memcontrol.c 193.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
77

78 79 80
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

81 82 83
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

84
/* Whether the swap controller is active */
A
Andrew Morton 已提交
85
#ifdef CONFIG_MEMCG_SWAP
86
bool cgroup_memory_noswap __read_mostly;
87
#else
88
#define cgroup_memory_noswap		1
89
#endif
90

91 92 93 94
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

95 96 97
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
98
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
99 100
}

101 102
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
103

104 105 106 107 108
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

109
struct mem_cgroup_tree_per_node {
110
	struct rb_root rb_root;
111
	struct rb_node *rb_rightmost;
112 113 114 115 116 117 118 119 120
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
121 122 123 124 125
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
126

127 128 129
/*
 * cgroup_event represents events which userspace want to receive.
 */
130
struct mem_cgroup_event {
131
	/*
132
	 * memcg which the event belongs to.
133
	 */
134
	struct mem_cgroup *memcg;
135 136 137 138 139 140 141 142
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
143 144 145 146 147
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
148
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
149
			      struct eventfd_ctx *eventfd, const char *args);
150 151 152 153 154
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
155
	void (*unregister_event)(struct mem_cgroup *memcg,
156
				 struct eventfd_ctx *eventfd);
157 158 159 160 161 162
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
163
	wait_queue_entry_t wait;
164 165 166
	struct work_struct remove;
};

167 168
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169

170 171
/* Stuffs for move charges at task migration. */
/*
172
 * Types of charges to be moved.
173
 */
174 175 176
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177

178 179
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
180
	spinlock_t	  lock; /* for from, to */
181
	struct mm_struct  *mm;
182 183
	struct mem_cgroup *from;
	struct mem_cgroup *to;
184
	unsigned long flags;
185
	unsigned long precharge;
186
	unsigned long moved_charge;
187
	unsigned long moved_swap;
188 189 190
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
191
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 193
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
194

195 196 197 198
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
199
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201

202 203
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
205
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
206
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 208 209
	NR_CHARGE_TYPE,
};

210
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
211 212 213 214
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
215
	_KMEM,
V
Vladimir Davydov 已提交
216
	_TCP,
G
Glauber Costa 已提交
217 218
};

219 220
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
222 223
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

240 241 242 243 244 245
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

246 247 248 249 250 251 252 253 254 255 256 257 258
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

259
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

352
/*
353
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
354 355 356 357 358
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
359
 *
360 361
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
362
 */
363 364
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
365

366 367 368 369 370 371 372 373 374 375 376 377 378
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

379 380 381 382 383 384
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
385
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
386 387
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
388
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
389 390 391
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
392
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
393

394 395 396 397 398 399
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
400
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
401
EXPORT_SYMBOL(memcg_kmem_enabled_key);
402

403
struct workqueue_struct *memcg_kmem_cache_wq;
404
#endif
405

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

429
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
473
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
504 505
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
506
			goto unlock;
507
		}
508 509 510 511 512 513 514
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
515 516 517 518 519 520 521 522

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
523 524
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
525 526 527 528 529
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

547
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
548 549 550 551 552
		memcg = root_mem_cgroup;

	return &memcg->css;
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
572
	if (PageSlab(page) && !PageTail(page)) {
573
		memcg = memcg_from_slab_page(page);
574 575 576 577 578 579 580 581 582 583 584 585 586
	} else {
		memcg = page->mem_cgroup;

		/*
		 * The lowest bit set means that memcg isn't a valid
		 * memcg pointer, but a obj_cgroups pointer.
		 * In this case the page is shared and doesn't belong
		 * to any specific memory cgroup.
		 */
		if ((unsigned long) memcg & 0x1UL)
			memcg = NULL;
	}

587 588 589 590 591 592 593 594
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

595 596
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
597
{
598
	int nid = page_to_nid(page);
599

600
	return memcg->nodeinfo[nid];
601 602
}

603 604
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
605
{
606
	return soft_limit_tree.rb_tree_per_node[nid];
607 608
}

609
static struct mem_cgroup_tree_per_node *
610 611 612 613
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

614
	return soft_limit_tree.rb_tree_per_node[nid];
615 616
}

617 618
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
619
					 unsigned long new_usage_in_excess)
620 621 622
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
623
	struct mem_cgroup_per_node *mz_node;
624
	bool rightmost = true;
625 626 627 628 629 630 631 632 633

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
634
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
635
					tree_node);
636
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
637
			p = &(*p)->rb_left;
638 639 640
			rightmost = false;
		}

641 642 643 644 645 646 647
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
648 649 650 651

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

652 653 654 655 656
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

657 658
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
659 660 661
{
	if (!mz->on_tree)
		return;
662 663 664 665

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

666 667 668 669
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

670 671
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
672
{
673 674 675
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
676
	__mem_cgroup_remove_exceeded(mz, mctz);
677
	spin_unlock_irqrestore(&mctz->lock, flags);
678 679
}

680 681 682
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
683
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
684 685 686 687 688 689 690
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
691 692 693

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
694
	unsigned long excess;
695 696
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
697

698
	mctz = soft_limit_tree_from_page(page);
699 700
	if (!mctz)
		return;
701 702 703 704 705
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
706
		mz = mem_cgroup_page_nodeinfo(memcg, page);
707
		excess = soft_limit_excess(memcg);
708 709 710 711 712
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
713 714 715
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
716 717
			/* if on-tree, remove it */
			if (mz->on_tree)
718
				__mem_cgroup_remove_exceeded(mz, mctz);
719 720 721 722
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
723
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
724
			spin_unlock_irqrestore(&mctz->lock, flags);
725 726 727 728 729 730
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
731 732 733
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
734

735
	for_each_node(nid) {
736 737
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
738 739
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
740 741 742
	}
}

743 744
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
745
{
746
	struct mem_cgroup_per_node *mz;
747 748 749

retry:
	mz = NULL;
750
	if (!mctz->rb_rightmost)
751 752
		goto done;		/* Nothing to reclaim from */

753 754
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
755 756 757 758 759
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
760
	__mem_cgroup_remove_exceeded(mz, mctz);
761
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
762
	    !css_tryget(&mz->memcg->css))
763 764 765 766 767
		goto retry;
done:
	return mz;
}

768 769
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
770
{
771
	struct mem_cgroup_per_node *mz;
772

773
	spin_lock_irq(&mctz->lock);
774
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
775
	spin_unlock_irq(&mctz->lock);
776 777 778
	return mz;
}

779 780 781 782 783 784 785 786
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
787
	long x, threshold = MEMCG_CHARGE_BATCH;
788 789 790 791

	if (mem_cgroup_disabled())
		return;

792 793 794
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

795
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
796
	if (unlikely(abs(x) > threshold)) {
797 798
		struct mem_cgroup *mi;

799 800 801 802 803
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
804 805
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
806 807 808 809 810
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

811 812 813 814 815 816 817 818 819 820 821
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

822 823
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
824 825
{
	struct mem_cgroup_per_node *pn;
826
	struct mem_cgroup *memcg;
827
	long x, threshold = MEMCG_CHARGE_BATCH;
828 829

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
830
	memcg = pn->memcg;
831 832

	/* Update memcg */
833
	__mod_memcg_state(memcg, idx, val);
834

835 836 837
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

838 839 840
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

841
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
842
	if (unlikely(abs(x) > threshold)) {
843
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
844 845 846 847
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
848 849 850 851 852
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

874 875
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
876
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
877 878 879 880
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
881
	memcg = mem_cgroup_from_obj(p);
882 883 884 885 886

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
887
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
888 889 890 891 892
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

893 894 895 896 897 898 899 900 901 902 903
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
920 921
		struct mem_cgroup *mi;

922 923 924 925 926
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
927 928
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
929 930 931 932 933
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

934
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
935
{
936
	return atomic_long_read(&memcg->vmevents[event]);
937 938
}

939 940
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
941 942 943 944 945 946
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
947 948
}

949
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
950
					 struct page *page,
951
					 int nr_pages)
952
{
953 954
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
955
		__count_memcg_events(memcg, PGPGIN, 1);
956
	else {
957
		__count_memcg_events(memcg, PGPGOUT, 1);
958 959
		nr_pages = -nr_pages; /* for event */
	}
960

961
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
962 963
}

964 965
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
966 967 968
{
	unsigned long val, next;

969 970
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
971
	/* from time_after() in jiffies.h */
972
	if ((long)(next - val) < 0) {
973 974 975 976
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
977 978 979
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
980 981 982
		default:
			break;
		}
983
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
984
		return true;
985
	}
986
	return false;
987 988 989 990 991 992
}

/*
 * Check events in order.
 *
 */
993
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
994 995
{
	/* threshold event is triggered in finer grain than soft limit */
996 997
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
998
		bool do_softlimit;
999

1000 1001
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1002
		mem_cgroup_threshold(memcg);
1003 1004
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1005
	}
1006 1007
}

1008
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009
{
1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1018
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019
}
M
Michal Hocko 已提交
1020
EXPORT_SYMBOL(mem_cgroup_from_task);
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1031
{
1032 1033 1034 1035
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1036

1037 1038
	rcu_read_lock();
	do {
1039 1040 1041 1042 1043 1044
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1045
			memcg = root_mem_cgroup;
1046 1047 1048 1049 1050
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1051
	} while (!css_tryget(&memcg->css));
1052
	rcu_read_unlock();
1053
	return memcg;
1054
}
1055 1056
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1072 1073
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1074 1075 1076 1077 1078 1079
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1080 1081 1082 1083 1084 1085
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
S
Shakeel Butt 已提交
1086
		struct mem_cgroup *memcg;
1087 1088

		rcu_read_lock();
S
Shakeel Butt 已提交
1089 1090 1091 1092
		/* current->active_memcg must hold a ref. */
		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
			memcg = root_mem_cgroup;
		else
1093 1094 1095 1096 1097 1098
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1113
 * Reclaimers can specify a node and a priority level in @reclaim to
1114
 * divide up the memcgs in the hierarchy among all concurrent
1115
 * reclaimers operating on the same node and priority.
1116
 */
1117
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1118
				   struct mem_cgroup *prev,
1119
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1120
{
1121
	struct mem_cgroup_reclaim_iter *iter;
1122
	struct cgroup_subsys_state *css = NULL;
1123
	struct mem_cgroup *memcg = NULL;
1124
	struct mem_cgroup *pos = NULL;
1125

1126 1127
	if (mem_cgroup_disabled())
		return NULL;
1128

1129 1130
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1131

1132
	if (prev && !reclaim)
1133
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1134

1135 1136
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1137
			goto out;
1138
		return root;
1139
	}
K
KAMEZAWA Hiroyuki 已提交
1140

1141
	rcu_read_lock();
M
Michal Hocko 已提交
1142

1143
	if (reclaim) {
1144
		struct mem_cgroup_per_node *mz;
1145

1146
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1147
		iter = &mz->iter;
1148 1149 1150 1151

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1152
		while (1) {
1153
			pos = READ_ONCE(iter->position);
1154 1155
			if (!pos || css_tryget(&pos->css))
				break;
1156
			/*
1157 1158 1159 1160 1161 1162
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1163
			 */
1164 1165
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1183
		}
K
KAMEZAWA Hiroyuki 已提交
1184

1185 1186 1187 1188 1189 1190
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1191

1192 1193
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1194

1195 1196
		if (css_tryget(css))
			break;
1197

1198
		memcg = NULL;
1199
	}
1200 1201 1202

	if (reclaim) {
		/*
1203 1204 1205
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1206
		 */
1207 1208
		(void)cmpxchg(&iter->position, pos, memcg);

1209 1210 1211 1212 1213 1214 1215
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1216
	}
1217

1218 1219
out_unlock:
	rcu_read_unlock();
1220
out:
1221 1222 1223
	if (prev && prev != root)
		css_put(&prev->css);

1224
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1225
}
K
KAMEZAWA Hiroyuki 已提交
1226

1227 1228 1229 1230 1231 1232 1233
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1234 1235 1236 1237 1238 1239
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1240

1241 1242
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1243 1244
{
	struct mem_cgroup_reclaim_iter *iter;
1245 1246
	struct mem_cgroup_per_node *mz;
	int nid;
1247

1248 1249
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1250 1251
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1252 1253 1254
	}
}

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1301
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1313
/**
1314
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1315
 * @page: the page
1316
 * @pgdat: pgdat of the page
1317
 *
1318 1319
 * This function relies on page->mem_cgroup being stable - see the
 * access rules in commit_charge().
1320
 */
M
Mel Gorman 已提交
1321
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1322
{
1323
	struct mem_cgroup_per_node *mz;
1324
	struct mem_cgroup *memcg;
1325
	struct lruvec *lruvec;
1326

1327
	if (mem_cgroup_disabled()) {
1328
		lruvec = &pgdat->__lruvec;
1329 1330
		goto out;
	}
1331

1332
	memcg = page->mem_cgroup;
1333
	/*
1334
	 * Swapcache readahead pages are added to the LRU - and
1335
	 * possibly migrated - before they are charged.
1336
	 */
1337 1338
	if (!memcg)
		memcg = root_mem_cgroup;
1339

1340
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1341 1342 1343 1344 1345 1346 1347
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1348 1349
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1350
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1351
}
1352

1353
/**
1354 1355 1356
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1357
 * @zid: zone id of the accounted pages
1358
 * @nr_pages: positive when adding or negative when removing
1359
 *
1360 1361 1362
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1363
 */
1364
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1365
				int zid, int nr_pages)
1366
{
1367
	struct mem_cgroup_per_node *mz;
1368
	unsigned long *lru_size;
1369
	long size;
1370 1371 1372 1373

	if (mem_cgroup_disabled())
		return;

1374
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1375
	lru_size = &mz->lru_zone_size[zid][lru];
1376 1377 1378 1379 1380

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1381 1382 1383
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1384 1385 1386 1387 1388 1389
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1390
}
1391

1392
/**
1393
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1394
 * @memcg: the memory cgroup
1395
 *
1396
 * Returns the maximum amount of memory @mem can be charged with, in
1397
 * pages.
1398
 */
1399
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1400
{
1401 1402 1403
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1404

1405
	count = page_counter_read(&memcg->memory);
1406
	limit = READ_ONCE(memcg->memory.max);
1407 1408 1409
	if (count < limit)
		margin = limit - count;

1410
	if (do_memsw_account()) {
1411
		count = page_counter_read(&memcg->memsw);
1412
		limit = READ_ONCE(memcg->memsw.max);
1413
		if (count < limit)
1414
			margin = min(margin, limit - count);
1415 1416
		else
			margin = 0;
1417 1418 1419
	}

	return margin;
1420 1421
}

1422
/*
Q
Qiang Huang 已提交
1423
 * A routine for checking "mem" is under move_account() or not.
1424
 *
Q
Qiang Huang 已提交
1425 1426 1427
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1428
 */
1429
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1430
{
1431 1432
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1433
	bool ret = false;
1434 1435 1436 1437 1438 1439 1440 1441 1442
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1443

1444 1445
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1446 1447
unlock:
	spin_unlock(&mc.lock);
1448 1449 1450
	return ret;
}

1451
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1452 1453
{
	if (mc.moving_task && current != mc.moving_task) {
1454
		if (mem_cgroup_under_move(memcg)) {
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1467 1468 1469 1470
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
1488
		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1489 1490
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
1491
		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1492 1493 1494 1495 1496
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
1497 1498
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

1516
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517
	seq_buf_printf(&s, "anon_thp %llu\n",
1518 1519 1520
		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
		       HPAGE_PMD_SIZE);
#endif
1521 1522

	for (i = 0; i < NR_LRU_LISTS; i++)
1523
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1524 1525 1526 1527
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1528
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1529
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1530
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1531 1532 1533

	/* Accumulated memory events */

1534 1535 1536 1537
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1538 1539 1540 1541 1542

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1543 1544
	seq_buf_printf(&s, "workingset_restore %lu\n",
		       memcg_page_state(memcg, WORKINGSET_RESTORE));
1545 1546 1547
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1548 1549
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1550 1551 1552 1553 1554 1555
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1556 1557 1558 1559 1560 1561 1562 1563
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1564 1565

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1566
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1567
		       memcg_events(memcg, THP_FAULT_ALLOC));
1568
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1569 1570 1571 1572 1573 1574 1575 1576
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1577

1578
#define K(x) ((x) << (PAGE_SHIFT-10))
1579
/**
1580 1581
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1582 1583 1584 1585 1586 1587
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1588
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1589 1590 1591
{
	rcu_read_lock();

1592 1593 1594 1595 1596
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1597
	if (p) {
1598
		pr_cont(",task_memcg=");
1599 1600
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1601
	rcu_read_unlock();
1602 1603 1604 1605 1606 1607 1608 1609 1610
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1611
	char *buf;
1612

1613 1614
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1615
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1616 1617 1618
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1619
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1620 1621 1622 1623 1624 1625 1626
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1627
	}
1628 1629 1630 1631 1632 1633 1634 1635 1636

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1637 1638
}

D
David Rientjes 已提交
1639 1640 1641
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1642
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1643
{
1644
	unsigned long max;
1645

1646
	max = READ_ONCE(memcg->memory.max);
1647
	if (mem_cgroup_swappiness(memcg)) {
1648 1649
		unsigned long memsw_max;
		unsigned long swap_max;
1650

1651
		memsw_max = memcg->memsw.max;
1652
		swap_max = READ_ONCE(memcg->swap.max);
1653 1654
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1655
	}
1656
	return max;
D
David Rientjes 已提交
1657 1658
}

1659 1660 1661 1662 1663
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1664
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1665
				     int order)
1666
{
1667 1668 1669
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1670
		.memcg = memcg,
1671 1672 1673
		.gfp_mask = gfp_mask,
		.order = order,
	};
1674
	bool ret;
1675

1676 1677 1678 1679 1680 1681 1682
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1683
	mutex_unlock(&oom_lock);
1684
	return ret;
1685 1686
}

1687
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1688
				   pg_data_t *pgdat,
1689 1690 1691 1692 1693 1694 1695 1696 1697
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1698
		.pgdat = pgdat,
1699 1700
	};

1701
	excess = soft_limit_excess(root_memcg);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1727
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1728
					pgdat, &nr_scanned);
1729
		*total_scanned += nr_scanned;
1730
		if (!soft_limit_excess(root_memcg))
1731
			break;
1732
	}
1733 1734
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1735 1736
}

1737 1738 1739 1740 1741 1742
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1743 1744
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1745 1746 1747 1748
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1749
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1750
{
1751
	struct mem_cgroup *iter, *failed = NULL;
1752

1753 1754
	spin_lock(&memcg_oom_lock);

1755
	for_each_mem_cgroup_tree(iter, memcg) {
1756
		if (iter->oom_lock) {
1757 1758 1759 1760 1761
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1762 1763
			mem_cgroup_iter_break(memcg, iter);
			break;
1764 1765
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1766
	}
K
KAMEZAWA Hiroyuki 已提交
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1779
		}
1780 1781
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1782 1783 1784 1785

	spin_unlock(&memcg_oom_lock);

	return !failed;
1786
}
1787

1788
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1789
{
K
KAMEZAWA Hiroyuki 已提交
1790 1791
	struct mem_cgroup *iter;

1792
	spin_lock(&memcg_oom_lock);
1793
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1794
	for_each_mem_cgroup_tree(iter, memcg)
1795
		iter->oom_lock = false;
1796
	spin_unlock(&memcg_oom_lock);
1797 1798
}

1799
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1800 1801 1802
{
	struct mem_cgroup *iter;

1803
	spin_lock(&memcg_oom_lock);
1804
	for_each_mem_cgroup_tree(iter, memcg)
1805 1806
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1807 1808
}

1809
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1810 1811 1812
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1813 1814
	/*
	 * When a new child is created while the hierarchy is under oom,
1815
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1816
	 */
1817
	spin_lock(&memcg_oom_lock);
1818
	for_each_mem_cgroup_tree(iter, memcg)
1819 1820 1821
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1822 1823
}

K
KAMEZAWA Hiroyuki 已提交
1824 1825
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1826
struct oom_wait_info {
1827
	struct mem_cgroup *memcg;
1828
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1829 1830
};

1831
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1832 1833
	unsigned mode, int sync, void *arg)
{
1834 1835
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1836 1837 1838
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1839
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1840

1841 1842
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1843 1844 1845 1846
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1847
static void memcg_oom_recover(struct mem_cgroup *memcg)
1848
{
1849 1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1858
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1859 1860
}

1861 1862 1863 1864 1865 1866 1867 1868
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1869
{
1870 1871 1872
	enum oom_status ret;
	bool locked;

1873 1874 1875
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1876 1877
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1878
	/*
1879 1880 1881 1882
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1883 1884 1885 1886
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1887
	 *
1888 1889 1890 1891 1892 1893 1894
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1895
	 */
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1907 1908 1909 1910 1911 1912 1913 1914
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1915
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1916 1917 1918 1919 1920 1921
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1922

1923
	return ret;
1924 1925 1926 1927
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1928
 * @handle: actually kill/wait or just clean up the OOM state
1929
 *
1930 1931
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1932
 *
1933
 * Memcg supports userspace OOM handling where failed allocations must
1934 1935 1936 1937
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1938
 * the end of the page fault to complete the OOM handling.
1939 1940
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1941
 * completed, %false otherwise.
1942
 */
1943
bool mem_cgroup_oom_synchronize(bool handle)
1944
{
T
Tejun Heo 已提交
1945
	struct mem_cgroup *memcg = current->memcg_in_oom;
1946
	struct oom_wait_info owait;
1947
	bool locked;
1948 1949 1950

	/* OOM is global, do not handle */
	if (!memcg)
1951
		return false;
1952

1953
	if (!handle)
1954
		goto cleanup;
1955 1956 1957 1958 1959

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1960
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1961

1962
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1973 1974
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1975
	} else {
1976
		schedule();
1977 1978 1979 1980 1981
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1982 1983 1984 1985 1986 1987 1988 1989
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1990
cleanup:
T
Tejun Heo 已提交
1991
	current->memcg_in_oom = NULL;
1992
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1993
	return true;
1994 1995
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2024 2025 2026 2027 2028 2029 2030 2031
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2060
/**
2061 2062
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2063
 *
2064
 * This function protects unlocked LRU pages from being moved to
2065 2066 2067 2068 2069
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2070
 */
2071
struct mem_cgroup *lock_page_memcg(struct page *page)
2072
{
2073
	struct page *head = compound_head(page); /* rmap on tail pages */
2074
	struct mem_cgroup *memcg;
2075
	unsigned long flags;
2076

2077 2078 2079 2080
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2081 2082 2083 2084 2085 2086 2087
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2088 2089 2090
	rcu_read_lock();

	if (mem_cgroup_disabled())
2091
		return NULL;
2092
again:
2093
	memcg = head->mem_cgroup;
2094
	if (unlikely(!memcg))
2095
		return NULL;
2096

Q
Qiang Huang 已提交
2097
	if (atomic_read(&memcg->moving_account) <= 0)
2098
		return memcg;
2099

2100
	spin_lock_irqsave(&memcg->move_lock, flags);
2101
	if (memcg != head->mem_cgroup) {
2102
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2103 2104
		goto again;
	}
2105 2106 2107 2108

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2109
	 * the task who has the lock for unlock_page_memcg().
2110 2111 2112
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2113

2114
	return memcg;
2115
}
2116
EXPORT_SYMBOL(lock_page_memcg);
2117

2118
/**
2119 2120 2121 2122
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2123
 */
2124
void __unlock_page_memcg(struct mem_cgroup *memcg)
2125
{
2126 2127 2128 2129 2130 2131 2132 2133
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2134

2135
	rcu_read_unlock();
2136
}
2137 2138 2139 2140 2141 2142 2143

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2144 2145 2146
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2147
}
2148
EXPORT_SYMBOL(unlock_page_memcg);
2149

2150 2151
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2152
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2153 2154 2155 2156 2157 2158

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2159
	struct work_struct work;
2160
	unsigned long flags;
2161
#define FLUSHING_CACHED_CHARGE	0
2162 2163
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2164
static DEFINE_MUTEX(percpu_charge_mutex);
2165

R
Roman Gushchin 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2192
 */
2193
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2194 2195
{
	struct memcg_stock_pcp *stock;
2196
	unsigned long flags;
2197
	bool ret = false;
2198

2199
	if (nr_pages > MEMCG_CHARGE_BATCH)
2200
		return ret;
2201

2202 2203 2204
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2205
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2206
		stock->nr_pages -= nr_pages;
2207 2208
		ret = true;
	}
2209 2210 2211

	local_irq_restore(flags);

2212 2213 2214 2215
	return ret;
}

/*
2216
 * Returns stocks cached in percpu and reset cached information.
2217 2218 2219 2220 2221
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2222 2223 2224
	if (!old)
		return;

2225
	if (stock->nr_pages) {
2226
		page_counter_uncharge(&old->memory, stock->nr_pages);
2227
		if (do_memsw_account())
2228
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2229
		stock->nr_pages = 0;
2230
	}
2231 2232

	css_put(&old->css);
2233 2234 2235 2236 2237
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2238 2239 2240
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2241 2242 2243 2244
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2245 2246 2247
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2248
	drain_obj_stock(stock);
2249
	drain_stock(stock);
2250
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2251 2252

	local_irq_restore(flags);
2253 2254 2255
}

/*
2256
 * Cache charges(val) to local per_cpu area.
2257
 * This will be consumed by consume_stock() function, later.
2258
 */
2259
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2260
{
2261 2262 2263 2264
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2265

2266
	stock = this_cpu_ptr(&memcg_stock);
2267
	if (stock->cached != memcg) { /* reset if necessary */
2268
		drain_stock(stock);
2269
		css_get(&memcg->css);
2270
		stock->cached = memcg;
2271
	}
2272
	stock->nr_pages += nr_pages;
2273

2274
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2275 2276
		drain_stock(stock);

2277
	local_irq_restore(flags);
2278 2279 2280
}

/*
2281
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2282
 * of the hierarchy under it.
2283
 */
2284
static void drain_all_stock(struct mem_cgroup *root_memcg)
2285
{
2286
	int cpu, curcpu;
2287

2288 2289 2290
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2291 2292 2293 2294 2295 2296
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2297
	curcpu = get_cpu();
2298 2299
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2300
		struct mem_cgroup *memcg;
2301
		bool flush = false;
2302

2303
		rcu_read_lock();
2304
		memcg = stock->cached;
2305 2306 2307
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2308 2309
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2310 2311 2312 2313
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2314 2315 2316 2317 2318
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2319
	}
2320
	put_cpu();
2321
	mutex_unlock(&percpu_charge_mutex);
2322 2323
}

2324
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2325 2326
{
	struct memcg_stock_pcp *stock;
2327
	struct mem_cgroup *memcg, *mi;
2328 2329 2330

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2331 2332 2333 2334 2335 2336 2337 2338

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2339
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2340
			if (x)
2341 2342
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2343 2344 2345 2346 2347 2348 2349 2350 2351

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2352
				if (x)
2353 2354 2355
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2356 2357 2358
			}
		}

2359
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2360 2361
			long x;

2362
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2363
			if (x)
2364 2365
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2366 2367 2368
		}
	}

2369
	return 0;
2370 2371
}

2372 2373 2374 2375 2376
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
2377 2378
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2379
			continue;
2380
		memcg_memory_event(memcg, MEMCG_HIGH);
2381
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2382 2383
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2384 2385 2386 2387 2388 2389 2390
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2391
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2447
static u64 calculate_overage(unsigned long usage, unsigned long high)
2448
{
2449
	u64 overage;
2450

2451 2452
	if (usage <= high)
		return 0;
2453

2454 2455 2456 2457 2458
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2459

2460 2461 2462 2463
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2464

2465 2466 2467
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2468

2469 2470
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2471
					    READ_ONCE(memcg->memory.high));
2472
		max_overage = max(overage, max_overage);
2473 2474 2475
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2476 2477 2478
	return max_overage;
}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2505 2506
	if (!max_overage)
		return 0;
2507 2508 2509 2510 2511 2512 2513 2514 2515

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2516 2517 2518
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2519 2520 2521 2522 2523 2524 2525 2526 2527

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2528
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg;

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
	current->memcg_nr_pages_over_high = 0;

	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2553 2554
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2555

2556 2557 2558
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2559 2560 2561 2562 2563 2564 2565
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2586 2587
}

2588 2589
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2590
{
2591
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2592
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2593
	struct mem_cgroup *mem_over_limit;
2594
	struct page_counter *counter;
2595
	unsigned long nr_reclaimed;
2596 2597
	bool may_swap = true;
	bool drained = false;
2598
	enum oom_status oom_status;
2599

2600
	if (mem_cgroup_is_root(memcg))
2601
		return 0;
2602
retry:
2603
	if (consume_stock(memcg, nr_pages))
2604
		return 0;
2605

2606
	if (!do_memsw_account() ||
2607 2608
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2609
			goto done_restock;
2610
		if (do_memsw_account())
2611 2612
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2613
	} else {
2614
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2615
		may_swap = false;
2616
	}
2617

2618 2619 2620 2621
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2622

2623 2624 2625 2626 2627 2628 2629 2630 2631
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2632 2633 2634 2635 2636 2637
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2638
	if (unlikely(should_force_charge()))
2639
		goto force;
2640

2641 2642 2643 2644 2645 2646 2647 2648 2649
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2650 2651 2652
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2653
	if (!gfpflags_allow_blocking(gfp_mask))
2654
		goto nomem;
2655

2656
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2657

2658 2659
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2660

2661
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2662
		goto retry;
2663

2664
	if (!drained) {
2665
		drain_all_stock(mem_over_limit);
2666 2667 2668 2669
		drained = true;
		goto retry;
	}

2670 2671
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2672 2673 2674 2675 2676 2677 2678 2679 2680
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2681
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2682 2683 2684 2685 2686 2687 2688 2689
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2690 2691 2692
	if (nr_retries--)
		goto retry;

2693
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2694 2695
		goto nomem;

2696
	if (gfp_mask & __GFP_NOFAIL)
2697
		goto force;
2698

2699
	if (fatal_signal_pending(current))
2700
		goto force;
2701

2702 2703 2704 2705 2706 2707
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2708
		       get_order(nr_pages * PAGE_SIZE));
2709 2710 2711 2712 2713 2714 2715 2716 2717
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2718
nomem:
2719
	if (!(gfp_mask & __GFP_NOFAIL))
2720
		return -ENOMEM;
2721 2722 2723 2724 2725 2726 2727
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2728
	if (do_memsw_account())
2729 2730 2731
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2732 2733 2734 2735

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2736

2737
	/*
2738 2739
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2740
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2741 2742 2743 2744
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2745 2746
	 */
	do {
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2757 2758 2759
				schedule_work(&memcg->high_work);
				break;
			}
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2773
			current->memcg_nr_pages_over_high += batch;
2774 2775 2776
			set_notify_resume(current);
			break;
		}
2777
	} while ((memcg = parent_mem_cgroup(memcg)));
2778 2779

	return 0;
2780
}
2781

2782
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2783
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2784
{
2785 2786 2787
	if (mem_cgroup_is_root(memcg))
		return;

2788
	page_counter_uncharge(&memcg->memory, nr_pages);
2789
	if (do_memsw_account())
2790
		page_counter_uncharge(&memcg->memsw, nr_pages);
2791
}
2792
#endif
2793

2794
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2795
{
2796
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2797
	/*
2798
	 * Any of the following ensures page->mem_cgroup stability:
2799
	 *
2800 2801 2802 2803
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2804
	 */
2805
	page->mem_cgroup = memcg;
2806
}
2807

2808
#ifdef CONFIG_MEMCG_KMEM
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
	 * Slab pages don't have page->mem_cgroup set because corresponding
	 * kmem caches can be reparented during the lifetime. That's why
	 * memcg_from_slab_page() should be used instead.
	 */
	if (PageSlab(page))
		return memcg_from_slab_page(page);

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

	if (unlikely(!current->mm && !current->active_memcg))
		return NULL;

	rcu_read_lock();
	if (unlikely(current->active_memcg))
		memcg = rcu_dereference(current->active_memcg);
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
	}
	rcu_read_unlock();

	return objcg;
}

2860
static int memcg_alloc_cache_id(void)
2861
{
2862 2863 2864
	int id, size;
	int err;

2865
	id = ida_simple_get(&memcg_cache_ida,
2866 2867 2868
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2869

2870
	if (id < memcg_nr_cache_ids)
2871 2872 2873 2874 2875 2876
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2877
	down_write(&memcg_cache_ids_sem);
2878 2879

	size = 2 * (id + 1);
2880 2881 2882 2883 2884
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2885
	err = memcg_update_all_caches(size);
2886 2887
	if (!err)
		err = memcg_update_all_list_lrus(size);
2888 2889 2890 2891 2892
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2893
	if (err) {
2894
		ida_simple_remove(&memcg_cache_ida, id);
2895 2896 2897 2898 2899 2900 2901
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2902
	ida_simple_remove(&memcg_cache_ida, id);
2903 2904
}

2905
struct memcg_kmem_cache_create_work {
2906 2907 2908 2909 2910
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2911
static void memcg_kmem_cache_create_func(struct work_struct *w)
2912
{
2913 2914
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2915 2916
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2917

2918
	memcg_create_kmem_cache(memcg, cachep);
2919

2920
	css_put(&memcg->css);
2921 2922 2923 2924 2925 2926
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2927
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2928
					       struct kmem_cache *cachep)
2929
{
2930
	struct memcg_kmem_cache_create_work *cw;
2931

2932 2933 2934
	if (!css_tryget_online(&memcg->css))
		return;

2935
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2936 2937
	if (!cw) {
		css_put(&memcg->css);
2938
		return;
2939
	}
2940

2941 2942
	cw->memcg = memcg;
	cw->cachep = cachep;
2943
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2944

2945
	queue_work(memcg_kmem_cache_wq, &cw->work);
2946 2947
}

2948 2949 2950 2951
/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2952 2953 2954
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2955 2956 2957
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2958
 *
2959 2960 2961 2962
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2963
 */
2964 2965
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep,
					struct obj_cgroup **objcgp)
2966 2967
{
	struct mem_cgroup *memcg;
2968
	struct kmem_cache *memcg_cachep;
2969
	struct memcg_cache_array *arr;
2970
	int kmemcg_id;
2971

2972
	VM_BUG_ON(!is_root_cache(cachep));
2973

2974
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2975 2976
		return cachep;

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	rcu_read_lock();

	if (unlikely(current->active_memcg))
		memcg = current->active_memcg;
	else
		memcg = mem_cgroup_from_task(current);

	if (!memcg || memcg == root_mem_cgroup)
		goto out_unlock;

2987
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2988
	if (kmemcg_id < 0)
2989
		goto out_unlock;
2990

2991 2992 2993 2994 2995 2996 2997 2998
	arr = rcu_dereference(cachep->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match the data dependency
	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
	 */
	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2999 3000 3001 3002 3003 3004 3005 3006 3007

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3008 3009 3010
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3011 3012 3013 3014 3015 3016 3017
	 *
	 * If the memcg is dying or memcg_cache is about to be released,
	 * don't bother creating new kmem_caches. Because memcg_cachep
	 * is ZEROed as the fist step of kmem offlining, we don't need
	 * percpu_ref_tryget_live() here. css_tryget_online() check in
	 * memcg_schedule_kmem_cache_create() will prevent us from
	 * creation of a new kmem_cache.
3018
	 */
3019 3020
	if (unlikely(!memcg_cachep))
		memcg_schedule_kmem_cache_create(memcg, cachep);
3021 3022 3023 3024 3025 3026 3027 3028 3029
	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) {
		struct obj_cgroup *objcg = rcu_dereference(memcg->objcg);

		if (!objcg || !obj_cgroup_tryget(objcg)) {
			percpu_ref_put(&memcg_cachep->memcg_params.refcnt);
			goto out_unlock;
		}

		*objcgp = objcg;
3030
		cachep = memcg_cachep;
3031
	}
3032 3033
out_unlock:
	rcu_read_unlock();
3034
	return cachep;
3035 3036
}

3037 3038 3039 3040 3041
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
3042 3043
{
	if (!is_root_cache(cachep))
3044
		percpu_ref_put(&cachep->memcg_params.refcnt);
3045 3046
}

3047
/**
3048
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3049
 * @memcg: memory cgroup to charge
3050
 * @gfp: reclaim mode
3051
 * @nr_pages: number of pages to charge
3052 3053 3054
 *
 * Returns 0 on success, an error code on failure.
 */
3055 3056
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
3057
{
3058
	struct page_counter *counter;
3059 3060
	int ret;

3061
	ret = try_charge(memcg, gfp, nr_pages);
3062
	if (ret)
3063
		return ret;
3064 3065 3066

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3077 3078
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3079
	}
3080
	return 0;
3081 3082
}

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3098
/**
3099
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3100 3101 3102 3103 3104 3105
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3106
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3107
{
3108
	struct mem_cgroup *memcg;
3109
	int ret = 0;
3110

3111
	if (memcg_kmem_bypass())
3112 3113
		return 0;

3114
	memcg = get_mem_cgroup_from_current();
3115
	if (!mem_cgroup_is_root(memcg)) {
3116
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3117 3118
		if (!ret) {
			page->mem_cgroup = memcg;
3119
			__SetPageKmemcg(page);
3120
			return 0;
3121
		}
3122
	}
3123
	css_put(&memcg->css);
3124
	return ret;
3125
}
3126

3127
/**
3128
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3129 3130 3131
 * @page: page to uncharge
 * @order: allocation order
 */
3132
void __memcg_kmem_uncharge_page(struct page *page, int order)
3133
{
3134
	struct mem_cgroup *memcg = page->mem_cgroup;
3135
	unsigned int nr_pages = 1 << order;
3136 3137 3138 3139

	if (!memcg)
		return;

3140
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3141
	__memcg_kmem_uncharge(memcg, nr_pages);
3142
	page->mem_cgroup = NULL;
3143
	css_put(&memcg->css);
3144 3145 3146 3147

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3148
}
R
Roman Gushchin 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	css_get(&memcg->css);
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3283
#endif /* CONFIG_MEMCG_KMEM */
3284

3285 3286 3287 3288
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3289
 * pgdat->lru_lock and migration entries setup in all page mappings.
3290
 */
3291
void mem_cgroup_split_huge_fixup(struct page *head)
3292
{
3293
	struct mem_cgroup *memcg = head->mem_cgroup;
3294
	int i;
3295

3296 3297
	if (mem_cgroup_disabled())
		return;
3298

3299 3300 3301 3302
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3303
}
3304
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3305

A
Andrew Morton 已提交
3306
#ifdef CONFIG_MEMCG_SWAP
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3318
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3319 3320 3321
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3322
				struct mem_cgroup *from, struct mem_cgroup *to)
3323 3324 3325
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3326 3327
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3328 3329

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3330 3331
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3332 3333 3334 3335 3336 3337
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3338
				struct mem_cgroup *from, struct mem_cgroup *to)
3339 3340 3341
{
	return -EINVAL;
}
3342
#endif
K
KAMEZAWA Hiroyuki 已提交
3343

3344
static DEFINE_MUTEX(memcg_max_mutex);
3345

3346 3347
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3348
{
3349
	bool enlarge = false;
3350
	bool drained = false;
3351
	int ret;
3352 3353
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3354

3355
	do {
3356 3357 3358 3359
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3360

3361
		mutex_lock(&memcg_max_mutex);
3362 3363
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3364
		 * break our basic invariant rule memory.max <= memsw.max.
3365
		 */
3366
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3367
					   max <= memcg->memsw.max;
3368
		if (!limits_invariant) {
3369
			mutex_unlock(&memcg_max_mutex);
3370 3371 3372
			ret = -EINVAL;
			break;
		}
3373
		if (max > counter->max)
3374
			enlarge = true;
3375 3376
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3377 3378 3379 3380

		if (!ret)
			break;

3381 3382 3383 3384 3385 3386
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3387 3388 3389 3390 3391 3392
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3393

3394 3395
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3396

3397 3398 3399
	return ret;
}

3400
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3401 3402 3403 3404
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3405
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3406 3407
	unsigned long reclaimed;
	int loop = 0;
3408
	struct mem_cgroup_tree_per_node *mctz;
3409
	unsigned long excess;
3410 3411 3412 3413 3414
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3415
	mctz = soft_limit_tree_node(pgdat->node_id);
3416 3417 3418 3419 3420 3421

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3422
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3423 3424
		return 0;

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3439
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3440 3441 3442
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3443
		spin_lock_irq(&mctz->lock);
3444
		__mem_cgroup_remove_exceeded(mz, mctz);
3445 3446 3447 3448 3449 3450

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3451 3452 3453
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3454
		excess = soft_limit_excess(mz->memcg);
3455 3456 3457 3458 3459 3460 3461 3462 3463
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3464
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3465
		spin_unlock_irq(&mctz->lock);
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3483 3484 3485 3486
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3487
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3488
 */
3489 3490
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3491 3492 3493 3494 3495 3496
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3497 3498
}

3499
/*
3500
 * Reclaims as many pages from the given memcg as possible.
3501 3502 3503 3504 3505 3506 3507
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3508 3509
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3510 3511 3512

	drain_all_stock(memcg);

3513
	/* try to free all pages in this cgroup */
3514
	while (nr_retries && page_counter_read(&memcg->memory)) {
3515
		int progress;
3516

3517 3518 3519
		if (signal_pending(current))
			return -EINTR;

3520 3521
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3522
		if (!progress) {
3523
			nr_retries--;
3524
			/* maybe some writeback is necessary */
3525
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3526
		}
3527 3528

	}
3529 3530

	return 0;
3531 3532
}

3533 3534 3535
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3536
{
3537
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3538

3539 3540
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3541
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3542 3543
}

3544 3545
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3546
{
3547
	return mem_cgroup_from_css(css)->use_hierarchy;
3548 3549
}

3550 3551
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3552 3553
{
	int retval = 0;
3554
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3555
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3556

3557
	if (memcg->use_hierarchy == val)
3558
		return 0;
3559

3560
	/*
3561
	 * If parent's use_hierarchy is set, we can't make any modifications
3562 3563 3564 3565 3566 3567
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3568
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3569
				(val == 1 || val == 0)) {
3570
		if (!memcg_has_children(memcg))
3571
			memcg->use_hierarchy = val;
3572 3573 3574 3575
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3576

3577 3578 3579
	return retval;
}

3580
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3581
{
3582
	unsigned long val;
3583

3584
	if (mem_cgroup_is_root(memcg)) {
3585
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3586
			memcg_page_state(memcg, NR_ANON_MAPPED);
3587 3588
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3589
	} else {
3590
		if (!swap)
3591
			val = page_counter_read(&memcg->memory);
3592
		else
3593
			val = page_counter_read(&memcg->memsw);
3594
	}
3595
	return val;
3596 3597
}

3598 3599 3600 3601 3602 3603 3604
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3605

3606
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3607
			       struct cftype *cft)
B
Balbir Singh 已提交
3608
{
3609
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3610
	struct page_counter *counter;
3611

3612
	switch (MEMFILE_TYPE(cft->private)) {
3613
	case _MEM:
3614 3615
		counter = &memcg->memory;
		break;
3616
	case _MEMSWAP:
3617 3618
		counter = &memcg->memsw;
		break;
3619
	case _KMEM:
3620
		counter = &memcg->kmem;
3621
		break;
V
Vladimir Davydov 已提交
3622
	case _TCP:
3623
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3624
		break;
3625 3626 3627
	default:
		BUG();
	}
3628 3629 3630 3631

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3632
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3633
		if (counter == &memcg->memsw)
3634
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3635 3636
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3637
		return (u64)counter->max * PAGE_SIZE;
3638 3639 3640 3641 3642 3643 3644 3645 3646
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3647
}
3648

3649
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3650
{
3651
	unsigned long stat[MEMCG_NR_STAT] = {0};
3652 3653 3654 3655
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3656
		for (i = 0; i < MEMCG_NR_STAT; i++)
3657
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3658 3659

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3660
		for (i = 0; i < MEMCG_NR_STAT; i++)
3661 3662 3663 3664 3665 3666
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3667
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3668 3669 3670
			stat[i] = 0;

		for_each_online_cpu(cpu)
3671
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3672 3673
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3674 3675

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3676
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3677 3678 3679 3680
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3692 3693
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3694 3695 3696 3697 3698 3699

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3700
#ifdef CONFIG_MEMCG_KMEM
3701
static int memcg_online_kmem(struct mem_cgroup *memcg)
3702
{
R
Roman Gushchin 已提交
3703
	struct obj_cgroup *objcg;
3704 3705
	int memcg_id;

3706 3707 3708
	if (cgroup_memory_nokmem)
		return 0;

3709
	BUG_ON(memcg->kmemcg_id >= 0);
3710
	BUG_ON(memcg->kmem_state);
3711

3712
	memcg_id = memcg_alloc_cache_id();
3713 3714
	if (memcg_id < 0)
		return memcg_id;
3715

R
Roman Gushchin 已提交
3716 3717 3718 3719 3720 3721 3722 3723
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3724 3725
	static_branch_enable(&memcg_kmem_enabled_key);

3726
	/*
3727
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3728
	 * kmemcg_id. Setting the id after enabling static branching will
3729 3730 3731
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3732
	memcg->kmemcg_id = memcg_id;
3733
	memcg->kmem_state = KMEM_ONLINE;
3734
	INIT_LIST_HEAD(&memcg->kmem_caches);
3735 3736

	return 0;
3737 3738
}

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3759
	/*
R
Roman Gushchin 已提交
3760
	 * Deactivate and reparent kmem_caches and objcgs.
3761
	 */
3762
	memcg_deactivate_kmem_caches(memcg, parent);
R
Roman Gushchin 已提交
3763
	memcg_reparent_objcgs(memcg, parent);
3764 3765 3766 3767

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3768 3769 3770 3771 3772 3773 3774 3775
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3776
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3777 3778 3779 3780 3781 3782 3783
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3784 3785
	rcu_read_unlock();

3786
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3787 3788 3789 3790 3791 3792

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3793 3794 3795
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3796
}
3797
#else
3798
static int memcg_online_kmem(struct mem_cgroup *memcg)
3799 3800 3801 3802 3803 3804 3805 3806 3807
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3808
#endif /* CONFIG_MEMCG_KMEM */
3809

3810 3811
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3812
{
3813
	int ret;
3814

3815 3816 3817
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3818
	return ret;
3819
}
3820

3821
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3822 3823 3824
{
	int ret;

3825
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3826

3827
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3828 3829 3830
	if (ret)
		goto out;

3831
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3832 3833 3834
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3835 3836 3837
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3838 3839 3840 3841 3842 3843
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3844
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3845 3846 3847 3848
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3849
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3850 3851
	}
out:
3852
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3853 3854 3855
	return ret;
}

3856 3857 3858 3859
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3860 3861
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3862
{
3863
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3864
	unsigned long nr_pages;
3865 3866
	int ret;

3867
	buf = strstrip(buf);
3868
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3869 3870
	if (ret)
		return ret;
3871

3872
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3873
	case RES_LIMIT:
3874 3875 3876 3877
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3878 3879
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3880
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3881
			break;
3882
		case _MEMSWAP:
3883
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3884
			break;
3885
		case _KMEM:
3886 3887 3888
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3889
			ret = memcg_update_kmem_max(memcg, nr_pages);
3890
			break;
V
Vladimir Davydov 已提交
3891
		case _TCP:
3892
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3893
			break;
3894
		}
3895
		break;
3896 3897 3898
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3899 3900
		break;
	}
3901
	return ret ?: nbytes;
B
Balbir Singh 已提交
3902 3903
}

3904 3905
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3906
{
3907
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3908
	struct page_counter *counter;
3909

3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3920
	case _TCP:
3921
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3922
		break;
3923 3924 3925
	default:
		BUG();
	}
3926

3927
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3928
	case RES_MAX_USAGE:
3929
		page_counter_reset_watermark(counter);
3930 3931
		break;
	case RES_FAILCNT:
3932
		counter->failcnt = 0;
3933
		break;
3934 3935
	default:
		BUG();
3936
	}
3937

3938
	return nbytes;
3939 3940
}

3941
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3942 3943
					struct cftype *cft)
{
3944
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3945 3946
}

3947
#ifdef CONFIG_MMU
3948
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3949 3950
					struct cftype *cft, u64 val)
{
3951
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3952

3953
	if (val & ~MOVE_MASK)
3954
		return -EINVAL;
3955

3956
	/*
3957 3958 3959 3960
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3961
	 */
3962
	memcg->move_charge_at_immigrate = val;
3963 3964
	return 0;
}
3965
#else
3966
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3967 3968 3969 3970 3971
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3972

3973
#ifdef CONFIG_NUMA
3974 3975 3976 3977 3978 3979

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3980
				int nid, unsigned int lru_mask, bool tree)
3981
{
3982
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3983 3984 3985 3986 3987 3988 3989 3990
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3991 3992 3993 3994
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3995 3996 3997 3998 3999
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4000 4001
					     unsigned int lru_mask,
					     bool tree)
4002 4003 4004 4005 4006 4007 4008
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
4009 4010 4011 4012
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4013 4014 4015 4016
	}
	return nr;
}

4017
static int memcg_numa_stat_show(struct seq_file *m, void *v)
4018
{
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
4031
	int nid;
4032
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4033

4034
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4035 4036 4037 4038 4039 4040 4041
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
4042
		seq_putc(m, '\n');
4043 4044
	}

4045
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4046 4047 4048 4049 4050 4051 4052 4053

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
4054
		seq_putc(m, '\n');
4055 4056 4057 4058 4059 4060
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4061
static const unsigned int memcg1_stats[] = {
4062
	NR_FILE_PAGES,
4063
	NR_ANON_MAPPED,
4064 4065 4066
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4077
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4078
	"rss_huge",
4079
#endif
4080 4081 4082 4083 4084 4085 4086
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4087
/* Universal VM events cgroup1 shows, original sort order */
4088
static const unsigned int memcg1_events[] = {
4089 4090 4091 4092 4093 4094
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4095
static int memcg_stat_show(struct seq_file *m, void *v)
4096
{
4097
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4098
	unsigned long memory, memsw;
4099 4100
	struct mem_cgroup *mi;
	unsigned int i;
4101

4102
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4103

4104
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4105 4106
		unsigned long nr;

4107
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4108
			continue;
4109 4110 4111 4112 4113 4114
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4115
	}
L
Lee Schermerhorn 已提交
4116

4117
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4118
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4119
			   memcg_events_local(memcg, memcg1_events[i]));
4120 4121

	for (i = 0; i < NR_LRU_LISTS; i++)
4122
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4123
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4124
			   PAGE_SIZE);
4125

K
KAMEZAWA Hiroyuki 已提交
4126
	/* Hierarchical information */
4127 4128
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4129 4130
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4131
	}
4132 4133
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4134
	if (do_memsw_account())
4135 4136
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4137

4138
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4139
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4140
			continue;
4141
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4142 4143
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
4144 4145
	}

4146
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4147 4148
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4149
			   (u64)memcg_events(memcg, memcg1_events[i]));
4150

4151
	for (i = 0; i < NR_LRU_LISTS; i++)
4152
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4153 4154
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4155

K
KOSAKI Motohiro 已提交
4156 4157
#ifdef CONFIG_DEBUG_VM
	{
4158 4159
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4160 4161
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4162

4163 4164
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4165

4166 4167
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4168
		}
4169 4170
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4171 4172 4173
	}
#endif

4174 4175 4176
	return 0;
}

4177 4178
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4179
{
4180
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4181

4182
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4183 4184
}

4185 4186
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4187
{
4188
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4189

4190
	if (val > 100)
K
KOSAKI Motohiro 已提交
4191 4192
		return -EINVAL;

4193
	if (css->parent)
4194 4195 4196
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4197

K
KOSAKI Motohiro 已提交
4198 4199 4200
	return 0;
}

4201 4202 4203
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4204
	unsigned long usage;
4205 4206 4207 4208
	int i;

	rcu_read_lock();
	if (!swap)
4209
		t = rcu_dereference(memcg->thresholds.primary);
4210
	else
4211
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4212 4213 4214 4215

	if (!t)
		goto unlock;

4216
	usage = mem_cgroup_usage(memcg, swap);
4217 4218

	/*
4219
	 * current_threshold points to threshold just below or equal to usage.
4220 4221 4222
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4223
	i = t->current_threshold;
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4247
	t->current_threshold = i - 1;
4248 4249 4250 4251 4252 4253
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4254 4255
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4256
		if (do_memsw_account())
4257 4258 4259 4260
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4261 4262 4263 4264 4265 4266 4267
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4268 4269 4270 4271 4272 4273 4274
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4275 4276
}

4277
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4278 4279 4280
{
	struct mem_cgroup_eventfd_list *ev;

4281 4282
	spin_lock(&memcg_oom_lock);

4283
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4284
		eventfd_signal(ev->eventfd, 1);
4285 4286

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4287 4288 4289
	return 0;
}

4290
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4291
{
K
KAMEZAWA Hiroyuki 已提交
4292 4293
	struct mem_cgroup *iter;

4294
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4295
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4296 4297
}

4298
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4299
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4300
{
4301 4302
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4303 4304
	unsigned long threshold;
	unsigned long usage;
4305
	int i, size, ret;
4306

4307
	ret = page_counter_memparse(args, "-1", &threshold);
4308 4309 4310 4311
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4312

4313
	if (type == _MEM) {
4314
		thresholds = &memcg->thresholds;
4315
		usage = mem_cgroup_usage(memcg, false);
4316
	} else if (type == _MEMSWAP) {
4317
		thresholds = &memcg->memsw_thresholds;
4318
		usage = mem_cgroup_usage(memcg, true);
4319
	} else
4320 4321 4322
		BUG();

	/* Check if a threshold crossed before adding a new one */
4323
	if (thresholds->primary)
4324 4325
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4326
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4327 4328

	/* Allocate memory for new array of thresholds */
4329
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4330
	if (!new) {
4331 4332 4333
		ret = -ENOMEM;
		goto unlock;
	}
4334
	new->size = size;
4335 4336

	/* Copy thresholds (if any) to new array */
4337 4338
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4339
				sizeof(struct mem_cgroup_threshold));
4340 4341
	}

4342
	/* Add new threshold */
4343 4344
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4345 4346

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4347
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4348 4349 4350
			compare_thresholds, NULL);

	/* Find current threshold */
4351
	new->current_threshold = -1;
4352
	for (i = 0; i < size; i++) {
4353
		if (new->entries[i].threshold <= usage) {
4354
			/*
4355 4356
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4357 4358
			 * it here.
			 */
4359
			++new->current_threshold;
4360 4361
		} else
			break;
4362 4363
	}

4364 4365 4366 4367 4368
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4369

4370
	/* To be sure that nobody uses thresholds */
4371 4372 4373 4374 4375 4376 4377 4378
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4379
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4380 4381
	struct eventfd_ctx *eventfd, const char *args)
{
4382
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4383 4384
}

4385
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4386 4387
	struct eventfd_ctx *eventfd, const char *args)
{
4388
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4389 4390
}

4391
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4392
	struct eventfd_ctx *eventfd, enum res_type type)
4393
{
4394 4395
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4396
	unsigned long usage;
4397
	int i, j, size, entries;
4398 4399

	mutex_lock(&memcg->thresholds_lock);
4400 4401

	if (type == _MEM) {
4402
		thresholds = &memcg->thresholds;
4403
		usage = mem_cgroup_usage(memcg, false);
4404
	} else if (type == _MEMSWAP) {
4405
		thresholds = &memcg->memsw_thresholds;
4406
		usage = mem_cgroup_usage(memcg, true);
4407
	} else
4408 4409
		BUG();

4410 4411 4412
	if (!thresholds->primary)
		goto unlock;

4413 4414 4415 4416
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4417
	size = entries = 0;
4418 4419
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4420
			size++;
4421 4422
		else
			entries++;
4423 4424
	}

4425
	new = thresholds->spare;
4426

4427 4428 4429 4430
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4431 4432
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4433 4434
		kfree(new);
		new = NULL;
4435
		goto swap_buffers;
4436 4437
	}

4438
	new->size = size;
4439 4440

	/* Copy thresholds and find current threshold */
4441 4442 4443
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4444 4445
			continue;

4446
		new->entries[j] = thresholds->primary->entries[i];
4447
		if (new->entries[j].threshold <= usage) {
4448
			/*
4449
			 * new->current_threshold will not be used
4450 4451 4452
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4453
			++new->current_threshold;
4454 4455 4456 4457
		}
		j++;
	}

4458
swap_buffers:
4459 4460
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4461

4462
	rcu_assign_pointer(thresholds->primary, new);
4463

4464
	/* To be sure that nobody uses thresholds */
4465
	synchronize_rcu();
4466 4467 4468 4469 4470 4471

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4472
unlock:
4473 4474
	mutex_unlock(&memcg->thresholds_lock);
}
4475

4476
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4477 4478
	struct eventfd_ctx *eventfd)
{
4479
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4480 4481
}

4482
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4483 4484
	struct eventfd_ctx *eventfd)
{
4485
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4486 4487
}

4488
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4489
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4490 4491 4492 4493 4494 4495 4496
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4497
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4498 4499 4500 4501 4502

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4503
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4504
		eventfd_signal(eventfd, 1);
4505
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4506 4507 4508 4509

	return 0;
}

4510
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4511
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4512 4513 4514
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4515
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4516

4517
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4518 4519 4520 4521 4522 4523
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4524
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4525 4526
}

4527
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4528
{
4529
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4530

4531
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4532
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4533 4534
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4535 4536 4537
	return 0;
}

4538
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4539 4540
	struct cftype *cft, u64 val)
{
4541
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4542 4543

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4544
	if (!css->parent || !((val == 0) || (val == 1)))
4545 4546
		return -EINVAL;

4547
	memcg->oom_kill_disable = val;
4548
	if (!val)
4549
		memcg_oom_recover(memcg);
4550

4551 4552 4553
	return 0;
}

4554 4555
#ifdef CONFIG_CGROUP_WRITEBACK

4556 4557
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4568 4569 4570 4571 4572
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4583 4584 4585 4586 4587 4588
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4589
	long x = atomic_long_read(&memcg->vmstats[idx]);
4590 4591 4592
	int cpu;

	for_each_online_cpu(cpu)
4593
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4594 4595 4596 4597 4598
	if (x < 0)
		x = 0;
	return x;
}

4599 4600 4601
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4602 4603
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4604 4605 4606
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4607 4608 4609
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4610
 *
4611 4612 4613 4614 4615
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4616
 */
4617 4618 4619
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4620 4621 4622 4623
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4624
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4625

4626
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4627 4628
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4629
	*pheadroom = PAGE_COUNTER_MAX;
4630 4631

	while ((parent = parent_mem_cgroup(memcg))) {
4632
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4633
					    READ_ONCE(memcg->memory.high));
4634 4635
		unsigned long used = page_counter_read(&memcg->memory);

4636
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4637 4638 4639 4640
		memcg = parent;
	}
}

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4695 4696
	trace_track_foreign_dirty(page, wb);

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4757
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4758 4759 4760 4761 4762 4763 4764
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4776 4777 4778 4779
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4780 4781
#endif	/* CONFIG_CGROUP_WRITEBACK */

4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4795 4796 4797 4798 4799
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4800
static void memcg_event_remove(struct work_struct *work)
4801
{
4802 4803
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4804
	struct mem_cgroup *memcg = event->memcg;
4805 4806 4807

	remove_wait_queue(event->wqh, &event->wait);

4808
	event->unregister_event(memcg, event->eventfd);
4809 4810 4811 4812 4813 4814

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4815
	css_put(&memcg->css);
4816 4817 4818
}

/*
4819
 * Gets called on EPOLLHUP on eventfd when user closes it.
4820 4821 4822
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4823
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4824
			    int sync, void *key)
4825
{
4826 4827
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4828
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4829
	__poll_t flags = key_to_poll(key);
4830

4831
	if (flags & EPOLLHUP) {
4832 4833 4834 4835 4836 4837 4838 4839 4840
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4841
		spin_lock(&memcg->event_list_lock);
4842 4843 4844 4845 4846 4847 4848 4849
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4850
		spin_unlock(&memcg->event_list_lock);
4851 4852 4853 4854 4855
	}

	return 0;
}

4856
static void memcg_event_ptable_queue_proc(struct file *file,
4857 4858
		wait_queue_head_t *wqh, poll_table *pt)
{
4859 4860
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4861 4862 4863 4864 4865 4866

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4867 4868
 * DO NOT USE IN NEW FILES.
 *
4869 4870 4871 4872 4873
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4874 4875
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4876
{
4877
	struct cgroup_subsys_state *css = of_css(of);
4878
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4879
	struct mem_cgroup_event *event;
4880 4881 4882 4883
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4884
	const char *name;
4885 4886 4887
	char *endp;
	int ret;

4888 4889 4890
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4891 4892
	if (*endp != ' ')
		return -EINVAL;
4893
	buf = endp + 1;
4894

4895
	cfd = simple_strtoul(buf, &endp, 10);
4896 4897
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4898
	buf = endp + 1;
4899 4900 4901 4902 4903

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4904
	event->memcg = memcg;
4905
	INIT_LIST_HEAD(&event->list);
4906 4907 4908
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4934 4935 4936 4937 4938
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4939 4940
	 *
	 * DO NOT ADD NEW FILES.
4941
	 */
A
Al Viro 已提交
4942
	name = cfile.file->f_path.dentry->d_name.name;
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4954 4955
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4956 4957 4958 4959 4960
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4961
	/*
4962 4963 4964
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4965
	 */
A
Al Viro 已提交
4966
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4967
					       &memory_cgrp_subsys);
4968
	ret = -EINVAL;
4969
	if (IS_ERR(cfile_css))
4970
		goto out_put_cfile;
4971 4972
	if (cfile_css != css) {
		css_put(cfile_css);
4973
		goto out_put_cfile;
4974
	}
4975

4976
	ret = event->register_event(memcg, event->eventfd, buf);
4977 4978 4979
	if (ret)
		goto out_put_css;

4980
	vfs_poll(efile.file, &event->pt);
4981

4982 4983 4984
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4985 4986 4987 4988

	fdput(cfile);
	fdput(efile);

4989
	return nbytes;
4990 4991

out_put_css:
4992
	css_put(css);
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

5005
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
5006
	{
5007
		.name = "usage_in_bytes",
5008
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5009
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5010
	},
5011 5012
	{
		.name = "max_usage_in_bytes",
5013
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5014
		.write = mem_cgroup_reset,
5015
		.read_u64 = mem_cgroup_read_u64,
5016
	},
B
Balbir Singh 已提交
5017
	{
5018
		.name = "limit_in_bytes",
5019
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5020
		.write = mem_cgroup_write,
5021
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5022
	},
5023 5024 5025
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5026
		.write = mem_cgroup_write,
5027
		.read_u64 = mem_cgroup_read_u64,
5028
	},
B
Balbir Singh 已提交
5029 5030
	{
		.name = "failcnt",
5031
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5032
		.write = mem_cgroup_reset,
5033
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5034
	},
5035 5036
	{
		.name = "stat",
5037
		.seq_show = memcg_stat_show,
5038
	},
5039 5040
	{
		.name = "force_empty",
5041
		.write = mem_cgroup_force_empty_write,
5042
	},
5043 5044 5045 5046 5047
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5048
	{
5049
		.name = "cgroup.event_control",		/* XXX: for compat */
5050
		.write = memcg_write_event_control,
5051
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5052
	},
K
KOSAKI Motohiro 已提交
5053 5054 5055 5056 5057
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5058 5059 5060 5061 5062
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5063 5064
	{
		.name = "oom_control",
5065
		.seq_show = mem_cgroup_oom_control_read,
5066
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5067 5068
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5069 5070 5071
	{
		.name = "pressure_level",
	},
5072 5073 5074
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5075
		.seq_show = memcg_numa_stat_show,
5076 5077
	},
#endif
5078 5079 5080
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5081
		.write = mem_cgroup_write,
5082
		.read_u64 = mem_cgroup_read_u64,
5083 5084 5085 5086
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5087
		.read_u64 = mem_cgroup_read_u64,
5088 5089 5090 5091
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5092
		.write = mem_cgroup_reset,
5093
		.read_u64 = mem_cgroup_read_u64,
5094 5095 5096 5097
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5098
		.write = mem_cgroup_reset,
5099
		.read_u64 = mem_cgroup_read_u64,
5100
	},
5101 5102
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5103 5104
	{
		.name = "kmem.slabinfo",
5105
		.seq_show = memcg_slab_show,
5106 5107
	},
#endif
V
Vladimir Davydov 已提交
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5131
	{ },	/* terminate */
5132
};
5133

5134 5135 5136 5137 5138 5139 5140 5141
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5142
 * However, there usually are many references to the offline CSS after
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5160 5161 5162 5163 5164 5165 5166 5167
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5168 5169
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5170
{
5171
	refcount_add(n, &memcg->id.ref);
5172 5173
}

5174
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5175
{
5176
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5177
		mem_cgroup_id_remove(memcg);
5178 5179 5180 5181 5182 5183

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5184 5185 5186 5187 5188
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5201
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5202 5203
{
	struct mem_cgroup_per_node *pn;
5204
	int tmp = node;
5205 5206 5207 5208 5209 5210 5211 5212
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5213 5214
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5215
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5216 5217
	if (!pn)
		return 1;
5218

5219 5220 5221 5222 5223 5224
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5225 5226
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
5227
		free_percpu(pn->lruvec_stat_local);
5228 5229 5230 5231
		kfree(pn);
		return 1;
	}

5232 5233 5234 5235 5236
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5237
	memcg->nodeinfo[node] = pn;
5238 5239 5240
	return 0;
}

5241
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5242
{
5243 5244
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5245 5246 5247
	if (!pn)
		return;

5248
	free_percpu(pn->lruvec_stat_cpu);
5249
	free_percpu(pn->lruvec_stat_local);
5250
	kfree(pn);
5251 5252
}

5253
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5254
{
5255
	int node;
5256

5257
	for_each_node(node)
5258
		free_mem_cgroup_per_node_info(memcg, node);
5259
	free_percpu(memcg->vmstats_percpu);
5260
	free_percpu(memcg->vmstats_local);
5261
	kfree(memcg);
5262
}
5263

5264 5265 5266
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5267 5268 5269 5270
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5271
	memcg_flush_percpu_vmstats(memcg);
5272
	memcg_flush_percpu_vmevents(memcg);
5273 5274 5275
	__mem_cgroup_free(memcg);
}

5276
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5277
{
5278
	struct mem_cgroup *memcg;
5279
	unsigned int size;
5280
	int node;
5281
	int __maybe_unused i;
5282
	long error = -ENOMEM;
B
Balbir Singh 已提交
5283

5284 5285 5286 5287
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5288
	if (!memcg)
5289
		return ERR_PTR(error);
5290

5291 5292 5293
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5294 5295
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5296
		goto fail;
5297
	}
5298

5299 5300 5301 5302
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

5303 5304
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
5305
		goto fail;
5306

B
Bob Liu 已提交
5307
	for_each_node(node)
5308
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5309
			goto fail;
5310

5311 5312
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5313

5314
	INIT_WORK(&memcg->high_work, high_work_func);
5315 5316 5317
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5318
	vmpressure_init(&memcg->vmpressure);
5319 5320
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5321
	memcg->socket_pressure = jiffies;
5322
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5323
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5324
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5325
#endif
5326 5327
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5328 5329 5330
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5331 5332 5333 5334 5335
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5336
#endif
5337
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5338 5339
	return memcg;
fail:
5340
	mem_cgroup_id_remove(memcg);
5341
	__mem_cgroup_free(memcg);
5342
	return ERR_PTR(error);
5343 5344
}

5345 5346
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5347
{
5348 5349 5350
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5351

5352
	memcg = mem_cgroup_alloc();
5353 5354
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5355

5356
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5357
	memcg->soft_limit = PAGE_COUNTER_MAX;
5358
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5359 5360 5361 5362 5363 5364
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5365
		page_counter_init(&memcg->memory, &parent->memory);
5366
		page_counter_init(&memcg->swap, &parent->swap);
5367 5368
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5369
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5370
	} else {
5371
		page_counter_init(&memcg->memory, NULL);
5372
		page_counter_init(&memcg->swap, NULL);
5373 5374
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5375
		page_counter_init(&memcg->tcpmem, NULL);
5376 5377 5378 5379 5380
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5381
		if (parent != root_mem_cgroup)
5382
			memory_cgrp_subsys.broken_hierarchy = true;
5383
	}
5384

5385 5386
	/* The following stuff does not apply to the root */
	if (!parent) {
5387 5388 5389
#ifdef CONFIG_MEMCG_KMEM
		INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
5390 5391 5392 5393
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5394
	error = memcg_online_kmem(memcg);
5395 5396
	if (error)
		goto fail;
5397

5398
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5399
		static_branch_inc(&memcg_sockets_enabled_key);
5400

5401 5402
	return &memcg->css;
fail:
5403
	mem_cgroup_id_remove(memcg);
5404
	mem_cgroup_free(memcg);
5405
	return ERR_PTR(error);
5406 5407
}

5408
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5409
{
5410 5411
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5422
	/* Online state pins memcg ID, memcg ID pins CSS */
5423
	refcount_set(&memcg->id.ref, 1);
5424
	css_get(css);
5425
	return 0;
B
Balbir Singh 已提交
5426 5427
}

5428
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5429
{
5430
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5431
	struct mem_cgroup_event *event, *tmp;
5432 5433 5434 5435 5436 5437

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5438 5439
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5440 5441 5442
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5443
	spin_unlock(&memcg->event_list_lock);
5444

R
Roman Gushchin 已提交
5445
	page_counter_set_min(&memcg->memory, 0);
5446
	page_counter_set_low(&memcg->memory, 0);
5447

5448
	memcg_offline_kmem(memcg);
5449
	wb_memcg_offline(memcg);
5450

5451 5452
	drain_all_stock(memcg);

5453
	mem_cgroup_id_put(memcg);
5454 5455
}

5456 5457 5458 5459 5460 5461 5462
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5463
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5464
{
5465
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5466
	int __maybe_unused i;
5467

5468 5469 5470 5471
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5472
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5473
		static_branch_dec(&memcg_sockets_enabled_key);
5474

5475
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5476
		static_branch_dec(&memcg_sockets_enabled_key);
5477

5478 5479 5480
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5481
	memcg_free_shrinker_maps(memcg);
5482
	memcg_free_kmem(memcg);
5483
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5484 5485
}

5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5503 5504 5505 5506 5507
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5508
	page_counter_set_min(&memcg->memory, 0);
5509
	page_counter_set_low(&memcg->memory, 0);
5510
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5511
	memcg->soft_limit = PAGE_COUNTER_MAX;
5512
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5513
	memcg_wb_domain_size_changed(memcg);
5514 5515
}

5516
#ifdef CONFIG_MMU
5517
/* Handlers for move charge at task migration. */
5518
static int mem_cgroup_do_precharge(unsigned long count)
5519
{
5520
	int ret;
5521

5522 5523
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5524
	if (!ret) {
5525 5526 5527
		mc.precharge += count;
		return ret;
	}
5528

5529
	/* Try charges one by one with reclaim, but do not retry */
5530
	while (count--) {
5531
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5532 5533
		if (ret)
			return ret;
5534
		mc.precharge++;
5535
		cond_resched();
5536
	}
5537
	return 0;
5538 5539 5540 5541
}

union mc_target {
	struct page	*page;
5542
	swp_entry_t	ent;
5543 5544 5545
};

enum mc_target_type {
5546
	MC_TARGET_NONE = 0,
5547
	MC_TARGET_PAGE,
5548
	MC_TARGET_SWAP,
5549
	MC_TARGET_DEVICE,
5550 5551
};

D
Daisuke Nishimura 已提交
5552 5553
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5554
{
5555
	struct page *page = vm_normal_page(vma, addr, ptent);
5556

D
Daisuke Nishimura 已提交
5557 5558 5559
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5560
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5561
			return NULL;
5562 5563 5564 5565
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5566 5567 5568 5569 5570 5571
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5572
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5573
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5574
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5575 5576 5577 5578
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5579
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5580
		return NULL;
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5598 5599 5600 5601
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5602
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5603
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5604 5605 5606

	return page;
}
5607 5608
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5609
			pte_t ptent, swp_entry_t *entry)
5610 5611 5612 5613
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5614

5615 5616 5617 5618 5619 5620 5621 5622 5623
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5624
	if (!(mc.flags & MOVE_FILE))
5625 5626 5627
		return NULL;

	mapping = vma->vm_file->f_mapping;
5628
	pgoff = linear_page_index(vma, addr);
5629 5630

	/* page is moved even if it's not RSS of this task(page-faulted). */
5631 5632
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5633 5634
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5635
		if (xa_is_value(page)) {
5636
			swp_entry_t swp = radix_to_swp_entry(page);
5637
			*entry = swp;
5638 5639
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5640 5641 5642 5643 5644
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5645
#endif
5646 5647 5648
	return page;
}

5649 5650 5651
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5652
 * @compound: charge the page as compound or small page
5653 5654 5655
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5656
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5657 5658 5659 5660 5661
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5662
				   bool compound,
5663 5664 5665
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5666 5667
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5668
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5669 5670 5671 5672
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5673
	VM_BUG_ON(compound && !PageTransHuge(page));
5674 5675

	/*
5676
	 * Prevent mem_cgroup_migrate() from looking at
5677
	 * page->mem_cgroup of its source page while we change it.
5678
	 */
5679
	ret = -EBUSY;
5680 5681 5682 5683 5684 5685 5686
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5687
	pgdat = page_pgdat(page);
5688 5689
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5690

5691
	lock_page_memcg(page);
5692

5693 5694 5695 5696
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5697 5698 5699 5700 5701 5702 5703
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5704 5705
		}
	} else {
5706 5707 5708 5709 5710 5711 5712 5713
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5714 5715 5716 5717
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5718

5719 5720
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5721

5722 5723 5724 5725 5726 5727
			if (mapping_cap_account_dirty(mapping)) {
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5728 5729 5730
		}
	}

5731
	if (PageWriteback(page)) {
5732 5733
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5734 5735 5736
	}

	/*
5737 5738
	 * All state has been migrated, let's switch to the new memcg.
	 *
5739
	 * It is safe to change page->mem_cgroup here because the page
5740 5741 5742 5743 5744 5745 5746 5747
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5748
	 */
5749
	smp_mb();
5750

5751 5752 5753 5754
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5755

5756
	__unlock_page_memcg(from);
5757 5758 5759 5760

	ret = 0;

	local_irq_disable();
5761
	mem_cgroup_charge_statistics(to, page, nr_pages);
5762
	memcg_check_events(to, page);
5763
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5764 5765 5766 5767 5768 5769 5770 5771
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5787 5788
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5789 5790 5791
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5792 5793
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5794 5795 5796 5797
 *
 * Called with pte lock held.
 */

5798
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5799 5800 5801
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5802
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5803 5804 5805 5806 5807
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5808
		page = mc_handle_swap_pte(vma, ptent, &ent);
5809
	else if (pte_none(ptent))
5810
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5811 5812

	if (!page && !ent.val)
5813
		return ret;
5814 5815
	if (page) {
		/*
5816
		 * Do only loose check w/o serialization.
5817
		 * mem_cgroup_move_account() checks the page is valid or
5818
		 * not under LRU exclusion.
5819
		 */
5820
		if (page->mem_cgroup == mc.from) {
5821
			ret = MC_TARGET_PAGE;
5822
			if (is_device_private_page(page))
5823
				ret = MC_TARGET_DEVICE;
5824 5825 5826 5827 5828 5829
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5830 5831 5832 5833 5834
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5835
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5836 5837 5838
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5839 5840 5841 5842
	}
	return ret;
}

5843 5844
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5845 5846
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5847 5848 5849 5850 5851 5852 5853 5854
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5855 5856 5857 5858 5859
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5860
	page = pmd_page(pmd);
5861
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5862
	if (!(mc.flags & MOVE_ANON))
5863
		return ret;
5864
	if (page->mem_cgroup == mc.from) {
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5881 5882 5883 5884
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5885
	struct vm_area_struct *vma = walk->vma;
5886 5887 5888
	pte_t *pte;
	spinlock_t *ptl;

5889 5890
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5891 5892
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5893 5894
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5895
		 */
5896 5897
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5898
		spin_unlock(ptl);
5899
		return 0;
5900
	}
5901

5902 5903
	if (pmd_trans_unstable(pmd))
		return 0;
5904 5905
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5906
		if (get_mctgt_type(vma, addr, *pte, NULL))
5907 5908 5909 5910
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5911 5912 5913
	return 0;
}

5914 5915 5916 5917
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5918 5919 5920 5921
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5922
	mmap_read_lock(mm);
5923
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5924
	mmap_read_unlock(mm);
5925 5926 5927 5928 5929 5930 5931 5932 5933

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5934 5935 5936 5937 5938
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5939 5940
}

5941 5942
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5943
{
5944 5945 5946
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5947
	/* we must uncharge all the leftover precharges from mc.to */
5948
	if (mc.precharge) {
5949
		cancel_charge(mc.to, mc.precharge);
5950 5951 5952 5953 5954 5955 5956
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5957
		cancel_charge(mc.from, mc.moved_charge);
5958
		mc.moved_charge = 0;
5959
	}
5960 5961 5962
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5963
		if (!mem_cgroup_is_root(mc.from))
5964
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5965

5966 5967
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5968
		/*
5969 5970
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5971
		 */
5972
		if (!mem_cgroup_is_root(mc.to))
5973 5974
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5975 5976
		mc.moved_swap = 0;
	}
5977 5978 5979 5980 5981 5982 5983
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5984 5985
	struct mm_struct *mm = mc.mm;

5986 5987 5988 5989 5990 5991
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5992
	spin_lock(&mc.lock);
5993 5994
	mc.from = NULL;
	mc.to = NULL;
5995
	mc.mm = NULL;
5996
	spin_unlock(&mc.lock);
5997 5998

	mmput(mm);
5999 6000
}

6001
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6002
{
6003
	struct cgroup_subsys_state *css;
6004
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6005
	struct mem_cgroup *from;
6006
	struct task_struct *leader, *p;
6007
	struct mm_struct *mm;
6008
	unsigned long move_flags;
6009
	int ret = 0;
6010

6011 6012
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6013 6014
		return 0;

6015 6016 6017 6018 6019 6020 6021
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
6022
	cgroup_taskset_for_each_leader(leader, css, tset) {
6023 6024
		WARN_ON_ONCE(p);
		p = leader;
6025
		memcg = mem_cgroup_from_css(css);
6026 6027 6028 6029
	}
	if (!p)
		return 0;

6030 6031 6032 6033 6034 6035 6036 6037 6038
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
6055
		mc.mm = mm;
6056 6057 6058 6059 6060 6061 6062 6063 6064
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
6065 6066
	} else {
		mmput(mm);
6067 6068 6069 6070
	}
	return ret;
}

6071
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6072
{
6073 6074
	if (mc.to)
		mem_cgroup_clear_mc();
6075 6076
}

6077 6078 6079
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6080
{
6081
	int ret = 0;
6082
	struct vm_area_struct *vma = walk->vma;
6083 6084
	pte_t *pte;
	spinlock_t *ptl;
6085 6086 6087
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6088

6089 6090
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6091
		if (mc.precharge < HPAGE_PMD_NR) {
6092
			spin_unlock(ptl);
6093 6094 6095 6096 6097 6098
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6099
				if (!mem_cgroup_move_account(page, true,
6100
							     mc.from, mc.to)) {
6101 6102 6103 6104 6105 6106
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6107 6108 6109 6110 6111 6112 6113 6114
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6115
		}
6116
		spin_unlock(ptl);
6117
		return 0;
6118 6119
	}

6120 6121
	if (pmd_trans_unstable(pmd))
		return 0;
6122 6123 6124 6125
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6126
		bool device = false;
6127
		swp_entry_t ent;
6128 6129 6130 6131

		if (!mc.precharge)
			break;

6132
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6133 6134
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6135
			fallthrough;
6136 6137
		case MC_TARGET_PAGE:
			page = target.page;
6138 6139 6140 6141 6142 6143 6144 6145
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6146
			if (!device && isolate_lru_page(page))
6147
				goto put;
6148 6149
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6150
				mc.precharge--;
6151 6152
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6153
			}
6154 6155
			if (!device)
				putback_lru_page(page);
6156
put:			/* get_mctgt_type() gets the page */
6157 6158
			put_page(page);
			break;
6159 6160
		case MC_TARGET_SWAP:
			ent = target.ent;
6161
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6162
				mc.precharge--;
6163 6164
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6165 6166
				mc.moved_swap++;
			}
6167
			break;
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6182
		ret = mem_cgroup_do_precharge(1);
6183 6184 6185 6186 6187 6188 6189
		if (!ret)
			goto retry;
	}

	return ret;
}

6190 6191 6192 6193
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6194
static void mem_cgroup_move_charge(void)
6195 6196
{
	lru_add_drain_all();
6197
	/*
6198 6199 6200
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6201 6202 6203
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6204
retry:
6205
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6206
		/*
6207
		 * Someone who are holding the mmap_lock might be waiting in
6208 6209 6210 6211 6212 6213 6214 6215 6216
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6217 6218 6219 6220
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6221 6222
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6223

6224
	mmap_read_unlock(mc.mm);
6225
	atomic_dec(&mc.from->moving_account);
6226 6227
}

6228
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6229
{
6230 6231
	if (mc.to) {
		mem_cgroup_move_charge();
6232
		mem_cgroup_clear_mc();
6233
	}
B
Balbir Singh 已提交
6234
}
6235
#else	/* !CONFIG_MMU */
6236
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6237 6238 6239
{
	return 0;
}
6240
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6241 6242
{
}
6243
static void mem_cgroup_move_task(void)
6244 6245 6246
{
}
#endif
B
Balbir Singh 已提交
6247

6248 6249
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6250 6251
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6252
 */
6253
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6254 6255
{
	/*
6256
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6257 6258 6259
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6260
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6261 6262 6263
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
6264 6265
}

6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6276 6277 6278
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6279 6280 6281
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6282 6283
}

R
Roman Gushchin 已提交
6284 6285
static int memory_min_show(struct seq_file *m, void *v)
{
6286 6287
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6307 6308
static int memory_low_show(struct seq_file *m, void *v)
{
6309 6310
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6321
	err = page_counter_memparse(buf, "max", &low);
6322 6323 6324
	if (err)
		return err;

6325
	page_counter_set_low(&memcg->memory, low);
6326 6327 6328 6329 6330 6331

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6332 6333
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6334 6335 6336 6337 6338 6339
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6340 6341
	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6342 6343 6344 6345
	unsigned long high;
	int err;

	buf = strstrip(buf);
6346
	err = page_counter_memparse(buf, "max", &high);
6347 6348 6349
	if (err)
		return err;

6350
	page_counter_set_high(&memcg->memory, high);
6351

6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6374

6375 6376 6377 6378 6379
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6380 6381
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6382 6383 6384 6385 6386 6387
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6388 6389
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6390 6391 6392 6393
	unsigned long max;
	int err;

	buf = strstrip(buf);
6394
	err = page_counter_memparse(buf, "max", &max);
6395 6396 6397
	if (err)
		return err;

6398
	xchg(&memcg->memory.max, max);
6399 6400 6401 6402 6403 6404 6405

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6406
		if (signal_pending(current))
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6422
		memcg_memory_event(memcg, MEMCG_OOM);
6423 6424 6425
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6426

6427
	memcg_wb_domain_size_changed(memcg);
6428 6429 6430
	return nbytes;
}

6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6441 6442
static int memory_events_show(struct seq_file *m, void *v)
{
6443
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6444

6445 6446 6447 6448 6449 6450 6451
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6452

6453
	__memory_events_show(m, memcg->memory_events_local);
6454 6455 6456
	return 0;
}

6457 6458
static int memory_stat_show(struct seq_file *m, void *v)
{
6459
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6460
	char *buf;
6461

6462 6463 6464 6465 6466
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6467 6468 6469
	return 0;
}

6470 6471
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6472
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6501 6502 6503
static struct cftype memory_files[] = {
	{
		.name = "current",
6504
		.flags = CFTYPE_NOT_ON_ROOT,
6505 6506
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6507 6508 6509 6510 6511 6512
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6534
		.file_offset = offsetof(struct mem_cgroup, events_file),
6535 6536
		.seq_show = memory_events_show,
	},
6537 6538 6539 6540 6541 6542
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6543 6544 6545 6546
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6547 6548 6549 6550 6551 6552
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6553 6554 6555
	{ }	/* terminate */
};

6556
struct cgroup_subsys memory_cgrp_subsys = {
6557
	.css_alloc = mem_cgroup_css_alloc,
6558
	.css_online = mem_cgroup_css_online,
6559
	.css_offline = mem_cgroup_css_offline,
6560
	.css_released = mem_cgroup_css_released,
6561
	.css_free = mem_cgroup_css_free,
6562
	.css_reset = mem_cgroup_css_reset,
6563 6564
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6565
	.post_attach = mem_cgroup_move_task,
6566
	.bind = mem_cgroup_bind,
6567 6568
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6569
	.early_init = 0,
B
Balbir Singh 已提交
6570
};
6571

6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6614 6615
 */
static unsigned long effective_protection(unsigned long usage,
6616
					  unsigned long parent_usage,
6617 6618 6619 6620 6621
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6622
	unsigned long ep;
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6666 6667 6668 6669
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6670 6671 6672
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6673 6674 6675
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6686 6687
}

6688
/**
R
Roman Gushchin 已提交
6689
 * mem_cgroup_protected - check if memory consumption is in the normal range
6690
 * @root: the top ancestor of the sub-tree being checked
6691 6692
 * @memcg: the memory cgroup to check
 *
6693 6694
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6695
 *
R
Roman Gushchin 已提交
6696 6697 6698 6699 6700
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
6701
 */
R
Roman Gushchin 已提交
6702 6703
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6704
{
6705
	unsigned long usage, parent_usage;
6706 6707
	struct mem_cgroup *parent;

6708
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6709
		return MEMCG_PROT_NONE;
6710

6711 6712 6713
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6714
		return MEMCG_PROT_NONE;
6715

6716
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6717 6718 6719 6720
	if (!usage)
		return MEMCG_PROT_NONE;

	parent = parent_mem_cgroup(memcg);
6721 6722 6723 6724
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6725
	if (parent == root) {
6726
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6727
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6728
		goto out;
R
Roman Gushchin 已提交
6729 6730
	}

6731 6732
	parent_usage = page_counter_read(&parent->memory);

6733
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6734 6735
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6736
			atomic_long_read(&parent->memory.children_min_usage)));
6737

6738
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6739 6740
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6741
			atomic_long_read(&parent->memory.children_low_usage)));
6742

6743 6744
out:
	if (usage <= memcg->memory.emin)
R
Roman Gushchin 已提交
6745
		return MEMCG_PROT_MIN;
6746
	else if (usage <= memcg->memory.elow)
R
Roman Gushchin 已提交
6747 6748 6749
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6750 6751
}

6752
/**
6753
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6754 6755 6756 6757 6758 6759 6760
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6761
 * Returns 0 on success. Otherwise, an error code is returned.
6762
 */
6763
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6764
{
6765
	unsigned int nr_pages = hpage_nr_pages(page);
6766 6767 6768 6769 6770 6771 6772
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6773 6774 6775
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6776 6777 6778
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6779 6780
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6781 6782
		 * in turn serializes uncharging.
		 */
6783
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6784
		if (compound_head(page)->mem_cgroup)
6785
			goto out;
6786

6787 6788 6789 6790 6791 6792
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6793 6794 6795 6796 6797 6798
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6799 6800
	if (ret)
		goto out_put;
6801

6802
	css_get(&memcg->css);
6803
	commit_charge(page, memcg);
6804 6805

	local_irq_disable();
6806
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6807 6808
	memcg_check_events(memcg, page);
	local_irq_enable();
6809

6810
	if (PageSwapCache(page)) {
6811 6812 6813 6814 6815 6816
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6817
		mem_cgroup_uncharge_swap(entry, nr_pages);
6818 6819
	}

6820 6821 6822 6823
out_put:
	css_put(&memcg->css);
out:
	return ret;
6824 6825
}

6826 6827
struct uncharge_gather {
	struct mem_cgroup *memcg;
6828
	unsigned long nr_pages;
6829 6830 6831 6832 6833 6834
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6835
{
6836 6837 6838 6839 6840
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6841 6842
	unsigned long flags;

6843
	if (!mem_cgroup_is_root(ug->memcg)) {
6844
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6845
		if (do_memsw_account())
6846
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6847 6848 6849
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6850
	}
6851 6852

	local_irq_save(flags);
6853
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6854
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6855
	memcg_check_events(ug->memcg, ug->dummy_page);
6856
	local_irq_restore(flags);
6857 6858 6859 6860
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6861 6862
	unsigned long nr_pages;

6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

6882 6883
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6884

6885
	if (!PageKmemcg(page)) {
6886 6887
		ug->pgpgout++;
	} else {
6888
		ug->nr_kmem += nr_pages;
6889 6890 6891 6892 6893
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6894
	css_put(&ug->memcg->css);
6895 6896 6897 6898
}

static void uncharge_list(struct list_head *page_list)
{
6899
	struct uncharge_gather ug;
6900
	struct list_head *next;
6901 6902

	uncharge_gather_clear(&ug);
6903

6904 6905 6906 6907
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6908 6909
	next = page_list->next;
	do {
6910 6911
		struct page *page;

6912 6913 6914
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6915
		uncharge_page(page, &ug);
6916 6917
	} while (next != page_list);

6918 6919
	if (ug.memcg)
		uncharge_batch(&ug);
6920 6921
}

6922 6923 6924 6925
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6926
 * Uncharge a page previously charged with mem_cgroup_charge().
6927 6928 6929
 */
void mem_cgroup_uncharge(struct page *page)
{
6930 6931
	struct uncharge_gather ug;

6932 6933 6934
	if (mem_cgroup_disabled())
		return;

6935
	/* Don't touch page->lru of any random page, pre-check: */
6936
	if (!page->mem_cgroup)
6937 6938
		return;

6939 6940 6941
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6942
}
6943

6944 6945 6946 6947 6948
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6949
 * mem_cgroup_charge().
6950 6951 6952 6953 6954
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6955

6956 6957
	if (!list_empty(page_list))
		uncharge_list(page_list);
6958 6959 6960
}

/**
6961 6962 6963
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6964
 *
6965 6966
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6967 6968 6969
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6970
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6971
{
6972
	struct mem_cgroup *memcg;
6973
	unsigned int nr_pages;
6974
	unsigned long flags;
6975 6976 6977 6978

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6979 6980
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6981 6982 6983 6984 6985

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6986
	if (newpage->mem_cgroup)
6987 6988
		return;

6989
	/* Swapcache readahead pages can get replaced before being charged */
6990
	memcg = oldpage->mem_cgroup;
6991
	if (!memcg)
6992 6993
		return;

6994
	/* Force-charge the new page. The old one will be freed soon */
6995
	nr_pages = hpage_nr_pages(newpage);
6996 6997 6998 6999

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
7000

7001
	css_get(&memcg->css);
7002
	commit_charge(newpage, memcg);
7003

7004
	local_irq_save(flags);
7005
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7006
	memcg_check_events(memcg, newpage);
7007
	local_irq_restore(flags);
7008 7009
}

7010
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7011 7012
EXPORT_SYMBOL(memcg_sockets_enabled_key);

7013
void mem_cgroup_sk_alloc(struct sock *sk)
7014 7015 7016
{
	struct mem_cgroup *memcg;

7017 7018 7019
	if (!mem_cgroup_sockets_enabled)
		return;

7020 7021 7022 7023
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

7024 7025
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
7026 7027
	if (memcg == root_mem_cgroup)
		goto out;
7028
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7029
		goto out;
S
Shakeel Butt 已提交
7030
	if (css_tryget(&memcg->css))
7031
		sk->sk_memcg = memcg;
7032
out:
7033 7034 7035
	rcu_read_unlock();
}

7036
void mem_cgroup_sk_free(struct sock *sk)
7037
{
7038 7039
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7052
	gfp_t gfp_mask = GFP_KERNEL;
7053

7054
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7055
		struct page_counter *fail;
7056

7057 7058
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7059 7060
			return true;
		}
7061 7062
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
7063
		return false;
7064
	}
7065

7066 7067 7068 7069
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7070
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7071

7072 7073 7074 7075
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7076 7077 7078 7079 7080
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7081 7082
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7083 7084 7085
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7086
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7087
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7088 7089
		return;
	}
7090

7091
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7092

7093
	refill_stock(memcg, nr_pages);
7094 7095
}

7096 7097 7098 7099 7100 7101 7102 7103 7104
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7105 7106
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7107 7108 7109 7110
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7111

7112
/*
7113 7114
 * subsys_initcall() for memory controller.
 *
7115 7116 7117 7118
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7119 7120 7121
 */
static int __init mem_cgroup_init(void)
{
7122 7123
	int cpu, node;

7124
#ifdef CONFIG_MEMCG_KMEM
7125 7126
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
7127 7128 7129
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
7130
	 */
7131 7132
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
7133 7134
#endif

7135 7136
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7148
		rtpn->rb_root = RB_ROOT;
7149
		rtpn->rb_rightmost = NULL;
7150
		spin_lock_init(&rtpn->lock);
7151 7152 7153
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7154 7155 7156
	return 0;
}
subsys_initcall(mem_cgroup_init);
7157 7158

#ifdef CONFIG_MEMCG_SWAP
7159 7160
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7161
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7177 7178 7179 7180 7181 7182 7183 7184 7185
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7186
	struct mem_cgroup *memcg, *swap_memcg;
7187
	unsigned int nr_entries;
7188 7189 7190 7191 7192
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7193
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7194 7195 7196 7197 7198 7199 7200 7201
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7202 7203 7204 7205 7206 7207
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7208 7209 7210 7211 7212 7213
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7214
	VM_BUG_ON_PAGE(oldid, page);
7215
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7216 7217 7218 7219

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7220
		page_counter_uncharge(&memcg->memory, nr_entries);
7221

7222
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7223
		if (!mem_cgroup_is_root(swap_memcg))
7224 7225
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7226 7227
	}

7228 7229
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7230
	 * i_pages lock which is taken with interrupts-off. It is
7231
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7232
	 * only synchronisation we have for updating the per-CPU variables.
7233 7234
	 */
	VM_BUG_ON(!irqs_disabled());
7235
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7236
	memcg_check_events(memcg, page);
7237

7238
	css_put(&memcg->css);
7239 7240
}

7241 7242
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7243 7244 7245
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7246
 * Try to charge @page's memcg for the swap space at @entry.
7247 7248 7249 7250 7251
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7252
	unsigned int nr_pages = hpage_nr_pages(page);
7253
	struct page_counter *counter;
7254
	struct mem_cgroup *memcg;
7255 7256
	unsigned short oldid;

7257
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7258 7259 7260 7261 7262 7263 7264 7265
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7266 7267
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7268
		return 0;
7269
	}
7270

7271 7272
	memcg = mem_cgroup_id_get_online(memcg);

7273
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7274
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7275 7276
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7277
		mem_cgroup_id_put(memcg);
7278
		return -ENOMEM;
7279
	}
7280

7281 7282 7283 7284
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7285
	VM_BUG_ON_PAGE(oldid, page);
7286
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7287 7288 7289 7290

	return 0;
}

7291
/**
7292
 * mem_cgroup_uncharge_swap - uncharge swap space
7293
 * @entry: swap entry to uncharge
7294
 * @nr_pages: the amount of swap space to uncharge
7295
 */
7296
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7297 7298 7299 7300
{
	struct mem_cgroup *memcg;
	unsigned short id;

7301
	id = swap_cgroup_record(entry, 0, nr_pages);
7302
	rcu_read_lock();
7303
	memcg = mem_cgroup_from_id(id);
7304
	if (memcg) {
7305
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7306
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7307
				page_counter_uncharge(&memcg->swap, nr_pages);
7308
			else
7309
				page_counter_uncharge(&memcg->memsw, nr_pages);
7310
		}
7311
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7312
		mem_cgroup_id_put_many(memcg, nr_pages);
7313 7314 7315 7316
	}
	rcu_read_unlock();
}

7317 7318 7319 7320
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7321
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7322 7323 7324
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7325
				      READ_ONCE(memcg->swap.max) -
7326 7327 7328 7329
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7330 7331 7332 7333 7334 7335 7336 7337
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7338
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7339 7340 7341 7342 7343 7344
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7345 7346 7347 7348 7349
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7350
			return true;
7351
	}
7352 7353 7354 7355

	return false;
}

7356
static int __init setup_swap_account(char *s)
7357 7358
{
	if (!strcmp(s, "1"))
7359
		cgroup_memory_noswap = 0;
7360
	else if (!strcmp(s, "0"))
7361
		cgroup_memory_noswap = 1;
7362 7363
	return 1;
}
7364
__setup("swapaccount=", setup_swap_account);
7365

7366 7367 7368 7369 7370 7371 7372 7373
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7397 7398
static int swap_max_show(struct seq_file *m, void *v)
{
7399 7400
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7415
	xchg(&memcg->swap.max, max);
7416 7417 7418 7419

	return nbytes;
}

7420 7421
static int swap_events_show(struct seq_file *m, void *v)
{
7422
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7423

7424 7425
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7426 7427 7428 7429 7430 7431 7432 7433
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7434 7435 7436 7437 7438 7439
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7440 7441 7442 7443 7444 7445
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7446 7447 7448 7449 7450 7451
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7452 7453 7454 7455 7456 7457
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7458 7459 7460
	{ }	/* terminate */
};

7461
static struct cftype memsw_files[] = {
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7488 7489 7490 7491 7492 7493 7494
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7495 7496
static int __init mem_cgroup_swap_init(void)
{
7497 7498 7499 7500 7501
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7502 7503 7504 7505 7506
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7507 7508
	return 0;
}
7509
core_initcall(mem_cgroup_swap_init);
7510 7511

#endif /* CONFIG_MEMCG_SWAP */