blk-mq.c 78.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98
	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128 129
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	if (!q->mq_ops)
		blk_drain_queue(q);
165 166
	blk_mq_freeze_queue_wait(q);
}
167 168 169 170 171 172 173 174 175

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
176
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177

178
void blk_mq_unfreeze_queue(struct request_queue *q)
179
{
180
	int freeze_depth;
181

182 183 184
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
185
		percpu_ref_reinit(&q->q_usage_counter);
186
		wake_up_all(&q->mq_freeze_wq);
187
	}
188
}
189
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

205
/**
206
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
207 208 209
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
210 211 212
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
213 214 215 216 217 218 219
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

220
	blk_mq_quiesce_queue_nowait(q);
221

222 223
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
224
			synchronize_srcu(hctx->srcu);
225 226 227 228 229 230 231 232
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

233 234 235 236 237 238 239 240 241
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
242 243 244
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
245
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
246
	spin_unlock_irqrestore(q->queue_lock, flags);
247

248 249
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
250 251 252
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

253 254 255 256 257 258 259 260 261 262
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

263 264 265 266 267 268
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

269 270
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
271
{
272 273
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
274
	req_flags_t rq_flags = 0;
275

276 277 278 279 280
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
281
			rq_flags = RQF_MQ_INFLIGHT;
282 283 284 285 286 287 288
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

289
	/* csd/requeue_work/fifo_time is initialized before use */
290 291
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
292
	rq->rq_flags = rq_flags;
293
	rq->cpu = -1;
294
	rq->cmd_flags = op;
295 296
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
297
	if (blk_queue_io_stat(data->q))
298
		rq->rq_flags |= RQF_IO_STAT;
299
	INIT_LIST_HEAD(&rq->queuelist);
300 301 302 303
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
304
	rq->start_time = jiffies;
305 306 307 308 309 310 311
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
312
	rq->__deadline = 0;
313 314

	INIT_LIST_HEAD(&rq->timeout_list);
315 316
	rq->timeout = 0;

317 318 319 320
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

321 322 323 324 325 326
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
	set_start_time_ns(rq);
	rq->io_start_time_ns = 0;
#endif

327 328
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
329 330
}

331 332 333 334 335 336
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
337
	unsigned int tag;
338
	bool put_ctx_on_error = false;
339 340 341

	blk_queue_enter_live(q);
	data->q = q;
342 343 344 345
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
346 347
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 349
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
350 351 352 353 354 355 356 357

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
358 359
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
360 361
	}

362 363
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
364 365
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
366 367
			data->ctx = NULL;
		}
368 369
		blk_queue_exit(q);
		return NULL;
370 371
	}

372
	rq = blk_mq_rq_ctx_init(data, tag, op);
373 374
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
375
		if (e && e->type->ops.mq.prepare_request) {
376 377 378
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

379 380
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
381
		}
382 383 384
	}
	data->hctx->queued++;
	return rq;
385 386
}

387
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388
		blk_mq_req_flags_t flags)
389
{
390
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
391
	struct request *rq;
392
	int ret;
393

394
	ret = blk_queue_enter(q, flags);
395 396
	if (ret)
		return ERR_PTR(ret);
397

398
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399
	blk_queue_exit(q);
400

401
	if (!rq)
402
		return ERR_PTR(-EWOULDBLOCK);
403

404 405
	blk_mq_put_ctx(alloc_data.ctx);

406 407 408
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
409 410
	return rq;
}
411
EXPORT_SYMBOL(blk_mq_alloc_request);
412

413
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
415
{
416
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
417
	struct request *rq;
418
	unsigned int cpu;
M
Ming Lin 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

433
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
434 435 436
	if (ret)
		return ERR_PTR(ret);

437 438 439 440
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
441 442 443 444
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
445
	}
446
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
448

449
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450
	blk_queue_exit(q);
451

452 453 454 455
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
456 457 458
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

459
void blk_mq_free_request(struct request *rq)
460 461
{
	struct request_queue *q = rq->q;
462 463 464 465 466
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

467
	if (rq->rq_flags & RQF_ELVPRIV) {
468 469 470 471 472 473 474
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
475

476
	ctx->rq_completed[rq_is_sync(rq)]++;
477
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
478
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
479

480 481 482
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
483
	wbt_done(q->rq_wb, &rq->issue_stat);
484

S
Shaohua Li 已提交
485 486 487
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

488
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
489 490 491
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
492
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493
	blk_mq_sched_restart(hctx);
494
	blk_queue_exit(q);
495
}
J
Jens Axboe 已提交
496
EXPORT_SYMBOL_GPL(blk_mq_free_request);
497

498
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499
{
M
Ming Lei 已提交
500 501
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
502
	if (rq->end_io) {
J
Jens Axboe 已提交
503
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
504
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
505 506 507
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
508
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
509
	}
510
}
511
EXPORT_SYMBOL(__blk_mq_end_request);
512

513
void blk_mq_end_request(struct request *rq, blk_status_t error)
514 515 516
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
517
	__blk_mq_end_request(rq, error);
518
}
519
EXPORT_SYMBOL(blk_mq_end_request);
520

521
static void __blk_mq_complete_request_remote(void *data)
522
{
523
	struct request *rq = data;
524

525
	rq->q->softirq_done_fn(rq);
526 527
}

528
static void __blk_mq_complete_request(struct request *rq)
529 530
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
531
	bool shared = false;
532 533
	int cpu;

534
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
535
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
536

537 538 539 540 541 542 543
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
544
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 546 547
		rq->q->softirq_done_fn(rq);
		return;
	}
548 549

	cpu = get_cpu();
C
Christoph Hellwig 已提交
550 551 552 553
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554
		rq->csd.func = __blk_mq_complete_request_remote;
555 556
		rq->csd.info = rq;
		rq->csd.flags = 0;
557
		smp_call_function_single_async(ctx->cpu, &rq->csd);
558
	} else {
559
		rq->q->softirq_done_fn(rq);
560
	}
561 562
	put_cpu();
}
563

564
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
565
	__releases(hctx->srcu)
566 567 568 569
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
570
		srcu_read_unlock(hctx->srcu, srcu_idx);
571 572 573
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
574
	__acquires(hctx->srcu)
575
{
576 577 578
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
579
		rcu_read_lock();
580
	} else
581
		*srcu_idx = srcu_read_lock(hctx->srcu);
582 583
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

614 615 616 617 618 619 620 621
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
622
void blk_mq_complete_request(struct request *rq)
623
{
624
	struct request_queue *q = rq->q;
625 626
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
627 628

	if (unlikely(blk_should_fake_timeout(q)))
629
		return;
630

631 632 633 634 635 636 637 638 639 640 641
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
642
	hctx_lock(hctx, &srcu_idx);
643
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
644
		__blk_mq_complete_request(rq);
645
	hctx_unlock(hctx, srcu_idx);
646 647
}
EXPORT_SYMBOL(blk_mq_complete_request);
648

649 650
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
651
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
652 653 654
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

655
void blk_mq_start_request(struct request *rq)
656 657 658
{
	struct request_queue *q = rq->q;

659 660
	blk_mq_sched_started_request(rq);

661 662
	trace_block_rq_issue(q, rq);

663
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
664
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
665
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
666
		wbt_issue(q->rq_wb, &rq->issue_stat);
667 668
	}

669
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
670

671
	/*
672 673 674 675
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
676
	 *
677 678 679 680
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
681
	 */
682 683 684 685 686 687 688 689
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();
690 691 692 693 694 695 696 697 698

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
699
}
700
EXPORT_SYMBOL(blk_mq_start_request);
701

702
/*
T
Tejun Heo 已提交
703 704 705
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
706
 */
707
static void __blk_mq_requeue_request(struct request *rq)
708 709 710
{
	struct request_queue *q = rq->q;

711 712
	blk_mq_put_driver_tag(rq);

713
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
714
	wbt_requeue(q->rq_wb, &rq->issue_stat);
715
	blk_mq_sched_requeue_request(rq);
716

T
Tejun Heo 已提交
717
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
718
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
719 720 721
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
722 723
}

724
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
725 726 727 728
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
729
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
730 731 732
}
EXPORT_SYMBOL(blk_mq_requeue_request);

733 734 735
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
736
		container_of(work, struct request_queue, requeue_work.work);
737 738 739
	LIST_HEAD(rq_list);
	struct request *rq, *next;

740
	spin_lock_irq(&q->requeue_lock);
741
	list_splice_init(&q->requeue_list, &rq_list);
742
	spin_unlock_irq(&q->requeue_lock);
743 744

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
745
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
746 747
			continue;

748
		rq->rq_flags &= ~RQF_SOFTBARRIER;
749
		list_del_init(&rq->queuelist);
750
		blk_mq_sched_insert_request(rq, true, false, false);
751 752 753 754 755
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
756
		blk_mq_sched_insert_request(rq, false, false, false);
757 758
	}

759
	blk_mq_run_hw_queues(q, false);
760 761
}

762 763
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
764 765 766 767 768 769
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
770
	 * request head insertion from the workqueue.
771
	 */
772
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
773 774 775

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
776
		rq->rq_flags |= RQF_SOFTBARRIER;
777 778 779 780 781
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
782 783 784

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
785 786 787 788 789
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
790
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
791 792 793
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

794 795 796
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
797 798
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
799 800 801
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

802 803
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
804 805
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
806
		return tags->rqs[tag];
807
	}
808 809

	return NULL;
810 811 812
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

813
struct blk_mq_timeout_data {
814 815
	unsigned long next;
	unsigned int next_set;
816
	unsigned int nr_expired;
817 818
};

819
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
820
{
J
Jens Axboe 已提交
821
	const struct blk_mq_ops *ops = req->q->mq_ops;
822
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
823

824
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
825

826
	if (ops->timeout)
827
		ret = ops->timeout(req, reserved);
828 829 830 831 832 833

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
834 835 836 837 838 839
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
840 841 842 843 844 845 846 847
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
848
}
849

850 851 852 853
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
854 855
	unsigned long gstate, deadline;
	int start;
856

857
	might_sleep();
858

T
Tejun Heo 已提交
859
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
860
		return;
861

862 863 864 865
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
866
		deadline = blk_rq_deadline(rq);
867 868 869 870
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
871

872 873 874 875 876 877
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
878 879
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
880 881
		data->next_set = 1;
	}
882 883
}

884 885 886 887 888 889 890 891 892 893
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
894 895
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
896 897 898
		blk_mq_rq_timed_out(rq, reserved);
}

899
static void blk_mq_timeout_work(struct work_struct *work)
900
{
901 902
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
903 904 905
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
906
		.nr_expired	= 0,
907
	};
908
	struct blk_mq_hw_ctx *hctx;
909
	int i;
910

911 912 913 914 915 916 917 918 919
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
920
	 * blk_freeze_queue_start, and the moment the last request is
921 922 923 924
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
925 926
		return;

927
	/* scan for the expired ones and set their ->aborted_gstate */
928
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
929

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
946
				synchronize_srcu(hctx->srcu);
947 948 949 950 951 952 953 954 955 956

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

957 958 959
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
960
	} else {
961 962 963 964 965 966
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
967 968 969 970 971
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
972
	}
973
	blk_queue_exit(q);
974 975
}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

994 995 996 997
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
998
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
999
{
1000 1001 1002 1003
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1004

1005
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1006
}
1007
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1048 1049 1050 1051
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1052

1053
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1054 1055
}

1056 1057
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1058 1059 1060 1061 1062 1063 1064
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1065 1066
	might_sleep_if(wait);

1067 1068
	if (rq->tag != -1)
		goto done;
1069

1070 1071 1072
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1073 1074
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1075 1076 1077 1078
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1079 1080 1081
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1082 1083 1084 1085
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1086 1087
}

1088 1089
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1090 1091 1092 1093 1094
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1095
	list_del_init(&wait->entry);
1096 1097 1098 1099
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1100 1101
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1102 1103
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1104 1105 1106 1107
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1108
{
1109
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1110
	struct sbq_wait_state *ws;
1111 1112
	wait_queue_entry_t *wait;
	bool ret;
1113

1114
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1115 1116 1117
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1118 1119 1120 1121 1122 1123 1124 1125 1126
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1127 1128
	}

1129 1130 1131 1132 1133 1134 1135 1136
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1137 1138
	}

1139 1140 1141
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1142
	/*
1143 1144 1145
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1146
	 */
1147
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1148
	if (!ret) {
1149
		spin_unlock(&this_hctx->lock);
1150
		return false;
1151
	}
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1163 1164
}

1165 1166
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1167
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1168
			     bool got_budget)
1169
{
1170
	struct blk_mq_hw_ctx *hctx;
1171
	struct request *rq, *nxt;
1172
	bool no_tag = false;
1173
	int errors, queued;
1174
	blk_status_t ret = BLK_STS_OK;
1175

1176 1177 1178
	if (list_empty(list))
		return false;

1179 1180
	WARN_ON(!list_is_singular(list) && got_budget);

1181 1182 1183
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1184
	errors = queued = 0;
1185
	do {
1186
		struct blk_mq_queue_data bd;
1187

1188
		rq = list_first_entry(list, struct request, queuelist);
1189
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1190
			/*
1191
			 * The initial allocation attempt failed, so we need to
1192 1193 1194 1195
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1196
			 */
1197
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1198 1199
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1200 1201 1202 1203 1204 1205
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1206 1207 1208 1209
				break;
			}
		}

1210 1211
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1212
			break;
1213
		}
1214

1215 1216
		list_del_init(&rq->queuelist);

1217
		bd.rq = rq;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1229 1230

		ret = q->mq_ops->queue_rq(hctx, &bd);
1231
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1232 1233
			/*
			 * If an I/O scheduler has been configured and we got a
1234 1235
			 * driver tag for the next request already, free it
			 * again.
1236 1237 1238 1239 1240
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1241
			list_add(&rq->queuelist, list);
1242
			__blk_mq_requeue_request(rq);
1243
			break;
1244 1245 1246
		}

		if (unlikely(ret != BLK_STS_OK)) {
1247
			errors++;
1248
			blk_mq_end_request(rq, BLK_STS_IOERR);
1249
			continue;
1250 1251
		}

1252
		queued++;
1253
	} while (!list_empty(list));
1254

1255
	hctx->dispatched[queued_to_index(queued)]++;
1256 1257 1258 1259 1260

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1261
	if (!list_empty(list)) {
1262 1263
		bool needs_restart;

1264
		spin_lock(&hctx->lock);
1265
		list_splice_init(list, &hctx->dispatch);
1266
		spin_unlock(&hctx->lock);
1267

1268
		/*
1269 1270 1271
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1272
		 *
1273 1274 1275 1276
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1277
		 *
1278 1279 1280 1281 1282 1283 1284
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1285
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1286
		 *   and dm-rq.
1287 1288 1289 1290
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1291
		 */
1292 1293
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1294
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1295
			blk_mq_run_hw_queue(hctx, true);
1296 1297
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1298
	}
1299

1300
	return (queued + errors) != 0;
1301 1302
}

1303 1304 1305 1306
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1307 1308 1309
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1323
	 */
1324 1325 1326 1327 1328 1329 1330
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1331

1332 1333 1334 1335 1336 1337
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1338
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1339

1340 1341 1342
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1343 1344
}

1345 1346 1347 1348 1349 1350 1351 1352
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1353 1354
	bool tried = false;

1355 1356
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1357 1358

	if (--hctx->next_cpu_batch <= 0) {
1359
		int next_cpu;
1360
select_cpu:
1361 1362
		next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
				cpu_online_mask);
1363
		if (next_cpu >= nr_cpu_ids)
1364
			next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1365

1366 1367 1368 1369 1370 1371 1372 1373
		/*
		 * No online CPU is found, so have to make sure hctx->next_cpu
		 * is set correctly for not breaking workqueue.
		 */
		if (next_cpu >= nr_cpu_ids)
			hctx->next_cpu = cpumask_first(hctx->cpumask);
		else
			hctx->next_cpu = next_cpu;
1374 1375 1376
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
	if (!cpu_online(hctx->next_cpu)) {
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1394
	return hctx->next_cpu;
1395 1396
}

1397 1398
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1399
{
1400 1401 1402 1403
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1404 1405
		return;

1406
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1407 1408
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1409
			__blk_mq_run_hw_queue(hctx);
1410
			put_cpu();
1411 1412
			return;
		}
1413

1414
		put_cpu();
1415
	}
1416

1417 1418
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1419 1420 1421 1422 1423 1424 1425 1426
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1427
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1428
{
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1440 1441 1442 1443
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1444 1445

	if (need_run) {
1446 1447 1448 1449 1450
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1451
}
O
Omar Sandoval 已提交
1452
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1453

1454
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1455 1456 1457 1458 1459
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1460
		if (blk_mq_hctx_stopped(hctx))
1461 1462
			continue;

1463
		blk_mq_run_hw_queue(hctx, async);
1464 1465
	}
}
1466
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1467

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1488 1489 1490
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1491
 * BLK_STS_RESOURCE is usually returned.
1492 1493 1494 1495 1496
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1497 1498
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1499
	cancel_delayed_work(&hctx->run_work);
1500

1501
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1502
}
1503
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1504

1505 1506 1507
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1508
 * BLK_STS_RESOURCE is usually returned.
1509 1510 1511 1512 1513
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1514 1515
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1516 1517 1518 1519 1520
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1521 1522 1523
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1524 1525 1526
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1527

1528
	blk_mq_run_hw_queue(hctx, false);
1529 1530 1531
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1552
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1553 1554 1555 1556
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1557 1558
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1559 1560 1561
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1562
static void blk_mq_run_work_fn(struct work_struct *work)
1563 1564 1565
{
	struct blk_mq_hw_ctx *hctx;

1566
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1567

1568 1569 1570 1571 1572 1573 1574 1575
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1576

1577 1578 1579
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1580 1581 1582 1583

	__blk_mq_run_hw_queue(hctx);
}

1584 1585 1586

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1587
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1588
		return;
1589

1590 1591 1592 1593 1594
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1595
	blk_mq_stop_hw_queue(hctx);
1596 1597 1598 1599
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1600 1601 1602
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1603 1604 1605
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1606
{
J
Jens Axboe 已提交
1607 1608
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1609 1610
	lockdep_assert_held(&ctx->lock);

1611 1612
	trace_block_rq_insert(hctx->queue, rq);

1613 1614 1615 1616
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1617
}
1618

1619 1620
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1621 1622 1623
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1624 1625
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1626
	__blk_mq_insert_req_list(hctx, rq, at_head);
1627 1628 1629
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1630 1631 1632 1633
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1634
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1635 1636 1637 1638 1639 1640 1641 1642
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1643 1644
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1645 1646
}

1647 1648
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1660
		BUG_ON(rq->mq_ctx != ctx);
1661
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1662
		__blk_mq_insert_req_list(hctx, rq, false);
1663
	}
1664
	blk_mq_hctx_mark_pending(hctx, ctx);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1701 1702 1703 1704
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1721 1722 1723
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1724 1725 1726 1727 1728
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1729
	blk_init_request_from_bio(rq, bio);
1730

S
Shaohua Li 已提交
1731 1732
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1733
	blk_account_io_start(rq, true);
1734 1735
}

1736 1737 1738 1739 1740 1741 1742
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1743
}
1744

1745 1746
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1747 1748 1749 1750
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1751 1752
}

1753 1754 1755
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1756 1757 1758 1759
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1760
		.last = true,
1761
	};
1762
	blk_qc_t new_cookie;
1763
	blk_status_t ret;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1778
	case BLK_STS_DEV_RESOURCE:
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1791 1792
						blk_qc_t *cookie,
						bool bypass_insert)
1793 1794
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1795 1796
	bool run_queue = true;

1797 1798 1799 1800
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1801
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1802 1803
	 * and avoid driver to try to dispatch again.
	 */
1804
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1805
		run_queue = false;
1806
		bypass_insert = false;
M
Ming Lei 已提交
1807 1808
		goto insert;
	}
1809

1810
	if (q->elevator && !bypass_insert)
1811 1812
		goto insert;

M
Ming Lei 已提交
1813
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1814 1815
		goto insert;

1816
	if (!blk_mq_get_dispatch_budget(hctx)) {
1817 1818
		blk_mq_put_driver_tag(rq);
		goto insert;
1819
	}
1820

1821
	return __blk_mq_issue_directly(hctx, rq, cookie);
1822
insert:
1823 1824
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1825

1826
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1827
	return BLK_STS_OK;
1828 1829
}

1830 1831 1832
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1833
	blk_status_t ret;
1834
	int srcu_idx;
1835

1836
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1837

1838
	hctx_lock(hctx, &srcu_idx);
1839

1840
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1841
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1842
		blk_mq_sched_insert_request(rq, false, true, false);
1843 1844 1845
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1846
	hctx_unlock(hctx, srcu_idx);
1847 1848
}

1849
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1862 1863
}

1864
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1865
{
1866
	const int is_sync = op_is_sync(bio->bi_opf);
1867
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1868
	struct blk_mq_alloc_data data = { .flags = 0 };
1869
	struct request *rq;
1870
	unsigned int request_count = 0;
1871
	struct blk_plug *plug;
1872
	struct request *same_queue_rq = NULL;
1873
	blk_qc_t cookie;
J
Jens Axboe 已提交
1874
	unsigned int wb_acct;
1875 1876 1877

	blk_queue_bounce(q, &bio);

1878
	blk_queue_split(q, &bio);
1879

1880
	if (!bio_integrity_prep(bio))
1881
		return BLK_QC_T_NONE;
1882

1883 1884 1885
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1886

1887 1888 1889
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1890 1891
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1892 1893
	trace_block_getrq(q, bio, bio->bi_opf);

1894
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1895 1896
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1897 1898
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1899
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1900 1901 1902
	}

	wbt_track(&rq->issue_stat, wb_acct);
1903

1904
	cookie = request_to_qc_t(data.hctx, rq);
1905

1906
	plug = current->plug;
1907
	if (unlikely(is_flush_fua)) {
1908
		blk_mq_put_ctx(data.ctx);
1909
		blk_mq_bio_to_request(rq, bio);
1910 1911 1912 1913

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1914
	} else if (plug && q->nr_hw_queues == 1) {
1915 1916
		struct request *last = NULL;

1917
		blk_mq_put_ctx(data.ctx);
1918
		blk_mq_bio_to_request(rq, bio);
1919 1920 1921 1922 1923 1924 1925

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1926 1927 1928
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1929
		if (!request_count)
1930
			trace_block_plug(q);
1931 1932
		else
			last = list_entry_rq(plug->mq_list.prev);
1933

1934 1935
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1936 1937
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1938
		}
1939

1940
		list_add_tail(&rq->queuelist, &plug->mq_list);
1941
	} else if (plug && !blk_queue_nomerges(q)) {
1942
		blk_mq_bio_to_request(rq, bio);
1943 1944

		/*
1945
		 * We do limited plugging. If the bio can be merged, do that.
1946 1947
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1948 1949
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1950
		 */
1951 1952 1953 1954 1955 1956
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1957 1958
		blk_mq_put_ctx(data.ctx);

1959 1960 1961
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1962 1963
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1964
		}
1965
	} else if (q->nr_hw_queues > 1 && is_sync) {
1966
		blk_mq_put_ctx(data.ctx);
1967 1968
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1969
	} else if (q->elevator) {
1970
		blk_mq_put_ctx(data.ctx);
1971
		blk_mq_bio_to_request(rq, bio);
1972
		blk_mq_sched_insert_request(rq, false, true, true);
1973
	} else {
1974
		blk_mq_put_ctx(data.ctx);
1975 1976
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1977
		blk_mq_run_hw_queue(data.hctx, true);
1978
	}
1979

1980
	return cookie;
1981 1982
}

1983 1984
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1985
{
1986
	struct page *page;
1987

1988
	if (tags->rqs && set->ops->exit_request) {
1989
		int i;
1990

1991
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1992 1993 1994
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1995
				continue;
1996
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1997
			tags->static_rqs[i] = NULL;
1998
		}
1999 2000
	}

2001 2002
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
2003
		list_del_init(&page->lru);
2004 2005 2006 2007 2008
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
2009 2010
		__free_pages(page, page->private);
	}
2011
}
2012

2013 2014
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2015
	kfree(tags->rqs);
2016
	tags->rqs = NULL;
J
Jens Axboe 已提交
2017 2018
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2019

2020
	blk_mq_free_tags(tags);
2021 2022
}

2023 2024 2025 2026
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2027
{
2028
	struct blk_mq_tags *tags;
2029
	int node;
2030

2031 2032 2033 2034 2035
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2036
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2037 2038
	if (!tags)
		return NULL;
2039

2040
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2041
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2042
				 node);
2043 2044 2045 2046
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2047

J
Jens Axboe 已提交
2048 2049
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2050
				 node);
J
Jens Axboe 已提交
2051 2052 2053 2054 2055 2056
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2057 2058 2059 2060 2061 2062 2063 2064
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
	return 0;
}

2081 2082 2083 2084 2085
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2086 2087 2088 2089 2090
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2091 2092 2093

	INIT_LIST_HEAD(&tags->page_list);

2094 2095 2096 2097
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2098
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2099
				cache_line_size());
2100
	left = rq_size * depth;
2101

2102
	for (i = 0; i < depth; ) {
2103 2104 2105 2106 2107
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2108
		while (this_order && left < order_to_size(this_order - 1))
2109 2110 2111
			this_order--;

		do {
2112
			page = alloc_pages_node(node,
2113
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2114
				this_order);
2115 2116 2117 2118 2119 2120 2121 2122 2123
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2124
			goto fail;
2125 2126

		page->private = this_order;
2127
		list_add_tail(&page->lru, &tags->page_list);
2128 2129

		p = page_address(page);
2130 2131 2132 2133
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2134
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2135
		entries_per_page = order_to_size(this_order) / rq_size;
2136
		to_do = min(entries_per_page, depth - i);
2137 2138
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2139 2140 2141
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2142 2143 2144
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2145 2146
			}

2147 2148 2149 2150
			p += rq_size;
			i++;
		}
	}
2151
	return 0;
2152

2153
fail:
2154 2155
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2156 2157
}

J
Jens Axboe 已提交
2158 2159 2160 2161 2162
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2163
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2164
{
2165
	struct blk_mq_hw_ctx *hctx;
2166 2167 2168
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2169
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2170
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2171 2172 2173 2174 2175 2176 2177 2178 2179

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2180
		return 0;
2181

J
Jens Axboe 已提交
2182 2183 2184
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2185 2186

	blk_mq_run_hw_queue(hctx, true);
2187
	return 0;
2188 2189
}

2190
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2191
{
2192 2193
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2194 2195
}

2196
/* hctx->ctxs will be freed in queue's release handler */
2197 2198 2199 2200
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2201 2202
	blk_mq_debugfs_unregister_hctx(hctx);

2203 2204
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2205

2206
	if (set->ops->exit_request)
2207
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2208

2209 2210
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2211 2212 2213
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2214
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2215
		cleanup_srcu_struct(hctx->srcu);
2216

2217
	blk_mq_remove_cpuhp(hctx);
2218
	blk_free_flush_queue(hctx->fq);
2219
	sbitmap_free(&hctx->ctx_map);
2220 2221
}

M
Ming Lei 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2231
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2232 2233 2234
	}
}

2235 2236 2237
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2238
{
2239 2240 2241 2242 2243 2244
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2245
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2246 2247 2248
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2249
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2250

2251
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2252 2253

	hctx->tags = set->tags[hctx_idx];
2254 2255

	/*
2256 2257
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2258
	 */
2259
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2260 2261 2262
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2263

2264 2265
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2266
		goto free_ctxs;
2267

2268
	hctx->nr_ctx = 0;
2269

2270 2271 2272
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2273 2274 2275
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2276

2277 2278 2279
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2280 2281
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2282
		goto sched_exit_hctx;
2283

2284
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2285
		goto free_fq;
2286

2287
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2288
		init_srcu_struct(hctx->srcu);
2289

2290 2291
	blk_mq_debugfs_register_hctx(q, hctx);

2292
	return 0;
2293

2294 2295
 free_fq:
	kfree(hctx->fq);
2296 2297
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2298 2299 2300
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2301
 free_bitmap:
2302
	sbitmap_free(&hctx->ctx_map);
2303 2304 2305
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2306
	blk_mq_remove_cpuhp(hctx);
2307 2308
	return -1;
}
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2328
		hctx = blk_mq_map_queue(q, i);
2329
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2330
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2331 2332 2333
	}
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2356 2357 2358 2359 2360
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2361 2362
}

2363
static void blk_mq_map_swqueue(struct request_queue *q)
2364
{
2365
	unsigned int i, hctx_idx;
2366 2367
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2368
	struct blk_mq_tag_set *set = q->tag_set;
2369

2370 2371 2372 2373 2374
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2375
	queue_for_each_hw_ctx(q, hctx, i) {
2376
		cpumask_clear(hctx->cpumask);
2377 2378 2379 2380
		hctx->nr_ctx = 0;
	}

	/*
2381 2382 2383
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2384
	 */
2385
	for_each_possible_cpu(i) {
2386 2387
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2388 2389
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2390 2391 2392 2393 2394 2395
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2396
			q->mq_map[i] = 0;
2397 2398
		}

2399
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2400
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2401

2402
		cpumask_set_cpu(i, hctx->cpumask);
2403 2404 2405
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2406

2407 2408
	mutex_unlock(&q->sysfs_lock);

2409
	queue_for_each_hw_ctx(q, hctx, i) {
2410
		/*
2411 2412
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2413 2414
		 */
		if (!hctx->nr_ctx) {
2415 2416 2417 2418
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2419 2420 2421
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2422
			hctx->tags = NULL;
2423 2424 2425
			continue;
		}

M
Ming Lei 已提交
2426 2427 2428
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2429 2430 2431 2432 2433
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2434
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2435

2436 2437 2438
		/*
		 * Initialize batch roundrobin counts
		 */
2439 2440
		hctx->next_cpu = cpumask_first_and(hctx->cpumask,
				cpu_online_mask);
2441 2442
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2443 2444
}

2445 2446 2447 2448
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2449
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2450 2451 2452 2453
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2454
	queue_for_each_hw_ctx(q, hctx, i) {
2455 2456 2457
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2458
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2459 2460 2461
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2462
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2463
		}
2464 2465 2466
	}
}

2467 2468
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2469 2470
{
	struct request_queue *q;
2471

2472 2473
	lockdep_assert_held(&set->tag_list_lock);

2474 2475
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2476
		queue_set_hctx_shared(q, shared);
2477 2478 2479 2480 2481 2482 2483 2484 2485
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2486 2487
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2488 2489 2490 2491 2492 2493
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2494
	mutex_unlock(&set->tag_list_lock);
2495 2496

	synchronize_rcu();
2497 2498 2499 2500 2501 2502 2503 2504
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2505

2506 2507 2508 2509 2510
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2511 2512 2513 2514 2515 2516
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2517
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2518

2519 2520 2521
	mutex_unlock(&set->tag_list_lock);
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2534 2535 2536
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2537
		kobject_put(&hctx->kobj);
2538
	}
2539

2540 2541
	q->mq_map = NULL;

2542 2543
	kfree(q->queue_hw_ctx);

2544 2545 2546 2547 2548 2549
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2550 2551 2552
	free_percpu(q->queue_ctx);
}

2553
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2569 2570 2571 2572
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2573
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2574 2575 2576 2577 2578 2579 2580 2581 2582
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2583 2584
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2585
{
K
Keith Busch 已提交
2586 2587
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2588

K
Keith Busch 已提交
2589
	blk_mq_sysfs_unregister(q);
2590 2591 2592

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2593
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2594
		int node;
2595

K
Keith Busch 已提交
2596 2597 2598 2599
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2600
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2601
					GFP_KERNEL, node);
2602
		if (!hctxs[i])
K
Keith Busch 已提交
2603
			break;
2604

2605
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2606 2607 2608 2609 2610
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2611

2612
		atomic_set(&hctxs[i]->nr_active, 0);
2613
		hctxs[i]->numa_node = node;
2614
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2615 2616 2617 2618 2619 2620 2621 2622

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2623
	}
K
Keith Busch 已提交
2624 2625 2626 2627
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2628 2629
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2630 2631 2632 2633 2634 2635 2636
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2637
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2638 2639 2640 2641 2642 2643
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2644 2645 2646
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2647
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2648 2649
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2650 2651 2652
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2653 2654
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2655
		goto err_exit;
K
Keith Busch 已提交
2656

2657 2658 2659
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2660 2661 2662 2663 2664
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2665
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2666 2667 2668 2669

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2670

2671
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2672
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2673 2674 2675

	q->nr_queues = nr_cpu_ids;

2676
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2677

2678 2679 2680
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2681 2682
	q->sg_reserved_size = INT_MAX;

2683
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2684 2685 2686
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2687
	blk_queue_make_request(q, blk_mq_make_request);
2688 2689
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2690

2691 2692 2693 2694 2695
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2696 2697 2698 2699 2700
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2701 2702
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2703

2704
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2705
	blk_mq_add_queue_tag_set(set, q);
2706
	blk_mq_map_swqueue(q);
2707

2708 2709 2710 2711 2712 2713 2714 2715
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2716
	return q;
2717

2718
err_hctxs:
K
Keith Busch 已提交
2719
	kfree(q->queue_hw_ctx);
2720
err_percpu:
K
Keith Busch 已提交
2721
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2722 2723
err_exit:
	q->mq_ops = NULL;
2724 2725
	return ERR_PTR(-ENOMEM);
}
2726
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2727 2728 2729

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2730
	struct blk_mq_tag_set	*set = q->tag_set;
2731

2732
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2733
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2734 2735 2736
}

/* Basically redo blk_mq_init_queue with queue frozen */
2737
static void blk_mq_queue_reinit(struct request_queue *q)
2738
{
2739
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2740

2741
	blk_mq_debugfs_unregister_hctxs(q);
2742 2743
	blk_mq_sysfs_unregister(q);

2744 2745
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2746 2747
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2748
	 */
2749
	blk_mq_map_swqueue(q);
2750

2751
	blk_mq_sysfs_register(q);
2752
	blk_mq_debugfs_register_hctxs(q);
2753 2754
}

2755 2756 2757 2758
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2759 2760
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2761 2762 2763 2764 2765 2766
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2767
		blk_mq_free_rq_map(set->tags[i]);
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2807 2808
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2828
		return set->ops->map_queues(set);
2829
	} else
2830 2831 2832
		return blk_mq_map_queues(set);
}

2833 2834 2835 2836 2837 2838
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2839 2840
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2841 2842
	int ret;

B
Bart Van Assche 已提交
2843 2844
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2845 2846
	if (!set->nr_hw_queues)
		return -EINVAL;
2847
	if (!set->queue_depth)
2848 2849 2850 2851
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2852
	if (!set->ops->queue_rq)
2853 2854
		return -EINVAL;

2855 2856 2857
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2858 2859 2860 2861 2862
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2873 2874 2875 2876 2877
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2878

K
Keith Busch 已提交
2879
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2880 2881
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2882
		return -ENOMEM;
2883

2884 2885 2886
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2887 2888 2889
	if (!set->mq_map)
		goto out_free_tags;

2890
	ret = blk_mq_update_queue_map(set);
2891 2892 2893 2894 2895
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2896
		goto out_free_mq_map;
2897

2898 2899 2900
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2901
	return 0;
2902 2903 2904 2905 2906

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2907 2908
	kfree(set->tags);
	set->tags = NULL;
2909
	return ret;
2910 2911 2912 2913 2914 2915 2916
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2917 2918
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2919

2920 2921 2922
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2923
	kfree(set->tags);
2924
	set->tags = NULL;
2925 2926 2927
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2928 2929 2930 2931 2932 2933
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2934
	if (!set)
2935 2936
		return -EINVAL;

2937
	blk_mq_freeze_queue(q);
2938
	blk_mq_quiesce_queue(q);
2939

2940 2941
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2942 2943
		if (!hctx->tags)
			continue;
2944 2945 2946 2947
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2948
		if (!hctx->sched_tags) {
2949
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2950 2951 2952 2953 2954
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2955 2956 2957 2958 2959 2960 2961
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2962
	blk_mq_unquiesce_queue(q);
2963 2964
	blk_mq_unfreeze_queue(q);

2965 2966 2967
	return ret;
}

2968 2969
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2970 2971 2972
{
	struct request_queue *q;

2973 2974
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2984
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2985 2986
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2987
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2988 2989 2990 2991 2992
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2993 2994 2995 2996 2997 2998 2999

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
3000 3001
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3028
	int bucket;
3029

3030 3031 3032 3033
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3034 3035
}

3036 3037 3038 3039 3040
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3041
	int bucket;
3042 3043 3044 3045 3046

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3047
	if (!blk_poll_stats_enable(q))
3048 3049 3050 3051 3052 3053 3054 3055
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3056 3057
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3058
	 */
3059 3060 3061 3062 3063 3064
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3065 3066 3067 3068

	return ret;
}

3069
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3070
				     struct blk_mq_hw_ctx *hctx,
3071 3072 3073 3074
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3075
	unsigned int nsecs;
3076 3077
	ktime_t kt;

J
Jens Axboe 已提交
3078
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3096 3097
		return false;

J
Jens Axboe 已提交
3098
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3099 3100 3101 3102 3103

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3104
	kt = nsecs;
3105 3106 3107 3108 3109 3110 3111

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3112
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3127 3128 3129 3130 3131
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3132 3133 3134 3135 3136 3137 3138
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3139
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3140 3141
		return true;

J
Jens Axboe 已提交
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3167
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3168 3169 3170
	return false;
}

3171
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3172 3173 3174 3175
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3176
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3177 3178 3179
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3180 3181
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3182
	else {
3183
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3184 3185 3186 3187 3188 3189 3190 3191 3192
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3193 3194 3195 3196

	return __blk_mq_poll(hctx, rq);
}

3197 3198
static int __init blk_mq_init(void)
{
3199 3200
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3201 3202 3203
	return 0;
}
subsys_initcall(blk_mq_init);