memcontrol.c 191.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76 77 78
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);

79 80 81
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

82 83 84
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

85
/* Whether the swap controller is active */
A
Andrew Morton 已提交
86
#ifdef CONFIG_MEMCG_SWAP
87
bool cgroup_memory_noswap __read_mostly;
88
#else
89
#define cgroup_memory_noswap		1
90
#endif
91

92 93 94 95
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

96 97 98
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
99
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 101
}

102 103
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
104

105 106 107 108 109
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

110
struct mem_cgroup_tree_per_node {
111
	struct rb_root rb_root;
112
	struct rb_node *rb_rightmost;
113 114 115 116 117 118 119 120 121
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
122 123 124 125 126
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
127

128 129 130
/*
 * cgroup_event represents events which userspace want to receive.
 */
131
struct mem_cgroup_event {
132
	/*
133
	 * memcg which the event belongs to.
134
	 */
135
	struct mem_cgroup *memcg;
136 137 138 139 140 141 142 143
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
144 145 146 147 148
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
149
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
150
			      struct eventfd_ctx *eventfd, const char *args);
151 152 153 154 155
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
156
	void (*unregister_event)(struct mem_cgroup *memcg,
157
				 struct eventfd_ctx *eventfd);
158 159 160 161 162 163
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
164
	wait_queue_entry_t wait;
165 166 167
	struct work_struct remove;
};

168 169
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170

171 172
/* Stuffs for move charges at task migration. */
/*
173
 * Types of charges to be moved.
174
 */
175 176 177
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
178

179 180
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
181
	spinlock_t	  lock; /* for from, to */
182
	struct mm_struct  *mm;
183 184
	struct mem_cgroup *from;
	struct mem_cgroup *to;
185
	unsigned long flags;
186
	unsigned long precharge;
187
	unsigned long moved_charge;
188
	unsigned long moved_swap;
189 190 191
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
192
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 194
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
195

196 197 198 199
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
200
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
201
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
202

203
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
204 205 206 207
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
208
	_KMEM,
V
Vladimir Davydov 已提交
209
	_TCP,
G
Glauber Costa 已提交
210 211
};

212 213
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
214
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
215 216
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

233 234 235 236 237 238
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

239 240 241 242 243 244 245 246 247 248 249 250 251
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

252
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

345
/*
346
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
347 348 349 350 351
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
352
 *
353 354
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
355
 */
356 357
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
358

359 360 361 362 363 364 365 366 367 368 369 370 371
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

372 373 374 375 376 377
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
378
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379 380
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
381
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
382 383 384
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
385
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386

387 388
/*
 * A lot of the calls to the cache allocation functions are expected to be
389
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390 391 392
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
393
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394
EXPORT_SYMBOL(memcg_kmem_enabled_key);
395
#endif
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

420
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
464
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 496
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
497
			goto unlock;
498
		}
499 500 501 502 503 504 505
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
506 507 508 509 510 511 512 513

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 515
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
516 517 518 519 520
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

538
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 540 541 542 543
		memcg = root_mem_cgroup;

	return &memcg->css;
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
563
	memcg = page->mem_cgroup;
564

565 566 567 568 569 570 571 572
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
573

574 575 576 577 578 579 580 581
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

582 583
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584
{
585
	int nid = page_to_nid(page);
586

587
	return memcg->nodeinfo[nid];
588 589
}

590 591
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
592
{
593
	return soft_limit_tree.rb_tree_per_node[nid];
594 595
}

596
static struct mem_cgroup_tree_per_node *
597 598 599 600
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

601
	return soft_limit_tree.rb_tree_per_node[nid];
602 603
}

604 605
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
606
					 unsigned long new_usage_in_excess)
607 608 609
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
610
	struct mem_cgroup_per_node *mz_node;
611
	bool rightmost = true;
612 613 614 615 616 617 618 619 620

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
621
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622
					tree_node);
623
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
624
			p = &(*p)->rb_left;
625
			rightmost = false;
626
		} else {
627
			p = &(*p)->rb_right;
628
		}
629
	}
630 631 632 633

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

634 635 636 637 638
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

639 640
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
641 642 643
{
	if (!mz->on_tree)
		return;
644 645 646 647

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

648 649 650 651
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

652 653
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
654
{
655 656 657
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
658
	__mem_cgroup_remove_exceeded(mz, mctz);
659
	spin_unlock_irqrestore(&mctz->lock, flags);
660 661
}

662 663 664
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
665
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
666 667 668 669 670 671 672
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
673 674 675

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
676
	unsigned long excess;
677 678
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
679

680
	mctz = soft_limit_tree_from_page(page);
681 682
	if (!mctz)
		return;
683 684 685 686 687
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
688
		mz = mem_cgroup_page_nodeinfo(memcg, page);
689
		excess = soft_limit_excess(memcg);
690 691 692 693 694
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
695 696 697
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
698 699
			/* if on-tree, remove it */
			if (mz->on_tree)
700
				__mem_cgroup_remove_exceeded(mz, mctz);
701 702 703 704
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
705
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
706
			spin_unlock_irqrestore(&mctz->lock, flags);
707 708 709 710 711 712
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
713 714 715
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
716

717
	for_each_node(nid) {
718 719
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
720 721
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
722 723 724
	}
}

725 726
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
727
{
728
	struct mem_cgroup_per_node *mz;
729 730 731

retry:
	mz = NULL;
732
	if (!mctz->rb_rightmost)
733 734
		goto done;		/* Nothing to reclaim from */

735 736
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
737 738 739 740 741
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
742
	__mem_cgroup_remove_exceeded(mz, mctz);
743
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
744
	    !css_tryget(&mz->memcg->css))
745 746 747 748 749
		goto retry;
done:
	return mz;
}

750 751
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
752
{
753
	struct mem_cgroup_per_node *mz;
754

755
	spin_lock_irq(&mctz->lock);
756
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
757
	spin_unlock_irq(&mctz->lock);
758 759 760
	return mz;
}

761 762 763 764 765 766 767 768
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
769
	long x, threshold = MEMCG_CHARGE_BATCH;
770 771 772 773

	if (mem_cgroup_disabled())
		return;

774
	if (memcg_stat_item_in_bytes(idx))
775 776
		threshold <<= PAGE_SHIFT;

777
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
778
	if (unlikely(abs(x) > threshold)) {
779 780
		struct mem_cgroup *mi;

781 782 783 784 785
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
786 787
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
788 789 790 791 792
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

793 794 795 796 797 798 799 800 801 802 803
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

804 805
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
806 807
{
	struct mem_cgroup_per_node *pn;
808
	struct mem_cgroup *memcg;
809
	long x, threshold = MEMCG_CHARGE_BATCH;
810 811

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
812
	memcg = pn->memcg;
813 814

	/* Update memcg */
815
	__mod_memcg_state(memcg, idx, val);
816

817 818 819
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

820 821 822
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

823
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
824
	if (unlikely(abs(x) > threshold)) {
825
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
826 827 828 829
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
830 831 832 833 834
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

856 857
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
858
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
859 860 861 862
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
863
	memcg = mem_cgroup_from_obj(p);
864

865 866 867 868 869 870 871
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
872 873
		__mod_node_page_state(pgdat, idx, val);
	} else {
874
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
875 876 877 878 879
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
896 897
		struct mem_cgroup *mi;

898 899 900 901 902
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
903 904
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
905 906 907 908 909
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

910
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
911
{
912
	return atomic_long_read(&memcg->vmevents[event]);
913 914
}

915 916
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
917 918 919 920 921 922
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
923 924
}

925
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
926
					 struct page *page,
927
					 int nr_pages)
928
{
929 930
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
931
		__count_memcg_events(memcg, PGPGIN, 1);
932
	else {
933
		__count_memcg_events(memcg, PGPGOUT, 1);
934 935
		nr_pages = -nr_pages; /* for event */
	}
936

937
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
938 939
}

940 941
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
942 943 944
{
	unsigned long val, next;

945 946
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
947
	/* from time_after() in jiffies.h */
948
	if ((long)(next - val) < 0) {
949 950 951 952
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
953 954 955
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
956 957 958
		default:
			break;
		}
959
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
960
		return true;
961
	}
962
	return false;
963 964 965 966 967 968
}

/*
 * Check events in order.
 *
 */
969
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
970 971
{
	/* threshold event is triggered in finer grain than soft limit */
972 973
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
974
		bool do_softlimit;
975

976 977
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
978
		mem_cgroup_threshold(memcg);
979 980
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
981
	}
982 983
}

984
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
985
{
986 987 988 989 990 991 992 993
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

994
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
995
}
M
Michal Hocko 已提交
996
EXPORT_SYMBOL(mem_cgroup_from_task);
997

998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1007
{
1008 1009 1010 1011
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1012

1013 1014
	rcu_read_lock();
	do {
1015 1016 1017 1018 1019 1020
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1021
			memcg = root_mem_cgroup;
1022 1023 1024 1025 1026
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1027
	} while (!css_tryget(&memcg->css));
1028
	rcu_read_unlock();
1029
	return memcg;
1030
}
1031 1032
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1048 1049
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1050 1051 1052 1053 1054 1055
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1056
static __always_inline struct mem_cgroup *active_memcg(void)
1057
{
1058 1059 1060 1061 1062
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}
1063

1064 1065 1066
static __always_inline struct mem_cgroup *get_active_memcg(void)
{
	struct mem_cgroup *memcg;
1067

1068 1069 1070
	rcu_read_lock();
	memcg = active_memcg();
	if (memcg) {
S
Shakeel Butt 已提交
1071
		/* current->active_memcg must hold a ref. */
1072
		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
S
Shakeel Butt 已提交
1073 1074
			memcg = root_mem_cgroup;
		else
1075 1076
			memcg = current->active_memcg;
	}
1077 1078 1079 1080 1081
	rcu_read_unlock();

	return memcg;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/**
 * If active memcg is set, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (memcg_kmem_bypass())
		return NULL;

	if (unlikely(active_memcg()))
		return get_active_memcg();

1106 1107
	return get_mem_cgroup_from_mm(current->mm);
}
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1122 1123 1124
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1125
 */
1126
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1127
				   struct mem_cgroup *prev,
1128
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1129
{
1130
	struct mem_cgroup_reclaim_iter *iter;
1131
	struct cgroup_subsys_state *css = NULL;
1132
	struct mem_cgroup *memcg = NULL;
1133
	struct mem_cgroup *pos = NULL;
1134

1135 1136
	if (mem_cgroup_disabled())
		return NULL;
1137

1138 1139
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1140

1141
	if (prev && !reclaim)
1142
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1143

1144 1145
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1146
			goto out;
1147
		return root;
1148
	}
K
KAMEZAWA Hiroyuki 已提交
1149

1150
	rcu_read_lock();
M
Michal Hocko 已提交
1151

1152
	if (reclaim) {
1153
		struct mem_cgroup_per_node *mz;
1154

1155
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1156
		iter = &mz->iter;
1157 1158 1159 1160

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1161
		while (1) {
1162
			pos = READ_ONCE(iter->position);
1163 1164
			if (!pos || css_tryget(&pos->css))
				break;
1165
			/*
1166 1167 1168 1169 1170 1171
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1172
			 */
1173 1174
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1192
		}
K
KAMEZAWA Hiroyuki 已提交
1193

1194 1195 1196 1197 1198 1199
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1200

1201 1202
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1203

1204 1205
		if (css_tryget(css))
			break;
1206

1207
		memcg = NULL;
1208
	}
1209 1210 1211

	if (reclaim) {
		/*
1212 1213 1214
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1215
		 */
1216 1217
		(void)cmpxchg(&iter->position, pos, memcg);

1218 1219 1220 1221 1222 1223 1224
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1225
	}
1226

1227 1228
out_unlock:
	rcu_read_unlock();
1229
out:
1230 1231 1232
	if (prev && prev != root)
		css_put(&prev->css);

1233
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1234
}
K
KAMEZAWA Hiroyuki 已提交
1235

1236 1237 1238 1239 1240 1241 1242
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1243 1244 1245 1246 1247 1248
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1249

1250 1251
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1252 1253
{
	struct mem_cgroup_reclaim_iter *iter;
1254 1255
	struct mem_cgroup_per_node *mz;
	int nid;
1256

1257 1258
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1259 1260
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1261 1262 1263
	}
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1310
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1322
/**
1323
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1324
 * @page: the page
1325
 * @pgdat: pgdat of the page
1326
 *
1327
 * This function relies on page's memcg being stable - see the
1328
 * access rules in commit_charge().
1329
 */
M
Mel Gorman 已提交
1330
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1331
{
1332
	struct mem_cgroup_per_node *mz;
1333
	struct mem_cgroup *memcg;
1334
	struct lruvec *lruvec;
1335

1336
	if (mem_cgroup_disabled()) {
1337
		lruvec = &pgdat->__lruvec;
1338 1339
		goto out;
	}
1340

1341
	memcg = page->mem_cgroup;
1342
	/*
1343
	 * Swapcache readahead pages are added to the LRU - and
1344
	 * possibly migrated - before they are charged.
1345
	 */
1346 1347
	if (!memcg)
		memcg = root_mem_cgroup;
1348

1349
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1350 1351 1352 1353 1354 1355 1356
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1357 1358
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1359
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1360
}
1361

1362
/**
1363 1364 1365
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1366
 * @zid: zone id of the accounted pages
1367
 * @nr_pages: positive when adding or negative when removing
1368
 *
1369 1370 1371
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1372
 */
1373
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1374
				int zid, int nr_pages)
1375
{
1376
	struct mem_cgroup_per_node *mz;
1377
	unsigned long *lru_size;
1378
	long size;
1379 1380 1381 1382

	if (mem_cgroup_disabled())
		return;

1383
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1384
	lru_size = &mz->lru_zone_size[zid][lru];
1385 1386 1387 1388 1389

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1390 1391 1392
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1393 1394 1395 1396 1397 1398
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1399
}
1400

1401
/**
1402
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1403
 * @memcg: the memory cgroup
1404
 *
1405
 * Returns the maximum amount of memory @mem can be charged with, in
1406
 * pages.
1407
 */
1408
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1409
{
1410 1411 1412
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1413

1414
	count = page_counter_read(&memcg->memory);
1415
	limit = READ_ONCE(memcg->memory.max);
1416 1417 1418
	if (count < limit)
		margin = limit - count;

1419
	if (do_memsw_account()) {
1420
		count = page_counter_read(&memcg->memsw);
1421
		limit = READ_ONCE(memcg->memsw.max);
1422
		if (count < limit)
1423
			margin = min(margin, limit - count);
1424 1425
		else
			margin = 0;
1426 1427 1428
	}

	return margin;
1429 1430
}

1431
/*
Q
Qiang Huang 已提交
1432
 * A routine for checking "mem" is under move_account() or not.
1433
 *
Q
Qiang Huang 已提交
1434 1435 1436
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1437
 */
1438
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1439
{
1440 1441
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1442
	bool ret = false;
1443 1444 1445 1446 1447 1448 1449 1450 1451
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1452

1453 1454
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1455 1456
unlock:
	spin_unlock(&mc.lock);
1457 1458 1459
	return ret;
}

1460
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1461 1462
{
	if (mc.moving_task && current != mc.moving_task) {
1463
		if (mem_cgroup_under_move(memcg)) {
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
struct memory_stat {
	const char *name;
	unsigned int ratio;
	unsigned int idx;
};

static struct memory_stat memory_stats[] = {
	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
	{ "file", PAGE_SIZE, NR_FILE_PAGES },
	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
	{ "percpu", 1, MEMCG_PERCPU_B },
	{ "sock", PAGE_SIZE, MEMCG_SOCK },
	{ "shmem", PAGE_SIZE, NR_SHMEM },
	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/*
	 * The ratio will be initialized in memory_stats_init(). Because
	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
	 * constant(e.g. powerpc).
	 */
	{ "anon_thp", 0, NR_ANON_THPS },
1499 1500
	{ "file_thp", 0, NR_FILE_THPS },
	{ "shmem_thp", 0, NR_SHMEM_THPS },
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
#endif
	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },

	/*
	 * Note: The slab_reclaimable and slab_unreclaimable must be
	 * together and slab_reclaimable must be in front.
	 */
	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },

	/* The memory events */
	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
};

static int __init memory_stats_init(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1531 1532 1533
		if (memory_stats[i].idx == NR_ANON_THPS ||
		    memory_stats[i].idx == NR_FILE_THPS ||
		    memory_stats[i].idx == NR_SHMEM_THPS)
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
			memory_stats[i].ratio = HPAGE_PMD_SIZE;
#endif
		VM_BUG_ON(!memory_stats[i].ratio);
		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
	}

	return 0;
}
pure_initcall(memory_stats_init);

1544 1545 1546 1547
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

1564 1565
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1566

1567 1568 1569
		size = memcg_page_state(memcg, memory_stats[i].idx);
		size *= memory_stats[i].ratio;
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1570

1571 1572 1573 1574 1575 1576
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1577 1578 1579

	/* Accumulated memory events */

1580 1581 1582 1583 1584 1585
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1586 1587 1588 1589 1590 1591
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1592 1593 1594 1595 1596 1597 1598 1599
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1600 1601

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1602
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1603
		       memcg_events(memcg, THP_FAULT_ALLOC));
1604
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1605 1606 1607 1608 1609 1610 1611 1612
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1613

1614
#define K(x) ((x) << (PAGE_SHIFT-10))
1615
/**
1616 1617
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1618 1619 1620 1621 1622 1623
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1624
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1625 1626 1627
{
	rcu_read_lock();

1628 1629 1630 1631 1632
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1633
	if (p) {
1634
		pr_cont(",task_memcg=");
1635 1636
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1637
	rcu_read_unlock();
1638 1639 1640 1641 1642 1643 1644 1645 1646
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1647
	char *buf;
1648

1649 1650
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1651
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1652 1653 1654
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1655
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1656 1657 1658 1659 1660 1661 1662
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1663
	}
1664 1665 1666 1667 1668 1669 1670 1671 1672

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1673 1674
}

D
David Rientjes 已提交
1675 1676 1677
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1678
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1679
{
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1693
	}
1694
	return max;
D
David Rientjes 已提交
1695 1696
}

1697 1698 1699 1700 1701
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1702
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1703
				     int order)
1704
{
1705 1706 1707
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1708
		.memcg = memcg,
1709 1710 1711
		.gfp_mask = gfp_mask,
		.order = order,
	};
1712
	bool ret = true;
1713

1714 1715
	if (mutex_lock_killable(&oom_lock))
		return true;
1716 1717 1718 1719

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1720 1721 1722 1723 1724
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1725 1726

unlock:
1727
	mutex_unlock(&oom_lock);
1728
	return ret;
1729 1730
}

1731
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1732
				   pg_data_t *pgdat,
1733 1734 1735 1736 1737 1738 1739 1740 1741
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1742
		.pgdat = pgdat,
1743 1744
	};

1745
	excess = soft_limit_excess(root_memcg);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1771
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1772
					pgdat, &nr_scanned);
1773
		*total_scanned += nr_scanned;
1774
		if (!soft_limit_excess(root_memcg))
1775
			break;
1776
	}
1777 1778
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1779 1780
}

1781 1782 1783 1784 1785 1786
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1787 1788
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1789 1790 1791 1792
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1793
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1794
{
1795
	struct mem_cgroup *iter, *failed = NULL;
1796

1797 1798
	spin_lock(&memcg_oom_lock);

1799
	for_each_mem_cgroup_tree(iter, memcg) {
1800
		if (iter->oom_lock) {
1801 1802 1803 1804 1805
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1806 1807
			mem_cgroup_iter_break(memcg, iter);
			break;
1808 1809
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1810
	}
K
KAMEZAWA Hiroyuki 已提交
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1823
		}
1824 1825
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1826 1827 1828 1829

	spin_unlock(&memcg_oom_lock);

	return !failed;
1830
}
1831

1832
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1833
{
K
KAMEZAWA Hiroyuki 已提交
1834 1835
	struct mem_cgroup *iter;

1836
	spin_lock(&memcg_oom_lock);
1837
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1838
	for_each_mem_cgroup_tree(iter, memcg)
1839
		iter->oom_lock = false;
1840
	spin_unlock(&memcg_oom_lock);
1841 1842
}

1843
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1844 1845 1846
{
	struct mem_cgroup *iter;

1847
	spin_lock(&memcg_oom_lock);
1848
	for_each_mem_cgroup_tree(iter, memcg)
1849 1850
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1851 1852
}

1853
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1854 1855 1856
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1857
	/*
1858 1859
	 * Be careful about under_oom underflows becase a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1860
	 */
1861
	spin_lock(&memcg_oom_lock);
1862
	for_each_mem_cgroup_tree(iter, memcg)
1863 1864 1865
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1866 1867
}

K
KAMEZAWA Hiroyuki 已提交
1868 1869
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1870
struct oom_wait_info {
1871
	struct mem_cgroup *memcg;
1872
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1873 1874
};

1875
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1876 1877
	unsigned mode, int sync, void *arg)
{
1878 1879
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1880 1881 1882
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1883
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1884

1885 1886
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1887 1888 1889 1890
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1891
static void memcg_oom_recover(struct mem_cgroup *memcg)
1892
{
1893 1894 1895 1896 1897 1898 1899 1900 1901
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1902
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1913
{
1914 1915 1916
	enum oom_status ret;
	bool locked;

1917 1918 1919
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1920 1921
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1922
	/*
1923 1924 1925 1926
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1927 1928 1929 1930
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1931
	 *
1932 1933 1934 1935 1936 1937 1938
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1939
	 */
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1951 1952 1953 1954 1955 1956 1957 1958
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1959
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1960 1961 1962 1963 1964 1965
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1966

1967
	return ret;
1968 1969 1970 1971
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1972
 * @handle: actually kill/wait or just clean up the OOM state
1973
 *
1974 1975
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1976
 *
1977
 * Memcg supports userspace OOM handling where failed allocations must
1978 1979 1980 1981
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1982
 * the end of the page fault to complete the OOM handling.
1983 1984
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1985
 * completed, %false otherwise.
1986
 */
1987
bool mem_cgroup_oom_synchronize(bool handle)
1988
{
T
Tejun Heo 已提交
1989
	struct mem_cgroup *memcg = current->memcg_in_oom;
1990
	struct oom_wait_info owait;
1991
	bool locked;
1992 1993 1994

	/* OOM is global, do not handle */
	if (!memcg)
1995
		return false;
1996

1997
	if (!handle)
1998
		goto cleanup;
1999 2000 2001 2002 2003

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
2004
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
2005

2006
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
2017 2018
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
2019
	} else {
2020
		schedule();
2021 2022 2023 2024 2025
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2026 2027 2028 2029 2030 2031 2032 2033
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2034
cleanup:
T
Tejun Heo 已提交
2035
	current->memcg_in_oom = NULL;
2036
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2037
	return true;
2038 2039
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2068 2069 2070 2071 2072 2073 2074 2075
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2104
/**
2105 2106
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2107
 *
2108
 * This function protects unlocked LRU pages from being moved to
2109 2110 2111 2112 2113
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2114
 */
2115
struct mem_cgroup *lock_page_memcg(struct page *page)
2116
{
2117
	struct page *head = compound_head(page); /* rmap on tail pages */
2118
	struct mem_cgroup *memcg;
2119
	unsigned long flags;
2120

2121 2122 2123 2124
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2125 2126 2127 2128 2129 2130 2131
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2132 2133 2134
	rcu_read_lock();

	if (mem_cgroup_disabled())
2135
		return NULL;
2136
again:
2137
	memcg = head->mem_cgroup;
2138
	if (unlikely(!memcg))
2139
		return NULL;
2140

Q
Qiang Huang 已提交
2141
	if (atomic_read(&memcg->moving_account) <= 0)
2142
		return memcg;
2143

2144
	spin_lock_irqsave(&memcg->move_lock, flags);
2145
	if (memcg != head->mem_cgroup) {
2146
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2147 2148
		goto again;
	}
2149 2150 2151 2152

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2153
	 * the task who has the lock for unlock_page_memcg().
2154 2155 2156
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2157

2158
	return memcg;
2159
}
2160
EXPORT_SYMBOL(lock_page_memcg);
2161

2162
/**
2163 2164 2165 2166
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2167
 */
2168
void __unlock_page_memcg(struct mem_cgroup *memcg)
2169
{
2170 2171 2172 2173 2174 2175 2176 2177
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2178

2179
	rcu_read_unlock();
2180
}
2181 2182 2183 2184 2185 2186 2187

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2188 2189 2190
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2191
}
2192
EXPORT_SYMBOL(unlock_page_memcg);
2193

2194 2195
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2196
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2197 2198 2199 2200 2201 2202

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2203
	struct work_struct work;
2204
	unsigned long flags;
2205
#define FLUSHING_CACHED_CHARGE	0
2206 2207
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2208
static DEFINE_MUTEX(percpu_charge_mutex);
2209

R
Roman Gushchin 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2236
 */
2237
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2238 2239
{
	struct memcg_stock_pcp *stock;
2240
	unsigned long flags;
2241
	bool ret = false;
2242

2243
	if (nr_pages > MEMCG_CHARGE_BATCH)
2244
		return ret;
2245

2246 2247 2248
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2249
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2250
		stock->nr_pages -= nr_pages;
2251 2252
		ret = true;
	}
2253 2254 2255

	local_irq_restore(flags);

2256 2257 2258 2259
	return ret;
}

/*
2260
 * Returns stocks cached in percpu and reset cached information.
2261 2262 2263 2264 2265
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2266 2267 2268
	if (!old)
		return;

2269
	if (stock->nr_pages) {
2270
		page_counter_uncharge(&old->memory, stock->nr_pages);
2271
		if (do_memsw_account())
2272
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2273
		stock->nr_pages = 0;
2274
	}
2275 2276

	css_put(&old->css);
2277 2278 2279 2280 2281
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2282 2283 2284
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2285 2286 2287 2288
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2289 2290 2291
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2292
	drain_obj_stock(stock);
2293
	drain_stock(stock);
2294
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2295 2296

	local_irq_restore(flags);
2297 2298 2299
}

/*
2300
 * Cache charges(val) to local per_cpu area.
2301
 * This will be consumed by consume_stock() function, later.
2302
 */
2303
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2304
{
2305 2306 2307 2308
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2309

2310
	stock = this_cpu_ptr(&memcg_stock);
2311
	if (stock->cached != memcg) { /* reset if necessary */
2312
		drain_stock(stock);
2313
		css_get(&memcg->css);
2314
		stock->cached = memcg;
2315
	}
2316
	stock->nr_pages += nr_pages;
2317

2318
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2319 2320
		drain_stock(stock);

2321
	local_irq_restore(flags);
2322 2323 2324
}

/*
2325
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2326
 * of the hierarchy under it.
2327
 */
2328
static void drain_all_stock(struct mem_cgroup *root_memcg)
2329
{
2330
	int cpu, curcpu;
2331

2332 2333 2334
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2335 2336 2337 2338 2339 2340
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2341
	curcpu = get_cpu();
2342 2343
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2344
		struct mem_cgroup *memcg;
2345
		bool flush = false;
2346

2347
		rcu_read_lock();
2348
		memcg = stock->cached;
2349 2350 2351
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2352 2353
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2354 2355 2356 2357
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2358 2359 2360 2361 2362
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2363
	}
2364
	put_cpu();
2365
	mutex_unlock(&percpu_charge_mutex);
2366 2367
}

2368
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2369 2370
{
	struct memcg_stock_pcp *stock;
2371
	struct mem_cgroup *memcg, *mi;
2372 2373 2374

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2375 2376 2377 2378 2379 2380 2381 2382

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2383
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2384
			if (x)
2385 2386
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2387 2388 2389 2390 2391 2392 2393 2394 2395

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2396
				if (x)
2397 2398 2399
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2400 2401 2402
			}
		}

2403
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2404 2405
			long x;

2406
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2407
			if (x)
2408 2409
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2410 2411 2412
		}
	}

2413
	return 0;
2414 2415
}

2416 2417 2418
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2419
{
2420 2421
	unsigned long nr_reclaimed = 0;

2422
	do {
2423 2424
		unsigned long pflags;

2425 2426
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2427
			continue;
2428

2429
		memcg_memory_event(memcg, MEMCG_HIGH);
2430 2431

		psi_memstall_enter(&pflags);
2432 2433
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2434
		psi_memstall_leave(&pflags);
2435 2436
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2437 2438

	return nr_reclaimed;
2439 2440 2441 2442 2443 2444 2445
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2446
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2447 2448
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2463
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2502
static u64 calculate_overage(unsigned long usage, unsigned long high)
2503
{
2504
	u64 overage;
2505

2506 2507
	if (usage <= high)
		return 0;
2508

2509 2510 2511 2512 2513
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2514

2515 2516 2517 2518
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2519

2520 2521 2522
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2523

2524 2525
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2526
					    READ_ONCE(memcg->memory.high));
2527
		max_overage = max(overage, max_overage);
2528 2529 2530
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2531 2532 2533
	return max_overage;
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2560 2561
	if (!max_overage)
		return 0;
2562 2563 2564 2565 2566 2567 2568 2569 2570

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2571 2572 2573
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2574 2575 2576 2577 2578 2579 2580 2581 2582

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2583
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2594
	unsigned long nr_reclaimed;
2595
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2596
	int nr_retries = MAX_RECLAIM_RETRIES;
2597
	struct mem_cgroup *memcg;
2598
	bool in_retry = false;
2599 2600 2601 2602 2603 2604 2605

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2620 2621 2622 2623
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2624 2625
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2626

2627 2628 2629
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2630 2631 2632 2633 2634 2635 2636
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2637 2638 2639 2640 2641 2642 2643 2644 2645
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2667 2668
}

2669 2670
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2671
{
2672
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2673
	int nr_retries = MAX_RECLAIM_RETRIES;
2674
	struct mem_cgroup *mem_over_limit;
2675
	struct page_counter *counter;
2676
	enum oom_status oom_status;
2677
	unsigned long nr_reclaimed;
2678 2679
	bool may_swap = true;
	bool drained = false;
2680
	unsigned long pflags;
2681

2682
	if (mem_cgroup_is_root(memcg))
2683
		return 0;
2684
retry:
2685
	if (consume_stock(memcg, nr_pages))
2686
		return 0;
2687

2688
	if (!do_memsw_account() ||
2689 2690
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2691
			goto done_restock;
2692
		if (do_memsw_account())
2693 2694
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2695
	} else {
2696
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2697
		may_swap = false;
2698
	}
2699

2700 2701 2702 2703
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2704

2705 2706 2707 2708 2709 2710 2711 2712 2713
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2714 2715 2716 2717 2718 2719
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2720
	if (unlikely(should_force_charge()))
2721
		goto force;
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2732 2733 2734
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2735
	if (!gfpflags_allow_blocking(gfp_mask))
2736
		goto nomem;
2737

2738
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2739

2740
	psi_memstall_enter(&pflags);
2741 2742
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2743
	psi_memstall_leave(&pflags);
2744

2745
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2746
		goto retry;
2747

2748
	if (!drained) {
2749
		drain_all_stock(mem_over_limit);
2750 2751 2752 2753
		drained = true;
		goto retry;
	}

2754 2755
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2756 2757 2758 2759 2760 2761 2762 2763 2764
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2765
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2766 2767 2768 2769 2770 2771 2772 2773
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2774 2775 2776
	if (nr_retries--)
		goto retry;

2777
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2778 2779
		goto nomem;

2780
	if (gfp_mask & __GFP_NOFAIL)
2781
		goto force;
2782

2783
	if (fatal_signal_pending(current))
2784
		goto force;
2785

2786 2787 2788 2789 2790 2791
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2792
		       get_order(nr_pages * PAGE_SIZE));
2793 2794
	switch (oom_status) {
	case OOM_SUCCESS:
2795
		nr_retries = MAX_RECLAIM_RETRIES;
2796 2797 2798 2799 2800 2801
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2802
nomem:
2803
	if (!(gfp_mask & __GFP_NOFAIL))
2804
		return -ENOMEM;
2805 2806 2807 2808 2809 2810 2811
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2812
	if (do_memsw_account())
2813 2814 2815
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2816 2817 2818 2819

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2820

2821
	/*
2822 2823
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2824
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2825 2826 2827 2828
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2829 2830
	 */
	do {
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2841 2842 2843
				schedule_work(&memcg->high_work);
				break;
			}
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2857
			current->memcg_nr_pages_over_high += batch;
2858 2859 2860
			set_notify_resume(current);
			break;
		}
2861
	} while ((memcg = parent_mem_cgroup(memcg)));
2862 2863

	return 0;
2864
}
2865

2866
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2867
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2868
{
2869 2870 2871
	if (mem_cgroup_is_root(memcg))
		return;

2872
	page_counter_uncharge(&memcg->memory, nr_pages);
2873
	if (do_memsw_account())
2874
		page_counter_uncharge(&memcg->memsw, nr_pages);
2875
}
2876
#endif
2877

2878
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2879
{
2880
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2881
	/*
2882
	 * Any of the following ensures page's memcg stability:
2883
	 *
2884 2885 2886 2887
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2888
	 */
2889
	page->mem_cgroup = memcg;
2890
}
2891

2892
#ifdef CONFIG_MEMCG_KMEM
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	/*
	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
	 * or a pointer to obj_cgroup vector. In the latter case the lowest
	 * bit of the pointer is set.
	 * The page->mem_cgroup pointer can be asynchronously changed
	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
	 * from a valid memcg pointer to objcg vector or back.
	 */
	if (!page->mem_cgroup)
		return NULL;

2939
	/*
2940 2941 2942
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2943
	 */
2944 2945 2946 2947 2948 2949
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2950 2951 2952 2953
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2954
	}
2955 2956 2957 2958 2959

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2960 2961 2962 2963 2964
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2965 2966 2967
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2968
	rcu_read_lock();
2969 2970
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2971 2972 2973 2974 2975 2976 2977
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2978
		objcg = NULL;
R
Roman Gushchin 已提交
2979 2980 2981 2982 2983 2984
	}
	rcu_read_unlock();

	return objcg;
}

2985
static int memcg_alloc_cache_id(void)
2986
{
2987 2988 2989
	int id, size;
	int err;

2990
	id = ida_simple_get(&memcg_cache_ida,
2991 2992 2993
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2994

2995
	if (id < memcg_nr_cache_ids)
2996 2997 2998 2999 3000 3001
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
3002
	down_write(&memcg_cache_ids_sem);
3003 3004

	size = 2 * (id + 1);
3005 3006 3007 3008 3009
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

3010
	err = memcg_update_all_list_lrus(size);
3011 3012 3013 3014 3015
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

3016
	if (err) {
3017
		ida_simple_remove(&memcg_cache_ida, id);
3018 3019 3020 3021 3022 3023 3024
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
3025
	ida_simple_remove(&memcg_cache_ida, id);
3026 3027
}

3028
/**
3029
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3030
 * @memcg: memory cgroup to charge
3031
 * @gfp: reclaim mode
3032
 * @nr_pages: number of pages to charge
3033 3034 3035
 *
 * Returns 0 on success, an error code on failure.
 */
3036 3037
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
3038
{
3039
	struct page_counter *counter;
3040 3041
	int ret;

3042
	ret = try_charge(memcg, gfp, nr_pages);
3043
	if (ret)
3044
		return ret;
3045 3046 3047

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3058 3059
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3060
	}
3061
	return 0;
3062 3063
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3079
/**
3080
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3081 3082 3083 3084 3085 3086
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3087
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3088
{
3089
	struct mem_cgroup *memcg;
3090
	int ret = 0;
3091

3092
	memcg = get_mem_cgroup_from_current();
3093
	if (memcg && !mem_cgroup_is_root(memcg)) {
3094
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3095 3096
		if (!ret) {
			page->mem_cgroup = memcg;
3097
			__SetPageKmemcg(page);
3098
			return 0;
3099
		}
3100
		css_put(&memcg->css);
3101
	}
3102
	return ret;
3103
}
3104

3105
/**
3106
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3107 3108 3109
 * @page: page to uncharge
 * @order: allocation order
 */
3110
void __memcg_kmem_uncharge_page(struct page *page, int order)
3111
{
3112
	struct mem_cgroup *memcg = page->mem_cgroup;
3113
	unsigned int nr_pages = 1 << order;
3114 3115 3116 3117

	if (!memcg)
		return;

3118
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3119
	__memcg_kmem_uncharge(memcg, nr_pages);
3120
	page->mem_cgroup = NULL;
3121
	css_put(&memcg->css);
3122 3123 3124 3125

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3126
}
R
Roman Gushchin 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
3238
retry:
R
Roman Gushchin 已提交
3239
	memcg = obj_cgroup_memcg(objcg);
3240 3241
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
R
Roman Gushchin 已提交
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3263
#endif /* CONFIG_MEMCG_KMEM */
3264

3265 3266 3267 3268
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3269
 * pgdat->lru_lock and migration entries setup in all page mappings.
3270
 */
3271
void mem_cgroup_split_huge_fixup(struct page *head)
3272
{
3273
	struct mem_cgroup *memcg = head->mem_cgroup;
3274
	int i;
3275

3276 3277
	if (mem_cgroup_disabled())
		return;
3278

3279 3280 3281 3282
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3283
}
3284
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3285

A
Andrew Morton 已提交
3286
#ifdef CONFIG_MEMCG_SWAP
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3298
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3299 3300 3301
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3302
				struct mem_cgroup *from, struct mem_cgroup *to)
3303 3304 3305
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3306 3307
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3308 3309

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3310 3311
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3312 3313 3314 3315 3316 3317
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3318
				struct mem_cgroup *from, struct mem_cgroup *to)
3319 3320 3321
{
	return -EINVAL;
}
3322
#endif
K
KAMEZAWA Hiroyuki 已提交
3323

3324
static DEFINE_MUTEX(memcg_max_mutex);
3325

3326 3327
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3328
{
3329
	bool enlarge = false;
3330
	bool drained = false;
3331
	int ret;
3332 3333
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3334

3335
	do {
3336 3337 3338 3339
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3340

3341
		mutex_lock(&memcg_max_mutex);
3342 3343
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3344
		 * break our basic invariant rule memory.max <= memsw.max.
3345
		 */
3346
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3347
					   max <= memcg->memsw.max;
3348
		if (!limits_invariant) {
3349
			mutex_unlock(&memcg_max_mutex);
3350 3351 3352
			ret = -EINVAL;
			break;
		}
3353
		if (max > counter->max)
3354
			enlarge = true;
3355 3356
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3357 3358 3359 3360

		if (!ret)
			break;

3361 3362 3363 3364 3365 3366
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3367 3368 3369 3370 3371 3372
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3373

3374 3375
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3376

3377 3378 3379
	return ret;
}

3380
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3381 3382 3383 3384
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3385
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3386 3387
	unsigned long reclaimed;
	int loop = 0;
3388
	struct mem_cgroup_tree_per_node *mctz;
3389
	unsigned long excess;
3390 3391 3392 3393 3394
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3395
	mctz = soft_limit_tree_node(pgdat->node_id);
3396 3397 3398 3399 3400 3401

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3402
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3403 3404
		return 0;

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3419
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3420 3421 3422
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3423
		spin_lock_irq(&mctz->lock);
3424
		__mem_cgroup_remove_exceeded(mz, mctz);
3425 3426 3427 3428 3429 3430

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3431 3432 3433
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3434
		excess = soft_limit_excess(mz->memcg);
3435 3436 3437 3438 3439 3440 3441 3442 3443
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3444
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3445
		spin_unlock_irq(&mctz->lock);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3463 3464 3465 3466
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3467
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3468
 */
3469 3470
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3471 3472 3473 3474 3475 3476
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3477 3478
}

3479
/*
3480
 * Reclaims as many pages from the given memcg as possible.
3481 3482 3483 3484 3485
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3486
	int nr_retries = MAX_RECLAIM_RETRIES;
3487

3488 3489
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3490 3491 3492

	drain_all_stock(memcg);

3493
	/* try to free all pages in this cgroup */
3494
	while (nr_retries && page_counter_read(&memcg->memory)) {
3495
		int progress;
3496

3497 3498 3499
		if (signal_pending(current))
			return -EINTR;

3500 3501
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3502
		if (!progress) {
3503
			nr_retries--;
3504
			/* maybe some writeback is necessary */
3505
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3506
		}
3507 3508

	}
3509 3510

	return 0;
3511 3512
}

3513 3514 3515
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3516
{
3517
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3518

3519 3520
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3521
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3522 3523
}

3524 3525
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3526
{
3527
	return mem_cgroup_from_css(css)->use_hierarchy;
3528 3529
}

3530 3531
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3532 3533
{
	int retval = 0;
3534
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3535
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3536

3537
	if (memcg->use_hierarchy == val)
3538
		return 0;
3539

3540
	/*
3541
	 * If parent's use_hierarchy is set, we can't make any modifications
3542 3543 3544 3545 3546 3547
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3548
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3549
				(val == 1 || val == 0)) {
3550
		if (!memcg_has_children(memcg))
3551
			memcg->use_hierarchy = val;
3552 3553 3554 3555
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3556

3557 3558 3559
	return retval;
}

3560
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3561
{
3562
	unsigned long val;
3563

3564
	if (mem_cgroup_is_root(memcg)) {
3565
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3566
			memcg_page_state(memcg, NR_ANON_MAPPED);
3567 3568
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3569
	} else {
3570
		if (!swap)
3571
			val = page_counter_read(&memcg->memory);
3572
		else
3573
			val = page_counter_read(&memcg->memsw);
3574
	}
3575
	return val;
3576 3577
}

3578 3579 3580 3581 3582 3583 3584
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3585

3586
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3587
			       struct cftype *cft)
B
Balbir Singh 已提交
3588
{
3589
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3590
	struct page_counter *counter;
3591

3592
	switch (MEMFILE_TYPE(cft->private)) {
3593
	case _MEM:
3594 3595
		counter = &memcg->memory;
		break;
3596
	case _MEMSWAP:
3597 3598
		counter = &memcg->memsw;
		break;
3599
	case _KMEM:
3600
		counter = &memcg->kmem;
3601
		break;
V
Vladimir Davydov 已提交
3602
	case _TCP:
3603
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3604
		break;
3605 3606 3607
	default:
		BUG();
	}
3608 3609 3610 3611

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3612
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3613
		if (counter == &memcg->memsw)
3614
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3615 3616
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3617
		return (u64)counter->max * PAGE_SIZE;
3618 3619 3620 3621 3622 3623 3624 3625 3626
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3627
}
3628

3629
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3630
{
3631
	unsigned long stat[MEMCG_NR_STAT] = {0};
3632 3633 3634 3635
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3636
		for (i = 0; i < MEMCG_NR_STAT; i++)
3637
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3638 3639

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3640
		for (i = 0; i < MEMCG_NR_STAT; i++)
3641 3642 3643 3644 3645 3646
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3647
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3648 3649 3650
			stat[i] = 0;

		for_each_online_cpu(cpu)
3651
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3652 3653
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3654 3655

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3656
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3657 3658 3659 3660
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3672 3673
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3674 3675 3676 3677 3678 3679

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3680
#ifdef CONFIG_MEMCG_KMEM
3681
static int memcg_online_kmem(struct mem_cgroup *memcg)
3682
{
R
Roman Gushchin 已提交
3683
	struct obj_cgroup *objcg;
3684 3685
	int memcg_id;

3686 3687 3688
	if (cgroup_memory_nokmem)
		return 0;

3689
	BUG_ON(memcg->kmemcg_id >= 0);
3690
	BUG_ON(memcg->kmem_state);
3691

3692
	memcg_id = memcg_alloc_cache_id();
3693 3694
	if (memcg_id < 0)
		return memcg_id;
3695

R
Roman Gushchin 已提交
3696 3697 3698 3699 3700 3701 3702 3703
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3704 3705
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3706
	memcg->kmemcg_id = memcg_id;
3707
	memcg->kmem_state = KMEM_ONLINE;
3708 3709

	return 0;
3710 3711
}

3712 3713 3714 3715 3716 3717 3718 3719
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3720

3721 3722 3723 3724 3725 3726
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3727
	memcg_reparent_objcgs(memcg, parent);
3728 3729 3730 3731

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3732 3733 3734 3735 3736 3737 3738 3739
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3740
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3741 3742 3743 3744 3745 3746 3747
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3748 3749
	rcu_read_unlock();

3750
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3751 3752 3753 3754 3755 3756

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3757 3758 3759
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3760
}
3761
#else
3762
static int memcg_online_kmem(struct mem_cgroup *memcg)
3763 3764 3765 3766 3767 3768 3769 3770 3771
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3772
#endif /* CONFIG_MEMCG_KMEM */
3773

3774 3775
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3776
{
3777
	int ret;
3778

3779 3780 3781
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3782
	return ret;
3783
}
3784

3785
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3786 3787 3788
{
	int ret;

3789
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3790

3791
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3792 3793 3794
	if (ret)
		goto out;

3795
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3796 3797 3798
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3799 3800 3801
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3802 3803 3804 3805 3806 3807
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3808
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3809 3810 3811 3812
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3813
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3814 3815
	}
out:
3816
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3817 3818 3819
	return ret;
}

3820 3821 3822 3823
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3824 3825
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3826
{
3827
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3828
	unsigned long nr_pages;
3829 3830
	int ret;

3831
	buf = strstrip(buf);
3832
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3833 3834
	if (ret)
		return ret;
3835

3836
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3837
	case RES_LIMIT:
3838 3839 3840 3841
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3842 3843
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3844
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3845
			break;
3846
		case _MEMSWAP:
3847
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3848
			break;
3849
		case _KMEM:
3850 3851 3852
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3853
			ret = memcg_update_kmem_max(memcg, nr_pages);
3854
			break;
V
Vladimir Davydov 已提交
3855
		case _TCP:
3856
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3857
			break;
3858
		}
3859
		break;
3860 3861 3862
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3863 3864
		break;
	}
3865
	return ret ?: nbytes;
B
Balbir Singh 已提交
3866 3867
}

3868 3869
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3870
{
3871
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3872
	struct page_counter *counter;
3873

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3884
	case _TCP:
3885
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3886
		break;
3887 3888 3889
	default:
		BUG();
	}
3890

3891
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3892
	case RES_MAX_USAGE:
3893
		page_counter_reset_watermark(counter);
3894 3895
		break;
	case RES_FAILCNT:
3896
		counter->failcnt = 0;
3897
		break;
3898 3899
	default:
		BUG();
3900
	}
3901

3902
	return nbytes;
3903 3904
}

3905
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3906 3907
					struct cftype *cft)
{
3908
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3909 3910
}

3911
#ifdef CONFIG_MMU
3912
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3913 3914
					struct cftype *cft, u64 val)
{
3915
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3916

3917
	if (val & ~MOVE_MASK)
3918
		return -EINVAL;
3919

3920
	/*
3921 3922 3923 3924
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3925
	 */
3926
	memcg->move_charge_at_immigrate = val;
3927 3928
	return 0;
}
3929
#else
3930
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3931 3932 3933 3934 3935
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3936

3937
#ifdef CONFIG_NUMA
3938 3939 3940 3941 3942 3943

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3944
				int nid, unsigned int lru_mask, bool tree)
3945
{
3946
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3947 3948 3949 3950 3951 3952 3953 3954
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3955 3956 3957 3958
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3959 3960 3961 3962 3963
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3964 3965
					     unsigned int lru_mask,
					     bool tree)
3966 3967 3968 3969 3970 3971 3972
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3973 3974 3975 3976
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3977 3978 3979 3980
	}
	return nr;
}

3981
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3982
{
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3995
	int nid;
3996
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3997

3998
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3999 4000 4001 4002 4003 4004 4005
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
4006
		seq_putc(m, '\n');
4007 4008
	}

4009
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4010 4011 4012 4013 4014 4015 4016 4017

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
4018
		seq_putc(m, '\n');
4019 4020 4021 4022 4023 4024
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4025
static const unsigned int memcg1_stats[] = {
4026
	NR_FILE_PAGES,
4027
	NR_ANON_MAPPED,
4028 4029 4030
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4041
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4042
	"rss_huge",
4043
#endif
4044 4045 4046 4047 4048 4049 4050
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4051
/* Universal VM events cgroup1 shows, original sort order */
4052
static const unsigned int memcg1_events[] = {
4053 4054 4055 4056 4057 4058
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4059
static int memcg_stat_show(struct seq_file *m, void *v)
4060
{
4061
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4062
	unsigned long memory, memsw;
4063 4064
	struct mem_cgroup *mi;
	unsigned int i;
4065

4066
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4067

4068
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4069 4070
		unsigned long nr;

4071
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4072
			continue;
4073 4074 4075 4076 4077 4078
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4079
	}
L
Lee Schermerhorn 已提交
4080

4081
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4082
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4083
			   memcg_events_local(memcg, memcg1_events[i]));
4084 4085

	for (i = 0; i < NR_LRU_LISTS; i++)
4086
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4087
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4088
			   PAGE_SIZE);
4089

K
KAMEZAWA Hiroyuki 已提交
4090
	/* Hierarchical information */
4091 4092
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4093 4094
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4095
	}
4096 4097
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4098
	if (do_memsw_account())
4099 4100
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4101

4102
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4103 4104
		unsigned long nr;

4105
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4106
			continue;
4107 4108 4109 4110 4111
		nr = memcg_page_state(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
4112
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4113
						(u64)nr * PAGE_SIZE);
4114 4115
	}

4116
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4117 4118
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4119
			   (u64)memcg_events(memcg, memcg1_events[i]));
4120

4121
	for (i = 0; i < NR_LRU_LISTS; i++)
4122
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4123 4124
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4125

K
KOSAKI Motohiro 已提交
4126 4127
#ifdef CONFIG_DEBUG_VM
	{
4128 4129
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4130 4131
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4132

4133 4134
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4135

4136 4137
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4138
		}
4139 4140
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4141 4142 4143
	}
#endif

4144 4145 4146
	return 0;
}

4147 4148
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4149
{
4150
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4151

4152
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4153 4154
}

4155 4156
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4157
{
4158
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4159

4160
	if (val > 100)
K
KOSAKI Motohiro 已提交
4161 4162
		return -EINVAL;

4163
	if (css->parent)
4164 4165 4166
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4167

K
KOSAKI Motohiro 已提交
4168 4169 4170
	return 0;
}

4171 4172 4173
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4174
	unsigned long usage;
4175 4176 4177 4178
	int i;

	rcu_read_lock();
	if (!swap)
4179
		t = rcu_dereference(memcg->thresholds.primary);
4180
	else
4181
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4182 4183 4184 4185

	if (!t)
		goto unlock;

4186
	usage = mem_cgroup_usage(memcg, swap);
4187 4188

	/*
4189
	 * current_threshold points to threshold just below or equal to usage.
4190 4191 4192
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4193
	i = t->current_threshold;
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4217
	t->current_threshold = i - 1;
4218 4219 4220 4221 4222 4223
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4224 4225
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4226
		if (do_memsw_account())
4227 4228 4229 4230
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4231 4232 4233 4234 4235 4236 4237
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4238 4239 4240 4241 4242 4243 4244
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4245 4246
}

4247
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4248 4249 4250
{
	struct mem_cgroup_eventfd_list *ev;

4251 4252
	spin_lock(&memcg_oom_lock);

4253
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4254
		eventfd_signal(ev->eventfd, 1);
4255 4256

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4257 4258 4259
	return 0;
}

4260
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4261
{
K
KAMEZAWA Hiroyuki 已提交
4262 4263
	struct mem_cgroup *iter;

4264
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4265
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4266 4267
}

4268
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4269
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4270
{
4271 4272
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4273 4274
	unsigned long threshold;
	unsigned long usage;
4275
	int i, size, ret;
4276

4277
	ret = page_counter_memparse(args, "-1", &threshold);
4278 4279 4280 4281
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4282

4283
	if (type == _MEM) {
4284
		thresholds = &memcg->thresholds;
4285
		usage = mem_cgroup_usage(memcg, false);
4286
	} else if (type == _MEMSWAP) {
4287
		thresholds = &memcg->memsw_thresholds;
4288
		usage = mem_cgroup_usage(memcg, true);
4289
	} else
4290 4291 4292
		BUG();

	/* Check if a threshold crossed before adding a new one */
4293
	if (thresholds->primary)
4294 4295
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4296
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4297 4298

	/* Allocate memory for new array of thresholds */
4299
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4300
	if (!new) {
4301 4302 4303
		ret = -ENOMEM;
		goto unlock;
	}
4304
	new->size = size;
4305 4306

	/* Copy thresholds (if any) to new array */
4307 4308 4309
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4310

4311
	/* Add new threshold */
4312 4313
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4314 4315

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4316
	sort(new->entries, size, sizeof(*new->entries),
4317 4318 4319
			compare_thresholds, NULL);

	/* Find current threshold */
4320
	new->current_threshold = -1;
4321
	for (i = 0; i < size; i++) {
4322
		if (new->entries[i].threshold <= usage) {
4323
			/*
4324 4325
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4326 4327
			 * it here.
			 */
4328
			++new->current_threshold;
4329 4330
		} else
			break;
4331 4332
	}

4333 4334 4335 4336 4337
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4338

4339
	/* To be sure that nobody uses thresholds */
4340 4341 4342 4343 4344 4345 4346 4347
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4348
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4349 4350
	struct eventfd_ctx *eventfd, const char *args)
{
4351
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4352 4353
}

4354
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4355 4356
	struct eventfd_ctx *eventfd, const char *args)
{
4357
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4358 4359
}

4360
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4361
	struct eventfd_ctx *eventfd, enum res_type type)
4362
{
4363 4364
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4365
	unsigned long usage;
4366
	int i, j, size, entries;
4367 4368

	mutex_lock(&memcg->thresholds_lock);
4369 4370

	if (type == _MEM) {
4371
		thresholds = &memcg->thresholds;
4372
		usage = mem_cgroup_usage(memcg, false);
4373
	} else if (type == _MEMSWAP) {
4374
		thresholds = &memcg->memsw_thresholds;
4375
		usage = mem_cgroup_usage(memcg, true);
4376
	} else
4377 4378
		BUG();

4379 4380 4381
	if (!thresholds->primary)
		goto unlock;

4382 4383 4384 4385
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4386
	size = entries = 0;
4387 4388
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4389
			size++;
4390 4391
		else
			entries++;
4392 4393
	}

4394
	new = thresholds->spare;
4395

4396 4397 4398 4399
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4400 4401
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4402 4403
		kfree(new);
		new = NULL;
4404
		goto swap_buffers;
4405 4406
	}

4407
	new->size = size;
4408 4409

	/* Copy thresholds and find current threshold */
4410 4411 4412
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4413 4414
			continue;

4415
		new->entries[j] = thresholds->primary->entries[i];
4416
		if (new->entries[j].threshold <= usage) {
4417
			/*
4418
			 * new->current_threshold will not be used
4419 4420 4421
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4422
			++new->current_threshold;
4423 4424 4425 4426
		}
		j++;
	}

4427
swap_buffers:
4428 4429
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4430

4431
	rcu_assign_pointer(thresholds->primary, new);
4432

4433
	/* To be sure that nobody uses thresholds */
4434
	synchronize_rcu();
4435 4436 4437 4438 4439 4440

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4441
unlock:
4442 4443
	mutex_unlock(&memcg->thresholds_lock);
}
4444

4445
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4446 4447
	struct eventfd_ctx *eventfd)
{
4448
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4449 4450
}

4451
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4452 4453
	struct eventfd_ctx *eventfd)
{
4454
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4455 4456
}

4457
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4458
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4459 4460 4461 4462 4463 4464 4465
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4466
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4467 4468 4469 4470 4471

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4472
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4473
		eventfd_signal(eventfd, 1);
4474
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4475 4476 4477 4478

	return 0;
}

4479
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4480
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4481 4482 4483
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4484
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4485

4486
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4487 4488 4489 4490 4491 4492
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4493
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4494 4495
}

4496
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4497
{
4498
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4499

4500
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4501
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4502 4503
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4504 4505 4506
	return 0;
}

4507
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4508 4509
	struct cftype *cft, u64 val)
{
4510
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4511 4512

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4513
	if (!css->parent || !((val == 0) || (val == 1)))
4514 4515
		return -EINVAL;

4516
	memcg->oom_kill_disable = val;
4517
	if (!val)
4518
		memcg_oom_recover(memcg);
4519

4520 4521 4522
	return 0;
}

4523 4524
#ifdef CONFIG_CGROUP_WRITEBACK

4525 4526
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4537 4538 4539 4540 4541
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4552 4553 4554 4555 4556 4557
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4558
	long x = atomic_long_read(&memcg->vmstats[idx]);
4559 4560 4561
	int cpu;

	for_each_online_cpu(cpu)
4562
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4563 4564 4565 4566 4567
	if (x < 0)
		x = 0;
	return x;
}

4568 4569 4570
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4571 4572
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4573 4574 4575
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4576 4577 4578
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4579
 *
4580 4581 4582 4583 4584
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4585
 */
4586 4587 4588
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4589 4590 4591 4592
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4593
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4594

4595
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4596 4597
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4598
	*pheadroom = PAGE_COUNTER_MAX;
4599 4600

	while ((parent = parent_mem_cgroup(memcg))) {
4601
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4602
					    READ_ONCE(memcg->memory.high));
4603 4604
		unsigned long used = page_counter_read(&memcg->memory);

4605
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4606 4607 4608 4609
		memcg = parent;
	}
}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4664 4665
	trace_track_foreign_dirty(page, wb);

4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4726
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4727 4728 4729 4730 4731 4732 4733
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4745 4746 4747 4748
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4749 4750
#endif	/* CONFIG_CGROUP_WRITEBACK */

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4764 4765 4766 4767 4768
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4769
static void memcg_event_remove(struct work_struct *work)
4770
{
4771 4772
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4773
	struct mem_cgroup *memcg = event->memcg;
4774 4775 4776

	remove_wait_queue(event->wqh, &event->wait);

4777
	event->unregister_event(memcg, event->eventfd);
4778 4779 4780 4781 4782 4783

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4784
	css_put(&memcg->css);
4785 4786 4787
}

/*
4788
 * Gets called on EPOLLHUP on eventfd when user closes it.
4789 4790 4791
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4792
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4793
			    int sync, void *key)
4794
{
4795 4796
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4797
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4798
	__poll_t flags = key_to_poll(key);
4799

4800
	if (flags & EPOLLHUP) {
4801 4802 4803 4804 4805 4806 4807 4808 4809
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4810
		spin_lock(&memcg->event_list_lock);
4811 4812 4813 4814 4815 4816 4817 4818
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4819
		spin_unlock(&memcg->event_list_lock);
4820 4821 4822 4823 4824
	}

	return 0;
}

4825
static void memcg_event_ptable_queue_proc(struct file *file,
4826 4827
		wait_queue_head_t *wqh, poll_table *pt)
{
4828 4829
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4830 4831 4832 4833 4834 4835

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4836 4837
 * DO NOT USE IN NEW FILES.
 *
4838 4839 4840 4841 4842
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4843 4844
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4845
{
4846
	struct cgroup_subsys_state *css = of_css(of);
4847
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4848
	struct mem_cgroup_event *event;
4849 4850 4851 4852
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4853
	const char *name;
4854 4855 4856
	char *endp;
	int ret;

4857 4858 4859
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4860 4861
	if (*endp != ' ')
		return -EINVAL;
4862
	buf = endp + 1;
4863

4864
	cfd = simple_strtoul(buf, &endp, 10);
4865 4866
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4867
	buf = endp + 1;
4868 4869 4870 4871 4872

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4873
	event->memcg = memcg;
4874
	INIT_LIST_HEAD(&event->list);
4875 4876 4877
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4903 4904 4905 4906 4907
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4908 4909
	 *
	 * DO NOT ADD NEW FILES.
4910
	 */
A
Al Viro 已提交
4911
	name = cfile.file->f_path.dentry->d_name.name;
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4923 4924
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4925 4926 4927 4928 4929
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4930
	/*
4931 4932 4933
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4934
	 */
A
Al Viro 已提交
4935
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4936
					       &memory_cgrp_subsys);
4937
	ret = -EINVAL;
4938
	if (IS_ERR(cfile_css))
4939
		goto out_put_cfile;
4940 4941
	if (cfile_css != css) {
		css_put(cfile_css);
4942
		goto out_put_cfile;
4943
	}
4944

4945
	ret = event->register_event(memcg, event->eventfd, buf);
4946 4947 4948
	if (ret)
		goto out_put_css;

4949
	vfs_poll(efile.file, &event->pt);
4950

4951 4952 4953
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4954 4955 4956 4957

	fdput(cfile);
	fdput(efile);

4958
	return nbytes;
4959 4960

out_put_css:
4961
	css_put(css);
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4974
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4975
	{
4976
		.name = "usage_in_bytes",
4977
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4978
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4979
	},
4980 4981
	{
		.name = "max_usage_in_bytes",
4982
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4983
		.write = mem_cgroup_reset,
4984
		.read_u64 = mem_cgroup_read_u64,
4985
	},
B
Balbir Singh 已提交
4986
	{
4987
		.name = "limit_in_bytes",
4988
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4989
		.write = mem_cgroup_write,
4990
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4991
	},
4992 4993 4994
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4995
		.write = mem_cgroup_write,
4996
		.read_u64 = mem_cgroup_read_u64,
4997
	},
B
Balbir Singh 已提交
4998 4999
	{
		.name = "failcnt",
5000
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5001
		.write = mem_cgroup_reset,
5002
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5003
	},
5004 5005
	{
		.name = "stat",
5006
		.seq_show = memcg_stat_show,
5007
	},
5008 5009
	{
		.name = "force_empty",
5010
		.write = mem_cgroup_force_empty_write,
5011
	},
5012 5013 5014 5015 5016
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5017
	{
5018
		.name = "cgroup.event_control",		/* XXX: for compat */
5019
		.write = memcg_write_event_control,
5020
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5021
	},
K
KOSAKI Motohiro 已提交
5022 5023 5024 5025 5026
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5027 5028 5029 5030 5031
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5032 5033
	{
		.name = "oom_control",
5034
		.seq_show = mem_cgroup_oom_control_read,
5035
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5036 5037
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5038 5039 5040
	{
		.name = "pressure_level",
	},
5041 5042 5043
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5044
		.seq_show = memcg_numa_stat_show,
5045 5046
	},
#endif
5047 5048 5049
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5050
		.write = mem_cgroup_write,
5051
		.read_u64 = mem_cgroup_read_u64,
5052 5053 5054 5055
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5056
		.read_u64 = mem_cgroup_read_u64,
5057 5058 5059 5060
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5061
		.write = mem_cgroup_reset,
5062
		.read_u64 = mem_cgroup_read_u64,
5063 5064 5065 5066
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5067
		.write = mem_cgroup_reset,
5068
		.read_u64 = mem_cgroup_read_u64,
5069
	},
5070 5071
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5072 5073
	{
		.name = "kmem.slabinfo",
5074
		.seq_show = memcg_slab_show,
5075 5076
	},
#endif
V
Vladimir Davydov 已提交
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5100
	{ },	/* terminate */
5101
};
5102

5103 5104 5105 5106 5107 5108 5109 5110
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5111
 * However, there usually are many references to the offline CSS after
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5129 5130 5131 5132 5133 5134 5135 5136
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5137 5138
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5139
{
5140
	refcount_add(n, &memcg->id.ref);
5141 5142
}

5143
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5144
{
5145
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5146
		mem_cgroup_id_remove(memcg);
5147 5148 5149 5150 5151 5152

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5153 5154 5155 5156 5157
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5170
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5171 5172
{
	struct mem_cgroup_per_node *pn;
5173
	int tmp = node;
5174 5175 5176 5177 5178 5179 5180 5181
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5182 5183
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5184
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5185 5186
	if (!pn)
		return 1;
5187

5188 5189
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5190 5191 5192 5193 5194
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5195 5196
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
					       GFP_KERNEL_ACCOUNT);
5197
	if (!pn->lruvec_stat_cpu) {
5198
		free_percpu(pn->lruvec_stat_local);
5199 5200 5201 5202
		kfree(pn);
		return 1;
	}

5203 5204 5205 5206 5207
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5208
	memcg->nodeinfo[node] = pn;
5209 5210 5211
	return 0;
}

5212
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5213
{
5214 5215
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5216 5217 5218
	if (!pn)
		return;

5219
	free_percpu(pn->lruvec_stat_cpu);
5220
	free_percpu(pn->lruvec_stat_local);
5221
	kfree(pn);
5222 5223
}

5224
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5225
{
5226
	int node;
5227

5228
	for_each_node(node)
5229
		free_mem_cgroup_per_node_info(memcg, node);
5230
	free_percpu(memcg->vmstats_percpu);
5231
	free_percpu(memcg->vmstats_local);
5232
	kfree(memcg);
5233
}
5234

5235 5236 5237
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5238 5239 5240 5241
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5242
	memcg_flush_percpu_vmstats(memcg);
5243
	memcg_flush_percpu_vmevents(memcg);
5244 5245 5246
	__mem_cgroup_free(memcg);
}

5247
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5248
{
5249
	struct mem_cgroup *memcg;
5250
	unsigned int size;
5251
	int node;
5252
	int __maybe_unused i;
5253
	long error = -ENOMEM;
B
Balbir Singh 已提交
5254

5255 5256 5257 5258
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5259
	if (!memcg)
5260
		return ERR_PTR(error);
5261

5262 5263 5264
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5265 5266
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5267
		goto fail;
5268
	}
5269

5270 5271
	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5272 5273 5274
	if (!memcg->vmstats_local)
		goto fail;

5275 5276
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5277
	if (!memcg->vmstats_percpu)
5278
		goto fail;
5279

B
Bob Liu 已提交
5280
	for_each_node(node)
5281
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5282
			goto fail;
5283

5284 5285
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5286

5287
	INIT_WORK(&memcg->high_work, high_work_func);
5288 5289 5290
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5291
	vmpressure_init(&memcg->vmpressure);
5292 5293
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5294
	memcg->socket_pressure = jiffies;
5295
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5296
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5297
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5298
#endif
5299 5300
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5301 5302 5303
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5304 5305 5306 5307 5308
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5309
#endif
5310
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5311 5312
	return memcg;
fail:
5313
	mem_cgroup_id_remove(memcg);
5314
	__mem_cgroup_free(memcg);
5315
	return ERR_PTR(error);
5316 5317
}

5318 5319
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5320
{
5321
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5322
	struct mem_cgroup *memcg, *old_memcg;
5323
	long error = -ENOMEM;
5324

5325
	old_memcg = set_active_memcg(parent);
5326
	memcg = mem_cgroup_alloc();
5327
	set_active_memcg(old_memcg);
5328 5329
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5330

5331
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5332
	memcg->soft_limit = PAGE_COUNTER_MAX;
5333
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5334 5335 5336 5337
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
5338 5339 5340 5341 5342 5343
	if (!parent) {
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
	} else if (parent->use_hierarchy) {
5344
		memcg->use_hierarchy = true;
5345
		page_counter_init(&memcg->memory, &parent->memory);
5346
		page_counter_init(&memcg->swap, &parent->swap);
5347
		page_counter_init(&memcg->kmem, &parent->kmem);
5348
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5349
	} else {
5350 5351 5352 5353
		page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
		page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
		page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
		page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5354 5355 5356 5357 5358
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5359
		if (parent != root_mem_cgroup)
5360
			memory_cgrp_subsys.broken_hierarchy = true;
5361
	}
5362

5363 5364 5365 5366 5367 5368
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5369
	error = memcg_online_kmem(memcg);
5370 5371
	if (error)
		goto fail;
5372

5373
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5374
		static_branch_inc(&memcg_sockets_enabled_key);
5375

5376 5377
	return &memcg->css;
fail:
5378
	mem_cgroup_id_remove(memcg);
5379
	mem_cgroup_free(memcg);
5380
	return ERR_PTR(error);
5381 5382
}

5383
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5384
{
5385 5386
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5397
	/* Online state pins memcg ID, memcg ID pins CSS */
5398
	refcount_set(&memcg->id.ref, 1);
5399
	css_get(css);
5400
	return 0;
B
Balbir Singh 已提交
5401 5402
}

5403
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5404
{
5405
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5406
	struct mem_cgroup_event *event, *tmp;
5407 5408 5409 5410 5411 5412

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5413 5414
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5415 5416 5417
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5418
	spin_unlock(&memcg->event_list_lock);
5419

R
Roman Gushchin 已提交
5420
	page_counter_set_min(&memcg->memory, 0);
5421
	page_counter_set_low(&memcg->memory, 0);
5422

5423
	memcg_offline_kmem(memcg);
5424
	wb_memcg_offline(memcg);
5425

5426 5427
	drain_all_stock(memcg);

5428
	mem_cgroup_id_put(memcg);
5429 5430
}

5431 5432 5433 5434 5435 5436 5437
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5438
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5439
{
5440
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5441
	int __maybe_unused i;
5442

5443 5444 5445 5446
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5447
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5448
		static_branch_dec(&memcg_sockets_enabled_key);
5449

5450
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5451
		static_branch_dec(&memcg_sockets_enabled_key);
5452

5453 5454 5455
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5456
	memcg_free_shrinker_maps(memcg);
5457
	memcg_free_kmem(memcg);
5458
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5459 5460
}

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5478 5479 5480 5481
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5482
	page_counter_set_min(&memcg->memory, 0);
5483
	page_counter_set_low(&memcg->memory, 0);
5484
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5485
	memcg->soft_limit = PAGE_COUNTER_MAX;
5486
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5487
	memcg_wb_domain_size_changed(memcg);
5488 5489
}

5490
#ifdef CONFIG_MMU
5491
/* Handlers for move charge at task migration. */
5492
static int mem_cgroup_do_precharge(unsigned long count)
5493
{
5494
	int ret;
5495

5496 5497
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5498
	if (!ret) {
5499 5500 5501
		mc.precharge += count;
		return ret;
	}
5502

5503
	/* Try charges one by one with reclaim, but do not retry */
5504
	while (count--) {
5505
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5506 5507
		if (ret)
			return ret;
5508
		mc.precharge++;
5509
		cond_resched();
5510
	}
5511
	return 0;
5512 5513 5514 5515
}

union mc_target {
	struct page	*page;
5516
	swp_entry_t	ent;
5517 5518 5519
};

enum mc_target_type {
5520
	MC_TARGET_NONE = 0,
5521
	MC_TARGET_PAGE,
5522
	MC_TARGET_SWAP,
5523
	MC_TARGET_DEVICE,
5524 5525
};

D
Daisuke Nishimura 已提交
5526 5527
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5528
{
5529
	struct page *page = vm_normal_page(vma, addr, ptent);
5530

D
Daisuke Nishimura 已提交
5531 5532 5533
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5534
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5535
			return NULL;
5536 5537 5538 5539
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5540 5541 5542 5543 5544 5545
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5546
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5547
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5548
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5549 5550 5551 5552
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5553
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5554
		return NULL;
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5572 5573 5574
	if (non_swap_entry(ent))
		return NULL;

5575 5576 5577 5578
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5579
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5580
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5581 5582 5583

	return page;
}
5584 5585
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5586
			pte_t ptent, swp_entry_t *entry)
5587 5588 5589 5590
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5591

5592 5593 5594 5595 5596
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5597
	if (!(mc.flags & MOVE_FILE))
5598 5599 5600
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5601
	/* shmem/tmpfs may report page out on swap: account for that too. */
5602 5603
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5604 5605
}

5606 5607 5608
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5609
 * @compound: charge the page as compound or small page
5610 5611 5612
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5613
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5614 5615 5616 5617 5618
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5619
				   bool compound,
5620 5621 5622
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5623 5624
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5625
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5626 5627 5628 5629
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5630
	VM_BUG_ON(compound && !PageTransHuge(page));
5631 5632

	/*
5633
	 * Prevent mem_cgroup_migrate() from looking at
5634
	 * page->mem_cgroup of its source page while we change it.
5635
	 */
5636
	ret = -EBUSY;
5637 5638 5639 5640 5641 5642 5643
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5644
	pgdat = page_pgdat(page);
5645 5646
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5647

5648
	lock_page_memcg(page);
5649

5650 5651 5652 5653
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5654 5655 5656 5657 5658 5659 5660
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5661 5662
		}
	} else {
5663 5664 5665 5666 5667 5668 5669 5670
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5671 5672 5673 5674
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5675

5676 5677
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5678

5679
			if (mapping_can_writeback(mapping)) {
5680 5681 5682 5683 5684
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5685 5686 5687
		}
	}

5688
	if (PageWriteback(page)) {
5689 5690
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5691 5692 5693
	}

	/*
5694 5695
	 * All state has been migrated, let's switch to the new memcg.
	 *
5696
	 * It is safe to change page->mem_cgroup here because the page
5697 5698 5699 5700 5701 5702 5703 5704
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5705
	 */
5706
	smp_mb();
5707

5708 5709 5710 5711
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5712

5713
	__unlock_page_memcg(from);
5714 5715 5716 5717

	ret = 0;

	local_irq_disable();
5718
	mem_cgroup_charge_statistics(to, page, nr_pages);
5719
	memcg_check_events(to, page);
5720
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5721 5722 5723 5724 5725 5726 5727 5728
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5744 5745
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5746 5747 5748
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5749 5750
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5751 5752 5753 5754
 *
 * Called with pte lock held.
 */

5755
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5756 5757 5758
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5759
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5760 5761 5762 5763 5764
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5765
		page = mc_handle_swap_pte(vma, ptent, &ent);
5766
	else if (pte_none(ptent))
5767
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5768 5769

	if (!page && !ent.val)
5770
		return ret;
5771 5772
	if (page) {
		/*
5773
		 * Do only loose check w/o serialization.
5774
		 * mem_cgroup_move_account() checks the page is valid or
5775
		 * not under LRU exclusion.
5776
		 */
5777
		if (page->mem_cgroup == mc.from) {
5778
			ret = MC_TARGET_PAGE;
5779
			if (is_device_private_page(page))
5780
				ret = MC_TARGET_DEVICE;
5781 5782 5783 5784 5785 5786
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5787 5788 5789 5790 5791
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5792
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5793 5794 5795
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5796 5797 5798 5799
	}
	return ret;
}

5800 5801
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5802 5803
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5804 5805 5806 5807 5808 5809 5810 5811
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5812 5813 5814 5815 5816
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5817
	page = pmd_page(pmd);
5818
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5819
	if (!(mc.flags & MOVE_ANON))
5820
		return ret;
5821
	if (page->mem_cgroup == mc.from) {
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5838 5839 5840 5841
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5842
	struct vm_area_struct *vma = walk->vma;
5843 5844 5845
	pte_t *pte;
	spinlock_t *ptl;

5846 5847
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5848 5849
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5850 5851
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5852
		 */
5853 5854
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5855
		spin_unlock(ptl);
5856
		return 0;
5857
	}
5858

5859 5860
	if (pmd_trans_unstable(pmd))
		return 0;
5861 5862
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5863
		if (get_mctgt_type(vma, addr, *pte, NULL))
5864 5865 5866 5867
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5868 5869 5870
	return 0;
}

5871 5872 5873 5874
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5875 5876 5877 5878
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5879
	mmap_read_lock(mm);
5880
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5881
	mmap_read_unlock(mm);
5882 5883 5884 5885 5886 5887 5888 5889 5890

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5891 5892 5893 5894 5895
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5896 5897
}

5898 5899
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5900
{
5901 5902 5903
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5904
	/* we must uncharge all the leftover precharges from mc.to */
5905
	if (mc.precharge) {
5906
		cancel_charge(mc.to, mc.precharge);
5907 5908 5909 5910 5911 5912 5913
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5914
		cancel_charge(mc.from, mc.moved_charge);
5915
		mc.moved_charge = 0;
5916
	}
5917 5918 5919
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5920
		if (!mem_cgroup_is_root(mc.from))
5921
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5922

5923 5924
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5925
		/*
5926 5927
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5928
		 */
5929
		if (!mem_cgroup_is_root(mc.to))
5930 5931
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5932 5933
		mc.moved_swap = 0;
	}
5934 5935 5936 5937 5938 5939 5940
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5941 5942
	struct mm_struct *mm = mc.mm;

5943 5944 5945 5946 5947 5948
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5949
	spin_lock(&mc.lock);
5950 5951
	mc.from = NULL;
	mc.to = NULL;
5952
	mc.mm = NULL;
5953
	spin_unlock(&mc.lock);
5954 5955

	mmput(mm);
5956 5957
}

5958
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5959
{
5960
	struct cgroup_subsys_state *css;
5961
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5962
	struct mem_cgroup *from;
5963
	struct task_struct *leader, *p;
5964
	struct mm_struct *mm;
5965
	unsigned long move_flags;
5966
	int ret = 0;
5967

5968 5969
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5970 5971
		return 0;

5972 5973 5974 5975 5976 5977 5978
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5979
	cgroup_taskset_for_each_leader(leader, css, tset) {
5980 5981
		WARN_ON_ONCE(p);
		p = leader;
5982
		memcg = mem_cgroup_from_css(css);
5983 5984 5985 5986
	}
	if (!p)
		return 0;

5987 5988 5989 5990 5991 5992 5993 5994 5995
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
6012
		mc.mm = mm;
6013 6014 6015 6016 6017 6018 6019 6020 6021
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
6022 6023
	} else {
		mmput(mm);
6024 6025 6026 6027
	}
	return ret;
}

6028
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6029
{
6030 6031
	if (mc.to)
		mem_cgroup_clear_mc();
6032 6033
}

6034 6035 6036
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6037
{
6038
	int ret = 0;
6039
	struct vm_area_struct *vma = walk->vma;
6040 6041
	pte_t *pte;
	spinlock_t *ptl;
6042 6043 6044
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6045

6046 6047
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6048
		if (mc.precharge < HPAGE_PMD_NR) {
6049
			spin_unlock(ptl);
6050 6051 6052 6053 6054 6055
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6056
				if (!mem_cgroup_move_account(page, true,
6057
							     mc.from, mc.to)) {
6058 6059 6060 6061 6062 6063
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6064 6065 6066 6067 6068 6069 6070 6071
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6072
		}
6073
		spin_unlock(ptl);
6074
		return 0;
6075 6076
	}

6077 6078
	if (pmd_trans_unstable(pmd))
		return 0;
6079 6080 6081 6082
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6083
		bool device = false;
6084
		swp_entry_t ent;
6085 6086 6087 6088

		if (!mc.precharge)
			break;

6089
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6090 6091
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6092
			fallthrough;
6093 6094
		case MC_TARGET_PAGE:
			page = target.page;
6095 6096 6097 6098 6099 6100 6101 6102
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6103
			if (!device && isolate_lru_page(page))
6104
				goto put;
6105 6106
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6107
				mc.precharge--;
6108 6109
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6110
			}
6111 6112
			if (!device)
				putback_lru_page(page);
6113
put:			/* get_mctgt_type() gets the page */
6114 6115
			put_page(page);
			break;
6116 6117
		case MC_TARGET_SWAP:
			ent = target.ent;
6118
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6119
				mc.precharge--;
6120 6121
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6122 6123
				mc.moved_swap++;
			}
6124
			break;
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6139
		ret = mem_cgroup_do_precharge(1);
6140 6141 6142 6143 6144 6145 6146
		if (!ret)
			goto retry;
	}

	return ret;
}

6147 6148 6149 6150
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6151
static void mem_cgroup_move_charge(void)
6152 6153
{
	lru_add_drain_all();
6154
	/*
6155 6156 6157
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6158 6159 6160
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6161
retry:
6162
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6163
		/*
6164
		 * Someone who are holding the mmap_lock might be waiting in
6165 6166 6167 6168 6169 6170 6171 6172 6173
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6174 6175 6176 6177
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6178 6179
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6180

6181
	mmap_read_unlock(mc.mm);
6182
	atomic_dec(&mc.from->moving_account);
6183 6184
}

6185
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6186
{
6187 6188
	if (mc.to) {
		mem_cgroup_move_charge();
6189
		mem_cgroup_clear_mc();
6190
	}
B
Balbir Singh 已提交
6191
}
6192
#else	/* !CONFIG_MMU */
6193
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6194 6195 6196
{
	return 0;
}
6197
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6198 6199
{
}
6200
static void mem_cgroup_move_task(void)
6201 6202 6203
{
}
#endif
B
Balbir Singh 已提交
6204

6205 6206
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6207 6208
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6209
 */
6210
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6211 6212
{
	/*
6213
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6214 6215 6216
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6217
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6218 6219 6220
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
6221 6222
}

6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6233 6234 6235
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6236 6237 6238
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6239 6240
}

R
Roman Gushchin 已提交
6241 6242
static int memory_min_show(struct seq_file *m, void *v)
{
6243 6244
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6264 6265
static int memory_low_show(struct seq_file *m, void *v)
{
6266 6267
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6278
	err = page_counter_memparse(buf, "max", &low);
6279 6280 6281
	if (err)
		return err;

6282
	page_counter_set_low(&memcg->memory, low);
6283 6284 6285 6286 6287 6288

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6289 6290
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6291 6292 6293 6294 6295 6296
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6297
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6298
	bool drained = false;
6299 6300 6301 6302
	unsigned long high;
	int err;

	buf = strstrip(buf);
6303
	err = page_counter_memparse(buf, "max", &high);
6304 6305 6306
	if (err)
		return err;

6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6329

6330 6331
	page_counter_set_high(&memcg->memory, high);

6332 6333
	memcg_wb_domain_size_changed(memcg);

6334 6335 6336 6337 6338
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6339 6340
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6341 6342 6343 6344 6345 6346
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6347
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6348
	bool drained = false;
6349 6350 6351 6352
	unsigned long max;
	int err;

	buf = strstrip(buf);
6353
	err = page_counter_memparse(buf, "max", &max);
6354 6355 6356
	if (err)
		return err;

6357
	xchg(&memcg->memory.max, max);
6358 6359 6360 6361 6362 6363 6364

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6365
		if (signal_pending(current))
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6381
		memcg_memory_event(memcg, MEMCG_OOM);
6382 6383 6384
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6385

6386
	memcg_wb_domain_size_changed(memcg);
6387 6388 6389
	return nbytes;
}

6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6400 6401
static int memory_events_show(struct seq_file *m, void *v)
{
6402
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6403

6404 6405 6406 6407 6408 6409 6410
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6411

6412
	__memory_events_show(m, memcg->memory_events_local);
6413 6414 6415
	return 0;
}

6416 6417
static int memory_stat_show(struct seq_file *m, void *v)
{
6418
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6419
	char *buf;
6420

6421 6422 6423 6424 6425
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6426 6427 6428
	return 0;
}

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
#ifdef CONFIG_NUMA
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
			size = lruvec_page_state(lruvec, memory_stats[i].idx);
			size *= memory_stats[i].ratio;
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6458 6459
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6460
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6489 6490 6491
static struct cftype memory_files[] = {
	{
		.name = "current",
6492
		.flags = CFTYPE_NOT_ON_ROOT,
6493 6494
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6495 6496 6497 6498 6499 6500
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6522
		.file_offset = offsetof(struct mem_cgroup, events_file),
6523 6524
		.seq_show = memory_events_show,
	},
6525 6526 6527 6528 6529 6530
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6531 6532 6533 6534
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6535 6536 6537 6538 6539 6540
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6541 6542 6543 6544 6545 6546
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6547 6548 6549
	{ }	/* terminate */
};

6550
struct cgroup_subsys memory_cgrp_subsys = {
6551
	.css_alloc = mem_cgroup_css_alloc,
6552
	.css_online = mem_cgroup_css_online,
6553
	.css_offline = mem_cgroup_css_offline,
6554
	.css_released = mem_cgroup_css_released,
6555
	.css_free = mem_cgroup_css_free,
6556
	.css_reset = mem_cgroup_css_reset,
6557 6558
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6559
	.post_attach = mem_cgroup_move_task,
6560
	.bind = mem_cgroup_bind,
6561 6562
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6563
	.early_init = 0,
B
Balbir Singh 已提交
6564
};
6565

6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6608 6609
 */
static unsigned long effective_protection(unsigned long usage,
6610
					  unsigned long parent_usage,
6611 6612 6613 6614 6615
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6616
	unsigned long ep;
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6660 6661 6662 6663
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6664 6665 6666
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6667 6668 6669
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6680 6681
}

6682
/**
R
Roman Gushchin 已提交
6683
 * mem_cgroup_protected - check if memory consumption is in the normal range
6684
 * @root: the top ancestor of the sub-tree being checked
6685 6686
 * @memcg: the memory cgroup to check
 *
6687 6688
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6689
 */
6690 6691
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6692
{
6693
	unsigned long usage, parent_usage;
6694 6695
	struct mem_cgroup *parent;

6696
	if (mem_cgroup_disabled())
6697
		return;
6698

6699 6700
	if (!root)
		root = root_mem_cgroup;
6701 6702 6703 6704 6705 6706 6707 6708

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6709
	if (memcg == root)
6710
		return;
6711

6712
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6713
	if (!usage)
6714
		return;
R
Roman Gushchin 已提交
6715 6716

	parent = parent_mem_cgroup(memcg);
6717 6718
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6719
		return;
6720

6721
	if (parent == root) {
6722
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6723
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6724
		return;
R
Roman Gushchin 已提交
6725 6726
	}

6727 6728
	parent_usage = page_counter_read(&parent->memory);

6729
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6730 6731
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6732
			atomic_long_read(&parent->memory.children_min_usage)));
6733

6734
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6735 6736
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6737
			atomic_long_read(&parent->memory.children_low_usage)));
6738 6739
}

6740
/**
6741
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6742 6743 6744 6745 6746 6747 6748
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6749
 * Returns 0 on success. Otherwise, an error code is returned.
6750
 */
6751
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6752
{
6753
	unsigned int nr_pages = thp_nr_pages(page);
6754 6755 6756 6757 6758 6759 6760
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6761 6762 6763
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6764 6765 6766
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6767 6768
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6769 6770
		 * in turn serializes uncharging.
		 */
6771
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6772
		if (compound_head(page)->mem_cgroup)
6773
			goto out;
6774

6775 6776 6777 6778 6779 6780
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6781 6782 6783 6784 6785 6786
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6787 6788
	if (ret)
		goto out_put;
6789

6790
	css_get(&memcg->css);
6791
	commit_charge(page, memcg);
6792 6793

	local_irq_disable();
6794
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6795 6796
	memcg_check_events(memcg, page);
	local_irq_enable();
6797

6798
	if (PageSwapCache(page)) {
6799 6800 6801 6802 6803 6804
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6805
		mem_cgroup_uncharge_swap(entry, nr_pages);
6806 6807
	}

6808 6809 6810 6811
out_put:
	css_put(&memcg->css);
out:
	return ret;
6812 6813
}

6814 6815
struct uncharge_gather {
	struct mem_cgroup *memcg;
6816
	unsigned long nr_pages;
6817 6818 6819 6820 6821 6822
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6823
{
6824 6825 6826 6827 6828
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6829 6830
	unsigned long flags;

6831
	if (!mem_cgroup_is_root(ug->memcg)) {
6832
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6833
		if (do_memsw_account())
6834
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6835 6836 6837
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6838
	}
6839 6840

	local_irq_save(flags);
6841
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6842
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6843
	memcg_check_events(ug->memcg, ug->dummy_page);
6844
	local_irq_restore(flags);
6845 6846 6847

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6848 6849 6850 6851
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6852 6853
	unsigned long nr_pages;

6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
6871 6872 6873

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
6874 6875
	}

6876 6877
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6878

6879
	if (!PageKmemcg(page)) {
6880 6881
		ug->pgpgout++;
	} else {
6882
		ug->nr_kmem += nr_pages;
6883 6884 6885 6886 6887
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6888
	css_put(&ug->memcg->css);
6889 6890 6891 6892
}

static void uncharge_list(struct list_head *page_list)
{
6893
	struct uncharge_gather ug;
6894
	struct list_head *next;
6895 6896

	uncharge_gather_clear(&ug);
6897

6898 6899 6900 6901
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6902 6903
	next = page_list->next;
	do {
6904 6905
		struct page *page;

6906 6907 6908
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6909
		uncharge_page(page, &ug);
6910 6911
	} while (next != page_list);

6912 6913
	if (ug.memcg)
		uncharge_batch(&ug);
6914 6915
}

6916 6917 6918 6919
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6920
 * Uncharge a page previously charged with mem_cgroup_charge().
6921 6922 6923
 */
void mem_cgroup_uncharge(struct page *page)
{
6924 6925
	struct uncharge_gather ug;

6926 6927 6928
	if (mem_cgroup_disabled())
		return;

6929
	/* Don't touch page->lru of any random page, pre-check: */
6930
	if (!page->mem_cgroup)
6931 6932
		return;

6933 6934 6935
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6936
}
6937

6938 6939 6940 6941 6942
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6943
 * mem_cgroup_charge().
6944 6945 6946 6947 6948
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6949

6950 6951
	if (!list_empty(page_list))
		uncharge_list(page_list);
6952 6953 6954
}

/**
6955 6956 6957
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6958
 *
6959 6960
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6961 6962 6963
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6964
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6965
{
6966
	struct mem_cgroup *memcg;
6967
	unsigned int nr_pages;
6968
	unsigned long flags;
6969 6970 6971 6972

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6973 6974
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6975 6976 6977 6978 6979

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6980
	if (newpage->mem_cgroup)
6981 6982
		return;

6983
	/* Swapcache readahead pages can get replaced before being charged */
6984
	memcg = oldpage->mem_cgroup;
6985
	if (!memcg)
6986 6987
		return;

6988
	/* Force-charge the new page. The old one will be freed soon */
6989
	nr_pages = thp_nr_pages(newpage);
6990 6991 6992 6993

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6994

6995
	css_get(&memcg->css);
6996
	commit_charge(newpage, memcg);
6997

6998
	local_irq_save(flags);
6999
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7000
	memcg_check_events(memcg, newpage);
7001
	local_irq_restore(flags);
7002 7003
}

7004
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7005 7006
EXPORT_SYMBOL(memcg_sockets_enabled_key);

7007
void mem_cgroup_sk_alloc(struct sock *sk)
7008 7009 7010
{
	struct mem_cgroup *memcg;

7011 7012 7013
	if (!mem_cgroup_sockets_enabled)
		return;

7014 7015 7016 7017
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

7018 7019
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
7020 7021
	if (memcg == root_mem_cgroup)
		goto out;
7022
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7023
		goto out;
S
Shakeel Butt 已提交
7024
	if (css_tryget(&memcg->css))
7025
		sk->sk_memcg = memcg;
7026
out:
7027 7028 7029
	rcu_read_unlock();
}

7030
void mem_cgroup_sk_free(struct sock *sk)
7031
{
7032 7033
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7046
	gfp_t gfp_mask = GFP_KERNEL;
7047

7048
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7049
		struct page_counter *fail;
7050

7051 7052
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7053 7054
			return true;
		}
7055 7056
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
7057
		return false;
7058
	}
7059

7060 7061 7062 7063
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7064
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7065

7066 7067 7068 7069
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7070 7071 7072 7073 7074
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7075 7076
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7077 7078 7079
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7080
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7081
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7082 7083
		return;
	}
7084

7085
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7086

7087
	refill_stock(memcg, nr_pages);
7088 7089
}

7090 7091 7092 7093 7094 7095 7096 7097 7098
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7099 7100
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7101 7102 7103 7104
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7105

7106
/*
7107 7108
 * subsys_initcall() for memory controller.
 *
7109 7110 7111 7112
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7113 7114 7115
 */
static int __init mem_cgroup_init(void)
{
7116 7117
	int cpu, node;

7118 7119
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7131
		rtpn->rb_root = RB_ROOT;
7132
		rtpn->rb_rightmost = NULL;
7133
		spin_lock_init(&rtpn->lock);
7134 7135 7136
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7137 7138 7139
	return 0;
}
subsys_initcall(mem_cgroup_init);
7140 7141

#ifdef CONFIG_MEMCG_SWAP
7142 7143
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7144
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7160 7161 7162 7163 7164 7165 7166 7167 7168
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7169
	struct mem_cgroup *memcg, *swap_memcg;
7170
	unsigned int nr_entries;
7171 7172 7173 7174 7175
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7176
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7177 7178 7179 7180 7181 7182 7183 7184
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7185 7186 7187 7188 7189 7190
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7191
	nr_entries = thp_nr_pages(page);
7192 7193 7194 7195 7196
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7197
	VM_BUG_ON_PAGE(oldid, page);
7198
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7199 7200 7201 7202

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7203
		page_counter_uncharge(&memcg->memory, nr_entries);
7204

7205
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7206
		if (!mem_cgroup_is_root(swap_memcg))
7207 7208
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7209 7210
	}

7211 7212
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7213
	 * i_pages lock which is taken with interrupts-off. It is
7214
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7215
	 * only synchronisation we have for updating the per-CPU variables.
7216 7217
	 */
	VM_BUG_ON(!irqs_disabled());
7218
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7219
	memcg_check_events(memcg, page);
7220

7221
	css_put(&memcg->css);
7222 7223
}

7224 7225
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7226 7227 7228
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7229
 * Try to charge @page's memcg for the swap space at @entry.
7230 7231 7232 7233 7234
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7235
	unsigned int nr_pages = thp_nr_pages(page);
7236
	struct page_counter *counter;
7237
	struct mem_cgroup *memcg;
7238 7239
	unsigned short oldid;

7240
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7241 7242 7243 7244 7245 7246 7247 7248
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7249 7250
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7251
		return 0;
7252
	}
7253

7254 7255
	memcg = mem_cgroup_id_get_online(memcg);

7256
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7257
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7258 7259
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7260
		mem_cgroup_id_put(memcg);
7261
		return -ENOMEM;
7262
	}
7263

7264 7265 7266 7267
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7268
	VM_BUG_ON_PAGE(oldid, page);
7269
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7270 7271 7272 7273

	return 0;
}

7274
/**
7275
 * mem_cgroup_uncharge_swap - uncharge swap space
7276
 * @entry: swap entry to uncharge
7277
 * @nr_pages: the amount of swap space to uncharge
7278
 */
7279
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7280 7281 7282 7283
{
	struct mem_cgroup *memcg;
	unsigned short id;

7284
	id = swap_cgroup_record(entry, 0, nr_pages);
7285
	rcu_read_lock();
7286
	memcg = mem_cgroup_from_id(id);
7287
	if (memcg) {
7288
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7289
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7290
				page_counter_uncharge(&memcg->swap, nr_pages);
7291
			else
7292
				page_counter_uncharge(&memcg->memsw, nr_pages);
7293
		}
7294
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7295
		mem_cgroup_id_put_many(memcg, nr_pages);
7296 7297 7298 7299
	}
	rcu_read_unlock();
}

7300 7301 7302 7303
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7304
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7305 7306 7307
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7308
				      READ_ONCE(memcg->swap.max) -
7309 7310 7311 7312
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7313 7314 7315 7316 7317 7318 7319 7320
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7321
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7322 7323 7324 7325 7326 7327
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7328 7329 7330 7331 7332
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7333
			return true;
7334
	}
7335 7336 7337 7338

	return false;
}

7339
static int __init setup_swap_account(char *s)
7340 7341
{
	if (!strcmp(s, "1"))
7342
		cgroup_memory_noswap = 0;
7343
	else if (!strcmp(s, "0"))
7344
		cgroup_memory_noswap = 1;
7345 7346
	return 1;
}
7347
__setup("swapaccount=", setup_swap_account);
7348

7349 7350 7351 7352 7353 7354 7355 7356
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7380 7381
static int swap_max_show(struct seq_file *m, void *v)
{
7382 7383
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7398
	xchg(&memcg->swap.max, max);
7399 7400 7401 7402

	return nbytes;
}

7403 7404
static int swap_events_show(struct seq_file *m, void *v)
{
7405
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7406

7407 7408
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7409 7410 7411 7412 7413 7414 7415 7416
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7417 7418 7419 7420 7421 7422
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7423 7424 7425 7426 7427 7428
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7429 7430 7431 7432 7433 7434
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7435 7436 7437 7438 7439 7440
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7441 7442 7443
	{ }	/* terminate */
};

7444
static struct cftype memsw_files[] = {
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7471 7472 7473 7474 7475 7476 7477
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7478 7479
static int __init mem_cgroup_swap_init(void)
{
7480 7481 7482 7483 7484
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7485 7486 7487 7488 7489
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7490 7491
	return 0;
}
7492
core_initcall(mem_cgroup_swap_init);
7493 7494

#endif /* CONFIG_MEMCG_SWAP */