memcontrol.c 150.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53
#include <net/sock.h>
M
Michal Hocko 已提交
54
#include <net/ip.h>
G
Glauber Costa 已提交
55
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
56

57 58
#include <asm/uaccess.h>

59 60
#include <trace/events/vmscan.h>

61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 63
EXPORT_SYMBOL(mem_cgroup_subsys);

64
#define MEM_CGROUP_RECLAIM_RETRIES	5
65
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
66

A
Andrew Morton 已提交
67
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
68
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
69
int do_swap_account __read_mostly;
70 71

/* for remember boot option*/
A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP_ENABLED
73 74 75 76 77
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

78
#else
79
#define do_swap_account		0
80 81 82
#endif


83 84 85 86 87 88 89 90
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
91
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
92
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
93
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
94 95 96
	MEM_CGROUP_STAT_NSTATS,
};

97 98 99 100 101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

104 105 106
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
107 108
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
109 110
	MEM_CGROUP_EVENTS_NSTATS,
};
111 112 113 114 115 116 117 118

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

119 120 121 122 123 124 125 126 127
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
128
	MEM_CGROUP_TARGET_NUMAINFO,
129 130
	MEM_CGROUP_NTARGETS,
};
131 132 133
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
134

135
struct mem_cgroup_stat_cpu {
136
	long count[MEM_CGROUP_STAT_NSTATS];
137
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138
	unsigned long nr_page_events;
139
	unsigned long targets[MEM_CGROUP_NTARGETS];
140 141
};

142 143 144 145 146 147 148
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

149 150 151 152
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
153
	struct lruvec		lruvec;
154
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
155

156 157
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

158 159 160 161
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
162
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
163
						/* use container_of	   */
164 165 166 167 168 169 170 171 172 173
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

194 195 196 197 198
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
199
/* For threshold */
200
struct mem_cgroup_threshold_ary {
201
	/* An array index points to threshold just below or equal to usage. */
202
	int current_threshold;
203 204 205 206 207
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
208 209 210 211 212 213 214 215 216 217 218 219

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
220 221 222 223 224
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
225

226 227
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
228

B
Balbir Singh 已提交
229 230 231 232 233 234 235
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
236 237 238
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
239 240 241 242 243 244 245
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
264 265
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
266 267 268 269
		 */
		struct work_struct work_freeing;
	};

270 271 272 273
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
274 275 276 277
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
278
	struct mem_cgroup_lru_info info;
279 280 281
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
282 283
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
284
#endif
285 286 287 288
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
289
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
290 291 292 293

	bool		oom_lock;
	atomic_t	under_oom;

294
	atomic_t	refcnt;
295

296
	int	swappiness;
297 298
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
299

300 301 302
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

303 304 305 306
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
307
	struct mem_cgroup_thresholds thresholds;
308

309
	/* thresholds for mem+swap usage. RCU-protected */
310
	struct mem_cgroup_thresholds memsw_thresholds;
311

K
KAMEZAWA Hiroyuki 已提交
312 313
	/* For oom notifier event fd */
	struct list_head oom_notify;
314

315 316 317 318 319
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
320 321 322 323
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
324 325
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
326
	/*
327
	 * percpu counter.
328
	 */
329
	struct mem_cgroup_stat_cpu __percpu *stat;
330 331 332 333 334 335
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
336

M
Michal Hocko 已提交
337
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
338 339
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
340 341
};

342 343 344 345 346 347 348 349 350 351 352 353 354 355
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
};

#define KMEM_ACCOUNTED_MASK (1 << KMEM_ACCOUNTED_ACTIVE)

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
#endif

356 357 358 359 360 361
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
362
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
363
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
364 365 366
	NR_MOVE_TYPE,
};

367 368
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
369
	spinlock_t	  lock; /* for from, to */
370 371 372
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
373
	unsigned long moved_charge;
374
	unsigned long moved_swap;
375 376 377
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
378
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
379 380
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
381

D
Daisuke Nishimura 已提交
382 383 384 385 386 387
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

388 389 390 391 392 393
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

394 395 396 397
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
398 399
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
400

401 402
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
403
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
404
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
405
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
406 407 408
	NR_CHARGE_TYPE,
};

409
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
410 411 412 413
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
414
	_KMEM,
G
Glauber Costa 已提交
415 416
};

417 418
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
419
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
420 421
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
422

423 424 425 426 427 428 429 430
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

431 432
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
433

434 435 436 437 438 439
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

440 441 442 443 444
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
445
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
446
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
447 448 449

void sock_update_memcg(struct sock *sk)
{
450
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
451
		struct mem_cgroup *memcg;
452
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
453 454 455

		BUG_ON(!sk->sk_prot->proto_cgroup);

456 457 458 459 460 461 462 463 464 465 466 467 468 469
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
470 471
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
472 473
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
474
			mem_cgroup_get(memcg);
475
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
476 477 478 479 480 481 482 483
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
484
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
485 486 487 488 489 490
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
491 492 493 494 495 496 497 498 499

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
500

501 502 503 504 505 506 507 508 509 510 511 512
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

513
static void drain_all_stock_async(struct mem_cgroup *memcg);
514

515
static struct mem_cgroup_per_zone *
516
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
517
{
518
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
519 520
}

521
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
522
{
523
	return &memcg->css;
524 525
}

526
static struct mem_cgroup_per_zone *
527
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
528
{
529 530
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
531

532
	return mem_cgroup_zoneinfo(memcg, nid, zid);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
551
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
552
				struct mem_cgroup_per_zone *mz,
553 554
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
555 556 557 558 559 560 561 562
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

563 564 565
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
582 583 584
}

static void
585
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
586 587 588 589 590 591 592 593 594
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

595
static void
596
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
597 598 599 600
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
601
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
602 603 604 605
	spin_unlock(&mctz->lock);
}


606
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
607
{
608
	unsigned long long excess;
609 610
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
611 612
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
613 614 615
	mctz = soft_limit_tree_from_page(page);

	/*
616 617
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
618
	 */
619 620 621
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
622 623 624 625
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
626
		if (excess || mz->on_tree) {
627 628 629
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
630
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
631
			/*
632 633
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
634
			 */
635
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
636 637
			spin_unlock(&mctz->lock);
		}
638 639 640
	}
}

641
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
642 643 644 645 646
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
647
	for_each_node(node) {
648
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
649
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
650
			mctz = soft_limit_tree_node_zone(node, zone);
651
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
652 653 654 655
		}
	}
}

656 657 658 659
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
660
	struct mem_cgroup_per_zone *mz;
661 662

retry:
663
	mz = NULL;
664 665 666 667 668 669 670 671 672 673
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
674 675 676
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
712
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
713
				 enum mem_cgroup_stat_index idx)
714
{
715
	long val = 0;
716 717
	int cpu;

718 719
	get_online_cpus();
	for_each_online_cpu(cpu)
720
		val += per_cpu(memcg->stat->count[idx], cpu);
721
#ifdef CONFIG_HOTPLUG_CPU
722 723 724
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
725 726
#endif
	put_online_cpus();
727 728 729
	return val;
}

730
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
731 732 733
					 bool charge)
{
	int val = (charge) ? 1 : -1;
734
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
735 736
}

737
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
738 739 740 741 742 743
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
744
		val += per_cpu(memcg->stat->events[idx], cpu);
745
#ifdef CONFIG_HOTPLUG_CPU
746 747 748
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
749 750 751 752
#endif
	return val;
}

753
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
754
					 bool anon, int nr_pages)
755
{
756 757
	preempt_disable();

758 759 760 761 762 763
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
764
				nr_pages);
765
	else
766
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
767
				nr_pages);
768

769 770
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
771
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
772
	else {
773
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
774 775
		nr_pages = -nr_pages; /* for event */
	}
776

777
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
778

779
	preempt_enable();
780 781
}

782
unsigned long
783
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
784 785 786 787 788 789 790 791
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
792
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
793
			unsigned int lru_mask)
794 795
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
796
	enum lru_list lru;
797 798
	unsigned long ret = 0;

799
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
800

H
Hugh Dickins 已提交
801 802 803
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
804 805 806 807 808
	}
	return ret;
}

static unsigned long
809
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
810 811
			int nid, unsigned int lru_mask)
{
812 813 814
	u64 total = 0;
	int zid;

815
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
816 817
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
818

819 820
	return total;
}
821

822
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
823
			unsigned int lru_mask)
824
{
825
	int nid;
826 827
	u64 total = 0;

828
	for_each_node_state(nid, N_MEMORY)
829
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
830
	return total;
831 832
}

833 834
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
835 836 837
{
	unsigned long val, next;

838
	val = __this_cpu_read(memcg->stat->nr_page_events);
839
	next = __this_cpu_read(memcg->stat->targets[target]);
840
	/* from time_after() in jiffies.h */
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
857
	}
858
	return false;
859 860 861 862 863 864
}

/*
 * Check events in order.
 *
 */
865
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
866
{
867
	preempt_disable();
868
	/* threshold event is triggered in finer grain than soft limit */
869 870
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
871 872
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
873 874 875 876 877 878 879 880 881

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

882
		mem_cgroup_threshold(memcg);
883
		if (unlikely(do_softlimit))
884
			mem_cgroup_update_tree(memcg, page);
885
#if MAX_NUMNODES > 1
886
		if (unlikely(do_numainfo))
887
			atomic_inc(&memcg->numainfo_events);
888
#endif
889 890
	} else
		preempt_enable();
891 892
}

G
Glauber Costa 已提交
893
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
894
{
895 896
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
897 898
}

899
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
900
{
901 902 903 904 905 906 907 908
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

909
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
910 911
}

912
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
913
{
914
	struct mem_cgroup *memcg = NULL;
915 916 917

	if (!mm)
		return NULL;
918 919 920 921 922 923 924
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
925 926
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
927
			break;
928
	} while (!css_tryget(&memcg->css));
929
	rcu_read_unlock();
930
	return memcg;
931 932
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
953
{
954 955
	struct mem_cgroup *memcg = NULL;
	int id = 0;
956

957 958 959
	if (mem_cgroup_disabled())
		return NULL;

960 961
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
962

963 964
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
965

966 967
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
968

969 970 971 972 973
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
974

975
	while (!memcg) {
976
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
977
		struct cgroup_subsys_state *css;
978

979 980 981 982 983 984 985 986 987 988 989
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
990

991 992 993 994
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
995
				memcg = mem_cgroup_from_css(css);
996 997
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
998 999
		rcu_read_unlock();

1000 1001 1002 1003 1004 1005 1006
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1007 1008 1009 1010 1011

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1012
}
K
KAMEZAWA Hiroyuki 已提交
1013

1014 1015 1016 1017 1018 1019 1020
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1021 1022 1023 1024 1025 1026
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1027

1028 1029 1030 1031 1032 1033
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1034
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1035
	     iter != NULL;				\
1036
	     iter = mem_cgroup_iter(root, iter, NULL))
1037

1038
#define for_each_mem_cgroup(iter)			\
1039
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1040
	     iter != NULL;				\
1041
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1042

1043
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1044
{
1045
	struct mem_cgroup *memcg;
1046 1047

	rcu_read_lock();
1048 1049
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1050 1051 1052 1053
		goto out;

	switch (idx) {
	case PGFAULT:
1054 1055 1056 1057
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1058 1059 1060 1061 1062 1063 1064
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1065
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1066

1067 1068 1069
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1070
 * @memcg: memcg of the wanted lruvec
1071 1072 1073 1074 1075 1076 1077 1078 1079
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1080
	struct lruvec *lruvec;
1081

1082 1083 1084 1085
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1086 1087

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1098 1099
}

K
KAMEZAWA Hiroyuki 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1113

1114
/**
1115
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1116
 * @page: the page
1117
 * @zone: zone of the page
1118
 */
1119
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1120 1121
{
	struct mem_cgroup_per_zone *mz;
1122 1123
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1124
	struct lruvec *lruvec;
1125

1126 1127 1128 1129
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1130

K
KAMEZAWA Hiroyuki 已提交
1131
	pc = lookup_page_cgroup(page);
1132
	memcg = pc->mem_cgroup;
1133 1134

	/*
1135
	 * Surreptitiously switch any uncharged offlist page to root:
1136 1137 1138 1139 1140 1141 1142
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1143
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1144 1145
		pc->mem_cgroup = memcg = root_mem_cgroup;

1146
	mz = page_cgroup_zoneinfo(memcg, page);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1157
}
1158

1159
/**
1160 1161 1162 1163
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1164
 *
1165 1166
 * This function must be called when a page is added to or removed from an
 * lru list.
1167
 */
1168 1169
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1170 1171
{
	struct mem_cgroup_per_zone *mz;
1172
	unsigned long *lru_size;
1173 1174 1175 1176

	if (mem_cgroup_disabled())
		return;

1177 1178 1179 1180
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1181
}
1182

1183
/*
1184
 * Checks whether given mem is same or in the root_mem_cgroup's
1185 1186
 * hierarchy subtree
 */
1187 1188
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1189
{
1190 1191
	if (root_memcg == memcg)
		return true;
1192
	if (!root_memcg->use_hierarchy || !memcg)
1193
		return false;
1194 1195 1196 1197 1198 1199 1200 1201
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1202
	rcu_read_lock();
1203
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1204 1205
	rcu_read_unlock();
	return ret;
1206 1207
}

1208
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1209 1210
{
	int ret;
1211
	struct mem_cgroup *curr = NULL;
1212
	struct task_struct *p;
1213

1214
	p = find_lock_task_mm(task);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1230 1231
	if (!curr)
		return 0;
1232
	/*
1233
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1234
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1235 1236
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1237
	 */
1238
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1239
	css_put(&curr->css);
1240 1241 1242
	return ret;
}

1243
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1244
{
1245
	unsigned long inactive_ratio;
1246
	unsigned long inactive;
1247
	unsigned long active;
1248
	unsigned long gb;
1249

1250 1251
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1252

1253 1254 1255 1256 1257 1258
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1259
	return inactive * inactive_ratio < active;
1260 1261
}

1262
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1263 1264 1265 1266
{
	unsigned long active;
	unsigned long inactive;

1267 1268
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1269 1270 1271 1272

	return (active > inactive);
}

1273 1274 1275
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1276
/**
1277
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1278
 * @memcg: the memory cgroup
1279
 *
1280
 * Returns the maximum amount of memory @mem can be charged with, in
1281
 * pages.
1282
 */
1283
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1284
{
1285 1286
	unsigned long long margin;

1287
	margin = res_counter_margin(&memcg->res);
1288
	if (do_swap_account)
1289
		margin = min(margin, res_counter_margin(&memcg->memsw));
1290
	return margin >> PAGE_SHIFT;
1291 1292
}

1293
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1294 1295 1296 1297 1298 1299 1300
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1301
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1302 1303
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1318 1319 1320 1321

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1322
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1323
{
1324
	atomic_inc(&memcg_moving);
1325
	atomic_inc(&memcg->moving_account);
1326 1327 1328
	synchronize_rcu();
}

1329
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1330
{
1331 1332 1333 1334
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1335 1336
	if (memcg) {
		atomic_dec(&memcg_moving);
1337
		atomic_dec(&memcg->moving_account);
1338
	}
1339
}
1340

1341 1342 1343
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1344 1345
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1346 1347 1348 1349 1350 1351 1352
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1353
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1354 1355
{
	VM_BUG_ON(!rcu_read_lock_held());
1356
	return atomic_read(&memcg->moving_account) > 0;
1357
}
1358

1359
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1360
{
1361 1362
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1363
	bool ret = false;
1364 1365 1366 1367 1368 1369 1370 1371 1372
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1373

1374 1375
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1376 1377
unlock:
	spin_unlock(&mc.lock);
1378 1379 1380
	return ret;
}

1381
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1382 1383
{
	if (mc.moving_task && current != mc.moving_task) {
1384
		if (mem_cgroup_under_move(memcg)) {
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1397 1398 1399 1400
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1401
 * see mem_cgroup_stolen(), too.
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1415
/**
1416
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1435
	if (!memcg || !p)
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1479 1480 1481 1482
	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1483 1484
}

1485 1486 1487 1488
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1489
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1490 1491
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1492 1493
	struct mem_cgroup *iter;

1494
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1495
		num++;
1496 1497 1498
	return num;
}

D
David Rientjes 已提交
1499 1500 1501
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1502
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1503 1504 1505
{
	u64 limit;

1506 1507
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1508
	/*
1509
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1510
	 */
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1525 1526
}

1527 1528
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1529 1530 1531 1532 1533 1534 1535
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1630 1631
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1632
 * @memcg: the target memcg
1633 1634 1635 1636 1637 1638 1639
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1640
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1641 1642
		int nid, bool noswap)
{
1643
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1644 1645 1646
		return true;
	if (noswap || !total_swap_pages)
		return false;
1647
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1648 1649 1650 1651
		return true;
	return false;

}
1652 1653 1654 1655 1656 1657 1658 1659
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1660
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1661 1662
{
	int nid;
1663 1664 1665 1666
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1667
	if (!atomic_read(&memcg->numainfo_events))
1668
		return;
1669
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1670 1671 1672
		return;

	/* make a nodemask where this memcg uses memory from */
1673
	memcg->scan_nodes = node_states[N_MEMORY];
1674

1675
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1676

1677 1678
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1679
	}
1680

1681 1682
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1697
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1698 1699 1700
{
	int node;

1701 1702
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1703

1704
	node = next_node(node, memcg->scan_nodes);
1705
	if (node == MAX_NUMNODES)
1706
		node = first_node(memcg->scan_nodes);
1707 1708 1709 1710 1711 1712 1713 1714 1715
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1716
	memcg->last_scanned_node = node;
1717 1718 1719
	return node;
}

1720 1721 1722 1723 1724 1725
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1726
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1727 1728 1729 1730 1731 1732 1733
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1734 1735
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1736
		     nid < MAX_NUMNODES;
1737
		     nid = next_node(nid, memcg->scan_nodes)) {
1738

1739
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1740 1741 1742 1743 1744 1745
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1746
	for_each_node_state(nid, N_MEMORY) {
1747
		if (node_isset(nid, memcg->scan_nodes))
1748
			continue;
1749
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1750 1751 1752 1753 1754
			return true;
	}
	return false;
}

1755
#else
1756
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1757 1758 1759
{
	return 0;
}
1760

1761
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1762
{
1763
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1764
}
1765 1766
#endif

1767 1768 1769 1770
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1771
{
1772
	struct mem_cgroup *victim = NULL;
1773
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1774
	int loop = 0;
1775
	unsigned long excess;
1776
	unsigned long nr_scanned;
1777 1778 1779 1780
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1781

1782
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1783

1784
	while (1) {
1785
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1786
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1787
			loop++;
1788 1789 1790 1791 1792 1793
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1794
				if (!total)
1795 1796
					break;
				/*
L
Lucas De Marchi 已提交
1797
				 * We want to do more targeted reclaim.
1798 1799 1800 1801 1802
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1803
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1804 1805
					break;
			}
1806
			continue;
1807
		}
1808
		if (!mem_cgroup_reclaimable(victim, false))
1809
			continue;
1810 1811 1812 1813
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1814
			break;
1815
	}
1816
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1817
	return total;
1818 1819
}

K
KAMEZAWA Hiroyuki 已提交
1820 1821 1822
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1823
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1824
 */
1825
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1826
{
1827
	struct mem_cgroup *iter, *failed = NULL;
1828

1829
	for_each_mem_cgroup_tree(iter, memcg) {
1830
		if (iter->oom_lock) {
1831 1832 1833 1834 1835
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1836 1837
			mem_cgroup_iter_break(memcg, iter);
			break;
1838 1839
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1840
	}
K
KAMEZAWA Hiroyuki 已提交
1841

1842
	if (!failed)
1843
		return true;
1844 1845 1846 1847 1848

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1849
	for_each_mem_cgroup_tree(iter, memcg) {
1850
		if (iter == failed) {
1851 1852
			mem_cgroup_iter_break(memcg, iter);
			break;
1853 1854 1855
		}
		iter->oom_lock = false;
	}
1856
	return false;
1857
}
1858

1859
/*
1860
 * Has to be called with memcg_oom_lock
1861
 */
1862
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1863
{
K
KAMEZAWA Hiroyuki 已提交
1864 1865
	struct mem_cgroup *iter;

1866
	for_each_mem_cgroup_tree(iter, memcg)
1867 1868 1869 1870
		iter->oom_lock = false;
	return 0;
}

1871
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1872 1873 1874
{
	struct mem_cgroup *iter;

1875
	for_each_mem_cgroup_tree(iter, memcg)
1876 1877 1878
		atomic_inc(&iter->under_oom);
}

1879
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1880 1881 1882
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1883 1884 1885 1886 1887
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1888
	for_each_mem_cgroup_tree(iter, memcg)
1889
		atomic_add_unless(&iter->under_oom, -1, 0);
1890 1891
}

1892
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1893 1894
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1895
struct oom_wait_info {
1896
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1897 1898 1899 1900 1901 1902
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1903 1904
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1905 1906 1907
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1908
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1909 1910

	/*
1911
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1912 1913
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1914 1915
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1916 1917 1918 1919
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1920
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1921
{
1922 1923
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1924 1925
}

1926
static void memcg_oom_recover(struct mem_cgroup *memcg)
1927
{
1928 1929
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1930 1931
}

K
KAMEZAWA Hiroyuki 已提交
1932 1933 1934
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1935 1936
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1937
{
K
KAMEZAWA Hiroyuki 已提交
1938
	struct oom_wait_info owait;
1939
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1940

1941
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1942 1943 1944 1945
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1946
	need_to_kill = true;
1947
	mem_cgroup_mark_under_oom(memcg);
1948

1949
	/* At first, try to OOM lock hierarchy under memcg.*/
1950
	spin_lock(&memcg_oom_lock);
1951
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1952 1953 1954 1955 1956
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1957
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1958
	if (!locked || memcg->oom_kill_disable)
1959 1960
		need_to_kill = false;
	if (locked)
1961
		mem_cgroup_oom_notify(memcg);
1962
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1963

1964 1965
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1966
		mem_cgroup_out_of_memory(memcg, mask, order);
1967
	} else {
K
KAMEZAWA Hiroyuki 已提交
1968
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1969
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1970
	}
1971
	spin_lock(&memcg_oom_lock);
1972
	if (locked)
1973 1974
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1975
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1976

1977
	mem_cgroup_unmark_under_oom(memcg);
1978

K
KAMEZAWA Hiroyuki 已提交
1979 1980 1981
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1982
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1983
	return true;
1984 1985
}

1986 1987 1988
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2006 2007
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2008
 */
2009

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2023
	 * need to take move_lock_mem_cgroup(). Because we already hold
2024
	 * rcu_read_lock(), any calls to move_account will be delayed until
2025
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2026
	 */
2027
	if (!mem_cgroup_stolen(memcg))
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2045
	 * should take move_lock_mem_cgroup().
2046 2047 2048 2049
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2050 2051
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2052
{
2053
	struct mem_cgroup *memcg;
2054
	struct page_cgroup *pc = lookup_page_cgroup(page);
2055
	unsigned long uninitialized_var(flags);
2056

2057
	if (mem_cgroup_disabled())
2058
		return;
2059

2060 2061
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2062
		return;
2063 2064

	switch (idx) {
2065 2066
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2067 2068 2069
		break;
	default:
		BUG();
2070
	}
2071

2072
	this_cpu_add(memcg->stat->count[idx], val);
2073
}
2074

2075 2076 2077 2078
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2079
#define CHARGE_BATCH	32U
2080 2081
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2082
	unsigned int nr_pages;
2083
	struct work_struct work;
2084
	unsigned long flags;
2085
#define FLUSHING_CACHED_CHARGE	0
2086 2087
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2088
static DEFINE_MUTEX(percpu_charge_mutex);
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2100
 */
2101
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2102 2103 2104 2105
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2106 2107 2108
	if (nr_pages > CHARGE_BATCH)
		return false;

2109
	stock = &get_cpu_var(memcg_stock);
2110 2111
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2125 2126 2127 2128
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2129
		if (do_swap_account)
2130 2131
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2144
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2145 2146 2147 2148
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2149
 * This will be consumed by consume_stock() function, later.
2150
 */
2151
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2152 2153 2154
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2155
	if (stock->cached != memcg) { /* reset if necessary */
2156
		drain_stock(stock);
2157
		stock->cached = memcg;
2158
	}
2159
	stock->nr_pages += nr_pages;
2160 2161 2162 2163
	put_cpu_var(memcg_stock);
}

/*
2164
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2165 2166
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2167
 */
2168
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2169
{
2170
	int cpu, curcpu;
2171

2172 2173
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2174
	curcpu = get_cpu();
2175 2176
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2177
		struct mem_cgroup *memcg;
2178

2179 2180
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2181
			continue;
2182
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2183
			continue;
2184 2185 2186 2187 2188 2189
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2190
	}
2191
	put_cpu();
2192 2193 2194 2195 2196 2197

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2198
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2199 2200 2201
			flush_work(&stock->work);
	}
out:
2202
 	put_online_cpus();
2203 2204 2205 2206 2207 2208 2209 2210
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2211
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2212
{
2213 2214 2215 2216 2217
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2218
	drain_all_stock(root_memcg, false);
2219
	mutex_unlock(&percpu_charge_mutex);
2220 2221 2222
}

/* This is a synchronous drain interface. */
2223
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2224 2225
{
	/* called when force_empty is called */
2226
	mutex_lock(&percpu_charge_mutex);
2227
	drain_all_stock(root_memcg, true);
2228
	mutex_unlock(&percpu_charge_mutex);
2229 2230
}

2231 2232 2233 2234
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2235
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2236 2237 2238
{
	int i;

2239
	spin_lock(&memcg->pcp_counter_lock);
2240
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2241
		long x = per_cpu(memcg->stat->count[i], cpu);
2242

2243 2244
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2245
	}
2246
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2247
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2248

2249 2250
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2251
	}
2252
	spin_unlock(&memcg->pcp_counter_lock);
2253 2254 2255
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2256 2257 2258 2259 2260
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2261
	struct mem_cgroup *iter;
2262

2263
	if (action == CPU_ONLINE)
2264 2265
		return NOTIFY_OK;

2266
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2267
		return NOTIFY_OK;
2268

2269
	for_each_mem_cgroup(iter)
2270 2271
		mem_cgroup_drain_pcp_counter(iter, cpu);

2272 2273 2274 2275 2276
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2287
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2288 2289
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2290
{
2291
	unsigned long csize = nr_pages * PAGE_SIZE;
2292 2293 2294 2295 2296
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2297
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2298 2299 2300 2301

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2302
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2303 2304 2305
		if (likely(!ret))
			return CHARGE_OK;

2306
		res_counter_uncharge(&memcg->res, csize);
2307 2308 2309 2310
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2311 2312 2313 2314
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2315
	if (nr_pages > min_pages)
2316 2317 2318 2319 2320
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2321 2322 2323
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2324
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2325
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2326
		return CHARGE_RETRY;
2327
	/*
2328 2329 2330 2331 2332 2333 2334
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2335
	 */
2336
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2350
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2351 2352 2353 2354 2355
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2356
/*
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2376
 */
2377
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2378
				   gfp_t gfp_mask,
2379
				   unsigned int nr_pages,
2380
				   struct mem_cgroup **ptr,
2381
				   bool oom)
2382
{
2383
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2384
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2385
	struct mem_cgroup *memcg = NULL;
2386
	int ret;
2387

K
KAMEZAWA Hiroyuki 已提交
2388 2389 2390 2391 2392 2393 2394 2395
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2396

2397
	/*
2398 2399
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2400
	 * thread group leader migrates. It's possible that mm is not
2401
	 * set, if so charge the root memcg (happens for pagecache usage).
2402
	 */
2403
	if (!*ptr && !mm)
2404
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2405
again:
2406 2407 2408
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2409
			goto done;
2410
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2411
			goto done;
2412
		css_get(&memcg->css);
2413
	} else {
K
KAMEZAWA Hiroyuki 已提交
2414
		struct task_struct *p;
2415

K
KAMEZAWA Hiroyuki 已提交
2416 2417 2418
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2419
		 * Because we don't have task_lock(), "p" can exit.
2420
		 * In that case, "memcg" can point to root or p can be NULL with
2421 2422 2423 2424 2425 2426
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2427
		 */
2428
		memcg = mem_cgroup_from_task(p);
2429 2430 2431
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2432 2433 2434
			rcu_read_unlock();
			goto done;
		}
2435
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2448
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2449 2450 2451 2452 2453
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2454

2455 2456
	do {
		bool oom_check;
2457

2458
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2459
		if (fatal_signal_pending(current)) {
2460
			css_put(&memcg->css);
2461
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2462
		}
2463

2464 2465 2466 2467
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2468
		}
2469

2470 2471
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2472 2473 2474 2475
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2476
			batch = nr_pages;
2477 2478
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2479
			goto again;
2480
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2481
			css_put(&memcg->css);
2482 2483
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2484
			if (!oom) {
2485
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2486
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2487
			}
2488 2489 2490 2491
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2492
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2493
			goto bypass;
2494
		}
2495 2496
	} while (ret != CHARGE_OK);

2497
	if (batch > nr_pages)
2498 2499
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2500
done:
2501
	*ptr = memcg;
2502 2503
	return 0;
nomem:
2504
	*ptr = NULL;
2505
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2506
bypass:
2507 2508
	*ptr = root_mem_cgroup;
	return -EINTR;
2509
}
2510

2511 2512 2513 2514 2515
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2516
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2517
				       unsigned int nr_pages)
2518
{
2519
	if (!mem_cgroup_is_root(memcg)) {
2520 2521
		unsigned long bytes = nr_pages * PAGE_SIZE;

2522
		res_counter_uncharge(&memcg->res, bytes);
2523
		if (do_swap_account)
2524
			res_counter_uncharge(&memcg->memsw, bytes);
2525
	}
2526 2527
}

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2546 2547
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2548 2549 2550
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2562
	return mem_cgroup_from_css(css);
2563 2564
}

2565
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2566
{
2567
	struct mem_cgroup *memcg = NULL;
2568
	struct page_cgroup *pc;
2569
	unsigned short id;
2570 2571
	swp_entry_t ent;

2572 2573 2574
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2575
	lock_page_cgroup(pc);
2576
	if (PageCgroupUsed(pc)) {
2577 2578 2579
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2580
	} else if (PageSwapCache(page)) {
2581
		ent.val = page_private(page);
2582
		id = lookup_swap_cgroup_id(ent);
2583
		rcu_read_lock();
2584 2585 2586
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2587
		rcu_read_unlock();
2588
	}
2589
	unlock_page_cgroup(pc);
2590
	return memcg;
2591 2592
}

2593
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2594
				       struct page *page,
2595
				       unsigned int nr_pages,
2596 2597
				       enum charge_type ctype,
				       bool lrucare)
2598
{
2599
	struct page_cgroup *pc = lookup_page_cgroup(page);
2600
	struct zone *uninitialized_var(zone);
2601
	struct lruvec *lruvec;
2602
	bool was_on_lru = false;
2603
	bool anon;
2604

2605
	lock_page_cgroup(pc);
2606
	VM_BUG_ON(PageCgroupUsed(pc));
2607 2608 2609 2610
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2611 2612 2613 2614 2615 2616 2617 2618 2619

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2620
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2621
			ClearPageLRU(page);
2622
			del_page_from_lru_list(page, lruvec, page_lru(page));
2623 2624 2625 2626
			was_on_lru = true;
		}
	}

2627
	pc->mem_cgroup = memcg;
2628 2629 2630 2631 2632 2633 2634
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2635
	smp_wmb();
2636
	SetPageCgroupUsed(pc);
2637

2638 2639
	if (lrucare) {
		if (was_on_lru) {
2640
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2641 2642
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2643
			add_page_to_lru_list(page, lruvec, page_lru(page));
2644 2645 2646 2647
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2648
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2649 2650 2651 2652 2653
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2654
	unlock_page_cgroup(pc);
2655

2656 2657 2658 2659 2660
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2661
	memcg_check_events(memcg, page);
2662
}
2663

2664 2665
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2666
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2667 2668
/*
 * Because tail pages are not marked as "used", set it. We're under
2669 2670 2671
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2672
 */
2673
void mem_cgroup_split_huge_fixup(struct page *head)
2674 2675
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2676 2677
	struct page_cgroup *pc;
	int i;
2678

2679 2680
	if (mem_cgroup_disabled())
		return;
2681 2682 2683 2684 2685 2686
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2687
}
2688
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2689

2690
/**
2691
 * mem_cgroup_move_account - move account of the page
2692
 * @page: the page
2693
 * @nr_pages: number of regular pages (>1 for huge pages)
2694 2695 2696 2697 2698
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2699
 * - page is not on LRU (isolate_page() is useful.)
2700
 * - compound_lock is held when nr_pages > 1
2701
 *
2702 2703
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2704
 */
2705 2706 2707 2708
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2709
				   struct mem_cgroup *to)
2710
{
2711 2712
	unsigned long flags;
	int ret;
2713
	bool anon = PageAnon(page);
2714

2715
	VM_BUG_ON(from == to);
2716
	VM_BUG_ON(PageLRU(page));
2717 2718 2719 2720 2721 2722 2723
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2724
	if (nr_pages > 1 && !PageTransHuge(page))
2725 2726 2727 2728 2729 2730 2731 2732
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2733
	move_lock_mem_cgroup(from, &flags);
2734

2735
	if (!anon && page_mapped(page)) {
2736 2737 2738 2739 2740
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2741
	}
2742
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2743

2744
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2745
	pc->mem_cgroup = to;
2746
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2747
	move_unlock_mem_cgroup(from, &flags);
2748 2749
	ret = 0;
unlock:
2750
	unlock_page_cgroup(pc);
2751 2752 2753
	/*
	 * check events
	 */
2754 2755
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2756
out:
2757 2758 2759
	return ret;
}

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
2780
 */
2781 2782
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2783
				  struct mem_cgroup *child)
2784 2785
{
	struct mem_cgroup *parent;
2786
	unsigned int nr_pages;
2787
	unsigned long uninitialized_var(flags);
2788 2789
	int ret;

2790
	VM_BUG_ON(mem_cgroup_is_root(child));
2791

2792 2793 2794 2795 2796
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2797

2798
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2799

2800 2801 2802 2803 2804 2805
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2806

2807 2808
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
2809
		flags = compound_lock_irqsave(page);
2810
	}
2811

2812
	ret = mem_cgroup_move_account(page, nr_pages,
2813
				pc, child, parent);
2814 2815
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2816

2817
	if (nr_pages > 1)
2818
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2819
	putback_lru_page(page);
2820
put:
2821
	put_page(page);
2822
out:
2823 2824 2825
	return ret;
}

2826 2827 2828 2829 2830 2831 2832
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2833
				gfp_t gfp_mask, enum charge_type ctype)
2834
{
2835
	struct mem_cgroup *memcg = NULL;
2836
	unsigned int nr_pages = 1;
2837
	bool oom = true;
2838
	int ret;
A
Andrea Arcangeli 已提交
2839

A
Andrea Arcangeli 已提交
2840
	if (PageTransHuge(page)) {
2841
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2842
		VM_BUG_ON(!PageTransHuge(page));
2843 2844 2845 2846 2847
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2848
	}
2849

2850
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2851
	if (ret == -ENOMEM)
2852
		return ret;
2853
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2854 2855 2856
	return 0;
}

2857 2858
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2859
{
2860
	if (mem_cgroup_disabled())
2861
		return 0;
2862 2863 2864
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2865
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2866
					MEM_CGROUP_CHARGE_TYPE_ANON);
2867 2868
}

2869 2870 2871
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2872
 * struct page_cgroup is acquired. This refcnt will be consumed by
2873 2874
 * "commit()" or removed by "cancel()"
 */
2875 2876 2877 2878
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
2879
{
2880
	struct mem_cgroup *memcg;
2881
	struct page_cgroup *pc;
2882
	int ret;
2883

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
2894 2895
	if (!do_swap_account)
		goto charge_cur_mm;
2896 2897
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2898
		goto charge_cur_mm;
2899 2900
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2901
	css_put(&memcg->css);
2902 2903
	if (ret == -EINTR)
		ret = 0;
2904
	return ret;
2905
charge_cur_mm:
2906 2907 2908 2909
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2910 2911
}

2912 2913 2914 2915 2916 2917
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
2932 2933 2934
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

2935 2936 2937 2938 2939 2940 2941 2942 2943
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
2944
static void
2945
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2946
					enum charge_type ctype)
2947
{
2948
	if (mem_cgroup_disabled())
2949
		return;
2950
	if (!memcg)
2951
		return;
2952

2953
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2954 2955 2956
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2957 2958 2959
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2960
	 */
2961
	if (do_swap_account && PageSwapCache(page)) {
2962
		swp_entry_t ent = {.val = page_private(page)};
2963
		mem_cgroup_uncharge_swap(ent);
2964
	}
2965 2966
}

2967 2968
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2969
{
2970
	__mem_cgroup_commit_charge_swapin(page, memcg,
2971
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2972 2973
}

2974 2975
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2976
{
2977 2978 2979 2980
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

2981
	if (mem_cgroup_disabled())
2982 2983 2984 2985 2986 2987 2988
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
2989 2990
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
2991 2992 2993 2994
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
2995 2996
}

2997
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2998 2999
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3000 3001 3002
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3003

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3015
		batch->memcg = memcg;
3016 3017
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3018
	 * In those cases, all pages freed continuously can be expected to be in
3019 3020 3021 3022 3023 3024 3025 3026
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3027
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3028 3029
		goto direct_uncharge;

3030 3031 3032 3033 3034
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3035
	if (batch->memcg != memcg)
3036 3037
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3038
	batch->nr_pages++;
3039
	if (uncharge_memsw)
3040
		batch->memsw_nr_pages++;
3041 3042
	return;
direct_uncharge:
3043
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3044
	if (uncharge_memsw)
3045 3046 3047
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3048
}
3049

3050
/*
3051
 * uncharge if !page_mapped(page)
3052
 */
3053
static struct mem_cgroup *
3054 3055
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3056
{
3057
	struct mem_cgroup *memcg = NULL;
3058 3059
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3060
	bool anon;
3061

3062
	if (mem_cgroup_disabled())
3063
		return NULL;
3064

3065
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3066

A
Andrea Arcangeli 已提交
3067
	if (PageTransHuge(page)) {
3068
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3069 3070
		VM_BUG_ON(!PageTransHuge(page));
	}
3071
	/*
3072
	 * Check if our page_cgroup is valid
3073
	 */
3074
	pc = lookup_page_cgroup(page);
3075
	if (unlikely(!PageCgroupUsed(pc)))
3076
		return NULL;
3077

3078
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3079

3080
	memcg = pc->mem_cgroup;
3081

K
KAMEZAWA Hiroyuki 已提交
3082 3083 3084
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3085 3086
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3087
	switch (ctype) {
3088
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3089 3090 3091 3092 3093
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3094 3095
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3096
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3097
		/* See mem_cgroup_prepare_migration() */
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3119
	}
K
KAMEZAWA Hiroyuki 已提交
3120

3121
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3122

3123
	ClearPageCgroupUsed(pc);
3124 3125 3126 3127 3128 3129
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3130

3131
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3132
	/*
3133
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3134 3135
	 * will never be freed.
	 */
3136
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3137
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3138 3139
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3140
	}
3141 3142 3143 3144 3145 3146
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3147
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3148

3149
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3150 3151 3152

unlock_out:
	unlock_page_cgroup(pc);
3153
	return NULL;
3154 3155
}

3156 3157
void mem_cgroup_uncharge_page(struct page *page)
{
3158 3159 3160
	/* early check. */
	if (page_mapped(page))
		return;
3161
	VM_BUG_ON(page->mapping && !PageAnon(page));
3162 3163
	if (PageSwapCache(page))
		return;
3164
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3165 3166 3167 3168 3169
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3170
	VM_BUG_ON(page->mapping);
3171
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3172 3173
}

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3188 3189
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3210 3211 3212 3213 3214 3215
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3216
	memcg_oom_recover(batch->memcg);
3217 3218 3219 3220
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3221
#ifdef CONFIG_SWAP
3222
/*
3223
 * called after __delete_from_swap_cache() and drop "page" account.
3224 3225
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3226 3227
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3228 3229
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3230 3231 3232 3233 3234
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3235
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3236

K
KAMEZAWA Hiroyuki 已提交
3237 3238 3239 3240 3241
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3242
		swap_cgroup_record(ent, css_id(&memcg->css));
3243
}
3244
#endif
3245

A
Andrew Morton 已提交
3246
#ifdef CONFIG_MEMCG_SWAP
3247 3248 3249 3250 3251
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3252
{
3253
	struct mem_cgroup *memcg;
3254
	unsigned short id;
3255 3256 3257 3258

	if (!do_swap_account)
		return;

3259 3260 3261
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3262
	if (memcg) {
3263 3264 3265 3266
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3267
		if (!mem_cgroup_is_root(memcg))
3268
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3269
		mem_cgroup_swap_statistics(memcg, false);
3270 3271
		mem_cgroup_put(memcg);
	}
3272
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3273
}
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3290
				struct mem_cgroup *from, struct mem_cgroup *to)
3291 3292 3293 3294 3295 3296 3297 3298
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3299
		mem_cgroup_swap_statistics(to, true);
3300
		/*
3301 3302 3303 3304 3305 3306
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3307 3308 3309 3310 3311 3312 3313 3314
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3315
				struct mem_cgroup *from, struct mem_cgroup *to)
3316 3317 3318
{
	return -EINVAL;
}
3319
#endif
K
KAMEZAWA Hiroyuki 已提交
3320

3321
/*
3322 3323
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3324
 */
3325 3326
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3327
{
3328
	struct mem_cgroup *memcg = NULL;
3329
	unsigned int nr_pages = 1;
3330
	struct page_cgroup *pc;
3331
	enum charge_type ctype;
3332

3333
	*memcgp = NULL;
3334

3335
	if (mem_cgroup_disabled())
3336
		return;
3337

3338 3339 3340
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

3341 3342 3343
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3344 3345
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3377
	}
3378
	unlock_page_cgroup(pc);
3379 3380 3381 3382
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3383
	if (!memcg)
3384
		return;
3385

3386
	*memcgp = memcg;
3387 3388 3389 3390 3391 3392 3393
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3394
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3395
	else
3396
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3397 3398 3399 3400 3401
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3402
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3403
}
3404

3405
/* remove redundant charge if migration failed*/
3406
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3407
	struct page *oldpage, struct page *newpage, bool migration_ok)
3408
{
3409
	struct page *used, *unused;
3410
	struct page_cgroup *pc;
3411
	bool anon;
3412

3413
	if (!memcg)
3414
		return;
3415

3416
	if (!migration_ok) {
3417 3418
		used = oldpage;
		unused = newpage;
3419
	} else {
3420
		used = newpage;
3421 3422
		unused = oldpage;
	}
3423
	anon = PageAnon(used);
3424 3425 3426 3427
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3428
	css_put(&memcg->css);
3429
	/*
3430 3431 3432
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3433
	 */
3434 3435 3436 3437 3438
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3439
	/*
3440 3441 3442 3443 3444 3445
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3446
	 */
3447
	if (anon)
3448
		mem_cgroup_uncharge_page(used);
3449
}
3450

3451 3452 3453 3454 3455 3456 3457 3458
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3459
	struct mem_cgroup *memcg = NULL;
3460 3461 3462 3463 3464 3465 3466 3467 3468
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3469 3470 3471 3472 3473
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3474 3475
	unlock_page_cgroup(pc);

3476 3477 3478 3479 3480 3481
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3482 3483 3484 3485 3486
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3487
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3488 3489
}

3490 3491 3492 3493 3494 3495
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3496 3497 3498 3499 3500
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3520
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3521 3522 3523 3524 3525
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3526 3527
static DEFINE_MUTEX(set_limit_mutex);

3528
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3529
				unsigned long long val)
3530
{
3531
	int retry_count;
3532
	u64 memswlimit, memlimit;
3533
	int ret = 0;
3534 3535
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3536
	int enlarge;
3537 3538 3539 3540 3541 3542 3543 3544 3545

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3546

3547
	enlarge = 0;
3548
	while (retry_count) {
3549 3550 3551 3552
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3553 3554 3555
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3556
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3557 3558 3559 3560 3561 3562
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3563 3564
			break;
		}
3565 3566 3567 3568 3569

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3570
		ret = res_counter_set_limit(&memcg->res, val);
3571 3572 3573 3574 3575 3576
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3577 3578 3579 3580 3581
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3582 3583
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3584 3585 3586 3587 3588 3589
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3590
	}
3591 3592
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3593

3594 3595 3596
	return ret;
}

L
Li Zefan 已提交
3597 3598
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3599
{
3600
	int retry_count;
3601
	u64 memlimit, memswlimit, oldusage, curusage;
3602 3603
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3604
	int enlarge = 0;
3605

3606 3607 3608
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3609 3610 3611 3612 3613 3614 3615 3616
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3617
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3618 3619 3620 3621 3622 3623 3624 3625
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3626 3627 3628
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3629
		ret = res_counter_set_limit(&memcg->memsw, val);
3630 3631 3632 3633 3634 3635
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3636 3637 3638 3639 3640
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3641 3642 3643
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3644
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3645
		/* Usage is reduced ? */
3646
		if (curusage >= oldusage)
3647
			retry_count--;
3648 3649
		else
			oldusage = curusage;
3650
	}
3651 3652
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3653 3654 3655
	return ret;
}

3656
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3657 3658
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3659 3660 3661 3662 3663 3664
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3665
	unsigned long long excess;
3666
	unsigned long nr_scanned;
3667 3668 3669 3670

	if (order > 0)
		return 0;

3671
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3685
		nr_scanned = 0;
3686
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3687
						    gfp_mask, &nr_scanned);
3688
		nr_reclaimed += reclaimed;
3689
		*total_scanned += nr_scanned;
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3712
				if (next_mz == mz)
3713
					css_put(&next_mz->memcg->css);
3714
				else /* next_mz == NULL or other memcg */
3715 3716 3717
					break;
			} while (1);
		}
3718 3719
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3720 3721 3722 3723 3724 3725 3726 3727
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3728
		/* If excess == 0, no tree ops */
3729
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3730
		spin_unlock(&mctz->lock);
3731
		css_put(&mz->memcg->css);
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3744
		css_put(&next_mz->memcg->css);
3745 3746 3747
	return nr_reclaimed;
}

3748 3749 3750 3751 3752 3753 3754
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3755
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3756 3757
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3758
 */
3759
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3760
				int node, int zid, enum lru_list lru)
3761
{
3762
	struct lruvec *lruvec;
3763
	unsigned long flags;
3764
	struct list_head *list;
3765 3766
	struct page *busy;
	struct zone *zone;
3767

K
KAMEZAWA Hiroyuki 已提交
3768
	zone = &NODE_DATA(node)->node_zones[zid];
3769 3770
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3771

3772
	busy = NULL;
3773
	do {
3774
		struct page_cgroup *pc;
3775 3776
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3777
		spin_lock_irqsave(&zone->lru_lock, flags);
3778
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3779
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3780
			break;
3781
		}
3782 3783 3784
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3785
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3786
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3787 3788
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3789
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3790

3791
		pc = lookup_page_cgroup(page);
3792

3793
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3794
			/* found lock contention or "pc" is obsolete. */
3795
			busy = page;
3796 3797 3798
			cond_resched();
		} else
			busy = NULL;
3799
	} while (!list_empty(list));
3800 3801 3802
}

/*
3803 3804
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3805
 * This enables deleting this mem_cgroup.
3806 3807
 *
 * Caller is responsible for holding css reference on the memcg.
3808
 */
3809
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3810
{
3811
	int node, zid;
3812

3813
	do {
3814 3815
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3816 3817
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3818
		for_each_node_state(node, N_MEMORY) {
3819
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3820 3821
				enum lru_list lru;
				for_each_lru(lru) {
3822
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3823
							node, zid, lru);
3824
				}
3825
			}
3826
		}
3827 3828
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3829
		cond_resched();
3830

3831 3832 3833 3834 3835 3836 3837 3838
		/*
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
3851

3852
	/* returns EBUSY if there is a task or if we come here twice. */
3853 3854 3855
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

3856 3857
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3858
	/* try to free all pages in this cgroup */
3859
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3860
		int progress;
3861

3862 3863 3864
		if (signal_pending(current))
			return -EINTR;

3865
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3866
						false);
3867
		if (!progress) {
3868
			nr_retries--;
3869
			/* maybe some writeback is necessary */
3870
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3871
		}
3872 3873

	}
K
KAMEZAWA Hiroyuki 已提交
3874
	lru_add_drain();
3875 3876 3877
	mem_cgroup_reparent_charges(memcg);

	return 0;
3878 3879
}

3880
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3881
{
3882 3883 3884
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

3885 3886
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3887 3888 3889 3890 3891
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
3892 3893 3894
}


3895 3896 3897 3898 3899 3900 3901 3902 3903
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3904
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3905
	struct cgroup *parent = cont->parent;
3906
	struct mem_cgroup *parent_memcg = NULL;
3907 3908

	if (parent)
3909
		parent_memcg = mem_cgroup_from_cont(parent);
3910 3911

	cgroup_lock();
3912 3913 3914 3915

	if (memcg->use_hierarchy == val)
		goto out;

3916
	/*
3917
	 * If parent's use_hierarchy is set, we can't make any modifications
3918 3919 3920 3921 3922 3923
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3924
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3925 3926
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3927
			memcg->use_hierarchy = val;
3928 3929 3930 3931
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3932 3933

out:
3934 3935 3936 3937 3938
	cgroup_unlock();

	return retval;
}

3939

3940
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3941
					       enum mem_cgroup_stat_index idx)
3942
{
K
KAMEZAWA Hiroyuki 已提交
3943
	struct mem_cgroup *iter;
3944
	long val = 0;
3945

3946
	/* Per-cpu values can be negative, use a signed accumulator */
3947
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3948 3949 3950 3951 3952
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3953 3954
}

3955
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3956
{
K
KAMEZAWA Hiroyuki 已提交
3957
	u64 val;
3958

3959
	if (!mem_cgroup_is_root(memcg)) {
3960
		if (!swap)
3961
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3962
		else
3963
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3964 3965
	}

3966 3967
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3968

K
KAMEZAWA Hiroyuki 已提交
3969
	if (swap)
3970
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3971 3972 3973 3974

	return val << PAGE_SHIFT;
}

3975 3976 3977
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3978
{
3979
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3980
	char str[64];
3981
	u64 val;
G
Glauber Costa 已提交
3982 3983
	int name, len;
	enum res_type type;
3984 3985 3986

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3987 3988 3989 3990

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3991 3992
	switch (type) {
	case _MEM:
3993
		if (name == RES_USAGE)
3994
			val = mem_cgroup_usage(memcg, false);
3995
		else
3996
			val = res_counter_read_u64(&memcg->res, name);
3997 3998
		break;
	case _MEMSWAP:
3999
		if (name == RES_USAGE)
4000
			val = mem_cgroup_usage(memcg, true);
4001
		else
4002
			val = res_counter_read_u64(&memcg->memsw, name);
4003
		break;
4004 4005 4006
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4007 4008 4009
	default:
		BUG();
	}
4010 4011 4012

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4013
}
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

		memcg_kmem_set_active(memcg);
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
#endif
	return ret;
}

static void memcg_propagate_kmem(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
		return;
	memcg->kmem_account_flags = parent->kmem_account_flags;
}

4067 4068 4069 4070
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4071 4072
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4073
{
4074
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4075 4076
	enum res_type type;
	int name;
4077 4078 4079
	unsigned long long val;
	int ret;

4080 4081
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4082 4083 4084 4085

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4086
	switch (name) {
4087
	case RES_LIMIT:
4088 4089 4090 4091
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4092 4093
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4094 4095 4096
		if (ret)
			break;
		if (type == _MEM)
4097
			ret = mem_cgroup_resize_limit(memcg, val);
4098
		else if (type == _MEMSWAP)
4099
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4100 4101 4102 4103
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
4104
		break;
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4119 4120 4121 4122 4123
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4124 4125
}

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4153
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4154
{
4155
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4156 4157
	int name;
	enum res_type type;
4158

4159 4160
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4161 4162 4163 4164

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4165
	switch (name) {
4166
	case RES_MAX_USAGE:
4167
		if (type == _MEM)
4168
			res_counter_reset_max(&memcg->res);
4169
		else if (type == _MEMSWAP)
4170
			res_counter_reset_max(&memcg->memsw);
4171 4172 4173 4174
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4175 4176
		break;
	case RES_FAILCNT:
4177
		if (type == _MEM)
4178
			res_counter_reset_failcnt(&memcg->res);
4179
		else if (type == _MEMSWAP)
4180
			res_counter_reset_failcnt(&memcg->memsw);
4181 4182 4183 4184
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4185 4186
		break;
	}
4187

4188
	return 0;
4189 4190
}

4191 4192 4193 4194 4195 4196
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4197
#ifdef CONFIG_MMU
4198 4199 4200
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4201
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4202 4203 4204 4205 4206 4207 4208 4209 4210

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4211
	memcg->move_charge_at_immigrate = val;
4212 4213 4214 4215
	cgroup_unlock();

	return 0;
}
4216 4217 4218 4219 4220 4221 4222
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4223

4224
#ifdef CONFIG_NUMA
4225
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4226
				      struct seq_file *m)
4227 4228 4229 4230
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4231
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4232

4233
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4234
	seq_printf(m, "total=%lu", total_nr);
4235
	for_each_node_state(nid, N_MEMORY) {
4236
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4237 4238 4239 4240
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4241
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4242
	seq_printf(m, "file=%lu", file_nr);
4243
	for_each_node_state(nid, N_MEMORY) {
4244
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4245
				LRU_ALL_FILE);
4246 4247 4248 4249
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4250
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4251
	seq_printf(m, "anon=%lu", anon_nr);
4252
	for_each_node_state(nid, N_MEMORY) {
4253
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4254
				LRU_ALL_ANON);
4255 4256 4257 4258
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4259
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4260
	seq_printf(m, "unevictable=%lu", unevictable_nr);
4261
	for_each_node_state(nid, N_MEMORY) {
4262
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4263
				BIT(LRU_UNEVICTABLE));
4264 4265 4266 4267 4268 4269 4270
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4284
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4285
				 struct seq_file *m)
4286
{
4287
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4288 4289
	struct mem_cgroup *mi;
	unsigned int i;
4290

4291
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4292
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4293
			continue;
4294 4295
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4296
	}
L
Lee Schermerhorn 已提交
4297

4298 4299 4300 4301 4302 4303 4304 4305
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4306
	/* Hierarchical information */
4307 4308
	{
		unsigned long long limit, memsw_limit;
4309
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4310
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4311
		if (do_swap_account)
4312 4313
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4314
	}
K
KOSAKI Motohiro 已提交
4315

4316 4317 4318
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4319
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4320
			continue;
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4341
	}
K
KAMEZAWA Hiroyuki 已提交
4342

K
KOSAKI Motohiro 已提交
4343 4344 4345 4346
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4347
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4348 4349 4350 4351 4352
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4353
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4354
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4355

4356 4357 4358 4359
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4360
			}
4361 4362 4363 4364
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4365 4366 4367
	}
#endif

4368 4369 4370
	return 0;
}

K
KOSAKI Motohiro 已提交
4371 4372 4373 4374
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4375
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4376 4377 4378 4379 4380 4381 4382
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4383

K
KOSAKI Motohiro 已提交
4384 4385 4386 4387 4388 4389 4390
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4391 4392 4393

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4394 4395
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4396 4397
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4398
		return -EINVAL;
4399
	}
K
KOSAKI Motohiro 已提交
4400 4401 4402

	memcg->swappiness = val;

4403 4404
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4405 4406 4407
	return 0;
}

4408 4409 4410 4411 4412 4413 4414 4415
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4416
		t = rcu_dereference(memcg->thresholds.primary);
4417
	else
4418
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4419 4420 4421 4422 4423 4424 4425

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4426
	 * current_threshold points to threshold just below or equal to usage.
4427 4428 4429
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4430
	i = t->current_threshold;
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4454
	t->current_threshold = i - 1;
4455 4456 4457 4458 4459 4460
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4461 4462 4463 4464 4465 4466 4467
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4478
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4479 4480 4481
{
	struct mem_cgroup_eventfd_list *ev;

4482
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4483 4484 4485 4486
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4487
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4488
{
K
KAMEZAWA Hiroyuki 已提交
4489 4490
	struct mem_cgroup *iter;

4491
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4492
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4493 4494 4495 4496
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4497 4498
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4499 4500
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4501
	enum res_type type = MEMFILE_TYPE(cft->private);
4502
	u64 threshold, usage;
4503
	int i, size, ret;
4504 4505 4506 4507 4508 4509

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4510

4511
	if (type == _MEM)
4512
		thresholds = &memcg->thresholds;
4513
	else if (type == _MEMSWAP)
4514
		thresholds = &memcg->memsw_thresholds;
4515 4516 4517 4518 4519 4520
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4521
	if (thresholds->primary)
4522 4523
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4524
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4525 4526

	/* Allocate memory for new array of thresholds */
4527
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4528
			GFP_KERNEL);
4529
	if (!new) {
4530 4531 4532
		ret = -ENOMEM;
		goto unlock;
	}
4533
	new->size = size;
4534 4535

	/* Copy thresholds (if any) to new array */
4536 4537
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4538
				sizeof(struct mem_cgroup_threshold));
4539 4540
	}

4541
	/* Add new threshold */
4542 4543
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4544 4545

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4546
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4547 4548 4549
			compare_thresholds, NULL);

	/* Find current threshold */
4550
	new->current_threshold = -1;
4551
	for (i = 0; i < size; i++) {
4552
		if (new->entries[i].threshold <= usage) {
4553
			/*
4554 4555
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4556 4557
			 * it here.
			 */
4558
			++new->current_threshold;
4559 4560
		} else
			break;
4561 4562
	}

4563 4564 4565 4566 4567
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4568

4569
	/* To be sure that nobody uses thresholds */
4570 4571 4572 4573 4574 4575 4576 4577
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4578
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4579
	struct cftype *cft, struct eventfd_ctx *eventfd)
4580 4581
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4582 4583
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4584
	enum res_type type = MEMFILE_TYPE(cft->private);
4585
	u64 usage;
4586
	int i, j, size;
4587 4588 4589

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4590
		thresholds = &memcg->thresholds;
4591
	else if (type == _MEMSWAP)
4592
		thresholds = &memcg->memsw_thresholds;
4593 4594 4595
	else
		BUG();

4596 4597 4598
	if (!thresholds->primary)
		goto unlock;

4599 4600 4601 4602 4603 4604
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4605 4606 4607
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4608 4609 4610
			size++;
	}

4611
	new = thresholds->spare;
4612

4613 4614
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4615 4616
		kfree(new);
		new = NULL;
4617
		goto swap_buffers;
4618 4619
	}

4620
	new->size = size;
4621 4622

	/* Copy thresholds and find current threshold */
4623 4624 4625
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4626 4627
			continue;

4628
		new->entries[j] = thresholds->primary->entries[i];
4629
		if (new->entries[j].threshold <= usage) {
4630
			/*
4631
			 * new->current_threshold will not be used
4632 4633 4634
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4635
			++new->current_threshold;
4636 4637 4638 4639
		}
		j++;
	}

4640
swap_buffers:
4641 4642
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4643 4644 4645 4646 4647 4648
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4649
	rcu_assign_pointer(thresholds->primary, new);
4650

4651
	/* To be sure that nobody uses thresholds */
4652
	synchronize_rcu();
4653
unlock:
4654 4655
	mutex_unlock(&memcg->thresholds_lock);
}
4656

K
KAMEZAWA Hiroyuki 已提交
4657 4658 4659 4660 4661
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
4662
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4663 4664 4665 4666 4667 4668

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4669
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4670 4671 4672 4673 4674

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4675
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4676
		eventfd_signal(eventfd, 1);
4677
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4678 4679 4680 4681

	return 0;
}

4682
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4683 4684
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4685
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4686
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
4687
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4688 4689 4690

	BUG_ON(type != _OOM_TYPE);

4691
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4692

4693
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4694 4695 4696 4697 4698 4699
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4700
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4701 4702
}

4703 4704 4705
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4706
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4707

4708
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4709

4710
	if (atomic_read(&memcg->under_oom))
4711 4712 4713 4714 4715 4716 4717 4718 4719
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4720
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4732
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4733 4734 4735
		cgroup_unlock();
		return -EINVAL;
	}
4736
	memcg->oom_kill_disable = val;
4737
	if (!val)
4738
		memcg_oom_recover(memcg);
4739 4740 4741 4742
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4743
#ifdef CONFIG_MEMCG_KMEM
4744
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4745
{
4746
	memcg_propagate_kmem(memcg);
4747
	return mem_cgroup_sockets_init(memcg, ss);
4748 4749
};

4750
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4751
{
4752
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4753
}
4754
#else
4755
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4756 4757 4758
{
	return 0;
}
G
Glauber Costa 已提交
4759

4760
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4761 4762
{
}
4763 4764
#endif

B
Balbir Singh 已提交
4765 4766
static struct cftype mem_cgroup_files[] = {
	{
4767
		.name = "usage_in_bytes",
4768
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4769
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4770 4771
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4772
	},
4773 4774
	{
		.name = "max_usage_in_bytes",
4775
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4776
		.trigger = mem_cgroup_reset,
4777
		.read = mem_cgroup_read,
4778
	},
B
Balbir Singh 已提交
4779
	{
4780
		.name = "limit_in_bytes",
4781
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4782
		.write_string = mem_cgroup_write,
4783
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4784
	},
4785 4786 4787 4788
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4789
		.read = mem_cgroup_read,
4790
	},
B
Balbir Singh 已提交
4791 4792
	{
		.name = "failcnt",
4793
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4794
		.trigger = mem_cgroup_reset,
4795
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4796
	},
4797 4798
	{
		.name = "stat",
4799
		.read_seq_string = memcg_stat_show,
4800
	},
4801 4802 4803 4804
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4805 4806 4807 4808 4809
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4810 4811 4812 4813 4814
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4815 4816 4817 4818 4819
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4820 4821
	{
		.name = "oom_control",
4822 4823
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4824 4825 4826 4827
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4828 4829 4830
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4831
		.read_seq_string = memcg_numa_stat_show,
4832 4833
	},
#endif
A
Andrew Morton 已提交
4834
#ifdef CONFIG_MEMCG_SWAP
4835 4836 4837
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4838
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4839 4840
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4841 4842 4843 4844 4845
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4846
		.read = mem_cgroup_read,
4847 4848 4849 4850 4851
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4852
		.read = mem_cgroup_read,
4853 4854 4855 4856 4857
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4858
		.read = mem_cgroup_read,
4859
	},
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
4885
#endif
4886
	{ },	/* terminate */
4887
};
4888

4889
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4890 4891
{
	struct mem_cgroup_per_node *pn;
4892
	struct mem_cgroup_per_zone *mz;
4893
	int zone, tmp = node;
4894 4895 4896 4897 4898 4899 4900 4901
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4902 4903
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4904
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4905 4906
	if (!pn)
		return 1;
4907 4908 4909

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4910
		lruvec_init(&mz->lruvec);
4911
		mz->usage_in_excess = 0;
4912
		mz->on_tree = false;
4913
		mz->memcg = memcg;
4914
	}
4915
	memcg->info.nodeinfo[node] = pn;
4916 4917 4918
	return 0;
}

4919
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4920
{
4921
	kfree(memcg->info.nodeinfo[node]);
4922 4923
}

4924 4925
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4926
	struct mem_cgroup *memcg;
4927
	int size = sizeof(struct mem_cgroup);
4928

4929
	/* Can be very big if MAX_NUMNODES is very big */
4930
	if (size < PAGE_SIZE)
4931
		memcg = kzalloc(size, GFP_KERNEL);
4932
	else
4933
		memcg = vzalloc(size);
4934

4935
	if (!memcg)
4936 4937
		return NULL;

4938 4939
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4940
		goto out_free;
4941 4942
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4943 4944 4945

out_free:
	if (size < PAGE_SIZE)
4946
		kfree(memcg);
4947
	else
4948
		vfree(memcg);
4949
	return NULL;
4950 4951
}

4952
/*
4953
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4954 4955 4956
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4957
static void free_work(struct work_struct *work)
4958 4959
{
	struct mem_cgroup *memcg;
4960
	int size = sizeof(struct mem_cgroup);
4961 4962

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4975 4976 4977 4978
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4979
}
4980 4981

static void free_rcu(struct rcu_head *rcu_head)
4982 4983 4984 4985
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4986
	INIT_WORK(&memcg->work_freeing, free_work);
4987 4988 4989
	schedule_work(&memcg->work_freeing);
}

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

5001
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5002
{
K
KAMEZAWA Hiroyuki 已提交
5003 5004
	int node;

5005 5006
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
5007

B
Bob Liu 已提交
5008
	for_each_node(node)
5009
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
5010

5011
	free_percpu(memcg->stat);
5012
	call_rcu(&memcg->rcu_freeing, free_rcu);
5013 5014
}

5015
static void mem_cgroup_get(struct mem_cgroup *memcg)
5016
{
5017
	atomic_inc(&memcg->refcnt);
5018 5019
}

5020
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5021
{
5022 5023 5024
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
5025 5026 5027
		if (parent)
			mem_cgroup_put(parent);
	}
5028 5029
}

5030
static void mem_cgroup_put(struct mem_cgroup *memcg)
5031
{
5032
	__mem_cgroup_put(memcg, 1);
5033 5034
}

5035 5036 5037
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5038
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5039
{
5040
	if (!memcg->res.parent)
5041
		return NULL;
5042
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5043
}
G
Glauber Costa 已提交
5044
EXPORT_SYMBOL(parent_mem_cgroup);
5045

A
Andrew Morton 已提交
5046
#ifdef CONFIG_MEMCG_SWAP
5047 5048
static void __init enable_swap_cgroup(void)
{
5049
	if (!mem_cgroup_disabled() && really_do_swap_account)
5050 5051 5052 5053 5054 5055 5056 5057
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5058 5059 5060 5061 5062 5063
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
5064
	for_each_node(node) {
5065 5066 5067 5068 5069
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
5070
			goto err_cleanup;
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
5081 5082

err_cleanup:
B
Bob Liu 已提交
5083
	for_each_node(node) {
5084 5085 5086 5087 5088 5089 5090
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

5091 5092
}

L
Li Zefan 已提交
5093
static struct cgroup_subsys_state * __ref
5094
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
5095
{
5096
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5097
	long error = -ENOMEM;
5098
	int node;
B
Balbir Singh 已提交
5099

5100 5101
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5102
		return ERR_PTR(error);
5103

B
Bob Liu 已提交
5104
	for_each_node(node)
5105
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5106
			goto free_out;
5107

5108
	/* root ? */
5109
	if (cont->parent == NULL) {
5110
		int cpu;
5111
		enable_swap_cgroup();
5112
		parent = NULL;
5113 5114
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5115
		root_mem_cgroup = memcg;
5116 5117 5118 5119 5120
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5121
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5122
	} else {
5123
		parent = mem_cgroup_from_cont(cont->parent);
5124 5125
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5126
	}
5127

5128
	if (parent && parent->use_hierarchy) {
5129 5130
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5131
		res_counter_init(&memcg->kmem, &parent->kmem);
5132 5133 5134 5135 5136 5137 5138
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5139
	} else {
5140 5141
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5142
		res_counter_init(&memcg->kmem, NULL);
5143 5144 5145 5146 5147 5148 5149
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5150
	}
5151 5152
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5153

K
KOSAKI Motohiro 已提交
5154
	if (parent)
5155 5156 5157 5158
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5159
	spin_lock_init(&memcg->move_lock);
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5171
	return &memcg->css;
5172
free_out:
5173
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5174
	return ERR_PTR(error);
B
Balbir Singh 已提交
5175 5176
}

5177
static void mem_cgroup_css_offline(struct cgroup *cont)
5178
{
5179
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5180

5181
	mem_cgroup_reparent_charges(memcg);
5182 5183
}

5184
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
5185
{
5186
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5187

5188
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5189

5190
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5191 5192
}

5193
#ifdef CONFIG_MMU
5194
/* Handlers for move charge at task migration. */
5195 5196
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5197
{
5198 5199
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5200
	struct mem_cgroup *memcg = mc.to;
5201

5202
	if (mem_cgroup_is_root(memcg)) {
5203 5204 5205 5206 5207 5208 5209 5210
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5211
		 * "memcg" cannot be under rmdir() because we've already checked
5212 5213 5214 5215
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5216
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5217
			goto one_by_one;
5218
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5219
						PAGE_SIZE * count, &dummy)) {
5220
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5237 5238
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5239
		if (ret)
5240
			/* mem_cgroup_clear_mc() will do uncharge later */
5241
			return ret;
5242 5243
		mc.precharge++;
	}
5244 5245 5246 5247
	return ret;
}

/**
5248
 * get_mctgt_type - get target type of moving charge
5249 5250 5251
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5252
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5253 5254 5255 5256 5257 5258
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5259 5260 5261
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5262 5263 5264 5265 5266
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5267
	swp_entry_t	ent;
5268 5269 5270
};

enum mc_target_type {
5271
	MC_TARGET_NONE = 0,
5272
	MC_TARGET_PAGE,
5273
	MC_TARGET_SWAP,
5274 5275
};

D
Daisuke Nishimura 已提交
5276 5277
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5278
{
D
Daisuke Nishimura 已提交
5279
	struct page *page = vm_normal_page(vma, addr, ptent);
5280

D
Daisuke Nishimura 已提交
5281 5282 5283 5284
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5285
		if (!move_anon())
D
Daisuke Nishimura 已提交
5286
			return NULL;
5287 5288
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5289 5290 5291 5292 5293 5294 5295
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5296
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5297 5298 5299 5300 5301 5302 5303 5304
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5305 5306 5307 5308 5309
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5310 5311 5312 5313 5314
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5315 5316 5317 5318 5319 5320 5321
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5322

5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5342 5343 5344 5345 5346 5347
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5348
		if (do_swap_account)
5349 5350
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5351
	}
5352
#endif
5353 5354 5355
	return page;
}

5356
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5357 5358 5359 5360
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5361
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5362 5363 5364 5365 5366 5367
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5368 5369
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5370 5371

	if (!page && !ent.val)
5372
		return ret;
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5388 5389
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5390
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5391 5392 5393
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5394 5395 5396 5397
	}
	return ret;
}

5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5433 5434 5435 5436 5437 5438 5439 5440
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5441 5442 5443 5444
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5445
		return 0;
5446
	}
5447

5448 5449
	if (pmd_trans_unstable(pmd))
		return 0;
5450 5451
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5452
		if (get_mctgt_type(vma, addr, *pte, NULL))
5453 5454 5455 5456
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5457 5458 5459
	return 0;
}

5460 5461 5462 5463 5464
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5465
	down_read(&mm->mmap_sem);
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5477
	up_read(&mm->mmap_sem);
5478 5479 5480 5481 5482 5483 5484 5485 5486

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5487 5488 5489 5490 5491
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5492 5493
}

5494 5495
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5496
{
5497 5498 5499
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5500
	/* we must uncharge all the leftover precharges from mc.to */
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5512
	}
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5547
	spin_lock(&mc.lock);
5548 5549
	mc.from = NULL;
	mc.to = NULL;
5550
	spin_unlock(&mc.lock);
5551
	mem_cgroup_end_move(from);
5552 5553
}

5554 5555
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5556
{
5557
	struct task_struct *p = cgroup_taskset_first(tset);
5558
	int ret = 0;
5559
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5560

5561
	if (memcg->move_charge_at_immigrate) {
5562 5563 5564
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5565
		VM_BUG_ON(from == memcg);
5566 5567 5568 5569 5570

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5571 5572 5573 5574
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5575
			VM_BUG_ON(mc.moved_charge);
5576
			VM_BUG_ON(mc.moved_swap);
5577
			mem_cgroup_start_move(from);
5578
			spin_lock(&mc.lock);
5579
			mc.from = from;
5580
			mc.to = memcg;
5581
			spin_unlock(&mc.lock);
5582
			/* We set mc.moving_task later */
5583 5584 5585 5586

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5587 5588
		}
		mmput(mm);
5589 5590 5591 5592
	}
	return ret;
}

5593 5594
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5595
{
5596
	mem_cgroup_clear_mc();
5597 5598
}

5599 5600 5601
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5602
{
5603 5604 5605 5606
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5607 5608 5609 5610
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5611

5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5623
		if (mc.precharge < HPAGE_PMD_NR) {
5624 5625 5626 5627 5628 5629 5630 5631 5632
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5633
							pc, mc.from, mc.to)) {
5634 5635 5636 5637 5638 5639 5640 5641
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5642
		return 0;
5643 5644
	}

5645 5646
	if (pmd_trans_unstable(pmd))
		return 0;
5647 5648 5649 5650
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5651
		swp_entry_t ent;
5652 5653 5654 5655

		if (!mc.precharge)
			break;

5656
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5657 5658 5659 5660 5661
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5662
			if (!mem_cgroup_move_account(page, 1, pc,
5663
						     mc.from, mc.to)) {
5664
				mc.precharge--;
5665 5666
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5667 5668
			}
			putback_lru_page(page);
5669
put:			/* get_mctgt_type() gets the page */
5670 5671
			put_page(page);
			break;
5672 5673
		case MC_TARGET_SWAP:
			ent = target.ent;
5674
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5675
				mc.precharge--;
5676 5677 5678
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5679
			break;
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5694
		ret = mem_cgroup_do_precharge(1);
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5738
	up_read(&mm->mmap_sem);
5739 5740
}

5741 5742
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5743
{
5744
	struct task_struct *p = cgroup_taskset_first(tset);
5745
	struct mm_struct *mm = get_task_mm(p);
5746 5747

	if (mm) {
5748 5749
		if (mc.to)
			mem_cgroup_move_charge(mm);
5750 5751
		mmput(mm);
	}
5752 5753
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5754
}
5755
#else	/* !CONFIG_MMU */
5756 5757
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5758 5759 5760
{
	return 0;
}
5761 5762
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5763 5764
{
}
5765 5766
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5767 5768 5769
{
}
#endif
B
Balbir Singh 已提交
5770

B
Balbir Singh 已提交
5771 5772 5773
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
5774 5775 5776
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5777 5778
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5779
	.attach = mem_cgroup_move_task,
5780
	.base_cftypes = mem_cgroup_files,
5781
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5782
	.use_id = 1,
B
Balbir Singh 已提交
5783
};
5784

A
Andrew Morton 已提交
5785
#ifdef CONFIG_MEMCG_SWAP
5786 5787 5788
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5789
	if (!strcmp(s, "1"))
5790
		really_do_swap_account = 1;
5791
	else if (!strcmp(s, "0"))
5792 5793 5794
		really_do_swap_account = 0;
	return 1;
}
5795
__setup("swapaccount=", enable_swap_account);
5796 5797

#endif