memcontrol.c 150.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210 211
	struct mem_cgroup *from;
	struct mem_cgroup *to;
212
	unsigned long flags;
213
	unsigned long precharge;
214
	unsigned long moved_charge;
215
	unsigned long moved_swap;
216 217 218
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
219
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 221
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
222

223 224 225 226
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
227
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229

230 231
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
233
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 236 237
	NR_CHARGE_TYPE,
};

238
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
239 240 241 242
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
243
	_KMEM,
V
Vladimir Davydov 已提交
244
	_TCP,
G
Glauber Costa 已提交
245 246
};

247 248
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
250 251
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
252

253 254 255 256 257 258 259 260 261 262 263 264 265
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

266 267 268 269 270
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

271
#ifndef CONFIG_SLOB
272
/*
273
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
274 275 276 277 278
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
279
 *
280 281
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
282
 */
283 284
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
285

286 287 288 289 290 291 292 293 294 295 296 297 298
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

299 300 301 302 303 304
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
305
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 307
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
308
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 310 311
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
312
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313

314 315 316 317 318 319
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
320
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321
EXPORT_SYMBOL(memcg_kmem_enabled_key);
322

323
#endif /* !CONFIG_SLOB */
324

325
static struct mem_cgroup_per_zone *
326
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327
{
328 329 330
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

331
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

351
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352 353 354 355 356
		memcg = root_mem_cgroup;

	return &memcg->css;
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

385
static struct mem_cgroup_per_zone *
386
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387
{
388 389
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
390

391
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 393
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

409 410
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
411
					 unsigned long new_usage_in_excess)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

441 442
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
443 444 445 446 447 448 449
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

450 451
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
452
{
453 454 455
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
456
	__mem_cgroup_remove_exceeded(mz, mctz);
457
	spin_unlock_irqrestore(&mctz->lock, flags);
458 459
}

460 461 462
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
463
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464 465 466 467 468 469 470
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
471 472 473

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
474
	unsigned long excess;
475 476 477
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

478
	mctz = soft_limit_tree_from_page(page);
479 480 481 482 483
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484
		mz = mem_cgroup_page_zoneinfo(memcg, page);
485
		excess = soft_limit_excess(memcg);
486 487 488 489 490
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
491 492 493
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
494 495
			/* if on-tree, remove it */
			if (mz->on_tree)
496
				__mem_cgroup_remove_exceeded(mz, mctz);
497 498 499 500
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
501
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
502
			spin_unlock_irqrestore(&mctz->lock, flags);
503 504 505 506 507 508 509
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
510 511
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
512

513 514 515 516
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
517
			mem_cgroup_remove_exceeded(mz, mctz);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
540
	__mem_cgroup_remove_exceeded(mz, mctz);
541
	if (!soft_limit_excess(mz->memcg) ||
542
	    !css_tryget_online(&mz->memcg->css))
543 544 545 546 547 548 549 550 551 552
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

553
	spin_lock_irq(&mctz->lock);
554
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
555
	spin_unlock_irq(&mctz->lock);
556 557 558
	return mz;
}

559
/*
560 561
 * Return page count for single (non recursive) @memcg.
 *
562 563 564 565 566
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
567
 * a periodic synchronization of counter in memcg's counter.
568 569 570 571 572 573 574 575 576
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
577
 * common workload, threshold and synchronization as vmstat[] should be
578 579
 * implemented.
 */
580 581
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582
{
583
	long val = 0;
584 585
	int cpu;

586
	/* Per-cpu values can be negative, use a signed accumulator */
587
	for_each_possible_cpu(cpu)
588
		val += per_cpu(memcg->stat->count[idx], cpu);
589 590 591 592 593 594
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
595 596 597
	return val;
}

598
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599 600 601 602 603
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

604
	for_each_possible_cpu(cpu)
605
		val += per_cpu(memcg->stat->events[idx], cpu);
606 607 608
	return val;
}

609
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610
					 struct page *page,
611
					 bool compound, int nr_pages)
612
{
613 614 615 616
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
617
	if (PageAnon(page))
618
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619
				nr_pages);
620
	else
621
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622
				nr_pages);
623

624 625
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626 627
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
628
	}
629

630 631
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
632
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633
	else {
634
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 636
		nr_pages = -nr_pages; /* for event */
	}
637

638
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 640
}

641 642 643
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
644
{
645
	unsigned long nr = 0;
646 647
	int zid;

648
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649

650 651 652 653 654 655 656 657 658 659 660 661
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
662
}
663

664
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665
			unsigned int lru_mask)
666
{
667
	unsigned long nr = 0;
668
	int nid;
669

670
	for_each_node_state(nid, N_MEMORY)
671 672
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
673 674
}

675 676
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
677 678 679
{
	unsigned long val, next;

680
	val = __this_cpu_read(memcg->stat->nr_page_events);
681
	next = __this_cpu_read(memcg->stat->targets[target]);
682
	/* from time_after() in jiffies.h */
683 684 685 686 687
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
688 689 690
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
691 692 693 694 695 696 697 698
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
699
	}
700
	return false;
701 702 703 704 705 706
}

/*
 * Check events in order.
 *
 */
707
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 709
{
	/* threshold event is triggered in finer grain than soft limit */
710 711
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
712
		bool do_softlimit;
713
		bool do_numainfo __maybe_unused;
714

715 716
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
717 718 719 720
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
721
		mem_cgroup_threshold(memcg);
722 723
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
724
#if MAX_NUMNODES > 1
725
		if (unlikely(do_numainfo))
726
			atomic_inc(&memcg->numainfo_events);
727
#endif
728
	}
729 730
}

731
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732
{
733 734 735 736 737 738 739 740
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

741
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742
}
M
Michal Hocko 已提交
743
EXPORT_SYMBOL(mem_cgroup_from_task);
744

745
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746
{
747
	struct mem_cgroup *memcg = NULL;
748

749 750
	rcu_read_lock();
	do {
751 752 753 754 755 756
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
757
			memcg = root_mem_cgroup;
758 759 760 761 762
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
763
	} while (!css_tryget_online(&memcg->css));
764
	rcu_read_unlock();
765
	return memcg;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
785
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786
				   struct mem_cgroup *prev,
787
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
788
{
M
Michal Hocko 已提交
789
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790
	struct cgroup_subsys_state *css = NULL;
791
	struct mem_cgroup *memcg = NULL;
792
	struct mem_cgroup *pos = NULL;
793

794 795
	if (mem_cgroup_disabled())
		return NULL;
796

797 798
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
799

800
	if (prev && !reclaim)
801
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
802

803 804
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
805
			goto out;
806
		return root;
807
	}
K
KAMEZAWA Hiroyuki 已提交
808

809
	rcu_read_lock();
M
Michal Hocko 已提交
810

811 812 813 814 815 816 817 818 819
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

820
		while (1) {
821
			pos = READ_ONCE(iter->position);
822 823
			if (!pos || css_tryget(&pos->css))
				break;
824
			/*
825 826 827 828 829 830
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
831
			 */
832 833
			(void)cmpxchg(&iter->position, pos, NULL);
		}
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
851
		}
K
KAMEZAWA Hiroyuki 已提交
852

853 854 855 856 857 858
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
859

860 861
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
862

863 864
		if (css_tryget(css))
			break;
865

866
		memcg = NULL;
867
	}
868 869 870

	if (reclaim) {
		/*
871 872 873
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
874
		 */
875 876
		(void)cmpxchg(&iter->position, pos, memcg);

877 878 879 880 881 882 883
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
884
	}
885

886 887
out_unlock:
	rcu_read_unlock();
888
out:
889 890 891
	if (prev && prev != root)
		css_put(&prev->css);

892
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
893
}
K
KAMEZAWA Hiroyuki 已提交
894

895 896 897 898 899 900 901
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
902 903 904 905 906 907
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

931 932 933 934 935 936
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
937
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938
	     iter != NULL;				\
939
	     iter = mem_cgroup_iter(root, iter, NULL))
940

941
#define for_each_mem_cgroup(iter)			\
942
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943
	     iter != NULL;				\
944
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
945

946 947 948
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
949
 * @memcg: memcg of the wanted lruvec
950 951 952 953 954 955 956 957 958
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
959
	struct lruvec *lruvec;
960

961 962 963 964
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
965

966
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 968 969 970 971 972 973 974 975 976
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
977 978 979
}

/**
980
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981
 * @page: the page
982
 * @zone: zone of the page
983 984 985 986
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
987
 */
988
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
989 990
{
	struct mem_cgroup_per_zone *mz;
991
	struct mem_cgroup *memcg;
992
	struct lruvec *lruvec;
993

994 995 996 997
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
998

999
	memcg = page->mem_cgroup;
1000
	/*
1001
	 * Swapcache readahead pages are added to the LRU - and
1002
	 * possibly migrated - before they are charged.
1003
	 */
1004 1005
	if (!memcg)
		memcg = root_mem_cgroup;
1006

1007
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1018
}
1019

1020
/**
1021 1022 1023 1024
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1025
 *
1026 1027
 * This function must be called when a page is added to or removed from an
 * lru list.
1028
 */
1029 1030
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1031 1032
{
	struct mem_cgroup_per_zone *mz;
1033
	unsigned long *lru_size;
1034 1035 1036 1037

	if (mem_cgroup_disabled())
		return;

1038 1039 1040 1041
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1042
}
1043

1044
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045
{
1046
	struct mem_cgroup *task_memcg;
1047
	struct task_struct *p;
1048
	bool ret;
1049

1050
	p = find_lock_task_mm(task);
1051
	if (p) {
1052
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 1054 1055 1056 1057 1058 1059
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1060
		rcu_read_lock();
1061 1062
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1063
		rcu_read_unlock();
1064
	}
1065 1066
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1067 1068 1069
	return ret;
}

1070
/**
1071
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1072
 * @memcg: the memory cgroup
1073
 *
1074
 * Returns the maximum amount of memory @mem can be charged with, in
1075
 * pages.
1076
 */
1077
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078
{
1079 1080 1081
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1082

1083
	count = page_counter_read(&memcg->memory);
1084
	limit = READ_ONCE(memcg->memory.limit);
1085 1086 1087
	if (count < limit)
		margin = limit - count;

1088
	if (do_memsw_account()) {
1089
		count = page_counter_read(&memcg->memsw);
1090
		limit = READ_ONCE(memcg->memsw.limit);
1091 1092 1093 1094 1095
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1096 1097
}

1098
/*
Q
Qiang Huang 已提交
1099
 * A routine for checking "mem" is under move_account() or not.
1100
 *
Q
Qiang Huang 已提交
1101 1102 1103
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1104
 */
1105
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106
{
1107 1108
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1109
	bool ret = false;
1110 1111 1112 1113 1114 1115 1116 1117 1118
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1119

1120 1121
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1122 1123
unlock:
	spin_unlock(&mc.lock);
1124 1125 1126
	return ret;
}

1127
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 1129
{
	if (mc.moving_task && current != mc.moving_task) {
1130
		if (mem_cgroup_under_move(memcg)) {
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1143
#define K(x) ((x) << (PAGE_SHIFT-10))
1144
/**
1145
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 1147 1148 1149 1150 1151 1152 1153
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1154
	/* oom_info_lock ensures that parallel ooms do not interleave */
1155
	static DEFINE_MUTEX(oom_info_lock);
1156 1157
	struct mem_cgroup *iter;
	unsigned int i;
1158

1159
	mutex_lock(&oom_info_lock);
1160 1161
	rcu_read_lock();

1162 1163 1164 1165 1166 1167 1168 1169
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1170
	pr_cont_cgroup_path(memcg->css.cgroup);
1171
	pr_cont("\n");
1172 1173 1174

	rcu_read_unlock();

1175 1176 1177 1178 1179 1180 1181 1182 1183
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1184 1185

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1186 1187
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1188 1189 1190
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1191
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1192
				continue;
1193
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1194 1195 1196 1197 1198 1199 1200 1201 1202
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1203
	mutex_unlock(&oom_info_lock);
1204 1205
}

1206 1207 1208 1209
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1210
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1211 1212
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1213 1214
	struct mem_cgroup *iter;

1215
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1216
		num++;
1217 1218 1219
	return num;
}

D
David Rientjes 已提交
1220 1221 1222
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1223
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1224
{
1225
	unsigned long limit;
1226

1227
	limit = memcg->memory.limit;
1228
	if (mem_cgroup_swappiness(memcg)) {
1229
		unsigned long memsw_limit;
1230
		unsigned long swap_limit;
1231

1232
		memsw_limit = memcg->memsw.limit;
1233 1234 1235
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1236 1237
	}
	return limit;
D
David Rientjes 已提交
1238 1239
}

1240 1241
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1242
{
1243 1244 1245 1246 1247 1248
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1249 1250 1251 1252 1253 1254
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1255 1256
	mutex_lock(&oom_lock);

1257
	/*
1258 1259 1260
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1261
	 */
1262
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1263
		mark_oom_victim(current);
1264
		goto unlock;
1265 1266
	}

1267
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1268
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1269
	for_each_mem_cgroup_tree(iter, memcg) {
1270
		struct css_task_iter it;
1271 1272
		struct task_struct *task;

1273 1274
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1275
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1286
				css_task_iter_end(&it);
1287 1288 1289
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1290
				goto unlock;
1291 1292 1293 1294
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1307
		}
1308
		css_task_iter_end(&it);
1309 1310
	}

1311 1312
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1313 1314
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1315 1316 1317
	}
unlock:
	mutex_unlock(&oom_lock);
1318 1319
}

1320 1321
#if MAX_NUMNODES > 1

1322 1323
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1324
 * @memcg: the target memcg
1325 1326 1327 1328 1329 1330 1331
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1332
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1333 1334
		int nid, bool noswap)
{
1335
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1336 1337 1338
		return true;
	if (noswap || !total_swap_pages)
		return false;
1339
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1340 1341 1342 1343
		return true;
	return false;

}
1344 1345 1346 1347 1348 1349 1350

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1351
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1352 1353
{
	int nid;
1354 1355 1356 1357
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1358
	if (!atomic_read(&memcg->numainfo_events))
1359
		return;
1360
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1361 1362 1363
		return;

	/* make a nodemask where this memcg uses memory from */
1364
	memcg->scan_nodes = node_states[N_MEMORY];
1365

1366
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1367

1368 1369
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1370
	}
1371

1372 1373
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1388
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389 1390 1391
{
	int node;

1392 1393
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1394

1395
	node = next_node(node, memcg->scan_nodes);
1396
	if (node == MAX_NUMNODES)
1397
		node = first_node(memcg->scan_nodes);
1398 1399 1400 1401 1402 1403 1404 1405 1406
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1407
	memcg->last_scanned_node = node;
1408 1409 1410
	return node;
}
#else
1411
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1412 1413 1414 1415 1416
{
	return 0;
}
#endif

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1432
	excess = soft_limit_excess(root_memcg);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1461
		if (!soft_limit_excess(root_memcg))
1462
			break;
1463
	}
1464 1465
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1466 1467
}

1468 1469 1470 1471 1472 1473
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1474 1475
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1476 1477 1478 1479
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1480
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1481
{
1482
	struct mem_cgroup *iter, *failed = NULL;
1483

1484 1485
	spin_lock(&memcg_oom_lock);

1486
	for_each_mem_cgroup_tree(iter, memcg) {
1487
		if (iter->oom_lock) {
1488 1489 1490 1491 1492
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1493 1494
			mem_cgroup_iter_break(memcg, iter);
			break;
1495 1496
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1497
	}
K
KAMEZAWA Hiroyuki 已提交
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1510
		}
1511 1512
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1513 1514 1515 1516

	spin_unlock(&memcg_oom_lock);

	return !failed;
1517
}
1518

1519
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1520
{
K
KAMEZAWA Hiroyuki 已提交
1521 1522
	struct mem_cgroup *iter;

1523
	spin_lock(&memcg_oom_lock);
1524
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1525
	for_each_mem_cgroup_tree(iter, memcg)
1526
		iter->oom_lock = false;
1527
	spin_unlock(&memcg_oom_lock);
1528 1529
}

1530
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1531 1532 1533
{
	struct mem_cgroup *iter;

1534
	spin_lock(&memcg_oom_lock);
1535
	for_each_mem_cgroup_tree(iter, memcg)
1536 1537
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1538 1539
}

1540
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1541 1542 1543
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1544 1545
	/*
	 * When a new child is created while the hierarchy is under oom,
1546
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1547
	 */
1548
	spin_lock(&memcg_oom_lock);
1549
	for_each_mem_cgroup_tree(iter, memcg)
1550 1551 1552
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1553 1554
}

K
KAMEZAWA Hiroyuki 已提交
1555 1556
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1557
struct oom_wait_info {
1558
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1559 1560 1561 1562 1563 1564
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1565 1566
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1567 1568 1569
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1570
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1571

1572 1573
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1574 1575 1576 1577
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1578
static void memcg_oom_recover(struct mem_cgroup *memcg)
1579
{
1580 1581 1582 1583 1584 1585 1586 1587 1588
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1589
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1590 1591
}

1592
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1593
{
T
Tejun Heo 已提交
1594
	if (!current->memcg_may_oom)
1595
		return;
K
KAMEZAWA Hiroyuki 已提交
1596
	/*
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1609
	 */
1610
	css_get(&memcg->css);
T
Tejun Heo 已提交
1611 1612 1613
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1614 1615 1616 1617
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1618
 * @handle: actually kill/wait or just clean up the OOM state
1619
 *
1620 1621
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1622
 *
1623
 * Memcg supports userspace OOM handling where failed allocations must
1624 1625 1626 1627
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1628
 * the end of the page fault to complete the OOM handling.
1629 1630
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1631
 * completed, %false otherwise.
1632
 */
1633
bool mem_cgroup_oom_synchronize(bool handle)
1634
{
T
Tejun Heo 已提交
1635
	struct mem_cgroup *memcg = current->memcg_in_oom;
1636
	struct oom_wait_info owait;
1637
	bool locked;
1638 1639 1640

	/* OOM is global, do not handle */
	if (!memcg)
1641
		return false;
1642

1643
	if (!handle || oom_killer_disabled)
1644
		goto cleanup;
1645 1646 1647 1648 1649 1650

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1651

1652
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1663 1664
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1665
	} else {
1666
		schedule();
1667 1668 1669 1670 1671
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1672 1673 1674 1675 1676 1677 1678 1679
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1680
cleanup:
T
Tejun Heo 已提交
1681
	current->memcg_in_oom = NULL;
1682
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1683
	return true;
1684 1685
}

1686
/**
1687 1688
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1689
 *
1690 1691
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1692
 */
J
Johannes Weiner 已提交
1693
void lock_page_memcg(struct page *page)
1694 1695
{
	struct mem_cgroup *memcg;
1696
	unsigned long flags;
1697

1698 1699 1700 1701 1702
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1703 1704 1705
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1706
		return;
1707
again:
1708
	memcg = page->mem_cgroup;
1709
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1710
		return;
1711

Q
Qiang Huang 已提交
1712
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1713
		return;
1714

1715
	spin_lock_irqsave(&memcg->move_lock, flags);
1716
	if (memcg != page->mem_cgroup) {
1717
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1718 1719
		goto again;
	}
1720 1721 1722 1723

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1724
	 * the task who has the lock for unlock_page_memcg().
1725 1726 1727
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1728

J
Johannes Weiner 已提交
1729
	return;
1730
}
1731
EXPORT_SYMBOL(lock_page_memcg);
1732

1733
/**
1734
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1735
 * @page: the page
1736
 */
J
Johannes Weiner 已提交
1737
void unlock_page_memcg(struct page *page)
1738
{
J
Johannes Weiner 已提交
1739 1740
	struct mem_cgroup *memcg = page->mem_cgroup;

1741 1742 1743 1744 1745 1746 1747 1748
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1749

1750
	rcu_read_unlock();
1751
}
1752
EXPORT_SYMBOL(unlock_page_memcg);
1753

1754 1755 1756 1757
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1758
#define CHARGE_BATCH	32U
1759 1760
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1761
	unsigned int nr_pages;
1762
	struct work_struct work;
1763
	unsigned long flags;
1764
#define FLUSHING_CACHED_CHARGE	0
1765 1766
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1767
static DEFINE_MUTEX(percpu_charge_mutex);
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1779
 */
1780
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1781 1782
{
	struct memcg_stock_pcp *stock;
1783
	bool ret = false;
1784

1785
	if (nr_pages > CHARGE_BATCH)
1786
		return ret;
1787

1788
	stock = &get_cpu_var(memcg_stock);
1789
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1790
		stock->nr_pages -= nr_pages;
1791 1792
		ret = true;
	}
1793 1794 1795 1796 1797
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1798
 * Returns stocks cached in percpu and reset cached information.
1799 1800 1801 1802 1803
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1804
	if (stock->nr_pages) {
1805
		page_counter_uncharge(&old->memory, stock->nr_pages);
1806
		if (do_memsw_account())
1807
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1808
		css_put_many(&old->css, stock->nr_pages);
1809
		stock->nr_pages = 0;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1820
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1821
	drain_stock(stock);
1822
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1823 1824 1825
}

/*
1826
 * Cache charges(val) to local per_cpu area.
1827
 * This will be consumed by consume_stock() function, later.
1828
 */
1829
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1830 1831 1832
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1833
	if (stock->cached != memcg) { /* reset if necessary */
1834
		drain_stock(stock);
1835
		stock->cached = memcg;
1836
	}
1837
	stock->nr_pages += nr_pages;
1838 1839 1840 1841
	put_cpu_var(memcg_stock);
}

/*
1842
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1843
 * of the hierarchy under it.
1844
 */
1845
static void drain_all_stock(struct mem_cgroup *root_memcg)
1846
{
1847
	int cpu, curcpu;
1848

1849 1850 1851
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1852 1853
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1854
	curcpu = get_cpu();
1855 1856
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1857
		struct mem_cgroup *memcg;
1858

1859 1860
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1861
			continue;
1862
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1863
			continue;
1864 1865 1866 1867 1868 1869
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1870
	}
1871
	put_cpu();
A
Andrew Morton 已提交
1872
	put_online_cpus();
1873
	mutex_unlock(&percpu_charge_mutex);
1874 1875
}

1876
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1877 1878 1879 1880 1881 1882
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1883
	if (action == CPU_ONLINE)
1884 1885
		return NOTIFY_OK;

1886
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1887
		return NOTIFY_OK;
1888

1889 1890 1891 1892 1893
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1914 1915 1916 1917 1918 1919 1920
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1921
	struct mem_cgroup *memcg;
1922 1923 1924 1925

	if (likely(!nr_pages))
		return;

1926 1927
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1928 1929 1930 1931
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1932 1933
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1934
{
1935
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1936
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1937
	struct mem_cgroup *mem_over_limit;
1938
	struct page_counter *counter;
1939
	unsigned long nr_reclaimed;
1940 1941
	bool may_swap = true;
	bool drained = false;
1942

1943
	if (mem_cgroup_is_root(memcg))
1944
		return 0;
1945
retry:
1946
	if (consume_stock(memcg, nr_pages))
1947
		return 0;
1948

1949
	if (!do_memsw_account() ||
1950 1951
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1952
			goto done_restock;
1953
		if (do_memsw_account())
1954 1955
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1956
	} else {
1957
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1958
		may_swap = false;
1959
	}
1960

1961 1962 1963 1964
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1975
		goto force;
1976 1977 1978 1979

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1980
	if (!gfpflags_allow_blocking(gfp_mask))
1981
		goto nomem;
1982

1983 1984
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1985 1986
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1987

1988
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1989
		goto retry;
1990

1991
	if (!drained) {
1992
		drain_all_stock(mem_over_limit);
1993 1994 1995 1996
		drained = true;
		goto retry;
	}

1997 1998
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1999 2000 2001 2002 2003 2004 2005 2006 2007
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2008
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2009 2010 2011 2012 2013 2014 2015 2016
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2017 2018 2019
	if (nr_retries--)
		goto retry;

2020
	if (gfp_mask & __GFP_NOFAIL)
2021
		goto force;
2022

2023
	if (fatal_signal_pending(current))
2024
		goto force;
2025

2026 2027
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2028 2029
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2030
nomem:
2031
	if (!(gfp_mask & __GFP_NOFAIL))
2032
		return -ENOMEM;
2033 2034 2035 2036 2037 2038 2039
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2040
	if (do_memsw_account())
2041 2042 2043 2044
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2045 2046

done_restock:
2047
	css_get_many(&memcg->css, batch);
2048 2049
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2050

2051
	/*
2052 2053
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2054
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2055 2056 2057 2058
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2059 2060
	 */
	do {
2061
		if (page_counter_read(&memcg->memory) > memcg->high) {
2062 2063 2064 2065 2066
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2067
			current->memcg_nr_pages_over_high += batch;
2068 2069 2070
			set_notify_resume(current);
			break;
		}
2071
	} while ((memcg = parent_mem_cgroup(memcg)));
2072 2073

	return 0;
2074
}
2075

2076
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2077
{
2078 2079 2080
	if (mem_cgroup_is_root(memcg))
		return;

2081
	page_counter_uncharge(&memcg->memory, nr_pages);
2082
	if (do_memsw_account())
2083
		page_counter_uncharge(&memcg->memsw, nr_pages);
2084

2085
	css_put_many(&memcg->css, nr_pages);
2086 2087
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2119
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2120
			  bool lrucare)
2121
{
2122
	int isolated;
2123

2124
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2125 2126 2127 2128 2129

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2130 2131
	if (lrucare)
		lock_page_lru(page, &isolated);
2132

2133 2134
	/*
	 * Nobody should be changing or seriously looking at
2135
	 * page->mem_cgroup at this point:
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2147
	page->mem_cgroup = memcg;
2148

2149 2150
	if (lrucare)
		unlock_page_lru(page, isolated);
2151
}
2152

2153
#ifndef CONFIG_SLOB
2154
static int memcg_alloc_cache_id(void)
2155
{
2156 2157 2158
	int id, size;
	int err;

2159
	id = ida_simple_get(&memcg_cache_ida,
2160 2161 2162
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2163

2164
	if (id < memcg_nr_cache_ids)
2165 2166 2167 2168 2169 2170
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2171
	down_write(&memcg_cache_ids_sem);
2172 2173

	size = 2 * (id + 1);
2174 2175 2176 2177 2178
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2179
	err = memcg_update_all_caches(size);
2180 2181
	if (!err)
		err = memcg_update_all_list_lrus(size);
2182 2183 2184 2185 2186
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2187
	if (err) {
2188
		ida_simple_remove(&memcg_cache_ida, id);
2189 2190 2191 2192 2193 2194 2195
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2196
	ida_simple_remove(&memcg_cache_ida, id);
2197 2198
}

2199
struct memcg_kmem_cache_create_work {
2200 2201 2202 2203 2204
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2205
static void memcg_kmem_cache_create_func(struct work_struct *w)
2206
{
2207 2208
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2209 2210
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2211

2212
	memcg_create_kmem_cache(memcg, cachep);
2213

2214
	css_put(&memcg->css);
2215 2216 2217 2218 2219 2220
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2221 2222
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2223
{
2224
	struct memcg_kmem_cache_create_work *cw;
2225

2226
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2227
	if (!cw)
2228
		return;
2229 2230

	css_get(&memcg->css);
2231 2232 2233

	cw->memcg = memcg;
	cw->cachep = cachep;
2234
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2235 2236 2237 2238

	schedule_work(&cw->work);
}

2239 2240
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2241 2242 2243 2244
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2245
	 * in __memcg_schedule_kmem_cache_create will recurse.
2246 2247 2248 2249 2250 2251 2252
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2253
	current->memcg_kmem_skip_account = 1;
2254
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2255
	current->memcg_kmem_skip_account = 0;
2256
}
2257

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2271
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2272 2273
{
	struct mem_cgroup *memcg;
2274
	struct kmem_cache *memcg_cachep;
2275
	int kmemcg_id;
2276

2277
	VM_BUG_ON(!is_root_cache(cachep));
2278

V
Vladimir Davydov 已提交
2279 2280 2281 2282 2283 2284
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2285
	if (current->memcg_kmem_skip_account)
2286 2287
		return cachep;

2288
	memcg = get_mem_cgroup_from_mm(current->mm);
2289
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2290
	if (kmemcg_id < 0)
2291
		goto out;
2292

2293
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2294 2295
	if (likely(memcg_cachep))
		return memcg_cachep;
2296 2297 2298 2299 2300 2301 2302 2303 2304

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2305 2306 2307
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2308
	 */
2309
	memcg_schedule_kmem_cache_create(memcg, cachep);
2310
out:
2311
	css_put(&memcg->css);
2312
	return cachep;
2313 2314
}

2315 2316 2317
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2318
		css_put(&cachep->memcg_params.memcg->css);
2319 2320
}

2321 2322
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2323
{
2324 2325
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2326 2327
	int ret;

2328
	ret = try_charge(memcg, gfp, nr_pages);
2329
	if (ret)
2330
		return ret;
2331 2332 2333 2334 2335

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2336 2337
	}

2338
	page->mem_cgroup = memcg;
2339

2340
	return 0;
2341 2342
}

2343
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2344
{
2345
	struct mem_cgroup *memcg;
2346
	int ret = 0;
2347

2348
	memcg = get_mem_cgroup_from_mm(current->mm);
2349 2350
	if (memcg_kmem_online(memcg))
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351
	css_put(&memcg->css);
2352
	return ret;
2353 2354
}

2355
void __memcg_kmem_uncharge(struct page *page, int order)
2356
{
2357
	struct mem_cgroup *memcg = page->mem_cgroup;
2358
	unsigned int nr_pages = 1 << order;
2359 2360 2361 2362

	if (!memcg)
		return;

2363
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2364

2365 2366 2367
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2368
	page_counter_uncharge(&memcg->memory, nr_pages);
2369
	if (do_memsw_account())
2370
		page_counter_uncharge(&memcg->memsw, nr_pages);
2371

2372
	page->mem_cgroup = NULL;
2373
	css_put_many(&memcg->css, nr_pages);
2374
}
2375
#endif /* !CONFIG_SLOB */
2376

2377 2378 2379 2380
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2381
 * zone->lru_lock and migration entries setup in all page mappings.
2382
 */
2383
void mem_cgroup_split_huge_fixup(struct page *head)
2384
{
2385
	int i;
2386

2387 2388
	if (mem_cgroup_disabled())
		return;
2389

2390
	for (i = 1; i < HPAGE_PMD_NR; i++)
2391
		head[i].mem_cgroup = head->mem_cgroup;
2392

2393
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2394
		       HPAGE_PMD_NR);
2395
}
2396
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2397

A
Andrew Morton 已提交
2398
#ifdef CONFIG_MEMCG_SWAP
2399 2400
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2401
{
2402 2403
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2404
}
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2417
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2418 2419 2420
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2421
				struct mem_cgroup *from, struct mem_cgroup *to)
2422 2423 2424
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2425 2426
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2427 2428 2429

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2430
		mem_cgroup_swap_statistics(to, true);
2431 2432 2433 2434 2435 2436
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2437
				struct mem_cgroup *from, struct mem_cgroup *to)
2438 2439 2440
{
	return -EINVAL;
}
2441
#endif
K
KAMEZAWA Hiroyuki 已提交
2442

2443
static DEFINE_MUTEX(memcg_limit_mutex);
2444

2445
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2446
				   unsigned long limit)
2447
{
2448 2449 2450
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2451
	int retry_count;
2452
	int ret;
2453 2454 2455 2456 2457 2458

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2459 2460
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2461

2462
	oldusage = page_counter_read(&memcg->memory);
2463

2464
	do {
2465 2466 2467 2468
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2469 2470 2471 2472

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2473
			ret = -EINVAL;
2474 2475
			break;
		}
2476 2477 2478 2479
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2480 2481 2482 2483

		if (!ret)
			break;

2484 2485
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2486
		curusage = page_counter_read(&memcg->memory);
2487
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2488
		if (curusage >= oldusage)
2489 2490 2491
			retry_count--;
		else
			oldusage = curusage;
2492 2493
	} while (retry_count);

2494 2495
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2496

2497 2498 2499
	return ret;
}

L
Li Zefan 已提交
2500
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2501
					 unsigned long limit)
2502
{
2503 2504 2505
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2506
	int retry_count;
2507
	int ret;
2508

2509
	/* see mem_cgroup_resize_res_limit */
2510 2511 2512 2513 2514 2515
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2516 2517 2518 2519
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2520 2521 2522 2523

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2524 2525 2526
			ret = -EINVAL;
			break;
		}
2527 2528 2529 2530
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2531 2532 2533 2534

		if (!ret)
			break;

2535 2536
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2537
		curusage = page_counter_read(&memcg->memsw);
2538
		/* Usage is reduced ? */
2539
		if (curusage >= oldusage)
2540
			retry_count--;
2541 2542
		else
			oldusage = curusage;
2543 2544
	} while (retry_count);

2545 2546
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2547

2548 2549 2550
	return ret;
}

2551 2552 2553 2554 2555 2556 2557 2558 2559
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2560
	unsigned long excess;
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2585
		spin_lock_irq(&mctz->lock);
2586
		__mem_cgroup_remove_exceeded(mz, mctz);
2587 2588 2589 2590 2591 2592

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2593 2594 2595
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2596
		excess = soft_limit_excess(mz->memcg);
2597 2598 2599 2600 2601 2602 2603 2604 2605
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2606
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2607
		spin_unlock_irq(&mctz->lock);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2625 2626 2627 2628 2629 2630
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2631 2632
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2633 2634 2635 2636 2637 2638
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2639 2640
}

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2651 2652
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2653
	/* try to free all pages in this cgroup */
2654
	while (nr_retries && page_counter_read(&memcg->memory)) {
2655
		int progress;
2656

2657 2658 2659
		if (signal_pending(current))
			return -EINTR;

2660 2661
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2662
		if (!progress) {
2663
			nr_retries--;
2664
			/* maybe some writeback is necessary */
2665
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2666
		}
2667 2668

	}
2669 2670

	return 0;
2671 2672
}

2673 2674 2675
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2676
{
2677
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2678

2679 2680
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2681
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2682 2683
}

2684 2685
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2686
{
2687
	return mem_cgroup_from_css(css)->use_hierarchy;
2688 2689
}

2690 2691
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2692 2693
{
	int retval = 0;
2694
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2695
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2696

2697
	if (memcg->use_hierarchy == val)
2698
		return 0;
2699

2700
	/*
2701
	 * If parent's use_hierarchy is set, we can't make any modifications
2702 2703 2704 2705 2706 2707
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2708
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2709
				(val == 1 || val == 0)) {
2710
		if (!memcg_has_children(memcg))
2711
			memcg->use_hierarchy = val;
2712 2713 2714 2715
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2716

2717 2718 2719
	return retval;
}

2720
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2721 2722
{
	struct mem_cgroup *iter;
2723
	int i;
2724

2725
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2726

2727 2728 2729 2730
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2731 2732
}

2733
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2734 2735
{
	struct mem_cgroup *iter;
2736
	int i;
2737

2738
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2739

2740 2741 2742 2743
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2744 2745
}

2746
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2747
{
2748
	unsigned long val = 0;
2749

2750
	if (mem_cgroup_is_root(memcg)) {
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2762
	} else {
2763
		if (!swap)
2764
			val = page_counter_read(&memcg->memory);
2765
		else
2766
			val = page_counter_read(&memcg->memsw);
2767
	}
2768
	return val;
2769 2770
}

2771 2772 2773 2774 2775 2776 2777
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2778

2779
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2780
			       struct cftype *cft)
B
Balbir Singh 已提交
2781
{
2782
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2783
	struct page_counter *counter;
2784

2785
	switch (MEMFILE_TYPE(cft->private)) {
2786
	case _MEM:
2787 2788
		counter = &memcg->memory;
		break;
2789
	case _MEMSWAP:
2790 2791
		counter = &memcg->memsw;
		break;
2792
	case _KMEM:
2793
		counter = &memcg->kmem;
2794
		break;
V
Vladimir Davydov 已提交
2795
	case _TCP:
2796
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2797
		break;
2798 2799 2800
	default:
		BUG();
	}
2801 2802 2803 2804

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2805
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2806
		if (counter == &memcg->memsw)
2807
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2820
}
2821

2822
#ifndef CONFIG_SLOB
2823
static int memcg_online_kmem(struct mem_cgroup *memcg)
2824 2825 2826
{
	int memcg_id;

2827
	BUG_ON(memcg->kmemcg_id >= 0);
2828
	BUG_ON(memcg->kmem_state);
2829

2830
	memcg_id = memcg_alloc_cache_id();
2831 2832
	if (memcg_id < 0)
		return memcg_id;
2833

2834
	static_branch_inc(&memcg_kmem_enabled_key);
2835
	/*
2836
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2837
	 * kmemcg_id. Setting the id after enabling static branching will
2838 2839 2840
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2841
	memcg->kmemcg_id = memcg_id;
2842
	memcg->kmem_state = KMEM_ONLINE;
2843 2844

	return 0;
2845 2846
}

2847 2848
static int memcg_propagate_kmem(struct mem_cgroup *parent,
				struct mem_cgroup *memcg)
2849
{
2850 2851
	int ret = 0;

2852
	mutex_lock(&memcg_limit_mutex);
2853
	/*
2854 2855 2856
	 * If the parent cgroup is not kmem-online now, it cannot be
	 * onlined after this point, because it has at least one child
	 * already.
2857
	 */
2858 2859
	if (memcg_kmem_online(parent) ||
	    (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2860
		ret = memcg_online_kmem(memcg);
2861
	mutex_unlock(&memcg_limit_mutex);
2862
	return ret;
2863
}
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2912 2913 2914 2915
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2916 2917 2918 2919 2920 2921
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2922
#else
2923 2924 2925 2926 2927
static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
{
	return 0;
}
static int memcg_online_kmem(struct mem_cgroup *memcg)
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2939
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2940
				   unsigned long limit)
2941
{
2942
	int ret = 0;
2943 2944 2945 2946

	mutex_lock(&memcg_limit_mutex);
	/* Top-level cgroup doesn't propagate from root */
	if (!memcg_kmem_online(memcg)) {
2947 2948 2949 2950 2951
		if (cgroup_is_populated(memcg->css.cgroup) ||
		    (memcg->use_hierarchy && memcg_has_children(memcg)))
			ret = -EBUSY;
		if (ret)
			goto out;
2952 2953 2954 2955 2956 2957 2958 2959
		ret = memcg_online_kmem(memcg);
		if (ret)
			goto out;
	}
	ret = page_counter_limit(&memcg->kmem, limit);
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2960
}
2961

V
Vladimir Davydov 已提交
2962 2963 2964 2965 2966 2967
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2968
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2969 2970 2971
	if (ret)
		goto out;

2972
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2990
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2991 2992 2993 2994 2995 2996
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2997 2998 2999 3000
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3001 3002
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3003
{
3004
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3005
	unsigned long nr_pages;
3006 3007
	int ret;

3008
	buf = strstrip(buf);
3009
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3010 3011
	if (ret)
		return ret;
3012

3013
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3014
	case RES_LIMIT:
3015 3016 3017 3018
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3019 3020 3021
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3022
			break;
3023 3024
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3025
			break;
3026 3027 3028
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3029 3030 3031
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3032
		}
3033
		break;
3034 3035 3036
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3037 3038
		break;
	}
3039
	return ret ?: nbytes;
B
Balbir Singh 已提交
3040 3041
}

3042 3043
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3044
{
3045
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3046
	struct page_counter *counter;
3047

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3058
	case _TCP:
3059
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3060
		break;
3061 3062 3063
	default:
		BUG();
	}
3064

3065
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3066
	case RES_MAX_USAGE:
3067
		page_counter_reset_watermark(counter);
3068 3069
		break;
	case RES_FAILCNT:
3070
		counter->failcnt = 0;
3071
		break;
3072 3073
	default:
		BUG();
3074
	}
3075

3076
	return nbytes;
3077 3078
}

3079
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3080 3081
					struct cftype *cft)
{
3082
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3083 3084
}

3085
#ifdef CONFIG_MMU
3086
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3087 3088
					struct cftype *cft, u64 val)
{
3089
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3090

3091
	if (val & ~MOVE_MASK)
3092
		return -EINVAL;
3093

3094
	/*
3095 3096 3097 3098
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3099
	 */
3100
	memcg->move_charge_at_immigrate = val;
3101 3102
	return 0;
}
3103
#else
3104
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3105 3106 3107 3108 3109
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3110

3111
#ifdef CONFIG_NUMA
3112
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3113
{
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3126
	int nid;
3127
	unsigned long nr;
3128
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3129

3130 3131 3132 3133 3134 3135 3136 3137 3138
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3139 3140
	}

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3156 3157 3158 3159 3160 3161
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3162
static int memcg_stat_show(struct seq_file *m, void *v)
3163
{
3164
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3165
	unsigned long memory, memsw;
3166 3167
	struct mem_cgroup *mi;
	unsigned int i;
3168

3169 3170 3171 3172
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3173 3174
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3175
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3176
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3177
			continue;
3178
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3179
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3180
	}
L
Lee Schermerhorn 已提交
3181

3182 3183 3184 3185 3186 3187 3188 3189
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3190
	/* Hierarchical information */
3191 3192 3193 3194
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3195
	}
3196 3197
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3198
	if (do_memsw_account())
3199 3200
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3201

3202
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3203
		unsigned long long val = 0;
3204

3205
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3206
			continue;
3207 3208
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3209
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3227
	}
K
KAMEZAWA Hiroyuki 已提交
3228

K
KOSAKI Motohiro 已提交
3229 3230 3231 3232
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3233
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3234 3235 3236 3237 3238
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3239
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3240
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3241

3242 3243 3244 3245
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3246
			}
3247 3248 3249 3250
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3251 3252 3253
	}
#endif

3254 3255 3256
	return 0;
}

3257 3258
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3259
{
3260
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3261

3262
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3263 3264
}

3265 3266
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3267
{
3268
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3269

3270
	if (val > 100)
K
KOSAKI Motohiro 已提交
3271 3272
		return -EINVAL;

3273
	if (css->parent)
3274 3275 3276
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3277

K
KOSAKI Motohiro 已提交
3278 3279 3280
	return 0;
}

3281 3282 3283
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3284
	unsigned long usage;
3285 3286 3287 3288
	int i;

	rcu_read_lock();
	if (!swap)
3289
		t = rcu_dereference(memcg->thresholds.primary);
3290
	else
3291
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3292 3293 3294 3295

	if (!t)
		goto unlock;

3296
	usage = mem_cgroup_usage(memcg, swap);
3297 3298

	/*
3299
	 * current_threshold points to threshold just below or equal to usage.
3300 3301 3302
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3303
	i = t->current_threshold;
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3327
	t->current_threshold = i - 1;
3328 3329 3330 3331 3332 3333
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3334 3335
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3336
		if (do_memsw_account())
3337 3338 3339 3340
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3341 3342 3343 3344 3345 3346 3347
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3348 3349 3350 3351 3352 3353 3354
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3355 3356
}

3357
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3358 3359 3360
{
	struct mem_cgroup_eventfd_list *ev;

3361 3362
	spin_lock(&memcg_oom_lock);

3363
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3364
		eventfd_signal(ev->eventfd, 1);
3365 3366

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3367 3368 3369
	return 0;
}

3370
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3371
{
K
KAMEZAWA Hiroyuki 已提交
3372 3373
	struct mem_cgroup *iter;

3374
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3375
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3376 3377
}

3378
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3379
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3380
{
3381 3382
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3383 3384
	unsigned long threshold;
	unsigned long usage;
3385
	int i, size, ret;
3386

3387
	ret = page_counter_memparse(args, "-1", &threshold);
3388 3389 3390 3391
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3392

3393
	if (type == _MEM) {
3394
		thresholds = &memcg->thresholds;
3395
		usage = mem_cgroup_usage(memcg, false);
3396
	} else if (type == _MEMSWAP) {
3397
		thresholds = &memcg->memsw_thresholds;
3398
		usage = mem_cgroup_usage(memcg, true);
3399
	} else
3400 3401 3402
		BUG();

	/* Check if a threshold crossed before adding a new one */
3403
	if (thresholds->primary)
3404 3405
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3406
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3407 3408

	/* Allocate memory for new array of thresholds */
3409
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3410
			GFP_KERNEL);
3411
	if (!new) {
3412 3413 3414
		ret = -ENOMEM;
		goto unlock;
	}
3415
	new->size = size;
3416 3417

	/* Copy thresholds (if any) to new array */
3418 3419
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3420
				sizeof(struct mem_cgroup_threshold));
3421 3422
	}

3423
	/* Add new threshold */
3424 3425
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3426 3427

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3428
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3429 3430 3431
			compare_thresholds, NULL);

	/* Find current threshold */
3432
	new->current_threshold = -1;
3433
	for (i = 0; i < size; i++) {
3434
		if (new->entries[i].threshold <= usage) {
3435
			/*
3436 3437
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3438 3439
			 * it here.
			 */
3440
			++new->current_threshold;
3441 3442
		} else
			break;
3443 3444
	}

3445 3446 3447 3448 3449
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3450

3451
	/* To be sure that nobody uses thresholds */
3452 3453 3454 3455 3456 3457 3458 3459
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3460
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3461 3462
	struct eventfd_ctx *eventfd, const char *args)
{
3463
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3464 3465
}

3466
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3467 3468
	struct eventfd_ctx *eventfd, const char *args)
{
3469
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3470 3471
}

3472
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3473
	struct eventfd_ctx *eventfd, enum res_type type)
3474
{
3475 3476
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3477
	unsigned long usage;
3478
	int i, j, size;
3479 3480

	mutex_lock(&memcg->thresholds_lock);
3481 3482

	if (type == _MEM) {
3483
		thresholds = &memcg->thresholds;
3484
		usage = mem_cgroup_usage(memcg, false);
3485
	} else if (type == _MEMSWAP) {
3486
		thresholds = &memcg->memsw_thresholds;
3487
		usage = mem_cgroup_usage(memcg, true);
3488
	} else
3489 3490
		BUG();

3491 3492 3493
	if (!thresholds->primary)
		goto unlock;

3494 3495 3496 3497
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3498 3499 3500
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3501 3502 3503
			size++;
	}

3504
	new = thresholds->spare;
3505

3506 3507
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3508 3509
		kfree(new);
		new = NULL;
3510
		goto swap_buffers;
3511 3512
	}

3513
	new->size = size;
3514 3515

	/* Copy thresholds and find current threshold */
3516 3517 3518
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3519 3520
			continue;

3521
		new->entries[j] = thresholds->primary->entries[i];
3522
		if (new->entries[j].threshold <= usage) {
3523
			/*
3524
			 * new->current_threshold will not be used
3525 3526 3527
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3528
			++new->current_threshold;
3529 3530 3531 3532
		}
		j++;
	}

3533
swap_buffers:
3534 3535
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3536

3537
	rcu_assign_pointer(thresholds->primary, new);
3538

3539
	/* To be sure that nobody uses thresholds */
3540
	synchronize_rcu();
3541 3542 3543 3544 3545 3546

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3547
unlock:
3548 3549
	mutex_unlock(&memcg->thresholds_lock);
}
3550

3551
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3552 3553
	struct eventfd_ctx *eventfd)
{
3554
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3555 3556
}

3557
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3558 3559
	struct eventfd_ctx *eventfd)
{
3560
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3561 3562
}

3563
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3564
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3565 3566 3567 3568 3569 3570 3571
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3572
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3573 3574 3575 3576 3577

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3578
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3579
		eventfd_signal(eventfd, 1);
3580
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3581 3582 3583 3584

	return 0;
}

3585
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3586
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3587 3588 3589
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3590
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3591

3592
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3593 3594 3595 3596 3597 3598
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3599
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3600 3601
}

3602
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3603
{
3604
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3605

3606
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3607
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3608 3609 3610
	return 0;
}

3611
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3612 3613
	struct cftype *cft, u64 val)
{
3614
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3615 3616

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3617
	if (!css->parent || !((val == 0) || (val == 1)))
3618 3619
		return -EINVAL;

3620
	memcg->oom_kill_disable = val;
3621
	if (!val)
3622
		memcg_oom_recover(memcg);
3623

3624 3625 3626
	return 0;
}

3627 3628 3629 3630 3631 3632 3633
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3644 3645 3646 3647 3648
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3659 3660 3661
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3662 3663
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3664 3665 3666
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3667 3668 3669
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3670
 *
3671 3672 3673 3674 3675
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3676
 */
3677 3678 3679
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3680 3681 3682 3683 3684 3685 3686 3687
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3688 3689 3690
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3691 3692 3693 3694 3695

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3696
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3697 3698 3699 3700
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3712 3713 3714 3715
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3716 3717
#endif	/* CONFIG_CGROUP_WRITEBACK */

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3731 3732 3733 3734 3735
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3736
static void memcg_event_remove(struct work_struct *work)
3737
{
3738 3739
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3740
	struct mem_cgroup *memcg = event->memcg;
3741 3742 3743

	remove_wait_queue(event->wqh, &event->wait);

3744
	event->unregister_event(memcg, event->eventfd);
3745 3746 3747 3748 3749 3750

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3751
	css_put(&memcg->css);
3752 3753 3754 3755 3756 3757 3758
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3759 3760
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3761
{
3762 3763
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3764
	struct mem_cgroup *memcg = event->memcg;
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3777
		spin_lock(&memcg->event_list_lock);
3778 3779 3780 3781 3782 3783 3784 3785
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3786
		spin_unlock(&memcg->event_list_lock);
3787 3788 3789 3790 3791
	}

	return 0;
}

3792
static void memcg_event_ptable_queue_proc(struct file *file,
3793 3794
		wait_queue_head_t *wqh, poll_table *pt)
{
3795 3796
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3797 3798 3799 3800 3801 3802

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3803 3804
 * DO NOT USE IN NEW FILES.
 *
3805 3806 3807 3808 3809
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3810 3811
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3812
{
3813
	struct cgroup_subsys_state *css = of_css(of);
3814
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3815
	struct mem_cgroup_event *event;
3816 3817 3818 3819
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3820
	const char *name;
3821 3822 3823
	char *endp;
	int ret;

3824 3825 3826
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3827 3828
	if (*endp != ' ')
		return -EINVAL;
3829
	buf = endp + 1;
3830

3831
	cfd = simple_strtoul(buf, &endp, 10);
3832 3833
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3834
	buf = endp + 1;
3835 3836 3837 3838 3839

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3840
	event->memcg = memcg;
3841
	INIT_LIST_HEAD(&event->list);
3842 3843 3844
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3870 3871 3872 3873 3874
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3875 3876
	 *
	 * DO NOT ADD NEW FILES.
3877
	 */
A
Al Viro 已提交
3878
	name = cfile.file->f_path.dentry->d_name.name;
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3890 3891
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3892 3893 3894 3895 3896
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3897
	/*
3898 3899 3900
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3901
	 */
A
Al Viro 已提交
3902
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3903
					       &memory_cgrp_subsys);
3904
	ret = -EINVAL;
3905
	if (IS_ERR(cfile_css))
3906
		goto out_put_cfile;
3907 3908
	if (cfile_css != css) {
		css_put(cfile_css);
3909
		goto out_put_cfile;
3910
	}
3911

3912
	ret = event->register_event(memcg, event->eventfd, buf);
3913 3914 3915 3916 3917
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3918 3919 3920
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3921 3922 3923 3924

	fdput(cfile);
	fdput(efile);

3925
	return nbytes;
3926 3927

out_put_css:
3928
	css_put(css);
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3941
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3942
	{
3943
		.name = "usage_in_bytes",
3944
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3945
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3946
	},
3947 3948
	{
		.name = "max_usage_in_bytes",
3949
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3950
		.write = mem_cgroup_reset,
3951
		.read_u64 = mem_cgroup_read_u64,
3952
	},
B
Balbir Singh 已提交
3953
	{
3954
		.name = "limit_in_bytes",
3955
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3956
		.write = mem_cgroup_write,
3957
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3958
	},
3959 3960 3961
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3962
		.write = mem_cgroup_write,
3963
		.read_u64 = mem_cgroup_read_u64,
3964
	},
B
Balbir Singh 已提交
3965 3966
	{
		.name = "failcnt",
3967
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3968
		.write = mem_cgroup_reset,
3969
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3970
	},
3971 3972
	{
		.name = "stat",
3973
		.seq_show = memcg_stat_show,
3974
	},
3975 3976
	{
		.name = "force_empty",
3977
		.write = mem_cgroup_force_empty_write,
3978
	},
3979 3980 3981 3982 3983
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3984
	{
3985
		.name = "cgroup.event_control",		/* XXX: for compat */
3986
		.write = memcg_write_event_control,
3987
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3988
	},
K
KOSAKI Motohiro 已提交
3989 3990 3991 3992 3993
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3994 3995 3996 3997 3998
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3999 4000
	{
		.name = "oom_control",
4001
		.seq_show = mem_cgroup_oom_control_read,
4002
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4003 4004
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4005 4006 4007
	{
		.name = "pressure_level",
	},
4008 4009 4010
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4011
		.seq_show = memcg_numa_stat_show,
4012 4013
	},
#endif
4014 4015 4016
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4017
		.write = mem_cgroup_write,
4018
		.read_u64 = mem_cgroup_read_u64,
4019 4020 4021 4022
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4023
		.read_u64 = mem_cgroup_read_u64,
4024 4025 4026 4027
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4028
		.write = mem_cgroup_reset,
4029
		.read_u64 = mem_cgroup_read_u64,
4030 4031 4032 4033
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4034
		.write = mem_cgroup_reset,
4035
		.read_u64 = mem_cgroup_read_u64,
4036
	},
4037 4038 4039
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4040 4041 4042 4043
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4044 4045
	},
#endif
V
Vladimir Davydov 已提交
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4069
	{ },	/* terminate */
4070
};
4071

4072
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4073 4074
{
	struct mem_cgroup_per_node *pn;
4075
	struct mem_cgroup_per_zone *mz;
4076
	int zone, tmp = node;
4077 4078 4079 4080 4081 4082 4083 4084
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4085 4086
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4087
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4088 4089
	if (!pn)
		return 1;
4090 4091 4092

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4093
		lruvec_init(&mz->lruvec);
4094 4095
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4096
		mz->memcg = memcg;
4097
	}
4098
	memcg->nodeinfo[node] = pn;
4099 4100 4101
	return 0;
}

4102
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4103
{
4104
	kfree(memcg->nodeinfo[node]);
4105 4106
}

4107
static void mem_cgroup_free(struct mem_cgroup *memcg)
4108
{
4109
	int node;
4110

4111
	memcg_wb_domain_exit(memcg);
4112 4113 4114
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4115
	kfree(memcg);
4116
}
4117

4118
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4119
{
4120
	struct mem_cgroup *memcg;
4121
	size_t size;
4122
	int node;
B
Balbir Singh 已提交
4123

4124 4125 4126 4127
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4128
	if (!memcg)
4129 4130 4131 4132 4133
		return NULL;

	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4134

B
Bob Liu 已提交
4135
	for_each_node(node)
4136
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4137
			goto fail;
4138

4139 4140
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4141

4142
	INIT_WORK(&memcg->high_work, high_work_func);
4143 4144 4145 4146
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4147
	vmpressure_init(&memcg->vmpressure);
4148 4149
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4150
	memcg->socket_pressure = jiffies;
4151
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4152 4153
	memcg->kmemcg_id = -1;
#endif
4154 4155 4156
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4157 4158 4159 4160
	return memcg;
fail:
	mem_cgroup_free(memcg);
	return NULL;
4161 4162
}

4163 4164
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4165
{
4166 4167 4168
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4169

4170 4171 4172
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4173

4174 4175 4176 4177 4178 4179 4180 4181
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4182
		page_counter_init(&memcg->memory, &parent->memory);
4183
		page_counter_init(&memcg->swap, &parent->swap);
4184 4185
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4186
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4187
	} else {
4188
		page_counter_init(&memcg->memory, NULL);
4189
		page_counter_init(&memcg->swap, NULL);
4190 4191
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4192
		page_counter_init(&memcg->tcpmem, NULL);
4193 4194 4195 4196 4197
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4198
		if (parent != root_mem_cgroup)
4199
			memory_cgrp_subsys.broken_hierarchy = true;
4200
	}
4201

4202 4203 4204 4205 4206 4207 4208 4209 4210
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

	error = memcg_propagate_kmem(parent, memcg);
	if (error)
		goto fail;
4211

4212
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4213
		static_branch_inc(&memcg_sockets_enabled_key);
4214

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
	return NULL;
}

static int
mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
	if (css->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;
4226 4227

	return 0;
B
Balbir Singh 已提交
4228 4229
}

4230
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4231
{
4232
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4233
	struct mem_cgroup_event *event, *tmp;
4234 4235 4236 4237 4238 4239

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4240 4241
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4242 4243 4244
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4245
	spin_unlock(&memcg->event_list_lock);
4246

4247
	memcg_offline_kmem(memcg);
4248
	wb_memcg_offline(memcg);
4249 4250
}

4251 4252 4253 4254 4255 4256 4257
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4258
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4259
{
4260
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4261

4262
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4263
		static_branch_dec(&memcg_sockets_enabled_key);
4264

4265
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4266
		static_branch_dec(&memcg_sockets_enabled_key);
4267

4268 4269 4270
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4271
	memcg_free_kmem(memcg);
4272
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4273 4274
}

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4292 4293 4294
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4295 4296
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4297
	memcg->soft_limit = PAGE_COUNTER_MAX;
4298
	memcg_wb_domain_size_changed(memcg);
4299 4300
}

4301
#ifdef CONFIG_MMU
4302
/* Handlers for move charge at task migration. */
4303
static int mem_cgroup_do_precharge(unsigned long count)
4304
{
4305
	int ret;
4306

4307 4308
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4309
	if (!ret) {
4310 4311 4312
		mc.precharge += count;
		return ret;
	}
4313 4314

	/* Try charges one by one with reclaim */
4315
	while (count--) {
4316
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4317 4318
		if (ret)
			return ret;
4319
		mc.precharge++;
4320
		cond_resched();
4321
	}
4322
	return 0;
4323 4324 4325
}

/**
4326
 * get_mctgt_type - get target type of moving charge
4327 4328 4329
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4330
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4331 4332 4333 4334 4335 4336
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4337 4338 4339
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4340 4341 4342 4343 4344
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4345
	swp_entry_t	ent;
4346 4347 4348
};

enum mc_target_type {
4349
	MC_TARGET_NONE = 0,
4350
	MC_TARGET_PAGE,
4351
	MC_TARGET_SWAP,
4352 4353
};

D
Daisuke Nishimura 已提交
4354 4355
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4356
{
D
Daisuke Nishimura 已提交
4357
	struct page *page = vm_normal_page(vma, addr, ptent);
4358

D
Daisuke Nishimura 已提交
4359 4360 4361
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4362
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4363
			return NULL;
4364 4365 4366 4367
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4368 4369 4370 4371 4372 4373
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4374
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4375 4376 4377 4378 4379 4380
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4381
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4382
		return NULL;
4383 4384 4385 4386
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4387
	page = find_get_page(swap_address_space(ent), ent.val);
4388
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4389 4390 4391 4392
		entry->val = ent.val;

	return page;
}
4393 4394 4395 4396 4397 4398 4399
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4400

4401 4402 4403 4404 4405 4406 4407 4408 4409
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4410
	if (!(mc.flags & MOVE_FILE))
4411 4412 4413
		return NULL;

	mapping = vma->vm_file->f_mapping;
4414
	pgoff = linear_page_index(vma, addr);
4415 4416

	/* page is moved even if it's not RSS of this task(page-faulted). */
4417 4418
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4419 4420 4421 4422
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4423
			if (do_memsw_account())
4424 4425 4426 4427 4428 4429 4430
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4431
#endif
4432 4433 4434
	return page;
}

4435 4436 4437 4438 4439 4440 4441
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4442
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4443 4444 4445 4446 4447
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4448
				   bool compound,
4449 4450 4451 4452
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4453
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4454
	int ret;
4455
	bool anon;
4456 4457 4458

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4459
	VM_BUG_ON(compound && !PageTransHuge(page));
4460 4461

	/*
4462
	 * Prevent mem_cgroup_migrate() from looking at
4463
	 * page->mem_cgroup of its source page while we change it.
4464
	 */
4465
	ret = -EBUSY;
4466 4467 4468 4469 4470 4471 4472
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4473 4474
	anon = PageAnon(page);

4475 4476
	spin_lock_irqsave(&from->move_lock, flags);

4477
	if (!anon && page_mapped(page)) {
4478 4479 4480 4481 4482 4483
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4520
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4521
	memcg_check_events(to, page);
4522
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4523 4524 4525 4526 4527 4528 4529 4530
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4531
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4532 4533 4534
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4535
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4536 4537 4538 4539 4540 4541
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4542
	else if (pte_none(ptent))
4543
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4544 4545

	if (!page && !ent.val)
4546
		return ret;
4547 4548
	if (page) {
		/*
4549
		 * Do only loose check w/o serialization.
4550
		 * mem_cgroup_move_account() checks the page is valid or
4551
		 * not under LRU exclusion.
4552
		 */
4553
		if (page->mem_cgroup == mc.from) {
4554 4555 4556 4557 4558 4559 4560
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4561 4562
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4563
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4564 4565 4566
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4567 4568 4569 4570
	}
	return ret;
}

4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4584
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4585
	if (!(mc.flags & MOVE_ANON))
4586
		return ret;
4587
	if (page->mem_cgroup == mc.from) {
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4604 4605 4606 4607
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4608
	struct vm_area_struct *vma = walk->vma;
4609 4610 4611
	pte_t *pte;
	spinlock_t *ptl;

4612 4613
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4614 4615
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4616
		spin_unlock(ptl);
4617
		return 0;
4618
	}
4619

4620 4621
	if (pmd_trans_unstable(pmd))
		return 0;
4622 4623
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4624
		if (get_mctgt_type(vma, addr, *pte, NULL))
4625 4626 4627 4628
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4629 4630 4631
	return 0;
}

4632 4633 4634 4635
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4636 4637 4638 4639
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4640
	down_read(&mm->mmap_sem);
4641
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4642
	up_read(&mm->mmap_sem);
4643 4644 4645 4646 4647 4648 4649 4650 4651

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4652 4653 4654 4655 4656
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4657 4658
}

4659 4660
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4661
{
4662 4663 4664
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4665
	/* we must uncharge all the leftover precharges from mc.to */
4666
	if (mc.precharge) {
4667
		cancel_charge(mc.to, mc.precharge);
4668 4669 4670 4671 4672 4673 4674
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4675
		cancel_charge(mc.from, mc.moved_charge);
4676
		mc.moved_charge = 0;
4677
	}
4678 4679 4680
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4681
		if (!mem_cgroup_is_root(mc.from))
4682
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4683

4684
		/*
4685 4686
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4687
		 */
4688
		if (!mem_cgroup_is_root(mc.to))
4689 4690
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4691
		css_put_many(&mc.from->css, mc.moved_swap);
4692

L
Li Zefan 已提交
4693
		/* we've already done css_get(mc.to) */
4694 4695
		mc.moved_swap = 0;
	}
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4709
	spin_lock(&mc.lock);
4710 4711
	mc.from = NULL;
	mc.to = NULL;
4712
	spin_unlock(&mc.lock);
4713 4714
}

4715
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4716
{
4717
	struct cgroup_subsys_state *css;
4718
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4719
	struct mem_cgroup *from;
4720
	struct task_struct *leader, *p;
4721
	struct mm_struct *mm;
4722
	unsigned long move_flags;
4723
	int ret = 0;
4724

4725 4726
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4727 4728
		return 0;

4729 4730 4731 4732 4733 4734 4735
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4736
	cgroup_taskset_for_each_leader(leader, css, tset) {
4737 4738
		WARN_ON_ONCE(p);
		p = leader;
4739
		memcg = mem_cgroup_from_css(css);
4740 4741 4742 4743
	}
	if (!p)
		return 0;

4744 4745 4746 4747 4748 4749 4750 4751 4752
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4778
	}
4779
	mmput(mm);
4780 4781 4782
	return ret;
}

4783
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4784
{
4785 4786
	if (mc.to)
		mem_cgroup_clear_mc();
4787 4788
}

4789 4790 4791
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4792
{
4793
	int ret = 0;
4794
	struct vm_area_struct *vma = walk->vma;
4795 4796
	pte_t *pte;
	spinlock_t *ptl;
4797 4798 4799
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4800

4801 4802
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4803
		if (mc.precharge < HPAGE_PMD_NR) {
4804
			spin_unlock(ptl);
4805 4806 4807 4808 4809 4810
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4811
				if (!mem_cgroup_move_account(page, true,
4812
							     mc.from, mc.to)) {
4813 4814 4815 4816 4817 4818 4819
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4820
		spin_unlock(ptl);
4821
		return 0;
4822 4823
	}

4824 4825
	if (pmd_trans_unstable(pmd))
		return 0;
4826 4827 4828 4829
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4830
		swp_entry_t ent;
4831 4832 4833 4834

		if (!mc.precharge)
			break;

4835
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4836 4837
		case MC_TARGET_PAGE:
			page = target.page;
4838 4839 4840 4841 4842 4843 4844 4845
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4846 4847
			if (isolate_lru_page(page))
				goto put;
4848 4849
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4850
				mc.precharge--;
4851 4852
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4853 4854
			}
			putback_lru_page(page);
4855
put:			/* get_mctgt_type() gets the page */
4856 4857
			put_page(page);
			break;
4858 4859
		case MC_TARGET_SWAP:
			ent = target.ent;
4860
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4861
				mc.precharge--;
4862 4863 4864
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4865
			break;
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4880
		ret = mem_cgroup_do_precharge(1);
4881 4882 4883 4884 4885 4886 4887 4888 4889
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4890 4891 4892 4893
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4894 4895

	lru_add_drain_all();
4896
	/*
4897 4898 4899
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4900 4901 4902
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4916 4917 4918 4919 4920
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4921
	up_read(&mm->mmap_sem);
4922
	atomic_dec(&mc.from->moving_account);
4923 4924
}

4925
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
4926
{
4927 4928
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
4929
	struct mm_struct *mm = get_task_mm(p);
4930 4931

	if (mm) {
4932 4933
		if (mc.to)
			mem_cgroup_move_charge(mm);
4934 4935
		mmput(mm);
	}
4936 4937
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4938
}
4939
#else	/* !CONFIG_MMU */
4940
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4941 4942 4943
{
	return 0;
}
4944
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4945 4946
{
}
4947
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4948 4949 4950
{
}
#endif
B
Balbir Singh 已提交
4951

4952 4953
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4954 4955
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
4956
 */
4957
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4958 4959
{
	/*
4960
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4961 4962 4963
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
4964
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4965 4966 4967
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
4968 4969
}

4970 4971 4972
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
4973 4974 4975
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4976 4977 4978 4979 4980
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4981
	unsigned long low = READ_ONCE(memcg->low);
4982 4983

	if (low == PAGE_COUNTER_MAX)
4984
		seq_puts(m, "max\n");
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
4999
	err = page_counter_memparse(buf, "max", &low);
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5011
	unsigned long high = READ_ONCE(memcg->high);
5012 5013

	if (high == PAGE_COUNTER_MAX)
5014
		seq_puts(m, "max\n");
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5029
	err = page_counter_memparse(buf, "max", &high);
5030 5031 5032 5033 5034
	if (err)
		return err;

	memcg->high = high;

5035
	memcg_wb_domain_size_changed(memcg);
5036 5037 5038 5039 5040 5041
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5042
	unsigned long max = READ_ONCE(memcg->memory.limit);
5043 5044

	if (max == PAGE_COUNTER_MAX)
5045
		seq_puts(m, "max\n");
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5060
	err = page_counter_memparse(buf, "max", &max);
5061 5062 5063 5064 5065 5066 5067
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5068
	memcg_wb_domain_size_changed(memcg);
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5084 5085 5086
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5087 5088
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5102 5103 5104
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5105
	seq_printf(m, "anon %llu\n",
5106
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5107
	seq_printf(m, "file %llu\n",
5108
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5109 5110
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5111 5112 5113
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5114
	seq_printf(m, "sock %llu\n",
5115
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5116 5117

	seq_printf(m, "file_mapped %llu\n",
5118
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5119
	seq_printf(m, "file_dirty %llu\n",
5120
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5121
	seq_printf(m, "file_writeback %llu\n",
5122
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5134 5135 5136 5137 5138
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5139 5140 5141
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5142
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5143
	seq_printf(m, "pgmajfault %lu\n",
5144
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5145 5146 5147 5148

	return 0;
}

5149 5150 5151
static struct cftype memory_files[] = {
	{
		.name = "current",
5152
		.flags = CFTYPE_NOT_ON_ROOT,
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5176
		.file_offset = offsetof(struct mem_cgroup, events_file),
5177 5178
		.seq_show = memory_events_show,
	},
5179 5180 5181 5182 5183
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5184 5185 5186
	{ }	/* terminate */
};

5187
struct cgroup_subsys memory_cgrp_subsys = {
5188
	.css_alloc = mem_cgroup_css_alloc,
5189
	.css_online = mem_cgroup_css_online,
5190
	.css_offline = mem_cgroup_css_offline,
5191
	.css_released = mem_cgroup_css_released,
5192
	.css_free = mem_cgroup_css_free,
5193
	.css_reset = mem_cgroup_css_reset,
5194 5195
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5196
	.attach = mem_cgroup_move_task,
5197
	.bind = mem_cgroup_bind,
5198 5199
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5200
	.early_init = 0,
B
Balbir Singh 已提交
5201
};
5202

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5225
	if (page_counter_read(&memcg->memory) >= memcg->low)
5226 5227 5228 5229 5230 5231 5232 5233
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5234
		if (page_counter_read(&memcg->memory) >= memcg->low)
5235 5236 5237 5238 5239
			return false;
	}
	return true;
}

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5258 5259
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5260 5261
{
	struct mem_cgroup *memcg = NULL;
5262
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5276
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5277
		if (page->mem_cgroup)
5278
			goto out;
5279

5280
		if (do_swap_account) {
5281 5282 5283 5284 5285 5286 5287 5288 5289
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5320
			      bool lrucare, bool compound)
5321
{
5322
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5337 5338 5339
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5340
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5341 5342
	memcg_check_events(memcg, page);
	local_irq_enable();
5343

5344
	if (do_memsw_account() && PageSwapCache(page)) {
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5362 5363
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5364
{
5365
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5380 5381 5382 5383
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5384
	unsigned long nr_pages = nr_anon + nr_file;
5385 5386
	unsigned long flags;

5387
	if (!mem_cgroup_is_root(memcg)) {
5388
		page_counter_uncharge(&memcg->memory, nr_pages);
5389
		if (do_memsw_account())
5390
			page_counter_uncharge(&memcg->memsw, nr_pages);
5391 5392
		memcg_oom_recover(memcg);
	}
5393 5394 5395 5396 5397 5398

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5399
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5400 5401
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5402 5403

	if (!mem_cgroup_is_root(memcg))
5404
		css_put_many(&memcg->css, nr_pages);
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5427
		if (!page->mem_cgroup)
5428 5429 5430 5431
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5432
		 * page->mem_cgroup at this point, we have fully
5433
		 * exclusive access to the page.
5434 5435
		 */

5436
		if (memcg != page->mem_cgroup) {
5437
			if (memcg) {
5438 5439 5440
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5441
			}
5442
			memcg = page->mem_cgroup;
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5456
		page->mem_cgroup = NULL;
5457 5458 5459 5460 5461

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5462 5463
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5464 5465
}

5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5478
	/* Don't touch page->lru of any random page, pre-check: */
5479
	if (!page->mem_cgroup)
5480 5481
		return;

5482 5483 5484
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5485

5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5497

5498 5499
	if (!list_empty(page_list))
		uncharge_list(page_list);
5500 5501 5502
}

/**
5503 5504 5505
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5506
 *
5507 5508
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5509 5510 5511
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5512
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5513
{
5514
	struct mem_cgroup *memcg;
5515 5516
	unsigned int nr_pages;
	bool compound;
5517 5518 5519 5520

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5521 5522
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5523 5524 5525 5526 5527

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5528
	if (newpage->mem_cgroup)
5529 5530
		return;

5531
	/* Swapcache readahead pages can get replaced before being charged */
5532
	memcg = oldpage->mem_cgroup;
5533
	if (!memcg)
5534 5535
		return;

5536 5537 5538 5539 5540 5541 5542 5543
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5544

5545
	commit_charge(newpage, memcg, false);
5546 5547 5548 5549 5550

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
	local_irq_enable();
5551 5552
}

5553
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5576 5577
	if (memcg == root_mem_cgroup)
		goto out;
5578
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5579 5580
		goto out;
	if (css_tryget_online(&memcg->css))
5581
		sk->sk_memcg = memcg;
5582
out:
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5603
	gfp_t gfp_mask = GFP_KERNEL;
5604

5605
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5606
		struct page_counter *fail;
5607

5608 5609
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5610 5611
			return true;
		}
5612 5613
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5614
		return false;
5615
	}
5616

5617 5618 5619 5620
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5621 5622
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5623 5624 5625 5626
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5637
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5638
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5639 5640
		return;
	}
5641

5642 5643
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5644 5645
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5646 5647
}

5648 5649 5650 5651 5652 5653 5654 5655 5656
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5657 5658
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5659 5660 5661 5662
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5663

5664
/*
5665 5666 5667 5668 5669 5670
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5671 5672 5673
 */
static int __init mem_cgroup_init(void)
{
5674 5675
	int cpu, node;

5676
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5699 5700 5701
	return 0;
}
subsys_initcall(mem_cgroup_init);
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5719
	if (!do_memsw_account())
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5737 5738 5739 5740 5741 5742 5743
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5744
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5745 5746 5747
	memcg_check_events(memcg, page);
}

5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	css_get(&memcg->css);
	return 0;
}

5784 5785 5786 5787
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5788
 * Drop the swap charge associated with @entry.
5789 5790 5791 5792 5793 5794
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5795
	if (!do_swap_account)
5796 5797 5798 5799
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5800
	memcg = mem_cgroup_from_id(id);
5801
	if (memcg) {
5802 5803 5804 5805 5806 5807
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5808 5809 5810 5811 5812 5813
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
5954 5955
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
5956 5957 5958 5959 5960 5961 5962 5963
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */