup1 shows, original sort order */
4010
static const unsigned int memcg1_events[] = {
4011 4012 4013 4014 4015 4016
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4017
static int memcg_stat_show(struct seq_file *m, void *v)
4018
{
4019
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4020
	unsigned long memory, memsw;
4021 4022
	struct mem_cgroup *mi;
	unsigned int i;
4023

4024
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4025

4026
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4027 4028
		unsigned long nr;

4029
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4030
			continue;
4031 4032 4033 4034 4035 4036
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4037
	}
L
Lee Schermerhorn 已提交
4038

4039
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4040
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4041
			   memcg_events_local(memcg, memcg1_events[i]));
4042 4043

	for (i = 0; i < NR_LRU_LISTS; i++)
4044
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4045
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4046
			   PAGE_SIZE);
4047

K
KAMEZAWA Hiroyuki 已提交
4048
	/* Hierarchical information */
4049 4050
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4051 4052
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4053
	}
4054 4055
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4056
	if (do_memsw_account())
4057 4058
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4059

4060
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4061 4062
		unsigned long nr;

4063
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4064
			continue;
4065 4066 4067 4068 4069
		nr = memcg_page_state(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
4070
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4071
						(u64)nr * PAGE_SIZE);
4072 4073
	}

4074
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4075 4076
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4077
			   (u64)memcg_events(memcg, memcg1_events[i]));
4078

4079
	for (i = 0; i < NR_LRU_LISTS; i++)
4080
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4081 4082
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4083

K
KOSAKI Motohiro 已提交
4084 4085
#ifdef CONFIG_DEBUG_VM
	{
4086 4087
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4088 4089
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4090

4091 4092
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4093

4094 4095
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4096
		}
4097 4098
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4099 4100 4101
	}
#endif

4102 4103 4104
	return 0;
}

4105 4106
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4107
{
4108
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4109

4110
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4111 4112
}

4113 4114
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4115
{
4116
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4117

4118
	if (val > 100)
K
KOSAKI Motohiro 已提交
4119 4120
		return -EINVAL;

4121
	if (css->parent)
4122 4123 4124
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4125

K
KOSAKI Motohiro 已提交
4126 4127 4128
	return 0;
}

4129 4130 4131
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4132
	unsigned long usage;
4133 4134 4135 4136
	int i;

	rcu_read_lock();
	if (!swap)
4137
		t = rcu_dereference(memcg->thresholds.primary);
4138
	else
4139
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4140 4141 4142 4143

	if (!t)
		goto unlock;

4144
	usage = mem_cgroup_usage(memcg, swap);
4145 4146

	/*
4147
	 * current_threshold points to threshold just below or equal to usage.
4148 4149 4150
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4151
	i = t->current_threshold;
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4175
	t->current_threshold = i - 1;
4176 4177 4178 4179 4180 4181
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4182 4183
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4184
		if (do_memsw_account())
4185 4186 4187 4188
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4189 4190 4191 4192 4193 4194 4195
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4196 4197 4198 4199 4200 4201 4202
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4203 4204
}

4205
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4206 4207 4208
{
	struct mem_cgroup_eventfd_list *ev;

4209 4210
	spin_lock(&memcg_oom_lock);

4211
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4212
		eventfd_signal(ev->eventfd, 1);
4213 4214

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4215 4216 4217
	return 0;
}

4218
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4219
{
K
KAMEZAWA Hiroyuki 已提交
4220 4221
	struct mem_cgroup *iter;

4222
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4223
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4224 4225
}

4226
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4227
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4228
{
4229 4230
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4231 4232
	unsigned long threshold;
	unsigned long usage;
4233
	int i, size, ret;
4234

4235
	ret = page_counter_memparse(args, "-1", &threshold);
4236 4237 4238 4239
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4240

4241
	if (type == _MEM) {
4242
		thresholds = &memcg->thresholds;
4243
		usage = mem_cgroup_usage(memcg, false);
4244
	} else if (type == _MEMSWAP) {
4245
		thresholds = &memcg->memsw_thresholds;
4246
		usage = mem_cgroup_usage(memcg, true);
4247
	} else
4248 4249 4250
		BUG();

	/* Check if a threshold crossed before adding a new one */
4251
	if (thresholds->primary)
4252 4253
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4254
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4255 4256

	/* Allocate memory for new array of thresholds */
4257
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4258
	if (!new) {
4259 4260 4261
		ret = -ENOMEM;
		goto unlock;
	}
4262
	new->size = size;
4263 4264

	/* Copy thresholds (if any) to new array */
4265 4266 4267
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4268

4269
	/* Add new threshold */
4270 4271
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4272 4273

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4274
	sort(new->entries, size, sizeof(*new->entries),
4275 4276 4277
			compare_thresholds, NULL);

	/* Find current threshold */
4278
	new->current_threshold = -1;
4279
	for (i = 0; i < size; i++) {
4280
		if (new->entries[i].threshold <= usage) {
4281
			/*
4282 4283
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4284 4285
			 * it here.
			 */
4286
			++new->current_threshold;
4287 4288
		} else
			break;
4289 4290
	}

4291 4292 4293 4294 4295
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4296

4297
	/* To be sure that nobody uses thresholds */
4298 4299 4300 4301 4302 4303 4304 4305
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4306
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4307 4308
	struct eventfd_ctx *eventfd, const char *args)
{
4309
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4310 4311
}

4312
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4313 4314
	struct eventfd_ctx *eventfd, const char *args)
{
4315
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4316 4317
}

4318
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4319
	struct eventfd_ctx *eventfd, enum res_type type)
4320
{
4321 4322
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4323
	unsigned long usage;
4324
	int i, j, size, entries;
4325 4326

	mutex_lock(&memcg->thresholds_lock);
4327 4328

	if (type == _MEM) {
4329
		thresholds = &memcg->thresholds;
4330
		usage = mem_cgroup_usage(memcg, false);
4331
	} else if (type == _MEMSWAP) {
4332
		thresholds = &memcg->memsw_thresholds;
4333
		usage = mem_cgroup_usage(memcg, true);
4334
	} else
4335 4336
		BUG();

4337 4338 4339
	if (!thresholds->primary)
		goto unlock;

4340 4341 4342 4343
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4344
	size = entries = 0;
4345 4346
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4347
			size++;
4348 4349
		else
			entries++;
4350 4351
	}

4352
	new = thresholds->spare;
4353

4354 4355 4356 4357
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4358 4359
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4360 4361
		kfree(new);
		new = NULL;
4362
		goto swap_buffers;
4363 4364
	}

4365
	new->size = size;
4366 4367

	/* Copy thresholds and find current threshold */
4368 4369 4370
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4371 4372
			continue;

4373
		new->entries[j] = thresholds->primary->entries[i];
4374
		if (new->entries[j].threshold <= usage) {
4375
			/*
4376
			 * new->current_threshold will not be used
4377 4378 4379
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4380
			++new->current_threshold;
4381 4382 4383 4384
		}
		j++;
	}

4385
swap_buffers:
4386 4387
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4388

4389
	rcu_assign_pointer(thresholds->primary, new);
4390

4391
	/* To be sure that nobody uses thresholds */
4392
	synchronize_rcu();
4393 4394 4395 4396 4397 4398

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4399
unlock:
4400 4401
	mutex_unlock(&memcg->thresholds_lock);
}
4402

4403
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4404 4405
	struct eventfd_ctx *eventfd)
{
4406
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4407 4408
}

4409
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4410 4411
	struct eventfd_ctx *eventfd)
{
4412
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4413 4414
}

4415
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4416
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4417 4418 4419 4420 4421 4422 4423
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4424
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4425 4426 4427 4428 4429

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4430
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4431
		eventfd_signal(eventfd, 1);
4432
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4433 4434 4435 4436

	return 0;
}

4437
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4438
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4439 4440 4441
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4442
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4443

4444
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4445 4446 4447 4448 4449 4450
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4451
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4452 4453
}

4454
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4455
{
4456
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4457

4458
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4459
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4460 4461
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4462 4463 4464
	return 0;
}

4465
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4466 4467
	struct cftype *cft, u64 val)
{
4468
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4469 4470

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4471
	if (!css->parent || !((val == 0) || (val == 1)))
4472 4473
		return -EINVAL;

4474
	memcg->oom_kill_disable = val;
4475
	if (!val)
4476
		memcg_oom_recover(memcg);
4477

4478 4479 4480
	return 0;
}

4481 4482
#ifdef CONFIG_CGROUP_WRITEBACK

4483 4484
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4495 4496 4497 4498 4499
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4510 4511 4512 4513 4514 4515
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4516
	long x = atomic_long_read(&memcg->vmstats[idx]);
4517 4518 4519
	int cpu;

	for_each_online_cpu(cpu)
4520
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4521 4522 4523 4524 4525
	if (x < 0)
		x = 0;
	return x;
}

4526 4527 4528
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4529 4530
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4531 4532 4533
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4534 4535 4536
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4537
 *
4538 4539 4540 4541 4542
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4543
 */
4544 4545 4546
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4547 4548 4549 4550
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4551
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4552

4553
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4554 4555
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4556
	*pheadroom = PAGE_COUNTER_MAX;
4557 4558

	while ((parent = parent_mem_cgroup(memcg))) {
4559
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4560
					    READ_ONCE(memcg->memory.high));
4561 4562
		unsigned long used = page_counter_read(&memcg->memory);

4563
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4564 4565 4566 4567
		memcg = parent;
	}
}

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4622 4623
	trace_track_foreign_dirty(page, wb);

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4684
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4685 4686 4687 4688 4689 4690 4691
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4703 4704 4705 4706
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4707 4708
#endif	/* CONFIG_CGROUP_WRITEBACK */

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4722 4723 4724 4725 4726
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4727
static void memcg_event_remove(struct work_struct *work)
4728
{
4729 4730
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4731
	struct mem_cgroup *memcg = event->memcg;
4732 4733 4734

	remove_wait_queue(event->wqh, &event->wait);

4735
	event->unregister_event(memcg, event->eventfd);
4736 4737 4738 4739 4740 4741

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4742
	css_put(&memcg->css);
4743 4744 4745
}

/*
4746
 * Gets called on EPOLLHUP on eventfd when user closes it.
4747 4748 4749
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4750
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4751
			    int sync, void *key)
4752
{
4753 4754
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4755
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4756
	__poll_t flags = key_to_poll(key);
4757

4758
	if (flags & EPOLLHUP) {
4759 4760 4761 4762 4763 4764 4765 4766 4767
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4768
		spin_lock(&memcg->event_list_lock);
4769 4770 4771 4772 4773 4774 4775 4776
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4777
		spin_unlock(&memcg->event_list_lock);
4778 4779 4780 4781 4782
	}

	return 0;
}

4783
static void memcg_event_ptable_queue_proc(struct file *file,
4784 4785
		wait_queue_head_t *wqh, poll_table *pt)
{
4786 4787
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4788 4789 4790 4791 4792 4793

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4794 4795
 * DO NOT USE IN NEW FILES.
 *
4796 4797 4798 4799 4800
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4801 4802
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4803
{
4804
	struct cgroup_subsys_state *css = of_css(of);
4805
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4806
	struct mem_cgroup_event *event;
4807 4808 4809 4810
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4811
	const char *name;
4812 4813 4814
	char *endp;
	int ret;

4815 4816 4817
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4818 4819
	if (*endp != ' ')
		return -EINVAL;
4820
	buf = endp + 1;
4821

4822
	cfd = simple_strtoul(buf, &endp, 10);
4823 4824
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4825
	buf = endp + 1;
4826 4827 4828 4829 4830

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4831
	event->memcg = memcg;
4832
	INIT_LIST_HEAD(&event->list);
4833 4834 4835
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4861 4862 4863 4864 4865
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4866 4867
	 *
	 * DO NOT ADD NEW FILES.
4868
	 */
A
Al Viro 已提交
4869
	name = cfile.file->f_path.dentry->d_name.name;
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4881 4882
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4883 4884 4885 4886 4887
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4888
	/*
4889 4890 4891
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4892
	 */
A
Al Viro 已提交
4893
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4894
					       &memory_cgrp_subsys);
4895
	ret = -EINVAL;
4896
	if (IS_ERR(cfile_css))
4897
		goto out_put_cfile;
4898 4899
	if (cfile_css != css) {
		css_put(cfile_css);
4900
		goto out_put_cfile;
4901
	}
4902

4903
	ret = event->register_event(memcg, event->eventfd, buf);
4904 4905 4906
	if (ret)
		goto out_put_css;

4907
	vfs_poll(efile.file, &event->pt);
4908

4909 4910 4911
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4912 4913 4914 4915

	fdput(cfile);
	fdput(efile);

4916
	return nbytes;
4917 4918

out_put_css:
4919
	css_put(css);
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4932
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4933
	{
4934
		.name = "usage_in_bytes",
4935
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4936
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4937
	},
4938 4939
	{
		.name = "max_usage_in_bytes",
4940
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4941
		.write = mem_cgroup_reset,
4942
		.read_u64 = mem_cgroup_read_u64,
4943
	},
B
Balbir Singh 已提交
4944
	{
4945
		.name = "limit_in_bytes",
4946
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4947
		.write = mem_cgroup_write,
4948
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4949
	},
4950 4951 4952
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4953
		.write = mem_cgroup_write,
4954
		.read_u64 = mem_cgroup_read_u64,
4955
	},
B
Balbir Singh 已提交
4956 4957
	{
		.name = "failcnt",
4958
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4959
		.write = mem_cgroup_reset,
4960
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4961
	},
4962 4963
	{
		.name = "stat",
4964
		.seq_show = memcg_stat_show,
4965
	},
4966 4967
	{
		.name = "force_empty",
4968
		.write = mem_cgroup_force_empty_write,
4969
	},
4970 4971 4972 4973 4974
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4975
	{
4976
		.name = "cgroup.event_control",		/* XXX: for compat */
4977
		.write = memcg_write_event_control,
4978
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4979
	},
K
KOSAKI Motohiro 已提交
4980 4981 4982 4983 4984
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4985 4986 4987 4988 4989
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4990 4991
	{
		.name = "oom_control",
4992
		.seq_show = mem_cgroup_oom_control_read,
4993
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4994 4995
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4996 4997 4998
	{
		.name = "pressure_level",
	},
4999 5000 5001
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5002
		.seq_show = memcg_numa_stat_show,
5003 5004
	},
#endif
5005 5006 5007
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5008
		.write = mem_cgroup_write,
5009
		.read_u64 = mem_cgroup_read_u64,
5010 5011 5012 5013
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5014
		.read_u64 = mem_cgroup_read_u64,
5015 5016 5017 5018
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5019
		.write = mem_cgroup_reset,
5020
		.read_u64 = mem_cgroup_read_u64,
5021 5022 5023 5024
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5025
		.write = mem_cgroup_reset,
5026
		.read_u64 = mem_cgroup_read_u64,
5027
	},
5028 5029
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5030 5031
	{
		.name = "kmem.slabinfo",
5032
		.seq_show = memcg_slab_show,
5033 5034
	},
#endif
V
Vladimir Davydov 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5058
	{ },	/* terminate */
5059
};
5060

5061 5062 5063 5064 5065 5066 5067 5068
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5069
 * However, there usually are many references to the offline CSS after
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5087 5088 5089 5090 5091 5092 5093 5094
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5095 5096
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5097
{
5098
	refcount_add(n, &memcg->id.ref);
5099 5100
}

5101
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5102
{
5103
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5104
		mem_cgroup_id_remove(memcg);
5105 5106 5107 5108 5109 5110

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5111 5112 5113 5114 5115
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5128
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5129 5130
{
	struct mem_cgroup_per_node *pn;
5131
	int tmp = node;
5132 5133 5134 5135 5136 5137 5138 5139
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5140 5141
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5142
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5143 5144
	if (!pn)
		return 1;
5145

5146 5147
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5148 5149 5150 5151 5152
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5153 5154
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
					       GFP_KERNEL_ACCOUNT);
5155
	if (!pn->lruvec_stat_cpu) {
5156
		free_percpu(pn->lruvec_stat_local);
5157 5158 5159 5160
		kfree(pn);
		return 1;
	}

5161 5162 5163 5164 5165
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5166
	memcg->nodeinfo[node] = pn;
5167 5168 5169
	return 0;
}

5170
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5171
{
5172 5173
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5174 5175 5176
	if (!pn)
		return;

5177
	free_percpu(pn->lruvec_stat_cpu);
5178
	free_percpu(pn->lruvec_stat_local);
5179
	kfree(pn);
5180 5181
}

5182
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5183
{
5184
	int node;
5185

5186
	for_each_node(node)
5187
		free_mem_cgroup_per_node_info(memcg, node);
5188
	free_percpu(memcg->vmstats_percpu);
5189
	free_percpu(memcg->vmstats_local);
5190
	kfree(memcg);
5191
}
5192

5193 5194 5195
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5196 5197 5198 5199
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5200
	memcg_flush_percpu_vmstats(memcg);
5201
	memcg_flush_percpu_vmevents(memcg);
5202 5203 5204
	__mem_cgroup_free(memcg);
}

5205
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5206
{
5207
	struct mem_cgroup *memcg;
5208
	unsigned int size;
5209
	int node;
5210
	int __maybe_unused i;
5211
	long error = -ENOMEM;
B
Balbir Singh 已提交
5212

5213 5214 5215 5216
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5217
	if (!memcg)
5218
		return ERR_PTR(error);
5219

5220 5221 5222
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5223 5224
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5225
		goto fail;
5226
	}
5227

5228 5229
	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5230 5231 5232
	if (!memcg->vmstats_local)
		goto fail;

5233 5234
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5235
	if (!memcg->vmstats_percpu)
5236
		goto fail;
5237

B
Bob Liu 已提交
5238
	for_each_node(node)
5239
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5240
			goto fail;
5241

5242 5243
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5244

5245
	INIT_WORK(&memcg->high_work, high_work_func);
5246 5247 5248
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5249
	vmpressure_init(&memcg->vmpressure);
5250 5251
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5252
	memcg->socket_pressure = jiffies;
5253
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5254
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5255
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5256
#endif
5257 5258
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5259 5260 5261
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5262 5263 5264 5265 5266
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5267
#endif
5268
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5269 5270
	return memcg;
fail:
5271
	mem_cgroup_id_remove(memcg);
5272
	__mem_cgroup_free(memcg);
5273
	return ERR_PTR(error);
5274 5275
}

5276 5277
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5278
{
5279
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5280
	struct mem_cgroup *memcg, *old_memcg;
5281
	long error = -ENOMEM;
5282

5283
	old_memcg = set_active_memcg(parent);
5284
	memcg = mem_cgroup_alloc();
5285
	set_active_memcg(old_memcg);
5286 5287
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5288

5289
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5290
	memcg->soft_limit = PAGE_COUNTER_MAX;
5291
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5292 5293 5294
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5295

5296
		page_counter_init(&memcg->memory, &parent->memory);
5297
		page_counter_init(&memcg->swap, &parent->swap);
5298
		page_counter_init(&memcg->kmem, &parent->kmem);
5299
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5300
	} else {
5301 5302 5303 5304
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5305

5306 5307 5308 5309
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5310
	/* The following stuff does not apply to the root */
5311
	error = memcg_online_kmem(memcg);
5312 5313
	if (error)
		goto fail;
5314

5315
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5316
		static_branch_inc(&memcg_sockets_enabled_key);
5317

5318 5319
	return &memcg->css;
fail:
5320
	mem_cgroup_id_remove(memcg);
5321
	mem_cgroup_free(memcg);
5322
	return ERR_PTR(error);
5323 5324
}

5325
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5326
{
5327 5328
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5339
	/* Online state pins memcg ID, memcg ID pins CSS */
5340
	refcount_set(&memcg->id.ref, 1);
5341
	css_get(css);
5342
	return 0;
B
Balbir Singh 已提交
5343 5344
}

5345
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5346
{
5347
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5348
	struct mem_cgroup_event *event, *tmp;
5349 5350 5351 5352 5353 5354

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5355 5356
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5357 5358 5359
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5360
	spin_unlock(&memcg->event_list_lock);
5361

R
Roman Gushchin 已提交
5362
	page_counter_set_min(&memcg->memory, 0);
5363
	page_counter_set_low(&memcg->memory, 0);
5364

5365
	memcg_offline_kmem(memcg);
5366
	wb_memcg_offline(memcg);
5367

5368 5369
	drain_all_stock(memcg);

5370
	mem_cgroup_id_put(memcg);
5371 5372
}

5373 5374 5375 5376 5377 5378 5379
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5380
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5381
{
5382
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383
	int __maybe_unused i;
5384

5385 5386 5387 5388
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5389
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5390
		static_branch_dec(&memcg_sockets_enabled_key);
5391

5392
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5393
		static_branch_dec(&memcg_sockets_enabled_key);
5394

5395 5396 5397
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5398
	memcg_free_shrinker_maps(memcg);
5399
	memcg_free_kmem(memcg);
5400
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5401 5402
}

5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5420 5421 5422 5423
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5424
	page_counter_set_min(&memcg->memory, 0);
5425
	page_counter_set_low(&memcg->memory, 0);
5426
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5427
	memcg->soft_limit = PAGE_COUNTER_MAX;
5428
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5429
	memcg_wb_domain_size_changed(memcg);
5430 5431
}

5432
#ifdef CONFIG_MMU
5433
/* Handlers for move charge at task migration. */
5434
static int mem_cgroup_do_precharge(unsigned long count)
5435
{
5436
	int ret;
5437

5438 5439
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5440
	if (!ret) {
5441 5442 5443
		mc.precharge += count;
		return ret;
	}
5444

5445
	/* Try charges one by one with reclaim, but do not retry */
5446
	while (count--) {
5447
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5448 5449
		if (ret)
			return ret;
5450
		mc.precharge++;
5451
		cond_resched();
5452
	}
5453
	return 0;
5454 5455 5456 5457
}

union mc_target {
	struct page	*page;
5458
	swp_entry_t	ent;
5459 5460 5461
};

enum mc_target_type {
5462
	MC_TARGET_NONE = 0,
5463
	MC_TARGET_PAGE,
5464
	MC_TARGET_SWAP,
5465
	MC_TARGET_DEVICE,
5466 5467
};

D
Daisuke Nishimura 已提交
5468 5469
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5470
{
5471
	struct page *page = vm_normal_page(vma, addr, ptent);
5472

D
Daisuke Nishimura 已提交
5473 5474 5475
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5476
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5477
			return NULL;
5478 5479 5480 5481
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5482 5483 5484 5485 5486 5487
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5488
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5489
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5490
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5491 5492 5493 5494
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5495
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5496
		return NULL;
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5514 5515 5516
	if (non_swap_entry(ent))
		return NULL;

5517 5518 5519 5520
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5521
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5522
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5523 5524 5525

	return page;
}
5526 5527
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5528
			pte_t ptent, swp_entry_t *entry)
5529 5530 5531 5532
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5533

5534 5535 5536 5537 5538
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5539
	if (!(mc.flags & MOVE_FILE))
5540 5541 5542
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5543
	/* shmem/tmpfs may report page out on swap: account for that too. */
5544 5545
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5546 5547
}

5548 5549 5550
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5551
 * @compound: charge the page as compound or small page
5552 5553 5554
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5555
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5556 5557 5558 5559 5560
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5561
				   bool compound,
5562 5563 5564
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5565 5566
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5567
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5568 5569 5570 5571
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5572
	VM_BUG_ON(compound && !PageTransHuge(page));
5573 5574

	/*
5575
	 * Prevent mem_cgroup_migrate() from looking at
5576
	 * page->mem_cgroup of its source page while we change it.
5577
	 */
5578
	ret = -EBUSY;
5579 5580 5581 5582 5583 5584 5585
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5586
	pgdat = page_pgdat(page);
5587 5588
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5589

5590
	lock_page_memcg(page);
5591

5592 5593 5594 5595
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5596 5597 5598 5599 5600 5601 5602
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5603 5604
		}
	} else {
5605 5606 5607 5608 5609 5610 5611 5612
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5613 5614 5615 5616
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5617

5618 5619
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5620

5621
			if (mapping_can_writeback(mapping)) {
5622 5623 5624 5625 5626
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5627 5628 5629
		}
	}

5630
	if (PageWriteback(page)) {
5631 5632
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5633 5634 5635
	}

	/*
5636 5637
	 * All state has been migrated, let's switch to the new memcg.
	 *
5638
	 * It is safe to change page->mem_cgroup here because the page
5639 5640 5641 5642 5643 5644 5645 5646
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5647
	 */
5648
	smp_mb();
5649

5650 5651 5652 5653
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5654

5655
	__unlock_page_memcg(from);
5656 5657 5658 5659

	ret = 0;

	local_irq_disable();
5660
	mem_cgroup_charge_statistics(to, page, nr_pages);
5661
	memcg_check_events(to, page);
5662
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5663 5664 5665 5666 5667 5668 5669 5670
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5686 5687
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5688 5689 5690
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5691 5692
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5693 5694 5695 5696
 *
 * Called with pte lock held.
 */

5697
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5698 5699 5700
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5701
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5702 5703 5704 5705 5706
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5707
		page = mc_handle_swap_pte(vma, ptent, &ent);
5708
	else if (pte_none(ptent))
5709
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5710 5711

	if (!page && !ent.val)
5712
		return ret;
5713 5714
	if (page) {
		/*
5715
		 * Do only loose check w/o serialization.
5716
		 * mem_cgroup_move_account() checks the page is valid or
5717
		 * not under LRU exclusion.
5718
		 */
5719
		if (page->mem_cgroup == mc.from) {
5720
			ret = MC_TARGET_PAGE;
5721
			if (is_device_private_page(page))
5722
				ret = MC_TARGET_DEVICE;
5723 5724 5725 5726 5727 5728
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5729 5730 5731 5732 5733
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5734
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5735 5736 5737
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5738 5739 5740 5741
	}
	return ret;
}

5742 5743
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5744 5745
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5746 5747 5748 5749 5750 5751 5752 5753
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5754 5755 5756 5757 5758
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5759
	page = pmd_page(pmd);
5760
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5761
	if (!(mc.flags & MOVE_ANON))
5762
		return ret;
5763
	if (page->mem_cgroup == mc.from) {
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5780 5781 5782 5783
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5784
	struct vm_area_struct *vma = walk->vma;
5785 5786 5787
	pte_t *pte;
	spinlock_t *ptl;

5788 5789
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5790 5791
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5792 5793
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5794
		 */
5795 5796
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5797
		spin_unlock(ptl);
5798
		return 0;
5799
	}
5800

5801 5802
	if (pmd_trans_unstable(pmd))
		return 0;
5803 5804
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5805
		if (get_mctgt_type(vma, addr, *pte, NULL))
5806 5807 5808 5809
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5810 5811 5812
	return 0;
}

5813 5814 5815 5816
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5817 5818 5819 5820
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5821
	mmap_read_lock(mm);
5822
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5823
	mmap_read_unlock(mm);
5824 5825 5826 5827 5828 5829 5830 5831 5832

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5833 5834 5835 5836 5837
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5838 5839
}

5840 5841
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5842
{
5843 5844 5845
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5846
	/* we must uncharge all the leftover precharges from mc.to */
5847
	if (mc.precharge) {
5848
		cancel_charge(mc.to, mc.precharge);
5849 5850 5851 5852 5853 5854 5855
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5856
		cancel_charge(mc.from, mc.moved_charge);
5857
		mc.moved_charge = 0;
5858
	}
5859 5860 5861
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5862
		if (!mem_cgroup_is_root(mc.from))
5863
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5864

5865 5866
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5867
		/*
5868 5869
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5870
		 */
5871
		if (!mem_cgroup_is_root(mc.to))
5872 5873
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5874 5875
		mc.moved_swap = 0;
	}
5876 5877 5878 5879 5880 5881 5882
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5883 5884
	struct mm_struct *mm = mc.mm;

5885 5886 5887 5888 5889 5890
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5891
	spin_lock(&mc.lock);
5892 5893
	mc.from = NULL;
	mc.to = NULL;
5894
	mc.mm = NULL;
5895
	spin_unlock(&mc.lock);
5896 5897

	mmput(mm);
5898 5899
}

5900
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5901
{
5902
	struct cgroup_subsys_state *css;
5903
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5904
	struct mem_cgroup *from;
5905
	struct task_struct *leader, *p;
5906
	struct mm_struct *mm;
5907
	unsigned long move_flags;
5908
	int ret = 0;
5909

5910 5911
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5912 5913
		return 0;

5914 5915 5916 5917 5918 5919 5920
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5921
	cgroup_taskset_for_each_leader(leader, css, tset) {
5922 5923
		WARN_ON_ONCE(p);
		p = leader;
5924
		memcg = mem_cgroup_from_css(css);
5925 5926 5927 5928
	}
	if (!p)
		return 0;

5929 5930 5931 5932 5933 5934 5935 5936 5937
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5954
		mc.mm = mm;
5955 5956 5957 5958 5959 5960 5961 5962 5963
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5964 5965
	} else {
		mmput(mm);
5966 5967 5968 5969
	}
	return ret;
}

5970
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5971
{
5972 5973
	if (mc.to)
		mem_cgroup_clear_mc();
5974 5975
}

5976 5977 5978
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5979
{
5980
	int ret = 0;
5981
	struct vm_area_struct *vma = walk->vma;
5982 5983
	pte_t *pte;
	spinlock_t *ptl;
5984 5985 5986
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5987

5988 5989
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5990
		if (mc.precharge < HPAGE_PMD_NR) {
5991
			spin_unlock(ptl);
5992 5993 5994 5995 5996 5997
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5998
				if (!mem_cgroup_move_account(page, true,
5999
							     mc.from, mc.to)) {
6000 6001 6002 6003 6004 6005
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6006 6007 6008 6009 6010 6011 6012 6013
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6014
		}
6015
		spin_unlock(ptl);
6016
		return 0;
6017 6018
	}

6019 6020
	if (pmd_trans_unstable(pmd))
		return 0;
6021 6022 6023 6024
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6025
		bool device = false;
6026
		swp_entry_t ent;
6027 6028 6029 6030

		if (!mc.precharge)
			break;

6031
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6032 6033
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6034
			fallthrough;
6035 6036
		case MC_TARGET_PAGE:
			page = target.page;
6037 6038 6039 6040 6041 6042 6043 6044
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6045
			if (!device && isolate_lru_page(page))
6046
				goto put;
6047 6048
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6049
				mc.precharge--;
6050 6051
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6052
			}
6053 6054
			if (!device)
				putback_lru_page(page);
6055
put:			/* get_mctgt_type() gets the page */
6056 6057
			put_page(page);
			break;
6058 6059
		case MC_TARGET_SWAP:
			ent = target.ent;
6060
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6061
				mc.precharge--;
6062 6063
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6064 6065
				mc.moved_swap++;
			}
6066
			break;
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6081
		ret = mem_cgroup_do_precharge(1);
6082 6083 6084 6085 6086 6087 6088
		if (!ret)
			goto retry;
	}

	return ret;
}

6089 6090 6091 6092
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6093
static void mem_cgroup_move_charge(void)
6094 6095
{
	lru_add_drain_all();
6096
	/*
6097 6098 6099
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6100 6101 6102
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6103
retry:
6104
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6105
		/*
6106
		 * Someone who are holding the mmap_lock might be waiting in
6107 6108 6109 6110 6111 6112 6113 6114 6115
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6116 6117 6118 6119
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6120 6121
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6122

6123
	mmap_read_unlock(mc.mm);
6124
	atomic_dec(&mc.from->moving_account);
6125 6126
}

6127
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6128
{
6129 6130
	if (mc.to) {
		mem_cgroup_move_charge();
6131
		mem_cgroup_clear_mc();
6132
	}
B
Balbir Singh 已提交
6133
}
6134
#else	/* !CONFIG_MMU */
6135
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6136 6137 6138
{
	return 0;
}
6139
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6140 6141
{
}
6142
static void mem_cgroup_move_task(void)
6143 6144 6145
{
}
#endif
B
Balbir Singh 已提交
6146

6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6157 6158 6159
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6160 6161 6162
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6163 6164
}

R
Roman Gushchin 已提交
6165 6166
static int memory_min_show(struct seq_file *m, void *v)
{
6167 6168
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6188 6189
static int memory_low_show(struct seq_file *m, void *v)
{
6190 6191
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6202
	err = page_counter_memparse(buf, "max", &low);
6203 6204 6205
	if (err)
		return err;

6206
	page_counter_set_low(&memcg->memory, low);
6207 6208 6209 6210 6211 6212

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6213 6214
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6215 6216 6217 6218 6219 6220
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6221
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6222
	bool drained = false;
6223 6224 6225 6226
	unsigned long high;
	int err;

	buf = strstrip(buf);
6227
	err = page_counter_memparse(buf, "max", &high);
6228 6229 6230
	if (err)
		return err;

6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6253

6254 6255
	page_counter_set_high(&memcg->memory, high);

6256 6257
	memcg_wb_domain_size_changed(memcg);

6258 6259 6260 6261 6262
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6263 6264
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6265 6266 6267 6268 6269 6270
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6271
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6272
	bool drained = false;
6273 6274 6275 6276
	unsigned long max;
	int err;

	buf = strstrip(buf);
6277
	err = page_counter_memparse(buf, "max", &max);
6278 6279 6280
	if (err)
		return err;

6281
	xchg(&memcg->memory.max, max);
6282 6283 6284 6285 6286 6287 6288

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6289
		if (signal_pending(current))
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6305
		memcg_memory_event(memcg, MEMCG_OOM);
6306 6307 6308
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6309

6310
	memcg_wb_domain_size_changed(memcg);
6311 6312 6313
	return nbytes;
}

6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6324 6325
static int memory_events_show(struct seq_file *m, void *v)
{
6326
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6327

6328 6329 6330 6331 6332 6333 6334
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6335

6336
	__memory_events_show(m, memcg->memory_events_local);
6337 6338 6339
	return 0;
}

6340 6341
static int memory_stat_show(struct seq_file *m, void *v)
{
6342
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6343
	char *buf;
6344

6345 6346 6347 6348 6349
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6350 6351 6352
	return 0;
}

6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
#ifdef CONFIG_NUMA
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
			size = lruvec_page_state(lruvec, memory_stats[i].idx);
			size *= memory_stats[i].ratio;
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6382 6383
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6384
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6413 6414 6415
static struct cftype memory_files[] = {
	{
		.name = "current",
6416
		.flags = CFTYPE_NOT_ON_ROOT,
6417 6418
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6419 6420 6421 6422 6423 6424
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6446
		.file_offset = offsetof(struct mem_cgroup, events_file),
6447 6448
		.seq_show = memory_events_show,
	},
6449 6450 6451 6452 6453 6454
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6455 6456 6457 6458
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6459 6460 6461 6462 6463 6464
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6465 6466 6467 6468 6469 6470
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6471 6472 6473
	{ }	/* terminate */
};

6474
struct cgroup_subsys memory_cgrp_subsys = {
6475
	.css_alloc = mem_cgroup_css_alloc,
6476
	.css_online = mem_cgroup_css_online,
6477
	.css_offline = mem_cgroup_css_offline,
6478
	.css_released = mem_cgroup_css_released,
6479
	.css_free = mem_cgroup_css_free,
6480
	.css_reset = mem_cgroup_css_reset,
6481 6482
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6483
	.post_attach = mem_cgroup_move_task,
6484 6485
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6486
	.early_init = 0,
B
Balbir Singh 已提交
6487
};
6488

6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6531 6532
 */
static unsigned long effective_protection(unsigned long usage,
6533
					  unsigned long parent_usage,
6534 6535 6536 6537 6538
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6539
	unsigned long ep;
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6583 6584 6585 6586
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6587 6588 6589
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6590 6591 6592
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6603 6604
}

6605
/**
R
Roman Gushchin 已提交
6606
 * mem_cgroup_protected - check if memory consumption is in the normal range
6607
 * @root: the top ancestor of the sub-tree being checked
6608 6609
 * @memcg: the memory cgroup to check
 *
6610 6611
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6612
 */
6613 6614
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6615
{
6616
	unsigned long usage, parent_usage;
6617 6618
	struct mem_cgroup *parent;

6619
	if (mem_cgroup_disabled())
6620
		return;
6621

6622 6623
	if (!root)
		root = root_mem_cgroup;
6624 6625 6626 6627 6628 6629 6630 6631

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6632
	if (memcg == root)
6633
		return;
6634

6635
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6636
	if (!usage)
6637
		return;
R
Roman Gushchin 已提交
6638 6639

	parent = parent_mem_cgroup(memcg);
6640 6641
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6642
		return;
6643

6644
	if (parent == root) {
6645
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6646
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6647
		return;
R
Roman Gushchin 已提交
6648 6649
	}

6650 6651
	parent_usage = page_counter_read(&parent->memory);

6652
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6653 6654
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6655
			atomic_long_read(&parent->memory.children_min_usage)));
6656

6657
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6658 6659
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6660
			atomic_long_read(&parent->memory.children_low_usage)));
6661 6662
}

6663
/**
6664
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6665 6666 6667 6668 6669 6670 6671
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6672
 * Returns 0 on success. Otherwise, an error code is returned.
6673
 */
6674
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6675
{
6676
	unsigned int nr_pages = thp_nr_pages(page);
6677 6678 6679 6680 6681 6682 6683
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6684 6685 6686
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6687 6688 6689
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6690 6691
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6692 6693
		 * in turn serializes uncharging.
		 */
6694
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6695
		if (compound_head(page)->mem_cgroup)
6696
			goto out;
6697

6698 6699 6700 6701 6702 6703
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6704 6705 6706 6707 6708 6709
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6710 6711
	if (ret)
		goto out_put;
6712

6713
	css_get(&memcg->css);
6714
	commit_charge(page, memcg);
6715 6716

	local_irq_disable();
6717
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6718 6719
	memcg_check_events(memcg, page);
	local_irq_enable();
6720

6721
	if (PageSwapCache(page)) {
6722 6723 6724 6725 6726 6727
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6728
		mem_cgroup_uncharge_swap(entry, nr_pages);
6729 6730
	}

6731 6732 6733 6734
out_put:
	css_put(&memcg->css);
out:
	return ret;
6735 6736
}

6737 6738
struct uncharge_gather {
	struct mem_cgroup *memcg;
6739
	unsigned long nr_pages;
6740 6741 6742 6743 6744 6745
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6746
{
6747 6748 6749 6750 6751
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6752 6753
	unsigned long flags;

6754
	if (!mem_cgroup_is_root(ug->memcg)) {
6755
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6756
		if (do_memsw_account())
6757
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6758 6759 6760
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6761
	}
6762 6763

	local_irq_save(flags);
6764
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6765
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6766
	memcg_check_events(ug->memcg, ug->dummy_page);
6767
	local_irq_restore(flags);
6768 6769 6770

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6771 6772 6773 6774
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6775 6776
	unsigned long nr_pages;

6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
6794 6795 6796

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
6797 6798
	}

6799 6800
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6801

6802
	if (!PageKmemcg(page)) {
6803 6804
		ug->pgpgout++;
	} else {
6805
		ug->nr_kmem += nr_pages;
6806 6807 6808 6809 6810
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6811
	css_put(&ug->memcg->css);
6812 6813 6814 6815
}

static void uncharge_list(struct list_head *page_list)
{
6816
	struct uncharge_gather ug;
6817
	struct list_head *next;
6818 6819

	uncharge_gather_clear(&ug);
6820

6821 6822 6823 6824
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6825 6826
	next = page_list->next;
	do {
6827 6828
		struct page *page;

6829 6830 6831
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6832
		uncharge_page(page, &ug);
6833 6834
	} while (next != page_list);

6835 6836
	if (ug.memcg)
		uncharge_batch(&ug);
6837 6838
}

6839 6840 6841 6842
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6843
 * Uncharge a page previously charged with mem_cgroup_charge().
6844 6845 6846
 */
void mem_cgroup_uncharge(struct page *page)
{
6847 6848
	struct uncharge_gather ug;

6849 6850 6851
	if (mem_cgroup_disabled())
		return;

6852
	/* Don't touch page->lru of any random page, pre-check: */
6853
	if (!page->mem_cgroup)
6854 6855
		return;

6856 6857 6858
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6859
}
6860

6861 6862 6863 6864 6865
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6866
 * mem_cgroup_charge().
6867 6868 6869 6870 6871
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6872

6873 6874
	if (!list_empty(page_list))
		uncharge_list(page_list);
6875 6876 6877
}

/**
6878 6879 6880
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6881
 *
6882 6883
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6884 6885 6886
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6887
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6888
{
6889
	struct mem_cgroup *memcg;
6890
	unsigned int nr_pages;
6891
	unsigned long flags;
6892 6893 6894 6895

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6896 6897
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6898 6899 6900 6901 6902

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6903
	if (newpage->mem_cgroup)
6904 6905
		return;

6906
	memcg = oldpage->mem_cgroup;
6907
	if (!memcg)
6908 6909
		return;

6910
	/* Force-charge the new page. The old one will be freed soon */
6911
	nr_pages = thp_nr_pages(newpage);
6912 6913 6914 6915

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6916

6917
	css_get(&memcg->css);
6918
	commit_charge(newpage, memcg);
6919

6920
	local_irq_save(flags);
6921
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6922
	memcg_check_events(memcg, newpage);
6923
	local_irq_restore(flags);
6924 6925
}

6926
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6927 6928
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6929
void mem_cgroup_sk_alloc(struct sock *sk)
6930 6931 6932
{
	struct mem_cgroup *memcg;

6933 6934 6935
	if (!mem_cgroup_sockets_enabled)
		return;

6936 6937 6938 6939
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6940 6941
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6942 6943
	if (memcg == root_mem_cgroup)
		goto out;
6944
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6945
		goto out;
S
Shakeel Butt 已提交
6946
	if (css_tryget(&memcg->css))
6947
		sk->sk_memcg = memcg;
6948
out:
6949 6950 6951
	rcu_read_unlock();
}

6952
void mem_cgroup_sk_free(struct sock *sk)
6953
{
6954 6955
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6968
	gfp_t gfp_mask = GFP_KERNEL;
6969

6970
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6971
		struct page_counter *fail;
6972

6973 6974
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6975 6976
			return true;
		}
6977 6978
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6979
		return false;
6980
	}
6981

6982 6983 6984 6985
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6986
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6987

6988 6989 6990 6991
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6992 6993 6994 6995 6996
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6997 6998
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6999 7000 7001
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7002
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7003
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7004 7005
		return;
	}
7006

7007
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7008

7009
	refill_stock(memcg, nr_pages);
7010 7011
}

7012 7013 7014 7015 7016 7017 7018 7019 7020
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7021 7022
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7023 7024 7025 7026
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7027

7028
/*
7029 7030
 * subsys_initcall() for memory controller.
 *
7031 7032 7033 7034
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7035 7036 7037
 */
static int __init mem_cgroup_init(void)
{
7038 7039
	int cpu, node;

7040 7041
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7053
		rtpn->rb_root = RB_ROOT;
7054
		rtpn->rb_rightmost = NULL;
7055
		spin_lock_init(&rtpn->lock);
7056 7057 7058
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7059 7060 7061
	return 0;
}
subsys_initcall(mem_cgroup_init);
7062 7063

#ifdef CONFIG_MEMCG_SWAP
7064 7065
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7066
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7082 7083 7084 7085 7086 7087 7088 7089 7090
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7091
	struct mem_cgroup *memcg, *swap_memcg;
7092
	unsigned int nr_entries;
7093 7094 7095 7096 7097
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7098
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7099 7100 7101 7102 7103 7104 7105 7106
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7107 7108 7109 7110 7111 7112
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7113
	nr_entries = thp_nr_pages(page);
7114 7115 7116 7117 7118
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7119
	VM_BUG_ON_PAGE(oldid, page);
7120
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7121 7122 7123 7124

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7125
		page_counter_uncharge(&memcg->memory, nr_entries);
7126

7127
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7128
		if (!mem_cgroup_is_root(swap_memcg))
7129 7130
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7131 7132
	}

7133 7134
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7135
	 * i_pages lock which is taken with interrupts-off. It is
7136
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7137
	 * only synchronisation we have for updating the per-CPU variables.
7138 7139
	 */
	VM_BUG_ON(!irqs_disabled());
7140
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7141
	memcg_check_events(memcg, page);
7142

7143
	css_put(&memcg->css);
7144 7145
}

7146 7147
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7148 7149 7150
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7151
 * Try to charge @page's memcg for the swap space at @entry.
7152 7153 7154 7155 7156
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7157
	unsigned int nr_pages = thp_nr_pages(page);
7158
	struct page_counter *counter;
7159
	struct mem_cgroup *memcg;
7160 7161
	unsigned short oldid;

7162
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7163 7164 7165 7166 7167 7168 7169 7170
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7171 7172
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7173
		return 0;
7174
	}
7175

7176 7177
	memcg = mem_cgroup_id_get_online(memcg);

7178
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7179
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7180 7181
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7182
		mem_cgroup_id_put(memcg);
7183
		return -ENOMEM;
7184
	}
7185

7186 7187 7188 7189
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7190
	VM_BUG_ON_PAGE(oldid, page);
7191
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7192 7193 7194 7195

	return 0;
}

7196
/**
7197
 * mem_cgroup_uncharge_swap - uncharge swap space
7198
 * @entry: swap entry to uncharge
7199
 * @nr_pages: the amount of swap space to uncharge
7200
 */
7201
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7202 7203 7204 7205
{
	struct mem_cgroup *memcg;
	unsigned short id;

7206
	id = swap_cgroup_record(entry, 0, nr_pages);
7207
	rcu_read_lock();
7208
	memcg = mem_cgroup_from_id(id);
7209
	if (memcg) {
7210
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7211
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7212
				page_counter_uncharge(&memcg->swap, nr_pages);
7213
			else
7214
				page_counter_uncharge(&memcg->memsw, nr_pages);
7215
		}
7216
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7217
		mem_cgroup_id_put_many(memcg, nr_pages);
7218 7219 7220 7221
	}
	rcu_read_unlock();
}

7222 7223 7224 7225
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7226
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7227 7228 7229
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7230
				      READ_ONCE(memcg->swap.max) -
7231 7232 7233 7234
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7235 7236 7237 7238 7239 7240 7241 7242
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7243
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7244 7245 7246 7247 7248 7249
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7250 7251 7252 7253 7254
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7255
			return true;
7256
	}
7257 7258 7259 7260

	return false;
}

7261
static int __init setup_swap_account(char *s)
7262 7263
{
	if (!strcmp(s, "1"))
7264
		cgroup_memory_noswap = false;
7265
	else if (!strcmp(s, "0"))
7266
		cgroup_memory_noswap = true;
7267 7268
	return 1;
}
7269
__setup("swapaccount=", setup_swap_account);
7270

7271 7272 7273 7274 7275 7276 7277 7278
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7302 7303
static int swap_max_show(struct seq_file *m, void *v)
{
7304 7305
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7320
	xchg(&memcg->swap.max, max);
7321 7322 7323 7324

	return nbytes;
}

7325 7326
static int swap_events_show(struct seq_file *m, void *v)
{
7327
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7328

7329 7330
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7331 7332 7333 7334 7335 7336 7337 7338
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7339 7340 7341 7342 7343 7344
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7345 7346 7347 7348 7349 7350
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7351 7352 7353 7354 7355 7356
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7357 7358 7359 7360 7361 7362
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7363 7364 7365
	{ }	/* terminate */
};

7366
static struct cftype memsw_files[] = {
7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7393 7394 7395 7396 7397 7398 7399
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7400 7401
static int __init mem_cgroup_swap_init(void)
{
7402 7403 7404 7405 7406
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7407 7408 7409 7410 7411
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7412 7413
	return 0;
}
7414
core_initcall(mem_cgroup_swap_init);
7415 7416

#endif /* CONFIG_MEMCG_SWAP */