blk-mq.c 75.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98
	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128 129
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	blk_mq_freeze_queue_wait(q);
}
165 166 167 168 169 170 171 172 173

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
174
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175

176
void blk_mq_unfreeze_queue(struct request_queue *q)
177
{
178
	int freeze_depth;
179

180 181 182
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
183
		percpu_ref_reinit(&q->q_usage_counter);
184
		wake_up_all(&q->mq_freeze_wq);
185
	}
186
}
187
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

203
/**
204
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 206 207
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
208 209 210
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
211 212 213 214 215 216 217
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

218
	blk_mq_quiesce_queue_nowait(q);
219

220 221
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
222
			synchronize_srcu(hctx->srcu);
223 224 225 226 227 228 229 230
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

231 232 233 234 235 236 237 238 239
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
240 241 242
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
243
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244
	spin_unlock_irqrestore(q->queue_lock, flags);
245

246 247
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
248 249 250
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

251 252 253 254 255 256 257 258 259 260
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

261 262 263 264 265 266
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

267 268
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
269
{
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

286
	/* csd/requeue_work/fifo_time is initialized before use */
287 288
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
289 290
	rq->rq_flags = 0;
	rq->cpu = -1;
291
	rq->cmd_flags = op;
292 293
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
294
	if (blk_queue_io_stat(data->q))
295
		rq->rq_flags |= RQF_IO_STAT;
296
	INIT_LIST_HEAD(&rq->queuelist);
297 298 299 300
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
301
	rq->start_time = jiffies;
302 303 304 305 306 307 308
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
309
	rq->__deadline = 0;
310 311

	INIT_LIST_HEAD(&rq->timeout_list);
312 313
	rq->timeout = 0;

314 315 316 317
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

318 319 320 321 322 323
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
	set_start_time_ns(rq);
	rq->io_start_time_ns = 0;
#endif

324 325
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
326 327
}

328 329 330 331 332 333
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
334
	unsigned int tag;
335
	bool put_ctx_on_error = false;
336 337 338

	blk_queue_enter_live(q);
	data->q = q;
339 340 341 342
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
343 344
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
345 346
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
347 348 349 350 351 352 353 354

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
355 356
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
357 358
	}

359 360
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
361 362
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
363 364
			data->ctx = NULL;
		}
365 366
		blk_queue_exit(q);
		return NULL;
367 368
	}

369
	rq = blk_mq_rq_ctx_init(data, tag, op);
370 371
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
372
		if (e && e->type->ops.mq.prepare_request) {
373 374 375
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

376 377
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
378
		}
379 380 381
	}
	data->hctx->queued++;
	return rq;
382 383
}

384
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
385
		blk_mq_req_flags_t flags)
386
{
387
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
388
	struct request *rq;
389
	int ret;
390

391
	ret = blk_queue_enter(q, flags);
392 393
	if (ret)
		return ERR_PTR(ret);
394

395
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
396
	blk_queue_exit(q);
397

398
	if (!rq)
399
		return ERR_PTR(-EWOULDBLOCK);
400

401 402
	blk_mq_put_ctx(alloc_data.ctx);

403 404 405
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
406 407
	return rq;
}
408
EXPORT_SYMBOL(blk_mq_alloc_request);
409

410
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
411
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
412
{
413
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
414
	struct request *rq;
415
	unsigned int cpu;
M
Ming Lin 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

430
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
431 432 433
	if (ret)
		return ERR_PTR(ret);

434 435 436 437
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
438 439 440 441
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
442
	}
443
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
444
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
445

446
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
447
	blk_queue_exit(q);
448

449 450 451 452
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
453 454 455
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

456
void blk_mq_free_request(struct request *rq)
457 458
{
	struct request_queue *q = rq->q;
459 460 461 462 463
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

464
	if (rq->rq_flags & RQF_ELVPRIV) {
465 466 467 468 469 470 471
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
472

473
	ctx->rq_completed[rq_is_sync(rq)]++;
474
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
475
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
476

477 478 479
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
480
	wbt_done(q->rq_wb, &rq->issue_stat);
481

S
Shaohua Li 已提交
482 483 484
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

485
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
486 487 488
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
489
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
490
	blk_mq_sched_restart(hctx);
491
	blk_queue_exit(q);
492
}
J
Jens Axboe 已提交
493
EXPORT_SYMBOL_GPL(blk_mq_free_request);
494

495
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
496
{
M
Ming Lei 已提交
497 498
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
499
	if (rq->end_io) {
J
Jens Axboe 已提交
500
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
501
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
502 503 504
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
505
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
506
	}
507
}
508
EXPORT_SYMBOL(__blk_mq_end_request);
509

510
void blk_mq_end_request(struct request *rq, blk_status_t error)
511 512 513
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
514
	__blk_mq_end_request(rq, error);
515
}
516
EXPORT_SYMBOL(blk_mq_end_request);
517

518
static void __blk_mq_complete_request_remote(void *data)
519
{
520
	struct request *rq = data;
521

522
	rq->q->softirq_done_fn(rq);
523 524
}

525
static void __blk_mq_complete_request(struct request *rq)
526 527
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
528
	bool shared = false;
529 530
	int cpu;

531
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
532
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
533

534 535 536 537 538 539 540
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
541
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
542 543 544
		rq->q->softirq_done_fn(rq);
		return;
	}
545 546

	cpu = get_cpu();
C
Christoph Hellwig 已提交
547 548 549 550
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
551
		rq->csd.func = __blk_mq_complete_request_remote;
552 553
		rq->csd.info = rq;
		rq->csd.flags = 0;
554
		smp_call_function_single_async(ctx->cpu, &rq->csd);
555
	} else {
556
		rq->q->softirq_done_fn(rq);
557
	}
558 559
	put_cpu();
}
560

561
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
562
	__releases(hctx->srcu)
563 564 565 566
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
567
		srcu_read_unlock(hctx->srcu, srcu_idx);
568 569 570
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
571
	__acquires(hctx->srcu)
572
{
573 574 575
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
576
		rcu_read_lock();
577
	} else
578
		*srcu_idx = srcu_read_lock(hctx->srcu);
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

611 612 613 614 615 616 617 618
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
619
void blk_mq_complete_request(struct request *rq)
620
{
621
	struct request_queue *q = rq->q;
622 623
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
624 625

	if (unlikely(blk_should_fake_timeout(q)))
626
		return;
627

628 629 630 631 632 633 634 635 636 637 638
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
639
	hctx_lock(hctx, &srcu_idx);
640
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
641
		__blk_mq_complete_request(rq);
642
	hctx_unlock(hctx, srcu_idx);
643 644
}
EXPORT_SYMBOL(blk_mq_complete_request);
645

646 647
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
648
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
649 650 651
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

652
void blk_mq_start_request(struct request *rq)
653 654 655
{
	struct request_queue *q = rq->q;

656 657
	blk_mq_sched_started_request(rq);

658 659
	trace_block_rq_issue(q, rq);

660
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
661
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
662
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
663
		wbt_issue(q->rq_wb, &rq->issue_stat);
664 665
	}

666
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
667

668
	/*
669 670 671 672
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
673
	 *
674 675 676 677
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
678
	 */
679 680 681 682 683 684 685 686 687
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();

688 689 690 691 692 693 694 695
	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
696
}
697
EXPORT_SYMBOL(blk_mq_start_request);
698

699
/*
T
Tejun Heo 已提交
700 701 702
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
703
 */
704
static void __blk_mq_requeue_request(struct request *rq)
705 706 707
{
	struct request_queue *q = rq->q;

708 709
	blk_mq_put_driver_tag(rq);

710
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
711
	wbt_requeue(q->rq_wb, &rq->issue_stat);
712
	blk_mq_sched_requeue_request(rq);
713

T
Tejun Heo 已提交
714
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
715
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
716 717 718
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
719 720
}

721
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
722 723 724 725
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
726
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
727 728 729
}
EXPORT_SYMBOL(blk_mq_requeue_request);

730 731 732
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
733
		container_of(work, struct request_queue, requeue_work.work);
734 735 736
	LIST_HEAD(rq_list);
	struct request *rq, *next;

737
	spin_lock_irq(&q->requeue_lock);
738
	list_splice_init(&q->requeue_list, &rq_list);
739
	spin_unlock_irq(&q->requeue_lock);
740 741

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
742
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
743 744
			continue;

745
		rq->rq_flags &= ~RQF_SOFTBARRIER;
746
		list_del_init(&rq->queuelist);
747
		blk_mq_sched_insert_request(rq, true, false, false, true);
748 749 750 751 752
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
753
		blk_mq_sched_insert_request(rq, false, false, false, true);
754 755
	}

756
	blk_mq_run_hw_queues(q, false);
757 758
}

759 760
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
761 762 763 764 765 766
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
767
	 * request head insertion from the workqueue.
768
	 */
769
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
770 771 772

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
773
		rq->rq_flags |= RQF_SOFTBARRIER;
774 775 776 777 778
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
779 780 781

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
782 783 784 785 786
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
787
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
788 789 790
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

791 792 793
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
794 795
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
796 797 798
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

799 800
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
801 802
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
803
		return tags->rqs[tag];
804
	}
805 806

	return NULL;
807 808 809
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

810
struct blk_mq_timeout_data {
811 812
	unsigned long next;
	unsigned int next_set;
813
	unsigned int nr_expired;
814 815
};

816
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
817
{
J
Jens Axboe 已提交
818
	const struct blk_mq_ops *ops = req->q->mq_ops;
819
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
820

821 822
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;

823
	if (ops->timeout)
824
		ret = ops->timeout(req, reserved);
825 826 827 828 829 830

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
831 832 833 834 835 836
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
837 838 839 840 841 842 843 844
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
845
}
846

847 848 849 850
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
851 852 853 854
	unsigned long gstate, deadline;
	int start;

	might_sleep();
855

T
Tejun Heo 已提交
856
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
857
		return;
858

859 860 861 862
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
863
		deadline = blk_rq_deadline(rq);
864 865 866 867
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
868

869 870 871 872 873 874
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
875 876
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
877 878
		data->next_set = 1;
	}
879 880
}

881 882 883 884 885 886 887 888 889 890
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
891 892
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
893 894 895
		blk_mq_rq_timed_out(rq, reserved);
}

896
static void blk_mq_timeout_work(struct work_struct *work)
897
{
898 899
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
900 901 902
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
903
		.nr_expired	= 0,
904
	};
905
	struct blk_mq_hw_ctx *hctx;
906
	int i;
907

908 909 910 911 912 913 914 915 916
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
917
	 * blk_freeze_queue_start, and the moment the last request is
918 919 920 921
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
922 923
		return;

924
	/* scan for the expired ones and set their ->aborted_gstate */
925
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
926

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
943
				synchronize_srcu(hctx->srcu);
944 945 946 947 948 949 950 951 952 953

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

954 955 956
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
957
	} else {
958 959 960 961 962 963
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
964 965 966 967 968
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
969
	}
970
	blk_queue_exit(q);
971 972
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

991 992 993 994
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
995
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
996
{
997 998 999 1000
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1001

1002
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1003
}
1004
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1045 1046 1047 1048
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1049

1050
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1051 1052
}

1053 1054
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1055 1056 1057 1058 1059 1060 1061
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1062 1063
	might_sleep_if(wait);

1064 1065
	if (rq->tag != -1)
		goto done;
1066

1067 1068 1069
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1070 1071
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1072 1073 1074 1075
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1076 1077 1078
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1079 1080 1081 1082
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1083 1084
}

1085 1086
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1087 1088 1089 1090 1091
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1092
	list_del_init(&wait->entry);
1093 1094 1095 1096
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1097 1098
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1099 1100
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1101 1102 1103 1104
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1105
{
1106
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1107
	struct sbq_wait_state *ws;
1108 1109
	wait_queue_entry_t *wait;
	bool ret;
1110

1111
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1112 1113
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1124 1125
	}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
	}

	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1139
	/*
1140 1141 1142
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1143
	 */
1144
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1145
	if (!ret) {
1146
		spin_unlock(&this_hctx->lock);
1147
		return false;
1148
	}
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1160 1161
}

1162
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1163
			     bool got_budget)
1164
{
1165
	struct blk_mq_hw_ctx *hctx;
1166
	struct request *rq, *nxt;
1167
	bool no_tag = false;
1168
	int errors, queued;
1169

1170 1171 1172
	if (list_empty(list))
		return false;

1173 1174
	WARN_ON(!list_is_singular(list) && got_budget);

1175 1176 1177
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1178
	errors = queued = 0;
1179
	do {
1180
		struct blk_mq_queue_data bd;
1181
		blk_status_t ret;
1182

1183
		rq = list_first_entry(list, struct request, queuelist);
1184
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1185
			/*
1186
			 * The initial allocation attempt failed, so we need to
1187 1188 1189 1190
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1191
			 */
1192
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1193 1194
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1195 1196 1197 1198 1199 1200
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1201 1202 1203 1204
				break;
			}
		}

1205 1206
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1207
			break;
1208
		}
1209

1210 1211
		list_del_init(&rq->queuelist);

1212
		bd.rq = rq;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1224 1225

		ret = q->mq_ops->queue_rq(hctx, &bd);
1226
		if (ret == BLK_STS_RESOURCE) {
1227 1228
			/*
			 * If an I/O scheduler has been configured and we got a
1229 1230
			 * driver tag for the next request already, free it
			 * again.
1231 1232 1233 1234 1235
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1236
			list_add(&rq->queuelist, list);
1237
			__blk_mq_requeue_request(rq);
1238
			break;
1239 1240 1241
		}

		if (unlikely(ret != BLK_STS_OK)) {
1242
			errors++;
1243
			blk_mq_end_request(rq, BLK_STS_IOERR);
1244
			continue;
1245 1246
		}

1247
		queued++;
1248
	} while (!list_empty(list));
1249

1250
	hctx->dispatched[queued_to_index(queued)]++;
1251 1252 1253 1254 1255

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1256
	if (!list_empty(list)) {
1257
		spin_lock(&hctx->lock);
1258
		list_splice_init(list, &hctx->dispatch);
1259
		spin_unlock(&hctx->lock);
1260

1261
		/*
1262 1263 1264
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1265
		 *
1266 1267 1268 1269
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1270
		 *
1271 1272 1273 1274 1275 1276 1277
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1278
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1279
		 *   and dm-rq.
1280
		 */
1281 1282
		if (!blk_mq_sched_needs_restart(hctx) ||
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1283
			blk_mq_run_hw_queue(hctx, true);
1284
	}
1285

1286
	return (queued + errors) != 0;
1287 1288
}

1289 1290 1291 1292
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1293 1294 1295 1296
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1297 1298 1299
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1300 1301 1302 1303 1304 1305
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1306
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1307

1308 1309 1310
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1321 1322
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1323 1324

	if (--hctx->next_cpu_batch <= 0) {
1325
		int next_cpu;
1326

1327 1328
		next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
				cpu_online_mask);
1329
		if (next_cpu >= nr_cpu_ids)
1330
			next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1331 1332 1333 1334 1335

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1336
	return hctx->next_cpu;
1337 1338
}

1339 1340
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1341
{
1342 1343 1344 1345
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1346 1347
		return;

1348
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1349 1350
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1351
			__blk_mq_run_hw_queue(hctx);
1352
			put_cpu();
1353 1354
			return;
		}
1355

1356
		put_cpu();
1357
	}
1358

1359 1360 1361
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1362 1363 1364 1365 1366 1367 1368 1369
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1370
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1371
{
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1383 1384 1385 1386
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1387 1388

	if (need_run) {
1389 1390 1391 1392 1393
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1394
}
O
Omar Sandoval 已提交
1395
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1396

1397
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1398 1399 1400 1401 1402
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1403
		if (blk_mq_hctx_stopped(hctx))
1404 1405
			continue;

1406
		blk_mq_run_hw_queue(hctx, async);
1407 1408
	}
}
1409
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1431 1432 1433
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1434
 * BLK_STS_RESOURCE is usually returned.
1435 1436 1437 1438 1439
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1440 1441
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1442
	cancel_delayed_work(&hctx->run_work);
1443

1444
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1445
}
1446
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1447

1448 1449 1450
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1451
 * BLK_STS_RESOURCE is usually returned.
1452 1453 1454 1455 1456
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1457 1458
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1459 1460 1461 1462 1463
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1464 1465 1466
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1467 1468 1469
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1470

1471
	blk_mq_run_hw_queue(hctx, false);
1472 1473 1474
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1495
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1496 1497 1498 1499
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1500 1501
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1502 1503 1504
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1505
static void blk_mq_run_work_fn(struct work_struct *work)
1506 1507 1508
{
	struct blk_mq_hw_ctx *hctx;

1509
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1510

1511 1512 1513 1514 1515 1516 1517 1518
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1519

1520 1521 1522
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1523 1524 1525 1526

	__blk_mq_run_hw_queue(hctx);
}

1527 1528 1529

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1530
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1531
		return;
1532

1533 1534 1535 1536 1537
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1538
	blk_mq_stop_hw_queue(hctx);
1539 1540 1541 1542
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1543 1544 1545
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1546 1547 1548
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1549
{
J
Jens Axboe 已提交
1550 1551
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1552 1553
	lockdep_assert_held(&ctx->lock);

1554 1555
	trace_block_rq_insert(hctx->queue, rq);

1556 1557 1558 1559
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1560
}
1561

1562 1563
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1564 1565 1566
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1567 1568
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1569
	__blk_mq_insert_req_list(hctx, rq, at_head);
1570 1571 1572
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1573 1574 1575 1576
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1577
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1578 1579 1580 1581 1582 1583 1584 1585
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1586 1587
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1588 1589
}

1590 1591
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1603
		BUG_ON(rq->mq_ctx != ctx);
1604
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1605
		__blk_mq_insert_req_list(hctx, rq, false);
1606
	}
1607
	blk_mq_hctx_mark_pending(hctx, ctx);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1644 1645 1646 1647
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1664 1665 1666
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1667 1668 1669 1670 1671
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1672
	blk_init_request_from_bio(rq, bio);
1673

S
Shaohua Li 已提交
1674 1675
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1676
	blk_account_io_start(rq, true);
1677 1678
}

1679 1680 1681 1682 1683 1684 1685
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1686
}
1687

1688 1689
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1690 1691 1692 1693
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1694 1695
}

M
Ming Lei 已提交
1696 1697
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
1698
					blk_qc_t *cookie)
1699 1700 1701 1702
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1703
		.last = true,
1704
	};
1705
	blk_qc_t new_cookie;
1706
	blk_status_t ret;
M
Ming Lei 已提交
1707 1708
	bool run_queue = true;

1709 1710
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1711 1712 1713
		run_queue = false;
		goto insert;
	}
1714

1715
	if (q->elevator)
1716 1717
		goto insert;

M
Ming Lei 已提交
1718
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1719 1720
		goto insert;

1721
	if (!blk_mq_get_dispatch_budget(hctx)) {
1722 1723
		blk_mq_put_driver_tag(rq);
		goto insert;
1724
	}
1725

1726 1727
	new_cookie = request_to_qc_t(hctx, rq);

1728 1729 1730 1731 1732 1733
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1734 1735
	switch (ret) {
	case BLK_STS_OK:
1736
		*cookie = new_cookie;
1737
		return;
1738 1739 1740 1741
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1742
		*cookie = BLK_QC_T_NONE;
1743
		blk_mq_end_request(rq, ret);
1744
		return;
1745
	}
1746

1747
insert:
1748 1749
	blk_mq_sched_insert_request(rq, false, run_queue, false,
					hctx->flags & BLK_MQ_F_BLOCKING);
1750 1751
}

1752 1753 1754
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1755
	int srcu_idx;
1756

1757
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1758

1759 1760 1761
	hctx_lock(hctx, &srcu_idx);
	__blk_mq_try_issue_directly(hctx, rq, cookie);
	hctx_unlock(hctx, srcu_idx);
1762 1763
}

1764
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1765
{
1766
	const int is_sync = op_is_sync(bio->bi_opf);
1767
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1768
	struct blk_mq_alloc_data data = { .flags = 0 };
1769
	struct request *rq;
1770
	unsigned int request_count = 0;
1771
	struct blk_plug *plug;
1772
	struct request *same_queue_rq = NULL;
1773
	blk_qc_t cookie;
J
Jens Axboe 已提交
1774
	unsigned int wb_acct;
1775 1776 1777

	blk_queue_bounce(q, &bio);

1778
	blk_queue_split(q, &bio);
1779

1780
	if (!bio_integrity_prep(bio))
1781
		return BLK_QC_T_NONE;
1782

1783 1784 1785
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1786

1787 1788 1789
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1790 1791
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1792 1793
	trace_block_getrq(q, bio, bio->bi_opf);

1794
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1795 1796
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1797 1798
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1799
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1800 1801 1802
	}

	wbt_track(&rq->issue_stat, wb_acct);
1803

1804
	cookie = request_to_qc_t(data.hctx, rq);
1805

1806
	plug = current->plug;
1807
	if (unlikely(is_flush_fua)) {
1808
		blk_mq_put_ctx(data.ctx);
1809
		blk_mq_bio_to_request(rq, bio);
1810 1811 1812 1813

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1814
	} else if (plug && q->nr_hw_queues == 1) {
1815 1816
		struct request *last = NULL;

1817
		blk_mq_put_ctx(data.ctx);
1818
		blk_mq_bio_to_request(rq, bio);
1819 1820 1821 1822 1823 1824 1825

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1826 1827 1828
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1829
		if (!request_count)
1830
			trace_block_plug(q);
1831 1832
		else
			last = list_entry_rq(plug->mq_list.prev);
1833

1834 1835
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1836 1837
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1838
		}
1839

1840
		list_add_tail(&rq->queuelist, &plug->mq_list);
1841
	} else if (plug && !blk_queue_nomerges(q)) {
1842
		blk_mq_bio_to_request(rq, bio);
1843 1844

		/*
1845
		 * We do limited plugging. If the bio can be merged, do that.
1846 1847
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1848 1849
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1850
		 */
1851 1852 1853 1854 1855 1856
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1857 1858
		blk_mq_put_ctx(data.ctx);

1859 1860 1861
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1862 1863
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1864
		}
1865
	} else if (q->nr_hw_queues > 1 && is_sync) {
1866
		blk_mq_put_ctx(data.ctx);
1867 1868
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1869
	} else if (q->elevator) {
1870
		blk_mq_put_ctx(data.ctx);
1871
		blk_mq_bio_to_request(rq, bio);
1872
		blk_mq_sched_insert_request(rq, false, true, true, true);
1873
	} else {
1874
		blk_mq_put_ctx(data.ctx);
1875 1876
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1877
		blk_mq_run_hw_queue(data.hctx, true);
1878
	}
1879

1880
	return cookie;
1881 1882
}

1883 1884
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1885
{
1886
	struct page *page;
1887

1888
	if (tags->rqs && set->ops->exit_request) {
1889
		int i;
1890

1891
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1892 1893 1894
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1895
				continue;
1896
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1897
			tags->static_rqs[i] = NULL;
1898
		}
1899 1900
	}

1901 1902
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1903
		list_del_init(&page->lru);
1904 1905 1906 1907 1908
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1909 1910
		__free_pages(page, page->private);
	}
1911
}
1912

1913 1914
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1915
	kfree(tags->rqs);
1916
	tags->rqs = NULL;
J
Jens Axboe 已提交
1917 1918
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1919

1920
	blk_mq_free_tags(tags);
1921 1922
}

1923 1924 1925 1926
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1927
{
1928
	struct blk_mq_tags *tags;
1929
	int node;
1930

1931 1932 1933 1934 1935
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1936
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1937 1938
	if (!tags)
		return NULL;
1939

1940
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1941
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1942
				 node);
1943 1944 1945 1946
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1947

J
Jens Axboe 已提交
1948 1949
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1950
				 node);
J
Jens Axboe 已提交
1951 1952 1953 1954 1955 1956
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1957 1958 1959 1960 1961 1962 1963 1964
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
	return 0;
}

1981 1982 1983 1984 1985
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1986 1987 1988 1989 1990
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1991 1992 1993

	INIT_LIST_HEAD(&tags->page_list);

1994 1995 1996 1997
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1998
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1999
				cache_line_size());
2000
	left = rq_size * depth;
2001

2002
	for (i = 0; i < depth; ) {
2003 2004 2005 2006 2007
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2008
		while (this_order && left < order_to_size(this_order - 1))
2009 2010 2011
			this_order--;

		do {
2012
			page = alloc_pages_node(node,
2013
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2014
				this_order);
2015 2016 2017 2018 2019 2020 2021 2022 2023
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2024
			goto fail;
2025 2026

		page->private = this_order;
2027
		list_add_tail(&page->lru, &tags->page_list);
2028 2029

		p = page_address(page);
2030 2031 2032 2033
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2034
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2035
		entries_per_page = order_to_size(this_order) / rq_size;
2036
		to_do = min(entries_per_page, depth - i);
2037 2038
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2039 2040 2041
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2042 2043 2044
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2045 2046
			}

2047 2048 2049 2050
			p += rq_size;
			i++;
		}
	}
2051
	return 0;
2052

2053
fail:
2054 2055
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2056 2057
}

J
Jens Axboe 已提交
2058 2059 2060 2061 2062
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2063
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2064
{
2065
	struct blk_mq_hw_ctx *hctx;
2066 2067 2068
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2069
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2070
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2071 2072 2073 2074 2075 2076 2077 2078 2079

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2080
		return 0;
2081

J
Jens Axboe 已提交
2082 2083 2084
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2085 2086

	blk_mq_run_hw_queue(hctx, true);
2087
	return 0;
2088 2089
}

2090
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2091
{
2092 2093
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2094 2095
}

2096
/* hctx->ctxs will be freed in queue's release handler */
2097 2098 2099 2100
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2101 2102
	blk_mq_debugfs_unregister_hctx(hctx);

2103 2104
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2105

2106
	if (set->ops->exit_request)
2107
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2108

2109 2110
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2111 2112 2113
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2114
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2115
		cleanup_srcu_struct(hctx->srcu);
2116

2117
	blk_mq_remove_cpuhp(hctx);
2118
	blk_free_flush_queue(hctx->fq);
2119
	sbitmap_free(&hctx->ctx_map);
2120 2121
}

M
Ming Lei 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2131
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2132 2133 2134
	}
}

2135 2136 2137
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2138
{
2139 2140 2141 2142 2143 2144
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2145
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2146 2147 2148
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2149
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2150

2151
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2152 2153

	hctx->tags = set->tags[hctx_idx];
2154 2155

	/*
2156 2157
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2158
	 */
2159
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2160 2161 2162
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2163

2164 2165
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2166
		goto free_ctxs;
2167

2168
	hctx->nr_ctx = 0;
2169

2170 2171 2172
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2173 2174 2175
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2176

2177 2178 2179
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2180 2181
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2182
		goto sched_exit_hctx;
2183

2184
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2185
		goto free_fq;
2186

2187
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2188
		init_srcu_struct(hctx->srcu);
2189

2190 2191
	blk_mq_debugfs_register_hctx(q, hctx);

2192
	return 0;
2193

2194 2195
 free_fq:
	kfree(hctx->fq);
2196 2197
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2198 2199 2200
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2201
 free_bitmap:
2202
	sbitmap_free(&hctx->ctx_map);
2203 2204 2205
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2206
	blk_mq_remove_cpuhp(hctx);
2207 2208
	return -1;
}
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2228
		hctx = blk_mq_map_queue(q, i);
2229
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2230
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2231 2232 2233
	}
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2256 2257 2258 2259 2260
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2261 2262
}

2263
static void blk_mq_map_swqueue(struct request_queue *q)
2264
{
2265
	unsigned int i, hctx_idx;
2266 2267
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2268
	struct blk_mq_tag_set *set = q->tag_set;
2269

2270 2271 2272 2273 2274
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2275
	queue_for_each_hw_ctx(q, hctx, i) {
2276
		cpumask_clear(hctx->cpumask);
2277 2278 2279 2280
		hctx->nr_ctx = 0;
	}

	/*
2281 2282 2283
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2284
	 */
2285
	for_each_possible_cpu(i) {
2286 2287
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2288 2289
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2290 2291 2292 2293 2294 2295
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2296
			q->mq_map[i] = 0;
2297 2298
		}

2299
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2300
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2301

2302
		cpumask_set_cpu(i, hctx->cpumask);
2303 2304 2305
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2306

2307 2308
	mutex_unlock(&q->sysfs_lock);

2309
	queue_for_each_hw_ctx(q, hctx, i) {
2310
		/*
2311 2312
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2313 2314
		 */
		if (!hctx->nr_ctx) {
2315 2316 2317 2318
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2319 2320 2321
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2322
			hctx->tags = NULL;
2323 2324 2325
			continue;
		}

M
Ming Lei 已提交
2326 2327 2328
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2329 2330 2331 2332 2333
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2334
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2335

2336 2337 2338
		/*
		 * Initialize batch roundrobin counts
		 */
2339 2340
		hctx->next_cpu = cpumask_first_and(hctx->cpumask,
				cpu_online_mask);
2341 2342
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2343 2344
}

2345 2346 2347 2348
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2349
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2350 2351 2352 2353
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2354
	queue_for_each_hw_ctx(q, hctx, i) {
2355 2356 2357
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2358
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2359 2360 2361
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2362
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2363
		}
2364 2365 2366
	}
}

2367 2368
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2369 2370
{
	struct request_queue *q;
2371

2372 2373
	lockdep_assert_held(&set->tag_list_lock);

2374 2375
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2376
		queue_set_hctx_shared(q, shared);
2377 2378 2379 2380 2381 2382 2383 2384 2385
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2386 2387
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2388 2389 2390 2391 2392 2393
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2394
	mutex_unlock(&set->tag_list_lock);
2395 2396

	synchronize_rcu();
2397 2398 2399 2400 2401 2402 2403 2404
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2405

2406 2407 2408 2409 2410
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2411 2412 2413 2414 2415 2416
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2417
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2418

2419 2420 2421
	mutex_unlock(&set->tag_list_lock);
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2434 2435 2436
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2437
		kobject_put(&hctx->kobj);
2438
	}
2439

2440 2441
	q->mq_map = NULL;

2442 2443
	kfree(q->queue_hw_ctx);

2444 2445 2446 2447 2448 2449
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2450 2451 2452
	free_percpu(q->queue_ctx);
}

2453
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2469 2470 2471 2472
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2473
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2474 2475 2476 2477 2478 2479 2480 2481 2482
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2483 2484
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2485
{
K
Keith Busch 已提交
2486 2487
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2488

K
Keith Busch 已提交
2489
	blk_mq_sysfs_unregister(q);
2490 2491 2492

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2493
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2494
		int node;
2495

K
Keith Busch 已提交
2496 2497 2498 2499
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2500
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2501
					GFP_KERNEL, node);
2502
		if (!hctxs[i])
K
Keith Busch 已提交
2503
			break;
2504

2505
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2506 2507 2508 2509 2510
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2511

2512
		atomic_set(&hctxs[i]->nr_active, 0);
2513
		hctxs[i]->numa_node = node;
2514
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2515 2516 2517 2518 2519 2520 2521 2522

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2523
	}
K
Keith Busch 已提交
2524 2525 2526 2527
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2528 2529
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2530 2531 2532 2533 2534 2535 2536
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2537
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2538 2539 2540 2541 2542 2543
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2544 2545 2546
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2547
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2548 2549
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2550 2551 2552
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2553 2554
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2555
		goto err_exit;
K
Keith Busch 已提交
2556

2557 2558 2559
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2560 2561 2562 2563 2564
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2565
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2566 2567 2568 2569

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2570

2571
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2572
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2573 2574 2575

	q->nr_queues = nr_cpu_ids;

2576
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2577

2578 2579 2580
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2581 2582
	q->sg_reserved_size = INT_MAX;

2583
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2584 2585 2586
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2587
	blk_queue_make_request(q, blk_mq_make_request);
2588 2589
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2590

2591 2592 2593 2594 2595
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2596 2597 2598 2599 2600
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2601 2602
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2603

2604
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2605
	blk_mq_add_queue_tag_set(set, q);
2606
	blk_mq_map_swqueue(q);
2607

2608 2609 2610 2611 2612 2613 2614 2615
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2616
	return q;
2617

2618
err_hctxs:
K
Keith Busch 已提交
2619
	kfree(q->queue_hw_ctx);
2620
err_percpu:
K
Keith Busch 已提交
2621
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2622 2623
err_exit:
	q->mq_ops = NULL;
2624 2625
	return ERR_PTR(-ENOMEM);
}
2626
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2627 2628 2629

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2630
	struct blk_mq_tag_set	*set = q->tag_set;
2631

2632
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2633
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2634 2635 2636
}

/* Basically redo blk_mq_init_queue with queue frozen */
2637
static void blk_mq_queue_reinit(struct request_queue *q)
2638
{
2639
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2640

2641
	blk_mq_debugfs_unregister_hctxs(q);
2642 2643
	blk_mq_sysfs_unregister(q);

2644 2645
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2646 2647
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2648
	 */
2649
	blk_mq_map_swqueue(q);
2650

2651
	blk_mq_sysfs_register(q);
2652
	blk_mq_debugfs_register_hctxs(q);
2653 2654
}

2655 2656 2657 2658
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2659 2660
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2661 2662 2663 2664 2665 2666
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2667
		blk_mq_free_rq_map(set->tags[i]);
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2707 2708
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2728
		return set->ops->map_queues(set);
2729
	} else
2730 2731 2732
		return blk_mq_map_queues(set);
}

2733 2734 2735 2736 2737 2738
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2739 2740
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2741 2742
	int ret;

B
Bart Van Assche 已提交
2743 2744
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2745 2746
	if (!set->nr_hw_queues)
		return -EINVAL;
2747
	if (!set->queue_depth)
2748 2749 2750 2751
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2752
	if (!set->ops->queue_rq)
2753 2754
		return -EINVAL;

2755 2756 2757
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2758 2759 2760 2761 2762
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2763

2764 2765 2766 2767 2768 2769 2770 2771 2772
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2773 2774 2775 2776 2777
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2778

K
Keith Busch 已提交
2779
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2780 2781
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2782
		return -ENOMEM;
2783

2784 2785 2786
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2787 2788 2789
	if (!set->mq_map)
		goto out_free_tags;

2790
	ret = blk_mq_update_queue_map(set);
2791 2792 2793 2794 2795
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2796
		goto out_free_mq_map;
2797

2798 2799 2800
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2801
	return 0;
2802 2803 2804 2805 2806

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2807 2808
	kfree(set->tags);
	set->tags = NULL;
2809
	return ret;
2810 2811 2812 2813 2814 2815 2816
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2817 2818
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2819

2820 2821 2822
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2823
	kfree(set->tags);
2824
	set->tags = NULL;
2825 2826 2827
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2828 2829 2830 2831 2832 2833
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2834
	if (!set)
2835 2836
		return -EINVAL;

2837
	blk_mq_freeze_queue(q);
2838
	blk_mq_quiesce_queue(q);
2839

2840 2841
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2842 2843
		if (!hctx->tags)
			continue;
2844 2845 2846 2847
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2848
		if (!hctx->sched_tags) {
2849
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2850 2851 2852 2853 2854
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2855 2856 2857 2858 2859 2860 2861
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2862
	blk_mq_unquiesce_queue(q);
2863 2864
	blk_mq_unfreeze_queue(q);

2865 2866 2867
	return ret;
}

2868 2869
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2870 2871 2872
{
	struct request_queue *q;

2873 2874
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2884
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2885 2886
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2887
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2888 2889 2890 2891 2892
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2893 2894 2895 2896 2897 2898 2899

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2900 2901
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2928
	int bucket;
2929

2930 2931 2932 2933
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2934 2935
}

2936 2937 2938 2939 2940
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2941
	int bucket;
2942 2943 2944 2945 2946

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2947
	if (!blk_poll_stats_enable(q))
2948 2949 2950 2951 2952 2953 2954 2955
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2956 2957
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2958
	 */
2959 2960 2961 2962 2963 2964
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2965 2966 2967 2968

	return ret;
}

2969
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2970
				     struct blk_mq_hw_ctx *hctx,
2971 2972 2973 2974
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2975
	unsigned int nsecs;
2976 2977
	ktime_t kt;

J
Jens Axboe 已提交
2978
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2996 2997
		return false;

J
Jens Axboe 已提交
2998
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2999 3000 3001 3002 3003

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3004
	kt = nsecs;
3005 3006 3007 3008 3009 3010 3011

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3012
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3027 3028 3029 3030 3031
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3032 3033 3034 3035 3036 3037 3038
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3039
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3040 3041
		return true;

J
Jens Axboe 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

3070
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3071 3072 3073 3074
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3075
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3076 3077 3078
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3079 3080
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3081
	else {
3082
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3083 3084 3085 3086 3087 3088 3089 3090 3091
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3092 3093 3094 3095

	return __blk_mq_poll(hctx, rq);
}

3096 3097
static int __init blk_mq_init(void)
{
3098 3099
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3100 3101 3102
	return 0;
}
subsys_initcall(blk_mq_init);