memcontrol.c 175.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/mm.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
61
#include "internal.h"
G
Glauber Costa 已提交
62
#include <net/sock.h>
M
Michal Hocko 已提交
63
#include <net/ip.h>
64
#include "slab.h"
B
Balbir Singh 已提交
65

66
#include <linux/uaccess.h>
67

68 69
#include <trace/events/vmscan.h>

70 71
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
72

73 74
struct mem_cgroup *root_mem_cgroup __read_mostly;

75
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
76

77 78 79
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

80 81 82
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

83
/* Whether the swap controller is active */
A
Andrew Morton 已提交
84
#ifdef CONFIG_MEMCG_SWAP
85 86
int do_swap_account __read_mostly;
#else
87
#define do_swap_account		0
88 89
#endif

90 91 92 93 94 95
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

96
static const char *const mem_cgroup_lru_names[] = {
97 98 99 100 101 102 103
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

104 105 106
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
107

108 109 110 111 112
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

113
struct mem_cgroup_tree_per_node {
114
	struct rb_root rb_root;
115
	struct rb_node *rb_rightmost;
116 117 118 119 120 121 122 123 124
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
125 126 127 128 129
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
130

131 132 133
/*
 * cgroup_event represents events which userspace want to receive.
 */
134
struct mem_cgroup_event {
135
	/*
136
	 * memcg which the event belongs to.
137
	 */
138
	struct mem_cgroup *memcg;
139 140 141 142 143 144 145 146
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
147 148 149 150 151
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
152
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
153
			      struct eventfd_ctx *eventfd, const char *args);
154 155 156 157 158
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
159
	void (*unregister_event)(struct mem_cgroup *memcg,
160
				 struct eventfd_ctx *eventfd);
161 162 163 164 165 166
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
167
	wait_queue_entry_t wait;
168 169 170
	struct work_struct remove;
};

171 172
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173

174 175
/* Stuffs for move charges at task migration. */
/*
176
 * Types of charges to be moved.
177
 */
178 179 180
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181

182 183
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
184
	spinlock_t	  lock; /* for from, to */
185
	struct mm_struct  *mm;
186 187
	struct mem_cgroup *from;
	struct mem_cgroup *to;
188
	unsigned long flags;
189
	unsigned long precharge;
190
	unsigned long moved_charge;
191
	unsigned long moved_swap;
192 193 194
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
195
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 197
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
198

199 200 201 202
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
203
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205

206 207
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
208
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
209
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
210
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
211 212 213
	NR_CHARGE_TYPE,
};

214
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
215 216 217 218
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
219
	_KMEM,
V
Vladimir Davydov 已提交
220
	_TCP,
G
Glauber Costa 已提交
221 222
};

223 224
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
225
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
226 227
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

244 245 246 247 248 249
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

250 251 252 253 254 255 256 257 258 259 260 261 262
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

263
#ifdef CONFIG_MEMCG_KMEM
264
/*
265
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
266 267 268 269 270
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
271
 *
272 273
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
274
 */
275 276
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
277

278 279 280 281 282 283 284 285 286 287 288 289 290
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

291 292 293 294 295 296
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
297
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298 299
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
300
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
301 302 303
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
304
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
305

306 307 308 309 310 311
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
312
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
313
EXPORT_SYMBOL(memcg_kmem_enabled_key);
314

315 316
struct workqueue_struct *memcg_kmem_cache_wq;

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
424 425 426 427 428 429 430 431

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
432 433
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
434 435 436 437 438
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

439 440 441 442 443 444
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
445
#endif /* CONFIG_MEMCG_KMEM */
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

464
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 466 467 468 469
		memcg = root_mem_cgroup;

	return &memcg->css;
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
489 490 491 492
	if (PageHead(page) && PageSlab(page))
		memcg = memcg_from_slab_page(page);
	else
		memcg = READ_ONCE(page->mem_cgroup);
493 494 495 496 497 498 499 500
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

501 502
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503
{
504
	int nid = page_to_nid(page);
505

506
	return memcg->nodeinfo[nid];
507 508
}

509 510
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
511
{
512
	return soft_limit_tree.rb_tree_per_node[nid];
513 514
}

515
static struct mem_cgroup_tree_per_node *
516 517 518 519
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

520
	return soft_limit_tree.rb_tree_per_node[nid];
521 522
}

523 524
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
525
					 unsigned long new_usage_in_excess)
526 527 528
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
529
	struct mem_cgroup_per_node *mz_node;
530
	bool rightmost = true;
531 532 533 534 535 536 537 538 539

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
540
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541
					tree_node);
542
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
543
			p = &(*p)->rb_left;
544 545 546
			rightmost = false;
		}

547 548 549 550 551 552 553
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
554 555 556 557

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

558 559 560 561 562
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

563 564
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
565 566 567
{
	if (!mz->on_tree)
		return;
568 569 570 571

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

572 573 574 575
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

576 577
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
578
{
579 580 581
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
582
	__mem_cgroup_remove_exceeded(mz, mctz);
583
	spin_unlock_irqrestore(&mctz->lock, flags);
584 585
}

586 587 588
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
589
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 591 592 593 594 595 596
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
597 598 599

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
600
	unsigned long excess;
601 602
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
603

604
	mctz = soft_limit_tree_from_page(page);
605 606
	if (!mctz)
		return;
607 608 609 610 611
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612
		mz = mem_cgroup_page_nodeinfo(memcg, page);
613
		excess = soft_limit_excess(memcg);
614 615 616 617 618
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
619 620 621
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
622 623
			/* if on-tree, remove it */
			if (mz->on_tree)
624
				__mem_cgroup_remove_exceeded(mz, mctz);
625 626 627 628
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
629
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
630
			spin_unlock_irqrestore(&mctz->lock, flags);
631 632 633 634 635 636
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
637 638 639
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
640

641
	for_each_node(nid) {
642 643
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
644 645
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
646 647 648
	}
}

649 650
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651
{
652
	struct mem_cgroup_per_node *mz;
653 654 655

retry:
	mz = NULL;
656
	if (!mctz->rb_rightmost)
657 658
		goto done;		/* Nothing to reclaim from */

659 660
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
661 662 663 664 665
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
666
	__mem_cgroup_remove_exceeded(mz, mctz);
667
	if (!soft_limit_excess(mz->memcg) ||
668
	    !css_tryget_online(&mz->memcg->css))
669 670 671 672 673
		goto retry;
done:
	return mz;
}

674 675
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676
{
677
	struct mem_cgroup_per_node *mz;
678

679
	spin_lock_irq(&mctz->lock);
680
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
681
	spin_unlock_irq(&mctz->lock);
682 683 684
	return mz;
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	long x;

	if (mem_cgroup_disabled())
		return;

	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
700 701
		struct mem_cgroup *mi;

702 703 704 705 706
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
707 708
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
709 710 711 712 713
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

714 715 716 717 718 719 720 721 722 723 724
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
738
	pg_data_t *pgdat = lruvec_pgdat(lruvec);
739
	struct mem_cgroup_per_node *pn;
740
	struct mem_cgroup *memcg;
741 742 743
	long x;

	/* Update node */
744
	__mod_node_page_state(pgdat, idx, val);
745 746 747 748 749

	if (mem_cgroup_disabled())
		return;

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
750
	memcg = pn->memcg;
751 752

	/* Update memcg */
753
	__mod_memcg_state(memcg, idx, val);
754 755 756

	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
757 758
		struct mem_cgroup_per_node *pi;

759 760 761 762 763
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(pn->lruvec_stat_local->count[idx], x);
764 765
		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
766 767 768 769 770
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
	struct page *page = virt_to_head_page(p);
	pg_data_t *pgdat = page_pgdat(page);
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = memcg_from_slab_page(page);

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
807 808
		struct mem_cgroup *mi;

809 810 811 812 813
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
814 815
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
816 817 818 819 820
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

821
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822
{
823
	return atomic_long_read(&memcg->vmevents[event]);
824 825
}

826 827
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
828 829 830 831 832 833
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
834 835
}

836
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837
					 struct page *page,
838
					 bool compound, int nr_pages)
839
{
840 841 842 843
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
844
	if (PageAnon(page))
845
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
846
	else {
847
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
848
		if (PageSwapBacked(page))
849
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
850
	}
851

852 853
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
854
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
855
	}
856

857 858
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
859
		__count_memcg_events(memcg, PGPGIN, 1);
860
	else {
861
		__count_memcg_events(memcg, PGPGOUT, 1);
862 863
		nr_pages = -nr_pages; /* for event */
	}
864

865
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
866 867
}

868 869
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
870 871 872
{
	unsigned long val, next;

873 874
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
875
	/* from time_after() in jiffies.h */
876
	if ((long)(next - val) < 0) {
877 878 879 880
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
881 882 883
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
884 885 886 887 888 889
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
890
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
891
		return true;
892
	}
893
	return false;
894 895 896 897 898 899
}

/*
 * Check events in order.
 *
 */
900
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
901 902
{
	/* threshold event is triggered in finer grain than soft limit */
903 904
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
905
		bool do_softlimit;
906
		bool do_numainfo __maybe_unused;
907

908 909
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
910 911 912 913
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
914
		mem_cgroup_threshold(memcg);
915 916
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
917
#if MAX_NUMNODES > 1
918
		if (unlikely(do_numainfo))
919
			atomic_inc(&memcg->numainfo_events);
920
#endif
921
	}
922 923
}

924
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
925
{
926 927 928 929 930 931 932 933
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

934
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
935
}
M
Michal Hocko 已提交
936
EXPORT_SYMBOL(mem_cgroup_from_task);
937

938 939 940 941 942 943 944 945 946
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
947
{
948 949 950 951
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
952

953 954
	rcu_read_lock();
	do {
955 956 957 958 959 960
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
961
			memcg = root_mem_cgroup;
962 963 964 965 966
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
967
	} while (!css_tryget_online(&memcg->css));
968
	rcu_read_unlock();
969
	return memcg;
970
}
971 972
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1025
 * Reclaimers can specify a node and a priority level in @reclaim to
1026
 * divide up the memcgs in the hierarchy among all concurrent
1027
 * reclaimers operating on the same node and priority.
1028
 */
1029
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1030
				   struct mem_cgroup *prev,
1031
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1032
{
M
Michal Hocko 已提交
1033
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1034
	struct cgroup_subsys_state *css = NULL;
1035
	struct mem_cgroup *memcg = NULL;
1036
	struct mem_cgroup *pos = NULL;
1037

1038 1039
	if (mem_cgroup_disabled())
		return NULL;
1040

1041 1042
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1043

1044
	if (prev && !reclaim)
1045
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1046

1047 1048
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1049
			goto out;
1050
		return root;
1051
	}
K
KAMEZAWA Hiroyuki 已提交
1052

1053
	rcu_read_lock();
M
Michal Hocko 已提交
1054

1055
	if (reclaim) {
1056
		struct mem_cgroup_per_node *mz;
1057

1058
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1059 1060 1061 1062 1063
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1064
		while (1) {
1065
			pos = READ_ONCE(iter->position);
1066 1067
			if (!pos || css_tryget(&pos->css))
				break;
1068
			/*
1069 1070 1071 1072 1073 1074
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1075
			 */
1076 1077
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1095
		}
K
KAMEZAWA Hiroyuki 已提交
1096

1097 1098 1099 1100 1101 1102
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1103

1104 1105
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1106

1107 1108
		if (css_tryget(css))
			break;
1109

1110
		memcg = NULL;
1111
	}
1112 1113 1114

	if (reclaim) {
		/*
1115 1116 1117
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1118
		 */
1119 1120
		(void)cmpxchg(&iter->position, pos, memcg);

1121 1122 1123 1124 1125 1126 1127
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1128
	}
1129

1130 1131
out_unlock:
	rcu_read_unlock();
1132
out:
1133 1134 1135
	if (prev && prev != root)
		css_put(&prev->css);

1136
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1137
}
K
KAMEZAWA Hiroyuki 已提交
1138

1139 1140 1141 1142 1143 1144 1145
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1146 1147 1148 1149 1150 1151
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1152

1153 1154
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1155 1156
{
	struct mem_cgroup_reclaim_iter *iter;
1157 1158
	struct mem_cgroup_per_node *mz;
	int nid;
1159 1160
	int i;

1161 1162 1163 1164 1165 1166
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
		for (i = 0; i <= DEF_PRIORITY; i++) {
			iter = &mz->iter[i];
			cmpxchg(&iter->position,
				dead_memcg, NULL);
1167 1168 1169 1170
		}
	}
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1217
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1229
/**
1230
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1231
 * @page: the page
1232
 * @pgdat: pgdat of the page
1233 1234 1235 1236
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1237
 */
M
Mel Gorman 已提交
1238
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1239
{
1240
	struct mem_cgroup_per_node *mz;
1241
	struct mem_cgroup *memcg;
1242
	struct lruvec *lruvec;
1243

1244
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1245
		lruvec = &pgdat->lruvec;
1246 1247
		goto out;
	}
1248

1249
	memcg = page->mem_cgroup;
1250
	/*
1251
	 * Swapcache readahead pages are added to the LRU - and
1252
	 * possibly migrated - before they are charged.
1253
	 */
1254 1255
	if (!memcg)
		memcg = root_mem_cgroup;
1256

1257
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1258 1259 1260 1261 1262 1263 1264
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1265 1266
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1267
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1268
}
1269

1270
/**
1271 1272 1273
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1274
 * @zid: zone id of the accounted pages
1275
 * @nr_pages: positive when adding or negative when removing
1276
 *
1277 1278 1279
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1280
 */
1281
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282
				int zid, int nr_pages)
1283
{
1284
	struct mem_cgroup_per_node *mz;
1285
	unsigned long *lru_size;
1286
	long size;
1287 1288 1289 1290

	if (mem_cgroup_disabled())
		return;

1291
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292
	lru_size = &mz->lru_zone_size[zid][lru];
1293 1294 1295 1296 1297

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1298 1299 1300
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1301 1302 1303 1304 1305 1306
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1307
}
1308

1309
/**
1310
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1311
 * @memcg: the memory cgroup
1312
 *
1313
 * Returns the maximum amount of memory @mem can be charged with, in
1314
 * pages.
1315
 */
1316
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317
{
1318 1319 1320
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1321

1322
	count = page_counter_read(&memcg->memory);
1323
	limit = READ_ONCE(memcg->memory.max);
1324 1325 1326
	if (count < limit)
		margin = limit - count;

1327
	if (do_memsw_account()) {
1328
		count = page_counter_read(&memcg->memsw);
1329
		limit = READ_ONCE(memcg->memsw.max);
1330 1331
		if (count <= limit)
			margin = min(margin, limit - count);
1332 1333
		else
			margin = 0;
1334 1335 1336
	}

	return margin;
1337 1338
}

1339
/*
Q
Qiang Huang 已提交
1340
 * A routine for checking "mem" is under move_account() or not.
1341
 *
Q
Qiang Huang 已提交
1342 1343 1344
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1345
 */
1346
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1347
{
1348 1349
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1350
	bool ret = false;
1351 1352 1353 1354 1355 1356 1357 1358 1359
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1360

1361 1362
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1363 1364
unlock:
	spin_unlock(&mc.lock);
1365 1366 1367
	return ret;
}

1368
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1369 1370
{
	if (mc.moving_task && current != mc.moving_task) {
1371
		if (mem_cgroup_under_move(memcg)) {
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1384 1385 1386 1387
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_buf_printf(&s, "anon_thp %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
		       PAGE_SIZE);

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
		       PAGE_SIZE);

	/* Accumulated memory events */

	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
		       memcg_events(memcg, THP_FAULT_ALLOC));
	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1492

1493
#define K(x) ((x) << (PAGE_SHIFT-10))
1494
/**
1495 1496
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1497 1498 1499 1500 1501 1502
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1503
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1504 1505 1506
{
	rcu_read_lock();

1507 1508 1509 1510 1511
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1512
	if (p) {
1513
		pr_cont(",task_memcg=");
1514 1515
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1516
	rcu_read_unlock();
1517 1518 1519 1520 1521 1522 1523 1524 1525
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1526
	char *buf;
1527

1528 1529
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1530
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
			K((u64)memcg->swap.max), memcg->swap.failcnt);
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1542
	}
1543 1544 1545 1546 1547 1548 1549 1550 1551

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1552 1553
}

D
David Rientjes 已提交
1554 1555 1556
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1557
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1558
{
1559
	unsigned long max;
1560

1561
	max = memcg->memory.max;
1562
	if (mem_cgroup_swappiness(memcg)) {
1563 1564
		unsigned long memsw_max;
		unsigned long swap_max;
1565

1566 1567 1568 1569
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1570
	}
1571
	return max;
D
David Rientjes 已提交
1572 1573
}

1574
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1575
				     int order)
1576
{
1577 1578 1579
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1580
		.memcg = memcg,
1581 1582 1583
		.gfp_mask = gfp_mask,
		.order = order,
	};
1584
	bool ret;
1585

1586 1587 1588 1589 1590 1591 1592
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1593
	mutex_unlock(&oom_lock);
1594
	return ret;
1595 1596
}

1597 1598
#if MAX_NUMNODES > 1

1599 1600
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1601
 * @memcg: the target memcg
1602 1603 1604 1605 1606 1607 1608
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1609
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1610 1611
		int nid, bool noswap)
{
1612 1613
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);

1614 1615
	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1616 1617 1618
		return true;
	if (noswap || !total_swap_pages)
		return false;
1619 1620
	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1621 1622 1623 1624
		return true;
	return false;

}
1625 1626 1627 1628 1629 1630 1631

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1632
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1633 1634
{
	int nid;
1635 1636 1637 1638
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1639
	if (!atomic_read(&memcg->numainfo_events))
1640
		return;
1641
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1642 1643 1644
		return;

	/* make a nodemask where this memcg uses memory from */
1645
	memcg->scan_nodes = node_states[N_MEMORY];
1646

1647
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1648

1649 1650
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1651
	}
1652

1653 1654
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1669
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1670 1671 1672
{
	int node;

1673 1674
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1675

1676
	node = next_node_in(node, memcg->scan_nodes);
1677
	/*
1678 1679 1680
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1681 1682 1683 1684
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1685
	memcg->last_scanned_node = node;
1686 1687 1688
	return node;
}
#else
1689
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1690 1691 1692 1693 1694
{
	return 0;
}
#endif

1695
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1696
				   pg_data_t *pgdat,
1697 1698 1699 1700 1701 1702 1703 1704 1705
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1706
		.pgdat = pgdat,
1707 1708 1709
		.priority = 0,
	};

1710
	excess = soft_limit_excess(root_memcg);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1736
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1737
					pgdat, &nr_scanned);
1738
		*total_scanned += nr_scanned;
1739
		if (!soft_limit_excess(root_memcg))
1740
			break;
1741
	}
1742 1743
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1744 1745
}

1746 1747 1748 1749 1750 1751
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1752 1753
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1754 1755 1756 1757
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1758
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1759
{
1760
	struct mem_cgroup *iter, *failed = NULL;
1761

1762 1763
	spin_lock(&memcg_oom_lock);

1764
	for_each_mem_cgroup_tree(iter, memcg) {
1765
		if (iter->oom_lock) {
1766 1767 1768 1769 1770
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1771 1772
			mem_cgroup_iter_break(memcg, iter);
			break;
1773 1774
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1775
	}
K
KAMEZAWA Hiroyuki 已提交
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1788
		}
1789 1790
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1791 1792 1793 1794

	spin_unlock(&memcg_oom_lock);

	return !failed;
1795
}
1796

1797
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1798
{
K
KAMEZAWA Hiroyuki 已提交
1799 1800
	struct mem_cgroup *iter;

1801
	spin_lock(&memcg_oom_lock);
1802
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1803
	for_each_mem_cgroup_tree(iter, memcg)
1804
		iter->oom_lock = false;
1805
	spin_unlock(&memcg_oom_lock);
1806 1807
}

1808
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1809 1810 1811
{
	struct mem_cgroup *iter;

1812
	spin_lock(&memcg_oom_lock);
1813
	for_each_mem_cgroup_tree(iter, memcg)
1814 1815
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1816 1817
}

1818
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1819 1820 1821
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1822 1823
	/*
	 * When a new child is created while the hierarchy is under oom,
1824
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1825
	 */
1826
	spin_lock(&memcg_oom_lock);
1827
	for_each_mem_cgroup_tree(iter, memcg)
1828 1829 1830
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1831 1832
}

K
KAMEZAWA Hiroyuki 已提交
1833 1834
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1835
struct oom_wait_info {
1836
	struct mem_cgroup *memcg;
1837
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1838 1839
};

1840
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1841 1842
	unsigned mode, int sync, void *arg)
{
1843 1844
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1845 1846 1847
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1848
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1849

1850 1851
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1852 1853 1854 1855
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1856
static void memcg_oom_recover(struct mem_cgroup *memcg)
1857
{
1858 1859 1860 1861 1862 1863 1864 1865 1866
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1867
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1868 1869
}

1870 1871 1872 1873 1874 1875 1876 1877
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1878
{
1879 1880 1881
	enum oom_status ret;
	bool locked;

1882 1883 1884
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1885 1886
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1887
	/*
1888 1889 1890 1891
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1892 1893 1894 1895
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1896
	 *
1897 1898 1899 1900 1901 1902 1903
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1904
	 */
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1916 1917 1918 1919 1920 1921 1922 1923
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1924
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1925 1926 1927 1928 1929 1930
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1931

1932
	return ret;
1933 1934 1935 1936
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1937
 * @handle: actually kill/wait or just clean up the OOM state
1938
 *
1939 1940
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1941
 *
1942
 * Memcg supports userspace OOM handling where failed allocations must
1943 1944 1945 1946
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1947
 * the end of the page fault to complete the OOM handling.
1948 1949
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1950
 * completed, %false otherwise.
1951
 */
1952
bool mem_cgroup_oom_synchronize(bool handle)
1953
{
T
Tejun Heo 已提交
1954
	struct mem_cgroup *memcg = current->memcg_in_oom;
1955
	struct oom_wait_info owait;
1956
	bool locked;
1957 1958 1959

	/* OOM is global, do not handle */
	if (!memcg)
1960
		return false;
1961

1962
	if (!handle)
1963
		goto cleanup;
1964 1965 1966 1967 1968

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1969
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1970

1971
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1982 1983
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1984
	} else {
1985
		schedule();
1986 1987 1988 1989 1990
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1991 1992 1993 1994 1995 1996 1997 1998
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1999
cleanup:
T
Tejun Heo 已提交
2000
	current->memcg_in_oom = NULL;
2001
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2002
	return true;
2003 2004
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2061
/**
2062 2063
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2064
 *
2065
 * This function protects unlocked LRU pages from being moved to
2066 2067 2068 2069 2070
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2071
 */
2072
struct mem_cgroup *lock_page_memcg(struct page *page)
2073 2074
{
	struct mem_cgroup *memcg;
2075
	unsigned long flags;
2076

2077 2078 2079 2080
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2081 2082 2083 2084 2085 2086 2087
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2088 2089 2090
	rcu_read_lock();

	if (mem_cgroup_disabled())
2091
		return NULL;
2092
again:
2093
	memcg = page->mem_cgroup;
2094
	if (unlikely(!memcg))
2095
		return NULL;
2096

Q
Qiang Huang 已提交
2097
	if (atomic_read(&memcg->moving_account) <= 0)
2098
		return memcg;
2099

2100
	spin_lock_irqsave(&memcg->move_lock, flags);
2101
	if (memcg != page->mem_cgroup) {
2102
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2103 2104
		goto again;
	}
2105 2106 2107 2108

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2109
	 * the task who has the lock for unlock_page_memcg().
2110 2111 2112
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2113

2114
	return memcg;
2115
}
2116
EXPORT_SYMBOL(lock_page_memcg);
2117

2118
/**
2119 2120 2121 2122
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2123
 */
2124
void __unlock_page_memcg(struct mem_cgroup *memcg)
2125
{
2126 2127 2128 2129 2130 2131 2132 2133
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2134

2135
	rcu_read_unlock();
2136
}
2137 2138 2139 2140 2141 2142 2143 2144 2145

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
2146
EXPORT_SYMBOL(unlock_page_memcg);
2147

2148 2149
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2150
	unsigned int nr_pages;
2151
	struct work_struct work;
2152
	unsigned long flags;
2153
#define FLUSHING_CACHED_CHARGE	0
2154 2155
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2156
static DEFINE_MUTEX(percpu_charge_mutex);
2157

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2168
 */
2169
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2170 2171
{
	struct memcg_stock_pcp *stock;
2172
	unsigned long flags;
2173
	bool ret = false;
2174

2175
	if (nr_pages > MEMCG_CHARGE_BATCH)
2176
		return ret;
2177

2178 2179 2180
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2181
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2182
		stock->nr_pages -= nr_pages;
2183 2184
		ret = true;
	}
2185 2186 2187

	local_irq_restore(flags);

2188 2189 2190 2191
	return ret;
}

/*
2192
 * Returns stocks cached in percpu and reset cached information.
2193 2194 2195 2196 2197
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2198
	if (stock->nr_pages) {
2199
		page_counter_uncharge(&old->memory, stock->nr_pages);
2200
		if (do_memsw_account())
2201
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2202
		css_put_many(&old->css, stock->nr_pages);
2203
		stock->nr_pages = 0;
2204 2205 2206 2207 2208 2209
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2210 2211 2212
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2213 2214 2215 2216
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2217 2218 2219
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2220
	drain_stock(stock);
2221
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2222 2223

	local_irq_restore(flags);
2224 2225 2226
}

/*
2227
 * Cache charges(val) to local per_cpu area.
2228
 * This will be consumed by consume_stock() function, later.
2229
 */
2230
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2231
{
2232 2233 2234 2235
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2236

2237
	stock = this_cpu_ptr(&memcg_stock);
2238
	if (stock->cached != memcg) { /* reset if necessary */
2239
		drain_stock(stock);
2240
		stock->cached = memcg;
2241
	}
2242
	stock->nr_pages += nr_pages;
2243

2244
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2245 2246
		drain_stock(stock);

2247
	local_irq_restore(flags);
2248 2249 2250
}

/*
2251
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2252
 * of the hierarchy under it.
2253
 */
2254
static void drain_all_stock(struct mem_cgroup *root_memcg)
2255
{
2256
	int cpu, curcpu;
2257

2258 2259 2260
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2261 2262 2263 2264 2265 2266
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2267
	curcpu = get_cpu();
2268 2269
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2270
		struct mem_cgroup *memcg;
2271

2272
		memcg = stock->cached;
2273
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2274
			continue;
2275 2276
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
2277
			continue;
2278
		}
2279 2280 2281 2282 2283 2284
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2285
		css_put(&memcg->css);
2286
	}
2287
	put_cpu();
2288
	mutex_unlock(&percpu_charge_mutex);
2289 2290
}

2291
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2292 2293
{
	struct memcg_stock_pcp *stock;
2294
	struct mem_cgroup *memcg, *mi;
2295 2296 2297

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2298 2299 2300 2301 2302 2303 2304 2305

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2306
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2307
			if (x)
2308 2309
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2310 2311 2312 2313 2314 2315 2316 2317 2318

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2319
				if (x)
2320 2321 2322
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2323 2324 2325
			}
		}

2326
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2327 2328
			long x;

2329
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2330
			if (x)
2331 2332
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2333 2334 2335
		}
	}

2336
	return 0;
2337 2338
}

2339 2340 2341 2342 2343 2344 2345
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2346
		memcg_memory_event(memcg, MEMCG_HIGH);
2347 2348 2349 2350 2351 2352 2353 2354 2355
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2356
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2357 2358
}

2359 2360 2361 2362 2363 2364 2365
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2366
	struct mem_cgroup *memcg;
2367 2368 2369 2370

	if (likely(!nr_pages))
		return;

2371 2372
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2373 2374 2375 2376
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2377 2378
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2379
{
2380
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2381
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382
	struct mem_cgroup *mem_over_limit;
2383
	struct page_counter *counter;
2384
	unsigned long nr_reclaimed;
2385 2386
	bool may_swap = true;
	bool drained = false;
2387
	enum oom_status oom_status;
2388

2389
	if (mem_cgroup_is_root(memcg))
2390
		return 0;
2391
retry:
2392
	if (consume_stock(memcg, nr_pages))
2393
		return 0;
2394

2395
	if (!do_memsw_account() ||
2396 2397
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2398
			goto done_restock;
2399
		if (do_memsw_account())
2400 2401
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2402
	} else {
2403
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2404
		may_swap = false;
2405
	}
2406

2407 2408 2409 2410
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2411

2412 2413 2414 2415 2416 2417
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2418
	if (unlikely(should_force_charge()))
2419
		goto force;
2420

2421 2422 2423 2424 2425 2426 2427 2428 2429
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2430 2431 2432
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2433
	if (!gfpflags_allow_blocking(gfp_mask))
2434
		goto nomem;
2435

2436
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2437

2438 2439
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2440

2441
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2442
		goto retry;
2443

2444
	if (!drained) {
2445
		drain_all_stock(mem_over_limit);
2446 2447 2448 2449
		drained = true;
		goto retry;
	}

2450 2451
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2452 2453 2454 2455 2456 2457 2458 2459 2460
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2461
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2462 2463 2464 2465 2466 2467 2468 2469
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2470 2471 2472
	if (nr_retries--)
		goto retry;

2473
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2474 2475
		goto nomem;

2476
	if (gfp_mask & __GFP_NOFAIL)
2477
		goto force;
2478

2479
	if (fatal_signal_pending(current))
2480
		goto force;
2481

2482 2483 2484 2485 2486 2487
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2488
		       get_order(nr_pages * PAGE_SIZE));
2489 2490 2491 2492 2493 2494 2495 2496 2497
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2498
nomem:
2499
	if (!(gfp_mask & __GFP_NOFAIL))
2500
		return -ENOMEM;
2501 2502 2503 2504 2505 2506 2507
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2508
	if (do_memsw_account())
2509 2510 2511 2512
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2513 2514

done_restock:
2515
	css_get_many(&memcg->css, batch);
2516 2517
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2518

2519
	/*
2520 2521
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2522
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2523 2524 2525 2526
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2527 2528
	 */
	do {
2529
		if (page_counter_read(&memcg->memory) > memcg->high) {
2530 2531 2532 2533 2534
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2535
			current->memcg_nr_pages_over_high += batch;
2536 2537 2538
			set_notify_resume(current);
			break;
		}
2539
	} while ((memcg = parent_mem_cgroup(memcg)));
2540 2541

	return 0;
2542
}
2543

2544
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2545
{
2546 2547 2548
	if (mem_cgroup_is_root(memcg))
		return;

2549
	page_counter_uncharge(&memcg->memory, nr_pages);
2550
	if (do_memsw_account())
2551
		page_counter_uncharge(&memcg->memsw, nr_pages);
2552

2553
	css_put_many(&memcg->css, nr_pages);
2554 2555
}

2556 2557
static void lock_page_lru(struct page *page, int *isolated)
{
2558
	pg_data_t *pgdat = page_pgdat(page);
2559

2560
	spin_lock_irq(&pgdat->lru_lock);
2561 2562 2563
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2564
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2565 2566 2567 2568 2569 2570 2571 2572 2573
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2574
	pg_data_t *pgdat = page_pgdat(page);
2575 2576 2577 2578

	if (isolated) {
		struct lruvec *lruvec;

2579
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2580 2581 2582 2583
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2584
	spin_unlock_irq(&pgdat->lru_lock);
2585 2586
}

2587
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2588
			  bool lrucare)
2589
{
2590
	int isolated;
2591

2592
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2593 2594 2595 2596 2597

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2598 2599
	if (lrucare)
		lock_page_lru(page, &isolated);
2600

2601 2602
	/*
	 * Nobody should be changing or seriously looking at
2603
	 * page->mem_cgroup at this point:
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2615
	page->mem_cgroup = memcg;
2616

2617 2618
	if (lrucare)
		unlock_page_lru(page, isolated);
2619
}
2620

2621
#ifdef CONFIG_MEMCG_KMEM
2622
static int memcg_alloc_cache_id(void)
2623
{
2624 2625 2626
	int id, size;
	int err;

2627
	id = ida_simple_get(&memcg_cache_ida,
2628 2629 2630
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2631

2632
	if (id < memcg_nr_cache_ids)
2633 2634 2635 2636 2637 2638
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2639
	down_write(&memcg_cache_ids_sem);
2640 2641

	size = 2 * (id + 1);
2642 2643 2644 2645 2646
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2647
	err = memcg_update_all_caches(size);
2648 2649
	if (!err)
		err = memcg_update_all_list_lrus(size);
2650 2651 2652 2653 2654
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2655
	if (err) {
2656
		ida_simple_remove(&memcg_cache_ida, id);
2657 2658 2659 2660 2661 2662 2663
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2664
	ida_simple_remove(&memcg_cache_ida, id);
2665 2666
}

2667
struct memcg_kmem_cache_create_work {
2668 2669 2670 2671 2672
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2673
static void memcg_kmem_cache_create_func(struct work_struct *w)
2674
{
2675 2676
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2677 2678
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2679

2680
	memcg_create_kmem_cache(memcg, cachep);
2681

2682
	css_put(&memcg->css);
2683 2684 2685 2686 2687 2688
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2689
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2690
					       struct kmem_cache *cachep)
2691
{
2692
	struct memcg_kmem_cache_create_work *cw;
2693

2694 2695 2696
	if (!css_tryget_online(&memcg->css))
		return;

2697
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2698
	if (!cw)
2699
		return;
2700

2701 2702
	cw->memcg = memcg;
	cw->cachep = cachep;
2703
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2704

2705
	queue_work(memcg_kmem_cache_wq, &cw->work);
2706 2707
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2719 2720 2721
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2722 2723 2724
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2725
 *
2726 2727 2728 2729
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2730
 */
2731
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2732 2733
{
	struct mem_cgroup *memcg;
2734
	struct kmem_cache *memcg_cachep;
2735
	struct memcg_cache_array *arr;
2736
	int kmemcg_id;
2737

2738
	VM_BUG_ON(!is_root_cache(cachep));
2739

2740
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2741 2742
		return cachep;

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	rcu_read_lock();

	if (unlikely(current->active_memcg))
		memcg = current->active_memcg;
	else
		memcg = mem_cgroup_from_task(current);

	if (!memcg || memcg == root_mem_cgroup)
		goto out_unlock;

2753
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2754
	if (kmemcg_id < 0)
2755
		goto out_unlock;
2756

2757 2758 2759 2760 2761 2762 2763 2764
	arr = rcu_dereference(cachep->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match the data dependency
	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
	 */
	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2765 2766 2767 2768 2769 2770 2771 2772 2773

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2774 2775 2776
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2777 2778 2779 2780 2781 2782 2783
	 *
	 * If the memcg is dying or memcg_cache is about to be released,
	 * don't bother creating new kmem_caches. Because memcg_cachep
	 * is ZEROed as the fist step of kmem offlining, we don't need
	 * percpu_ref_tryget_live() here. css_tryget_online() check in
	 * memcg_schedule_kmem_cache_create() will prevent us from
	 * creation of a new kmem_cache.
2784
	 */
2785 2786 2787 2788 2789 2790
	if (unlikely(!memcg_cachep))
		memcg_schedule_kmem_cache_create(memcg, cachep);
	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
		cachep = memcg_cachep;
out_unlock:
	rcu_read_unlock();
2791
	return cachep;
2792 2793
}

2794 2795 2796 2797 2798
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2799 2800
{
	if (!is_root_cache(cachep))
2801
		percpu_ref_put(&cachep->memcg_params.refcnt);
2802 2803
}

2804
/**
2805
 * __memcg_kmem_charge_memcg: charge a kmem page
2806 2807 2808 2809 2810 2811 2812
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
2813
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2814
			    struct mem_cgroup *memcg)
2815
{
2816 2817
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2818 2819
	int ret;

2820
	ret = try_charge(memcg, gfp, nr_pages);
2821
	if (ret)
2822
		return ret;
2823 2824 2825 2826 2827

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2828
	}
2829
	return 0;
2830 2831
}

2832
/**
2833
 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2834 2835 2836 2837 2838 2839
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2840
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2841
{
2842
	struct mem_cgroup *memcg;
2843
	int ret = 0;
2844

2845
	if (memcg_kmem_bypass())
2846 2847
		return 0;

2848
	memcg = get_mem_cgroup_from_current();
2849
	if (!mem_cgroup_is_root(memcg)) {
2850
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2851 2852
		if (!ret) {
			page->mem_cgroup = memcg;
2853
			__SetPageKmemcg(page);
2854
		}
2855
	}
2856
	css_put(&memcg->css);
2857
	return ret;
2858
}
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874

/**
 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
				 unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}
2875
/**
2876
 * __memcg_kmem_uncharge: uncharge a kmem page
2877 2878 2879
 * @page: page to uncharge
 * @order: allocation order
 */
2880
void __memcg_kmem_uncharge(struct page *page, int order)
2881
{
2882
	struct mem_cgroup *memcg = page->mem_cgroup;
2883
	unsigned int nr_pages = 1 << order;
2884 2885 2886 2887

	if (!memcg)
		return;

2888
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2889
	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2890
	page->mem_cgroup = NULL;
2891 2892 2893 2894 2895

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2896
	css_put_many(&memcg->css, nr_pages);
2897
}
2898
#endif /* CONFIG_MEMCG_KMEM */
2899

2900 2901 2902 2903
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2904
 * pgdat->lru_lock and migration entries setup in all page mappings.
2905
 */
2906
void mem_cgroup_split_huge_fixup(struct page *head)
2907
{
2908
	int i;
2909

2910 2911
	if (mem_cgroup_disabled())
		return;
2912

2913
	for (i = 1; i < HPAGE_PMD_NR; i++)
2914
		head[i].mem_cgroup = head->mem_cgroup;
2915

2916
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2917
}
2918
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2919

A
Andrew Morton 已提交
2920
#ifdef CONFIG_MEMCG_SWAP
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2932
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2933 2934 2935
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2936
				struct mem_cgroup *from, struct mem_cgroup *to)
2937 2938 2939
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2940 2941
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2942 2943

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2944 2945
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2946 2947 2948 2949 2950 2951
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2952
				struct mem_cgroup *from, struct mem_cgroup *to)
2953 2954 2955
{
	return -EINVAL;
}
2956
#endif
K
KAMEZAWA Hiroyuki 已提交
2957

2958
static DEFINE_MUTEX(memcg_max_mutex);
2959

2960 2961
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2962
{
2963
	bool enlarge = false;
2964
	bool drained = false;
2965
	int ret;
2966 2967
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2968

2969
	do {
2970 2971 2972 2973
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2974

2975
		mutex_lock(&memcg_max_mutex);
2976 2977
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2978
		 * break our basic invariant rule memory.max <= memsw.max.
2979
		 */
2980 2981
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2982
		if (!limits_invariant) {
2983
			mutex_unlock(&memcg_max_mutex);
2984 2985 2986
			ret = -EINVAL;
			break;
		}
2987
		if (max > counter->max)
2988
			enlarge = true;
2989 2990
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2991 2992 2993 2994

		if (!ret)
			break;

2995 2996 2997 2998 2999 3000
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3001 3002 3003 3004 3005 3006
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3007

3008 3009
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3010

3011 3012 3013
	return ret;
}

3014
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3015 3016 3017 3018
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3019
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3020 3021
	unsigned long reclaimed;
	int loop = 0;
3022
	struct mem_cgroup_tree_per_node *mctz;
3023
	unsigned long excess;
3024 3025 3026 3027 3028
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3029
	mctz = soft_limit_tree_node(pgdat->node_id);
3030 3031 3032 3033 3034 3035

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3036
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3037 3038
		return 0;

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3053
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3054 3055 3056
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3057
		spin_lock_irq(&mctz->lock);
3058
		__mem_cgroup_remove_exceeded(mz, mctz);
3059 3060 3061 3062 3063 3064

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3065 3066 3067
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3068
		excess = soft_limit_excess(mz->memcg);
3069 3070 3071 3072 3073 3074 3075 3076 3077
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3078
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3079
		spin_unlock_irq(&mctz->lock);
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3097 3098 3099 3100 3101 3102
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3103 3104
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3105 3106 3107 3108 3109 3110
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3111 3112
}

3113
/*
3114
 * Reclaims as many pages from the given memcg as possible.
3115 3116 3117 3118 3119 3120 3121
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3122 3123
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3124 3125 3126

	drain_all_stock(memcg);

3127
	/* try to free all pages in this cgroup */
3128
	while (nr_retries && page_counter_read(&memcg->memory)) {
3129
		int progress;
3130

3131 3132 3133
		if (signal_pending(current))
			return -EINTR;

3134 3135
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3136
		if (!progress) {
3137
			nr_retries--;
3138
			/* maybe some writeback is necessary */
3139
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3140
		}
3141 3142

	}
3143 3144

	return 0;
3145 3146
}

3147 3148 3149
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3150
{
3151
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3152

3153 3154
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3155
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3156 3157
}

3158 3159
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3160
{
3161
	return mem_cgroup_from_css(css)->use_hierarchy;
3162 3163
}

3164 3165
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3166 3167
{
	int retval = 0;
3168
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3169
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3170

3171
	if (memcg->use_hierarchy == val)
3172
		return 0;
3173

3174
	/*
3175
	 * If parent's use_hierarchy is set, we can't make any modifications
3176 3177 3178 3179 3180 3181
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3182
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3183
				(val == 1 || val == 0)) {
3184
		if (!memcg_has_children(memcg))
3185
			memcg->use_hierarchy = val;
3186 3187 3188 3189
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3190

3191 3192 3193
	return retval;
}

3194
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3195
{
3196
	unsigned long val;
3197

3198
	if (mem_cgroup_is_root(memcg)) {
3199 3200 3201 3202
		val = memcg_page_state(memcg, MEMCG_CACHE) +
			memcg_page_state(memcg, MEMCG_RSS);
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3203
	} else {
3204
		if (!swap)
3205
			val = page_counter_read(&memcg->memory);
3206
		else
3207
			val = page_counter_read(&memcg->memsw);
3208
	}
3209
	return val;
3210 3211
}

3212 3213 3214 3215 3216 3217 3218
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3219

3220
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3221
			       struct cftype *cft)
B
Balbir Singh 已提交
3222
{
3223
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3224
	struct page_counter *counter;
3225

3226
	switch (MEMFILE_TYPE(cft->private)) {
3227
	case _MEM:
3228 3229
		counter = &memcg->memory;
		break;
3230
	case _MEMSWAP:
3231 3232
		counter = &memcg->memsw;
		break;
3233
	case _KMEM:
3234
		counter = &memcg->kmem;
3235
		break;
V
Vladimir Davydov 已提交
3236
	case _TCP:
3237
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3238
		break;
3239 3240 3241
	default:
		BUG();
	}
3242 3243 3244 3245

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3246
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3247
		if (counter == &memcg->memsw)
3248
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3249 3250
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3251
		return (u64)counter->max * PAGE_SIZE;
3252 3253 3254 3255 3256 3257 3258 3259 3260
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3261
}
3262

3263
#ifdef CONFIG_MEMCG_KMEM
3264
static int memcg_online_kmem(struct mem_cgroup *memcg)
3265 3266 3267
{
	int memcg_id;

3268 3269 3270
	if (cgroup_memory_nokmem)
		return 0;

3271
	BUG_ON(memcg->kmemcg_id >= 0);
3272
	BUG_ON(memcg->kmem_state);
3273

3274
	memcg_id = memcg_alloc_cache_id();
3275 3276
	if (memcg_id < 0)
		return memcg_id;
3277

3278
	static_branch_inc(&memcg_kmem_enabled_key);
3279
	/*
3280
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3281
	 * kmemcg_id. Setting the id after enabling static branching will
3282 3283 3284
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3285
	memcg->kmemcg_id = memcg_id;
3286
	memcg->kmem_state = KMEM_ONLINE;
3287
	INIT_LIST_HEAD(&memcg->kmem_caches);
3288 3289

	return 0;
3290 3291
}

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3312 3313 3314 3315 3316
	memcg_deactivate_kmem_caches(memcg, parent);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3317 3318 3319 3320 3321 3322 3323 3324
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3325
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3326 3327 3328 3329 3330 3331 3332
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3333 3334
	rcu_read_unlock();

3335
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3336 3337 3338 3339 3340 3341

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3342 3343 3344 3345
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3346
	if (memcg->kmem_state == KMEM_ALLOCATED) {
3347
		WARN_ON(!list_empty(&memcg->kmem_caches));
3348 3349 3350
		static_branch_dec(&memcg_kmem_enabled_key);
	}
}
3351
#else
3352
static int memcg_online_kmem(struct mem_cgroup *memcg)
3353 3354 3355 3356 3357 3358 3359 3360 3361
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3362
#endif /* CONFIG_MEMCG_KMEM */
3363

3364 3365
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3366
{
3367
	int ret;
3368

3369 3370 3371
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3372
	return ret;
3373
}
3374

3375
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3376 3377 3378
{
	int ret;

3379
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3380

3381
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3382 3383 3384
	if (ret)
		goto out;

3385
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3386 3387 3388
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3389 3390 3391
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3392 3393 3394 3395 3396 3397
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3398
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3399 3400 3401 3402
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3403
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3404 3405
	}
out:
3406
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3407 3408 3409
	return ret;
}

3410 3411 3412 3413
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3414 3415
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3416
{
3417
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3418
	unsigned long nr_pages;
3419 3420
	int ret;

3421
	buf = strstrip(buf);
3422
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3423 3424
	if (ret)
		return ret;
3425

3426
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3427
	case RES_LIMIT:
3428 3429 3430 3431
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3432 3433
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3434
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3435
			break;
3436
		case _MEMSWAP:
3437
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3438
			break;
3439
		case _KMEM:
3440
			ret = memcg_update_kmem_max(memcg, nr_pages);
3441
			break;
V
Vladimir Davydov 已提交
3442
		case _TCP:
3443
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3444
			break;
3445
		}
3446
		break;
3447 3448 3449
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3450 3451
		break;
	}
3452
	return ret ?: nbytes;
B
Balbir Singh 已提交
3453 3454
}

3455 3456
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3457
{
3458
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3459
	struct page_counter *counter;
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3471
	case _TCP:
3472
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3473
		break;
3474 3475 3476
	default:
		BUG();
	}
3477

3478
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3479
	case RES_MAX_USAGE:
3480
		page_counter_reset_watermark(counter);
3481 3482
		break;
	case RES_FAILCNT:
3483
		counter->failcnt = 0;
3484
		break;
3485 3486
	default:
		BUG();
3487
	}
3488

3489
	return nbytes;
3490 3491
}

3492
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3493 3494
					struct cftype *cft)
{
3495
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3496 3497
}

3498
#ifdef CONFIG_MMU
3499
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3500 3501
					struct cftype *cft, u64 val)
{
3502
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3503

3504
	if (val & ~MOVE_MASK)
3505
		return -EINVAL;
3506

3507
	/*
3508 3509 3510 3511
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3512
	 */
3513
	memcg->move_charge_at_immigrate = val;
3514 3515
	return 0;
}
3516
#else
3517
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3518 3519 3520 3521 3522
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3523

3524
#ifdef CONFIG_NUMA
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
{
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3542
		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
					     unsigned int lru_mask)
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3556
		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3557 3558 3559 3560
	}
	return nr;
}

3561
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3562
{
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3575
	int nid;
3576
	unsigned long nr;
3577
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3578

3579 3580 3581 3582 3583 3584 3585 3586 3587
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3588 3589
	}

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3605 3606 3607 3608 3609 3610
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
static const unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3633
/* Universal VM events cgroup1 shows, original sort order */
3634
static const unsigned int memcg1_events[] = {
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3648
static int memcg_stat_show(struct seq_file *m, void *v)
3649
{
3650
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3651
	unsigned long memory, memsw;
3652 3653
	struct mem_cgroup *mi;
	unsigned int i;
3654

3655
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3656 3657
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3658 3659
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3660
			continue;
3661
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3662
			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3663
			   PAGE_SIZE);
3664
	}
L
Lee Schermerhorn 已提交
3665

3666 3667
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3668
			   memcg_events_local(memcg, memcg1_events[i]));
3669 3670 3671

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3672
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3673
			   PAGE_SIZE);
3674

K
KAMEZAWA Hiroyuki 已提交
3675
	/* Hierarchical information */
3676 3677
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3678 3679
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3680
	}
3681 3682
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3683
	if (do_memsw_account())
3684 3685
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3686

3687
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3688
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3689
			continue;
3690
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3691 3692
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
3693 3694
	}

3695 3696
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3697
			   (u64)memcg_events(memcg, memcg1_events[i]));
3698

3699 3700
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3701 3702
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3703

K
KOSAKI Motohiro 已提交
3704 3705
#ifdef CONFIG_DEBUG_VM
	{
3706 3707
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3708
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3709 3710 3711
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3712 3713 3714
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3715

3716 3717 3718 3719 3720
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3721 3722 3723 3724
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3725 3726 3727
	}
#endif

3728 3729 3730
	return 0;
}

3731 3732
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3733
{
3734
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3735

3736
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3737 3738
}

3739 3740
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3741
{
3742
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3743

3744
	if (val > 100)
K
KOSAKI Motohiro 已提交
3745 3746
		return -EINVAL;

3747
	if (css->parent)
3748 3749 3750
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3751

K
KOSAKI Motohiro 已提交
3752 3753 3754
	return 0;
}

3755 3756 3757
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3758
	unsigned long usage;
3759 3760 3761 3762
	int i;

	rcu_read_lock();
	if (!swap)
3763
		t = rcu_dereference(memcg->thresholds.primary);
3764
	else
3765
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3766 3767 3768 3769

	if (!t)
		goto unlock;

3770
	usage = mem_cgroup_usage(memcg, swap);
3771 3772

	/*
3773
	 * current_threshold points to threshold just below or equal to usage.
3774 3775 3776
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3777
	i = t->current_threshold;
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3801
	t->current_threshold = i - 1;
3802 3803 3804 3805 3806 3807
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3808 3809
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3810
		if (do_memsw_account())
3811 3812 3813 3814
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3815 3816 3817 3818 3819 3820 3821
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3822 3823 3824 3825 3826 3827 3828
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3829 3830
}

3831
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3832 3833 3834
{
	struct mem_cgroup_eventfd_list *ev;

3835 3836
	spin_lock(&memcg_oom_lock);

3837
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3838
		eventfd_signal(ev->eventfd, 1);
3839 3840

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3841 3842 3843
	return 0;
}

3844
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3845
{
K
KAMEZAWA Hiroyuki 已提交
3846 3847
	struct mem_cgroup *iter;

3848
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3849
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3850 3851
}

3852
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3853
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3854
{
3855 3856
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3857 3858
	unsigned long threshold;
	unsigned long usage;
3859
	int i, size, ret;
3860

3861
	ret = page_counter_memparse(args, "-1", &threshold);
3862 3863 3864 3865
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3866

3867
	if (type == _MEM) {
3868
		thresholds = &memcg->thresholds;
3869
		usage = mem_cgroup_usage(memcg, false);
3870
	} else if (type == _MEMSWAP) {
3871
		thresholds = &memcg->memsw_thresholds;
3872
		usage = mem_cgroup_usage(memcg, true);
3873
	} else
3874 3875 3876
		BUG();

	/* Check if a threshold crossed before adding a new one */
3877
	if (thresholds->primary)
3878 3879
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3880
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3881 3882

	/* Allocate memory for new array of thresholds */
3883
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3884
	if (!new) {
3885 3886 3887
		ret = -ENOMEM;
		goto unlock;
	}
3888
	new->size = size;
3889 3890

	/* Copy thresholds (if any) to new array */
3891 3892
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3893
				sizeof(struct mem_cgroup_threshold));
3894 3895
	}

3896
	/* Add new threshold */
3897 3898
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3899 3900

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3901
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3902 3903 3904
			compare_thresholds, NULL);

	/* Find current threshold */
3905
	new->current_threshold = -1;
3906
	for (i = 0; i < size; i++) {
3907
		if (new->entries[i].threshold <= usage) {
3908
			/*
3909 3910
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3911 3912
			 * it here.
			 */
3913
			++new->current_threshold;
3914 3915
		} else
			break;
3916 3917
	}

3918 3919 3920 3921 3922
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3923

3924
	/* To be sure that nobody uses thresholds */
3925 3926 3927 3928 3929 3930 3931 3932
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3933
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3934 3935
	struct eventfd_ctx *eventfd, const char *args)
{
3936
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3937 3938
}

3939
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3940 3941
	struct eventfd_ctx *eventfd, const char *args)
{
3942
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3943 3944
}

3945
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3946
	struct eventfd_ctx *eventfd, enum res_type type)
3947
{
3948 3949
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3950
	unsigned long usage;
3951
	int i, j, size;
3952 3953

	mutex_lock(&memcg->thresholds_lock);
3954 3955

	if (type == _MEM) {
3956
		thresholds = &memcg->thresholds;
3957
		usage = mem_cgroup_usage(memcg, false);
3958
	} else if (type == _MEMSWAP) {
3959
		thresholds = &memcg->memsw_thresholds;
3960
		usage = mem_cgroup_usage(memcg, true);
3961
	} else
3962 3963
		BUG();

3964 3965 3966
	if (!thresholds->primary)
		goto unlock;

3967 3968 3969 3970
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3971 3972 3973
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3974 3975 3976
			size++;
	}

3977
	new = thresholds->spare;
3978

3979 3980
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3981 3982
		kfree(new);
		new = NULL;
3983
		goto swap_buffers;
3984 3985
	}

3986
	new->size = size;
3987 3988

	/* Copy thresholds and find current threshold */
3989 3990 3991
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3992 3993
			continue;

3994
		new->entries[j] = thresholds->primary->entries[i];
3995
		if (new->entries[j].threshold <= usage) {
3996
			/*
3997
			 * new->current_threshold will not be used
3998 3999 4000
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4001
			++new->current_threshold;
4002 4003 4004 4005
		}
		j++;
	}

4006
swap_buffers:
4007 4008
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4009

4010
	rcu_assign_pointer(thresholds->primary, new);
4011

4012
	/* To be sure that nobody uses thresholds */
4013
	synchronize_rcu();
4014 4015 4016 4017 4018 4019

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4020
unlock:
4021 4022
	mutex_unlock(&memcg->thresholds_lock);
}
4023

4024
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4025 4026
	struct eventfd_ctx *eventfd)
{
4027
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4028 4029
}

4030
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4031 4032
	struct eventfd_ctx *eventfd)
{
4033
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4034 4035
}

4036
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4037
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4038 4039 4040 4041 4042 4043 4044
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4045
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4046 4047 4048 4049 4050

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4051
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4052
		eventfd_signal(eventfd, 1);
4053
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4054 4055 4056 4057

	return 0;
}

4058
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4059
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4060 4061 4062
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4063
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4064

4065
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4066 4067 4068 4069 4070 4071
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4072
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4073 4074
}

4075
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4076
{
4077
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4078

4079
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4080
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4081 4082
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4083 4084 4085
	return 0;
}

4086
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4087 4088
	struct cftype *cft, u64 val)
{
4089
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4090 4091

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4092
	if (!css->parent || !((val == 0) || (val == 1)))
4093 4094
		return -EINVAL;

4095
	memcg->oom_kill_disable = val;
4096
	if (!val)
4097
		memcg_oom_recover(memcg);
4098

4099 4100 4101
	return 0;
}

4102 4103
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4114 4115 4116 4117 4118
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4129 4130 4131 4132 4133 4134
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4135
	long x = atomic_long_read(&memcg->vmstats[idx]);
4136 4137 4138
	int cpu;

	for_each_online_cpu(cpu)
4139
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4140 4141 4142 4143 4144
	if (x < 0)
		x = 0;
	return x;
}

4145 4146 4147
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4148 4149
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4150 4151 4152
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4153 4154 4155
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4156
 *
4157 4158 4159 4160 4161
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4162
 */
4163 4164 4165
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4166 4167 4168 4169
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4170
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4171 4172

	/* this should eventually include NR_UNSTABLE_NFS */
4173
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4174 4175
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4176
	*pheadroom = PAGE_COUNTER_MAX;
4177 4178

	while ((parent = parent_mem_cgroup(memcg))) {
4179
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4180 4181
		unsigned long used = page_counter_read(&memcg->memory);

4182
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4183 4184 4185 4186
		memcg = parent;
	}
}

T
Tejun Heo 已提交
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4198 4199 4200 4201
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4202 4203
#endif	/* CONFIG_CGROUP_WRITEBACK */

4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4217 4218 4219 4220 4221
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4222
static void memcg_event_remove(struct work_struct *work)
4223
{
4224 4225
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4226
	struct mem_cgroup *memcg = event->memcg;
4227 4228 4229

	remove_wait_queue(event->wqh, &event->wait);

4230
	event->unregister_event(memcg, event->eventfd);
4231 4232 4233 4234 4235 4236

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4237
	css_put(&memcg->css);
4238 4239 4240
}

/*
4241
 * Gets called on EPOLLHUP on eventfd when user closes it.
4242 4243 4244
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4245
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4246
			    int sync, void *key)
4247
{
4248 4249
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4250
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4251
	__poll_t flags = key_to_poll(key);
4252

4253
	if (flags & EPOLLHUP) {
4254 4255 4256 4257 4258 4259 4260 4261 4262
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4263
		spin_lock(&memcg->event_list_lock);
4264 4265 4266 4267 4268 4269 4270 4271
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4272
		spin_unlock(&memcg->event_list_lock);
4273 4274 4275 4276 4277
	}

	return 0;
}

4278
static void memcg_event_ptable_queue_proc(struct file *file,
4279 4280
		wait_queue_head_t *wqh, poll_table *pt)
{
4281 4282
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4283 4284 4285 4286 4287 4288

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4289 4290
 * DO NOT USE IN NEW FILES.
 *
4291 4292 4293 4294 4295
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4296 4297
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4298
{
4299
	struct cgroup_subsys_state *css = of_css(of);
4300
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301
	struct mem_cgroup_event *event;
4302 4303 4304 4305
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4306
	const char *name;
4307 4308 4309
	char *endp;
	int ret;

4310 4311 4312
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4313 4314
	if (*endp != ' ')
		return -EINVAL;
4315
	buf = endp + 1;
4316

4317
	cfd = simple_strtoul(buf, &endp, 10);
4318 4319
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4320
	buf = endp + 1;
4321 4322 4323 4324 4325

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4326
	event->memcg = memcg;
4327
	INIT_LIST_HEAD(&event->list);
4328 4329 4330
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4356 4357 4358 4359 4360
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4361 4362
	 *
	 * DO NOT ADD NEW FILES.
4363
	 */
A
Al Viro 已提交
4364
	name = cfile.file->f_path.dentry->d_name.name;
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4376 4377
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4378 4379 4380 4381 4382
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4383
	/*
4384 4385 4386
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4387
	 */
A
Al Viro 已提交
4388
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4389
					       &memory_cgrp_subsys);
4390
	ret = -EINVAL;
4391
	if (IS_ERR(cfile_css))
4392
		goto out_put_cfile;
4393 4394
	if (cfile_css != css) {
		css_put(cfile_css);
4395
		goto out_put_cfile;
4396
	}
4397

4398
	ret = event->register_event(memcg, event->eventfd, buf);
4399 4400 4401
	if (ret)
		goto out_put_css;

4402
	vfs_poll(efile.file, &event->pt);
4403

4404 4405 4406
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4407 4408 4409 4410

	fdput(cfile);
	fdput(efile);

4411
	return nbytes;
4412 4413

out_put_css:
4414
	css_put(css);
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4427
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4428
	{
4429
		.name = "usage_in_bytes",
4430
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4431
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4432
	},
4433 4434
	{
		.name = "max_usage_in_bytes",
4435
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4436
		.write = mem_cgroup_reset,
4437
		.read_u64 = mem_cgroup_read_u64,
4438
	},
B
Balbir Singh 已提交
4439
	{
4440
		.name = "limit_in_bytes",
4441
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4442
		.write = mem_cgroup_write,
4443
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4444
	},
4445 4446 4447
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4448
		.write = mem_cgroup_write,
4449
		.read_u64 = mem_cgroup_read_u64,
4450
	},
B
Balbir Singh 已提交
4451 4452
	{
		.name = "failcnt",
4453
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4454
		.write = mem_cgroup_reset,
4455
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4456
	},
4457 4458
	{
		.name = "stat",
4459
		.seq_show = memcg_stat_show,
4460
	},
4461 4462
	{
		.name = "force_empty",
4463
		.write = mem_cgroup_force_empty_write,
4464
	},
4465 4466 4467 4468 4469
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4470
	{
4471
		.name = "cgroup.event_control",		/* XXX: for compat */
4472
		.write = memcg_write_event_control,
4473
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4474
	},
K
KOSAKI Motohiro 已提交
4475 4476 4477 4478 4479
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4480 4481 4482 4483 4484
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4485 4486
	{
		.name = "oom_control",
4487
		.seq_show = mem_cgroup_oom_control_read,
4488
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4489 4490
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4491 4492 4493
	{
		.name = "pressure_level",
	},
4494 4495 4496
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4497
		.seq_show = memcg_numa_stat_show,
4498 4499
	},
#endif
4500 4501 4502
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4503
		.write = mem_cgroup_write,
4504
		.read_u64 = mem_cgroup_read_u64,
4505 4506 4507 4508
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4509
		.read_u64 = mem_cgroup_read_u64,
4510 4511 4512 4513
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4514
		.write = mem_cgroup_reset,
4515
		.read_u64 = mem_cgroup_read_u64,
4516 4517 4518 4519
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4520
		.write = mem_cgroup_reset,
4521
		.read_u64 = mem_cgroup_read_u64,
4522
	},
Y
Yang Shi 已提交
4523
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4524 4525
	{
		.name = "kmem.slabinfo",
4526 4527 4528
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4529
		.seq_show = memcg_slab_show,
4530 4531
	},
#endif
V
Vladimir Davydov 已提交
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4555
	{ },	/* terminate */
4556
};
4557

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4584 4585 4586 4587 4588 4589 4590 4591
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4592
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4593
{
4594
	refcount_add(n, &memcg->id.ref);
4595 4596
}

4597
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4598
{
4599
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4600
		mem_cgroup_id_remove(memcg);
4601 4602 4603 4604 4605 4606

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4629
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4630 4631
{
	struct mem_cgroup_per_node *pn;
4632
	int tmp = node;
4633 4634 4635 4636 4637 4638 4639 4640
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4641 4642
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4643
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4644 4645
	if (!pn)
		return 1;
4646

4647 4648 4649 4650 4651 4652
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

4653 4654
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4655
		free_percpu(pn->lruvec_stat_local);
4656 4657 4658 4659
		kfree(pn);
		return 1;
	}

4660 4661 4662 4663 4664
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4665
	memcg->nodeinfo[node] = pn;
4666 4667 4668
	return 0;
}

4669
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4670
{
4671 4672
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4673 4674 4675
	if (!pn)
		return;

4676
	free_percpu(pn->lruvec_stat_cpu);
4677
	free_percpu(pn->lruvec_stat_local);
4678
	kfree(pn);
4679 4680
}

4681
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4682
{
4683
	int node;
4684

4685
	for_each_node(node)
4686
		free_mem_cgroup_per_node_info(memcg, node);
4687
	free_percpu(memcg->vmstats_percpu);
4688
	free_percpu(memcg->vmstats_local);
4689
	kfree(memcg);
4690
}
4691

4692 4693 4694 4695 4696 4697
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4698
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4699
{
4700
	struct mem_cgroup *memcg;
4701
	unsigned int size;
4702
	int node;
B
Balbir Singh 已提交
4703

4704 4705 4706 4707
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4708
	if (!memcg)
4709 4710
		return NULL;

4711 4712 4713 4714 4715 4716
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4717 4718 4719 4720
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

4721 4722
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
4723
		goto fail;
4724

B
Bob Liu 已提交
4725
	for_each_node(node)
4726
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4727
			goto fail;
4728

4729 4730
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4731

4732
	INIT_WORK(&memcg->high_work, high_work_func);
4733 4734 4735 4736
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4737
	vmpressure_init(&memcg->vmpressure);
4738 4739
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4740
	memcg->socket_pressure = jiffies;
4741
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4742 4743
	memcg->kmemcg_id = -1;
#endif
4744 4745 4746
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4747
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4748 4749
	return memcg;
fail:
4750
	mem_cgroup_id_remove(memcg);
4751
	__mem_cgroup_free(memcg);
4752
	return NULL;
4753 4754
}

4755 4756
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4757
{
4758 4759 4760
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4761

4762 4763 4764
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4765

4766 4767 4768 4769 4770 4771 4772 4773
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4774
		page_counter_init(&memcg->memory, &parent->memory);
4775
		page_counter_init(&memcg->swap, &parent->swap);
4776 4777
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4778
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4779
	} else {
4780
		page_counter_init(&memcg->memory, NULL);
4781
		page_counter_init(&memcg->swap, NULL);
4782 4783
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4784
		page_counter_init(&memcg->tcpmem, NULL);
4785 4786 4787 4788 4789
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4790
		if (parent != root_mem_cgroup)
4791
			memory_cgrp_subsys.broken_hierarchy = true;
4792
	}
4793

4794 4795
	/* The following stuff does not apply to the root */
	if (!parent) {
4796 4797 4798
#ifdef CONFIG_MEMCG_KMEM
		INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
4799 4800 4801 4802
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4803
	error = memcg_online_kmem(memcg);
4804 4805
	if (error)
		goto fail;
4806

4807
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4808
		static_branch_inc(&memcg_sockets_enabled_key);
4809

4810 4811
	return &memcg->css;
fail:
4812
	mem_cgroup_id_remove(memcg);
4813
	mem_cgroup_free(memcg);
4814
	return ERR_PTR(-ENOMEM);
4815 4816
}

4817
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4818
{
4819 4820
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4831
	/* Online state pins memcg ID, memcg ID pins CSS */
4832
	refcount_set(&memcg->id.ref, 1);
4833
	css_get(css);
4834
	return 0;
B
Balbir Singh 已提交
4835 4836
}

4837
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4838
{
4839
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4840
	struct mem_cgroup_event *event, *tmp;
4841 4842 4843 4844 4845 4846

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4847 4848
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4849 4850 4851
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4852
	spin_unlock(&memcg->event_list_lock);
4853

R
Roman Gushchin 已提交
4854
	page_counter_set_min(&memcg->memory, 0);
4855
	page_counter_set_low(&memcg->memory, 0);
4856

4857
	memcg_offline_kmem(memcg);
4858
	wb_memcg_offline(memcg);
4859

4860 4861
	drain_all_stock(memcg);

4862
	mem_cgroup_id_put(memcg);
4863 4864
}

4865 4866 4867 4868 4869 4870 4871
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4872
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4873
{
4874
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4875

4876
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4877
		static_branch_dec(&memcg_sockets_enabled_key);
4878

4879
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4880
		static_branch_dec(&memcg_sockets_enabled_key);
4881

4882 4883 4884
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4885
	memcg_free_shrinker_maps(memcg);
4886
	memcg_free_kmem(memcg);
4887
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4888 4889
}

4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4907 4908 4909 4910 4911
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4912
	page_counter_set_min(&memcg->memory, 0);
4913
	page_counter_set_low(&memcg->memory, 0);
4914
	memcg->high = PAGE_COUNTER_MAX;
4915
	memcg->soft_limit = PAGE_COUNTER_MAX;
4916
	memcg_wb_domain_size_changed(memcg);
4917 4918
}

4919
#ifdef CONFIG_MMU
4920
/* Handlers for move charge at task migration. */
4921
static int mem_cgroup_do_precharge(unsigned long count)
4922
{
4923
	int ret;
4924

4925 4926
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4927
	if (!ret) {
4928 4929 4930
		mc.precharge += count;
		return ret;
	}
4931

4932
	/* Try charges one by one with reclaim, but do not retry */
4933
	while (count--) {
4934
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4935 4936
		if (ret)
			return ret;
4937
		mc.precharge++;
4938
		cond_resched();
4939
	}
4940
	return 0;
4941 4942 4943 4944
}

union mc_target {
	struct page	*page;
4945
	swp_entry_t	ent;
4946 4947 4948
};

enum mc_target_type {
4949
	MC_TARGET_NONE = 0,
4950
	MC_TARGET_PAGE,
4951
	MC_TARGET_SWAP,
4952
	MC_TARGET_DEVICE,
4953 4954
};

D
Daisuke Nishimura 已提交
4955 4956
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4957
{
4958
	struct page *page = vm_normal_page(vma, addr, ptent);
4959

D
Daisuke Nishimura 已提交
4960 4961 4962
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4963
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4964
			return NULL;
4965 4966 4967 4968
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4969 4970 4971 4972 4973 4974
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4975
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4976
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4977
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4978 4979 4980 4981
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4982
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4983
		return NULL;
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5001 5002 5003 5004
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5005
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5006
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
5007 5008 5009 5010
		entry->val = ent.val;

	return page;
}
5011 5012
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5013
			pte_t ptent, swp_entry_t *entry)
5014 5015 5016 5017
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5018

5019 5020 5021 5022 5023 5024 5025 5026 5027
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5028
	if (!(mc.flags & MOVE_FILE))
5029 5030 5031
		return NULL;

	mapping = vma->vm_file->f_mapping;
5032
	pgoff = linear_page_index(vma, addr);
5033 5034

	/* page is moved even if it's not RSS of this task(page-faulted). */
5035 5036
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5037 5038
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5039
		if (xa_is_value(page)) {
5040
			swp_entry_t swp = radix_to_swp_entry(page);
5041
			if (do_memsw_account())
5042
				*entry = swp;
5043 5044
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5045 5046 5047 5048 5049
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5050
#endif
5051 5052 5053
	return page;
}

5054 5055 5056
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5057
 * @compound: charge the page as compound or small page
5058 5059 5060
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5061
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5062 5063 5064 5065 5066
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5067
				   bool compound,
5068 5069 5070 5071
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
5072
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5073
	int ret;
5074
	bool anon;
5075 5076 5077

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5078
	VM_BUG_ON(compound && !PageTransHuge(page));
5079 5080

	/*
5081
	 * Prevent mem_cgroup_migrate() from looking at
5082
	 * page->mem_cgroup of its source page while we change it.
5083
	 */
5084
	ret = -EBUSY;
5085 5086 5087 5088 5089 5090 5091
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5092 5093
	anon = PageAnon(page);

5094 5095
	spin_lock_irqsave(&from->move_lock, flags);

5096
	if (!anon && page_mapped(page)) {
5097 5098
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5099 5100
	}

5101 5102
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
5103
	 * mod_memcg_page_state will serialize updates to PageDirty.
5104 5105 5106 5107 5108 5109
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
5110 5111
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5112 5113 5114
		}
	}

5115
	if (PageWriteback(page)) {
5116 5117
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
5133
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5134
	memcg_check_events(to, page);
5135
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5136 5137 5138 5139 5140 5141 5142 5143
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5159 5160
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5161 5162 5163
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5164 5165
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5166 5167 5168 5169
 *
 * Called with pte lock held.
 */

5170
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5171 5172 5173
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5174
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5175 5176 5177 5178 5179
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5180
		page = mc_handle_swap_pte(vma, ptent, &ent);
5181
	else if (pte_none(ptent))
5182
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5183 5184

	if (!page && !ent.val)
5185
		return ret;
5186 5187
	if (page) {
		/*
5188
		 * Do only loose check w/o serialization.
5189
		 * mem_cgroup_move_account() checks the page is valid or
5190
		 * not under LRU exclusion.
5191
		 */
5192
		if (page->mem_cgroup == mc.from) {
5193
			ret = MC_TARGET_PAGE;
5194
			if (is_device_private_page(page))
5195
				ret = MC_TARGET_DEVICE;
5196 5197 5198 5199 5200 5201
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5202 5203 5204 5205 5206
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5207
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5208 5209 5210
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5211 5212 5213 5214
	}
	return ret;
}

5215 5216
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5217 5218
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5219 5220 5221 5222 5223 5224 5225 5226
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5227 5228 5229 5230 5231
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5232
	page = pmd_page(pmd);
5233
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5234
	if (!(mc.flags & MOVE_ANON))
5235
		return ret;
5236
	if (page->mem_cgroup == mc.from) {
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5253 5254 5255 5256
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5257
	struct vm_area_struct *vma = walk->vma;
5258 5259 5260
	pte_t *pte;
	spinlock_t *ptl;

5261 5262
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5263 5264
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5265 5266
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5267
		 */
5268 5269
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5270
		spin_unlock(ptl);
5271
		return 0;
5272
	}
5273

5274 5275
	if (pmd_trans_unstable(pmd))
		return 0;
5276 5277
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5278
		if (get_mctgt_type(vma, addr, *pte, NULL))
5279 5280 5281 5282
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5283 5284 5285
	return 0;
}

5286 5287 5288 5289
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5290 5291 5292 5293
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
5294
	down_read(&mm->mmap_sem);
5295 5296
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
5297
	up_read(&mm->mmap_sem);
5298 5299 5300 5301 5302 5303 5304 5305 5306

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5307 5308 5309 5310 5311
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5312 5313
}

5314 5315
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5316
{
5317 5318 5319
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5320
	/* we must uncharge all the leftover precharges from mc.to */
5321
	if (mc.precharge) {
5322
		cancel_charge(mc.to, mc.precharge);
5323 5324 5325 5326 5327 5328 5329
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5330
		cancel_charge(mc.from, mc.moved_charge);
5331
		mc.moved_charge = 0;
5332
	}
5333 5334 5335
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5336
		if (!mem_cgroup_is_root(mc.from))
5337
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5338

5339 5340
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5341
		/*
5342 5343
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5344
		 */
5345
		if (!mem_cgroup_is_root(mc.to))
5346 5347
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5348 5349
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5350

5351 5352
		mc.moved_swap = 0;
	}
5353 5354 5355 5356 5357 5358 5359
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5360 5361
	struct mm_struct *mm = mc.mm;

5362 5363 5364 5365 5366 5367
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5368
	spin_lock(&mc.lock);
5369 5370
	mc.from = NULL;
	mc.to = NULL;
5371
	mc.mm = NULL;
5372
	spin_unlock(&mc.lock);
5373 5374

	mmput(mm);
5375 5376
}

5377
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5378
{
5379
	struct cgroup_subsys_state *css;
5380
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5381
	struct mem_cgroup *from;
5382
	struct task_struct *leader, *p;
5383
	struct mm_struct *mm;
5384
	unsigned long move_flags;
5385
	int ret = 0;
5386

5387 5388
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5389 5390
		return 0;

5391 5392 5393 5394 5395 5396 5397
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5398
	cgroup_taskset_for_each_leader(leader, css, tset) {
5399 5400
		WARN_ON_ONCE(p);
		p = leader;
5401
		memcg = mem_cgroup_from_css(css);
5402 5403 5404 5405
	}
	if (!p)
		return 0;

5406 5407 5408 5409 5410 5411 5412 5413 5414
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5431
		mc.mm = mm;
5432 5433 5434 5435 5436 5437 5438 5439 5440
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5441 5442
	} else {
		mmput(mm);
5443 5444 5445 5446
	}
	return ret;
}

5447
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5448
{
5449 5450
	if (mc.to)
		mem_cgroup_clear_mc();
5451 5452
}

5453 5454 5455
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5456
{
5457
	int ret = 0;
5458
	struct vm_area_struct *vma = walk->vma;
5459 5460
	pte_t *pte;
	spinlock_t *ptl;
5461 5462 5463
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5464

5465 5466
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5467
		if (mc.precharge < HPAGE_PMD_NR) {
5468
			spin_unlock(ptl);
5469 5470 5471 5472 5473 5474
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5475
				if (!mem_cgroup_move_account(page, true,
5476
							     mc.from, mc.to)) {
5477 5478 5479 5480 5481 5482
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5483 5484 5485 5486 5487 5488 5489 5490
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5491
		}
5492
		spin_unlock(ptl);
5493
		return 0;
5494 5495
	}

5496 5497
	if (pmd_trans_unstable(pmd))
		return 0;
5498 5499 5500 5501
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5502
		bool device = false;
5503
		swp_entry_t ent;
5504 5505 5506 5507

		if (!mc.precharge)
			break;

5508
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5509 5510 5511
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5512 5513
		case MC_TARGET_PAGE:
			page = target.page;
5514 5515 5516 5517 5518 5519 5520 5521
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5522
			if (!device && isolate_lru_page(page))
5523
				goto put;
5524 5525
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5526
				mc.precharge--;
5527 5528
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5529
			}
5530 5531
			if (!device)
				putback_lru_page(page);
5532
put:			/* get_mctgt_type() gets the page */
5533 5534
			put_page(page);
			break;
5535 5536
		case MC_TARGET_SWAP:
			ent = target.ent;
5537
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5538
				mc.precharge--;
5539 5540 5541
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5542
			break;
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5557
		ret = mem_cgroup_do_precharge(1);
5558 5559 5560 5561 5562 5563 5564
		if (!ret)
			goto retry;
	}

	return ret;
}

5565
static void mem_cgroup_move_charge(void)
5566
{
5567 5568
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5569
		.mm = mc.mm,
5570
	};
5571 5572

	lru_add_drain_all();
5573
	/*
5574 5575 5576
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5577 5578 5579
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5580
retry:
5581
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5593 5594 5595 5596
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5597 5598
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5599
	up_read(&mc.mm->mmap_sem);
5600
	atomic_dec(&mc.from->moving_account);
5601 5602
}

5603
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5604
{
5605 5606
	if (mc.to) {
		mem_cgroup_move_charge();
5607
		mem_cgroup_clear_mc();
5608
	}
B
Balbir Singh 已提交
5609
}
5610
#else	/* !CONFIG_MMU */
5611
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5612 5613 5614
{
	return 0;
}
5615
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5616 5617
{
}
5618
static void mem_cgroup_move_task(void)
5619 5620 5621
{
}
#endif
B
Balbir Singh 已提交
5622

5623 5624
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5625 5626
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5627
 */
5628
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5629 5630
{
	/*
5631
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5632 5633 5634
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5635
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5636 5637 5638
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5639 5640
}

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5651 5652 5653
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5654 5655 5656
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5657 5658
}

R
Roman Gushchin 已提交
5659 5660
static int memory_min_show(struct seq_file *m, void *v)
{
5661 5662
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5682 5683
static int memory_low_show(struct seq_file *m, void *v)
{
5684 5685
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5696
	err = page_counter_memparse(buf, "max", &low);
5697 5698 5699
	if (err)
		return err;

5700
	page_counter_set_low(&memcg->memory, low);
5701 5702 5703 5704 5705 5706

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
5707
	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5708 5709 5710 5711 5712 5713
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5714
	unsigned long nr_pages;
5715 5716 5717 5718
	unsigned long high;
	int err;

	buf = strstrip(buf);
5719
	err = page_counter_memparse(buf, "max", &high);
5720 5721 5722 5723 5724
	if (err)
		return err;

	memcg->high = high;

5725 5726 5727 5728 5729
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5730
	memcg_wb_domain_size_changed(memcg);
5731 5732 5733 5734 5735
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
5736 5737
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5738 5739 5740 5741 5742 5743
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5744 5745
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5746 5747 5748 5749
	unsigned long max;
	int err;

	buf = strstrip(buf);
5750
	err = page_counter_memparse(buf, "max", &max);
5751 5752 5753
	if (err)
		return err;

5754
	xchg(&memcg->memory.max, max);
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5780
		memcg_memory_event(memcg, MEMCG_OOM);
5781 5782 5783
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5784

5785
	memcg_wb_domain_size_changed(memcg);
5786 5787 5788
	return nbytes;
}

5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

5799 5800
static int memory_events_show(struct seq_file *m, void *v)
{
5801
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5802

5803 5804 5805 5806 5807 5808 5809
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5810

5811
	__memory_events_show(m, memcg->memory_events_local);
5812 5813 5814
	return 0;
}

5815 5816
static int memory_stat_show(struct seq_file *m, void *v)
{
5817
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5818
	char *buf;
5819

5820 5821 5822 5823 5824
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
5825 5826 5827
	return 0;
}

5828 5829
static int memory_oom_group_show(struct seq_file *m, void *v)
{
5830
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

5859 5860 5861
static struct cftype memory_files[] = {
	{
		.name = "current",
5862
		.flags = CFTYPE_NOT_ON_ROOT,
5863 5864
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5865 5866 5867 5868 5869 5870
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5892
		.file_offset = offsetof(struct mem_cgroup, events_file),
5893 5894
		.seq_show = memory_events_show,
	},
5895 5896 5897 5898 5899 5900
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
5901 5902 5903 5904 5905
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5906 5907 5908 5909 5910 5911
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
5912 5913 5914
	{ }	/* terminate */
};

5915
struct cgroup_subsys memory_cgrp_subsys = {
5916
	.css_alloc = mem_cgroup_css_alloc,
5917
	.css_online = mem_cgroup_css_online,
5918
	.css_offline = mem_cgroup_css_offline,
5919
	.css_released = mem_cgroup_css_released,
5920
	.css_free = mem_cgroup_css_free,
5921
	.css_reset = mem_cgroup_css_reset,
5922 5923
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5924
	.post_attach = mem_cgroup_move_task,
5925
	.bind = mem_cgroup_bind,
5926 5927
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5928
	.early_init = 0,
B
Balbir Singh 已提交
5929
};
5930

5931
/**
R
Roman Gushchin 已提交
5932
 * mem_cgroup_protected - check if memory consumption is in the normal range
5933
 * @root: the top ancestor of the sub-tree being checked
5934 5935
 * @memcg: the memory cgroup to check
 *
5936 5937
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5938
 *
R
Roman Gushchin 已提交
5939 5940 5941 5942 5943
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5944
 *
R
Roman Gushchin 已提交
5945
 * @root is exclusive; it is never protected when looked at directly
5946
 *
R
Roman Gushchin 已提交
5947 5948 5949
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5950
 *
5951 5952 5953 5954 5955 5956 5957
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5958
 *
5959 5960 5961
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5962
 *
5963 5964
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
5965
 *	       | 0, otherwise.
5966
 *
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5994 5995
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5996 5997 5998 5999
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
6000
 */
R
Roman Gushchin 已提交
6001 6002
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6003
{
6004
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
6005 6006 6007
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
6008

6009
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6010
		return MEMCG_PROT_NONE;
6011

6012 6013 6014
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6015
		return MEMCG_PROT_NONE;
6016

6017
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6018 6019 6020 6021 6022
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
6023

R
Roman Gushchin 已提交
6024
	parent = parent_mem_cgroup(memcg);
6025 6026 6027 6028
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6029 6030 6031
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

6046 6047
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
6048 6049
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
6050

R
Roman Gushchin 已提交
6051 6052 6053
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
6054

R
Roman Gushchin 已提交
6055 6056 6057 6058
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
6059 6060

exit:
R
Roman Gushchin 已提交
6061
	memcg->memory.emin = emin;
6062
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
6063 6064 6065 6066 6067 6068 6069

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6070 6071
}

6072 6073 6074 6075 6076 6077
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
6078
 * @compound: charge the page as compound or small page
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6091 6092
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
6093 6094
{
	struct mem_cgroup *memcg = NULL;
6095
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
6109
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6110
		if (compound_head(page)->mem_cgroup)
6111
			goto out;
6112

6113
		if (do_swap_account) {
6114 6115 6116 6117 6118 6119 6120 6121 6122
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

6149 6150 6151 6152 6153
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
6154
 * @compound: charge the page as compound or small page
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6167
			      bool lrucare, bool compound)
6168
{
6169
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6184 6185 6186
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6187
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6188 6189
	memcg_check_events(memcg, page);
	local_irq_enable();
6190

6191
	if (do_memsw_account() && PageSwapCache(page)) {
6192 6193 6194 6195 6196 6197
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6198
		mem_cgroup_uncharge_swap(entry, nr_pages);
6199 6200 6201 6202 6203 6204 6205
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6206
 * @compound: charge the page as compound or small page
6207 6208 6209
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6210 6211
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6212
{
6213
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6240
{
6241 6242 6243 6244 6245 6246
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6247 6248
	unsigned long flags;

6249 6250
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6251
		if (do_memsw_account())
6252 6253 6254 6255
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6256
	}
6257 6258

	local_irq_save(flags);
6259 6260 6261 6262 6263
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6264
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6265
	memcg_check_events(ug->memcg, ug->dummy_page);
6266
	local_irq_restore(flags);
6267

6268 6269 6270 6271 6272 6273 6274
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6275 6276
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6317 6318 6319 6320
}

static void uncharge_list(struct list_head *page_list)
{
6321
	struct uncharge_gather ug;
6322
	struct list_head *next;
6323 6324

	uncharge_gather_clear(&ug);
6325

6326 6327 6328 6329
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6330 6331
	next = page_list->next;
	do {
6332 6333
		struct page *page;

6334 6335 6336
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6337
		uncharge_page(page, &ug);
6338 6339
	} while (next != page_list);

6340 6341
	if (ug.memcg)
		uncharge_batch(&ug);
6342 6343
}

6344 6345 6346 6347 6348 6349 6350 6351 6352
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6353 6354
	struct uncharge_gather ug;

6355 6356 6357
	if (mem_cgroup_disabled())
		return;

6358
	/* Don't touch page->lru of any random page, pre-check: */
6359
	if (!page->mem_cgroup)
6360 6361
		return;

6362 6363 6364
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6365
}
6366

6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6378

6379 6380
	if (!list_empty(page_list))
		uncharge_list(page_list);
6381 6382 6383
}

/**
6384 6385 6386
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6387
 *
6388 6389
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6390 6391 6392
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6393
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6394
{
6395
	struct mem_cgroup *memcg;
6396 6397
	unsigned int nr_pages;
	bool compound;
6398
	unsigned long flags;
6399 6400 6401 6402

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6403 6404
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6405 6406 6407 6408 6409

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6410
	if (newpage->mem_cgroup)
6411 6412
		return;

6413
	/* Swapcache readahead pages can get replaced before being charged */
6414
	memcg = oldpage->mem_cgroup;
6415
	if (!memcg)
6416 6417
		return;

6418 6419 6420 6421 6422 6423 6424 6425
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6426

6427
	commit_charge(newpage, memcg, false);
6428

6429
	local_irq_save(flags);
6430 6431
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6432
	local_irq_restore(flags);
6433 6434
}

6435
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6436 6437
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6438
void mem_cgroup_sk_alloc(struct sock *sk)
6439 6440 6441
{
	struct mem_cgroup *memcg;

6442 6443 6444
	if (!mem_cgroup_sockets_enabled)
		return;

6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6459 6460
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6461 6462
	if (memcg == root_mem_cgroup)
		goto out;
6463
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6464 6465
		goto out;
	if (css_tryget_online(&memcg->css))
6466
		sk->sk_memcg = memcg;
6467
out:
6468 6469 6470
	rcu_read_unlock();
}

6471
void mem_cgroup_sk_free(struct sock *sk)
6472
{
6473 6474
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6487
	gfp_t gfp_mask = GFP_KERNEL;
6488

6489
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6490
		struct page_counter *fail;
6491

6492 6493
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6494 6495
			return true;
		}
6496 6497
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6498
		return false;
6499
	}
6500

6501 6502 6503 6504
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6505
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6506

6507 6508 6509 6510
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6511 6512 6513 6514 6515
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6516 6517
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6518 6519 6520
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6521
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6522
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6523 6524
		return;
	}
6525

6526
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6527

6528
	refill_stock(memcg, nr_pages);
6529 6530
}

6531 6532 6533 6534 6535 6536 6537 6538 6539
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6540 6541
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6542 6543 6544 6545
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6546

6547
/*
6548 6549
 * subsys_initcall() for memory controller.
 *
6550 6551 6552 6553
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6554 6555 6556
 */
static int __init mem_cgroup_init(void)
{
6557 6558
	int cpu, node;

6559
#ifdef CONFIG_MEMCG_KMEM
6560 6561
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6562 6563 6564
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6565
	 */
6566 6567
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6568 6569
#endif

6570 6571
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6583
		rtpn->rb_root = RB_ROOT;
6584
		rtpn->rb_rightmost = NULL;
6585
		spin_lock_init(&rtpn->lock);
6586 6587 6588
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6589 6590 6591
	return 0;
}
subsys_initcall(mem_cgroup_init);
6592 6593

#ifdef CONFIG_MEMCG_SWAP
6594 6595
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6596
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6612 6613 6614 6615 6616 6617 6618 6619 6620
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6621
	struct mem_cgroup *memcg, *swap_memcg;
6622
	unsigned int nr_entries;
6623 6624 6625 6626 6627
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6628
	if (!do_memsw_account())
6629 6630 6631 6632 6633 6634 6635 6636
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6637 6638 6639 6640 6641 6642
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6643 6644 6645 6646 6647 6648
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6649
	VM_BUG_ON_PAGE(oldid, page);
6650
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6651 6652 6653 6654

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6655
		page_counter_uncharge(&memcg->memory, nr_entries);
6656

6657 6658
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6659 6660
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6661 6662
	}

6663 6664
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6665
	 * i_pages lock which is taken with interrupts-off. It is
6666
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6667
	 * only synchronisation we have for updating the per-CPU variables.
6668 6669
	 */
	VM_BUG_ON(!irqs_disabled());
6670 6671
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6672
	memcg_check_events(memcg, page);
6673 6674

	if (!mem_cgroup_is_root(memcg))
6675
		css_put_many(&memcg->css, nr_entries);
6676 6677
}

6678 6679
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6680 6681 6682
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6683
 * Try to charge @page's memcg for the swap space at @entry.
6684 6685 6686 6687 6688
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6689
	unsigned int nr_pages = hpage_nr_pages(page);
6690
	struct page_counter *counter;
6691
	struct mem_cgroup *memcg;
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6703 6704
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6705
		return 0;
6706
	}
6707

6708 6709
	memcg = mem_cgroup_id_get_online(memcg);

6710
	if (!mem_cgroup_is_root(memcg) &&
6711
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6712 6713
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6714
		mem_cgroup_id_put(memcg);
6715
		return -ENOMEM;
6716
	}
6717

6718 6719 6720 6721
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6722
	VM_BUG_ON_PAGE(oldid, page);
6723
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6724 6725 6726 6727

	return 0;
}

6728
/**
6729
 * mem_cgroup_uncharge_swap - uncharge swap space
6730
 * @entry: swap entry to uncharge
6731
 * @nr_pages: the amount of swap space to uncharge
6732
 */
6733
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6734 6735 6736 6737
{
	struct mem_cgroup *memcg;
	unsigned short id;

6738
	if (!do_swap_account)
6739 6740
		return;

6741
	id = swap_cgroup_record(entry, 0, nr_pages);
6742
	rcu_read_lock();
6743
	memcg = mem_cgroup_from_id(id);
6744
	if (memcg) {
6745 6746
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6747
				page_counter_uncharge(&memcg->swap, nr_pages);
6748
			else
6749
				page_counter_uncharge(&memcg->memsw, nr_pages);
6750
		}
6751
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6752
		mem_cgroup_id_put_many(memcg, nr_pages);
6753 6754 6755 6756
	}
	rcu_read_unlock();
}

6757 6758 6759 6760 6761 6762 6763 6764
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6765
				      READ_ONCE(memcg->swap.max) -
6766 6767 6768 6769
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6786
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6787 6788 6789 6790 6791
			return true;

	return false;
}

6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
6819 6820
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6835
	xchg(&memcg->swap.max, max);
6836 6837 6838 6839

	return nbytes;
}

6840 6841
static int swap_events_show(struct seq_file *m, void *v)
{
6842
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6843 6844 6845 6846 6847 6848 6849 6850 6851

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6864 6865 6866 6867 6868 6869
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6870 6871 6872
	{ }	/* terminate */
};

6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6904 6905
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6906 6907 6908 6909 6910 6911 6912 6913
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */