memcontrol.c 192.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
B
Balbir Singh 已提交
26 27
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/mm_inline.h>
57
#include <linux/swap_cgroup.h>
58
#include <linux/cpu.h>
59
#include <linux/oom.h>
60
#include <linux/lockdep.h>
61
#include <linux/file.h>
62
#include <linux/tracehook.h>
63
#include <linux/psi.h>
64
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
68
#include "slab.h"
B
Balbir Singh 已提交
69

70
#include <linux/uaccess.h>
71

72 73
#include <trace/events/vmscan.h>

74 75
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
76

77 78
struct mem_cgroup *root_mem_cgroup __read_mostly;

79 80
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82

83
/* Socket memory accounting disabled? */
84
static bool cgroup_memory_nosocket __ro_after_init;
85

86
/* Kernel memory accounting disabled? */
87
bool cgroup_memory_nokmem __ro_after_init;
88

89
/* Whether the swap controller is active */
A
Andrew Morton 已提交
90
#ifdef CONFIG_MEMCG_SWAP
91
bool cgroup_memory_noswap __ro_after_init;
92
#else
93
#define cgroup_memory_noswap		1
94
#endif
95

96 97 98 99
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
103
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 105
}

106 107
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
108

109 110 111 112 113
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

114
struct mem_cgroup_tree_per_node {
115
	struct rb_root rb_root;
116
	struct rb_node *rb_rightmost;
117 118 119 120 121 122 123 124 125
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
126 127 128 129 130
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
131

132 133 134
/*
 * cgroup_event represents events which userspace want to receive.
 */
135
struct mem_cgroup_event {
136
	/*
137
	 * memcg which the event belongs to.
138
	 */
139
	struct mem_cgroup *memcg;
140 141 142 143 144 145 146 147
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
148 149 150 151 152
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
153
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
154
			      struct eventfd_ctx *eventfd, const char *args);
155 156 157 158 159
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
160
	void (*unregister_event)(struct mem_cgroup *memcg,
161
				 struct eventfd_ctx *eventfd);
162 163 164 165 166 167
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
168
	wait_queue_entry_t wait;
169 170 171
	struct work_struct remove;
};

172 173
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174

175 176
/* Stuffs for move charges at task migration. */
/*
177
 * Types of charges to be moved.
178
 */
179 180 181
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
182

183 184
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
185
	spinlock_t	  lock; /* for from, to */
186
	struct mm_struct  *mm;
187 188
	struct mem_cgroup *from;
	struct mem_cgroup *to;
189
	unsigned long flags;
190
	unsigned long precharge;
191
	unsigned long moved_charge;
192
	unsigned long moved_swap;
193 194 195
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
196
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 198
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
199

200 201 202 203
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
204
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
205
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
206

207
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
208 209 210 211
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
212
	_KMEM,
V
Vladimir Davydov 已提交
213
	_TCP,
G
Glauber Costa 已提交
214 215
};

216 217
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218
#define MEMFILE_ATTR(val)	((val) & 0xffff)
I
Ingo Molnar 已提交
219
/* Used for OOM notifier */
K
KAMEZAWA Hiroyuki 已提交
220
#define OOM_CONTROL		(0)
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

237 238 239 240 241 242
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

243 244 245 246 247 248 249 250 251 252 253 254 255
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

256
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
257 258
extern spinlock_t css_set_lock;

259 260 261 262 263
bool mem_cgroup_kmem_disabled(void)
{
	return cgroup_memory_nokmem;
}

264 265
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages);
266

R
Roman Gushchin 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	if (nr_pages)
299
		obj_cgroup_uncharge_pages(objcg, nr_pages);
300 301

	spin_lock_irqsave(&css_set_lock, flags);
R
Roman Gushchin 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	list_del(&objcg->list);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

337 338 339 340 341 342
	/* 1) Ready to reparent active objcg. */
	list_add(&objcg->list, &memcg->objcg_list);
	/* 2) Reparent active objcg and already reparented objcgs to parent. */
	list_for_each_entry(iter, &memcg->objcg_list, list)
		WRITE_ONCE(iter->memcg, parent);
	/* 3) Move already reparented objcgs to the parent's list */
R
Roman Gushchin 已提交
343 344 345 346 347 348 349
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

350
/*
351
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
352 353 354 355 356
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
357
 *
358 359
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
360
 */
361 362
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
363

364 365 366 367 368 369 370 371 372 373 374 375 376
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

377 378 379 380 381 382
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
383
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 385
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
386
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 388 389
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
390
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391

392 393
/*
 * A lot of the calls to the cache allocation functions are expected to be
394
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 396 397
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
398
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399
EXPORT_SYMBOL(memcg_kmem_enabled_key);
400
#endif
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

417
	memcg = page_memcg(page);
418

419
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 421 422 423 424
		memcg = root_mem_cgroup;

	return &memcg->css;
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
444
	memcg = page_memcg_check(page);
445

446 447 448 449 450 451 452 453
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

454 455
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
456
{
457
	int nid = page_to_nid(page);
458

459
	return memcg->nodeinfo[nid];
460 461
}

462 463
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
464
{
465
	return soft_limit_tree.rb_tree_per_node[nid];
466 467
}

468
static struct mem_cgroup_tree_per_node *
469 470 471 472
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

473
	return soft_limit_tree.rb_tree_per_node[nid];
474 475
}

476 477
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
478
					 unsigned long new_usage_in_excess)
479 480 481
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
482
	struct mem_cgroup_per_node *mz_node;
483
	bool rightmost = true;
484 485 486 487 488 489 490 491 492

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
493
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
494
					tree_node);
495
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
496
			p = &(*p)->rb_left;
497
			rightmost = false;
498
		} else {
499
			p = &(*p)->rb_right;
500
		}
501
	}
502 503 504 505

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

506 507 508 509 510
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

511 512
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
513 514 515
{
	if (!mz->on_tree)
		return;
516 517 518 519

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

520 521 522 523
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

524 525
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
526
{
527 528 529
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
530
	__mem_cgroup_remove_exceeded(mz, mctz);
531
	spin_unlock_irqrestore(&mctz->lock, flags);
532 533
}

534 535 536
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
537
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
538 539 540 541 542 543 544
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
545 546 547

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
548
	unsigned long excess;
549 550
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
551

552
	mctz = soft_limit_tree_from_page(page);
553 554
	if (!mctz)
		return;
555 556 557 558 559
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
560
		mz = mem_cgroup_page_nodeinfo(memcg, page);
561
		excess = soft_limit_excess(memcg);
562 563 564 565 566
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
567 568 569
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
570 571
			/* if on-tree, remove it */
			if (mz->on_tree)
572
				__mem_cgroup_remove_exceeded(mz, mctz);
573 574 575 576
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
577
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
578
			spin_unlock_irqrestore(&mctz->lock, flags);
579 580 581 582 583 584
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
585 586 587
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
588

589
	for_each_node(nid) {
590
		mz = memcg->nodeinfo[nid];
591
		mctz = soft_limit_tree_node(nid);
592 593
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
594 595 596
	}
}

597 598
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
599
{
600
	struct mem_cgroup_per_node *mz;
601 602 603

retry:
	mz = NULL;
604
	if (!mctz->rb_rightmost)
605 606
		goto done;		/* Nothing to reclaim from */

607 608
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
609 610 611 612 613
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
614
	__mem_cgroup_remove_exceeded(mz, mctz);
615
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
616
	    !css_tryget(&mz->memcg->css))
617 618 619 620 621
		goto retry;
done:
	return mz;
}

622 623
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
624
{
625
	struct mem_cgroup_per_node *mz;
626

627
	spin_lock_irq(&mctz->lock);
628
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
629
	spin_unlock_irq(&mctz->lock);
630 631 632
	return mz;
}

633 634 635 636 637 638 639 640 641 642 643
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	if (mem_cgroup_disabled())
		return;

644 645
	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
646 647
}

648
/* idx can be of type enum memcg_stat_item or node_stat_item. */
649 650
static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
{
651
	long x = READ_ONCE(memcg->vmstats.state[idx]);
652 653 654 655 656 657 658
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

659
/* idx can be of type enum memcg_stat_item or node_stat_item. */
660 661 662 663 664 665
static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
666
		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
667 668 669 670 671 672 673
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

674 675 676 677 678 679 680 681
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
682
	return parent->nodeinfo[nid];
683 684
}

685 686
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
687 688
{
	struct mem_cgroup_per_node *pn;
689
	struct mem_cgroup *memcg;
690
	long x, threshold = MEMCG_CHARGE_BATCH;
691 692

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
693
	memcg = pn->memcg;
694 695

	/* Update memcg */
696
	__mod_memcg_state(memcg, idx, val);
697

698 699 700
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

701 702 703
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

704
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
705
	if (unlikely(abs(x) > threshold)) {
706
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
707 708 709 710
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
711 712 713 714 715
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

737 738 739 740
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
741
	struct mem_cgroup *memcg;
742 743 744
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

745 746
	rcu_read_lock();
	memcg = page_memcg(head);
747
	/* Untracked pages have no memcg, no lruvec. Update only the node */
748
	if (!memcg) {
749
		rcu_read_unlock();
750 751 752 753
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

754
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
755
	__mod_lruvec_state(lruvec, idx, val);
756
	rcu_read_unlock();
757
}
758
EXPORT_SYMBOL(__mod_lruvec_page_state);
759

760
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
761
{
762
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 764 765 766
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
767
	memcg = mem_cgroup_from_obj(p);
768

769 770 771 772 773 774 775
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
776 777
		__mod_node_page_state(pgdat, idx, val);
	} else {
778
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
779 780 781 782 783
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

784 785 786 787
/*
 * mod_objcg_mlstate() may be called with irq enabled, so
 * mod_memcg_lruvec_state() should be used.
 */
788 789 790
static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
				     struct pglist_data *pgdat,
				     enum node_stat_item idx, int nr)
791 792 793 794 795 796 797
{
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
798
	mod_memcg_lruvec_state(lruvec, idx, nr);
799 800 801
	rcu_read_unlock();
}

802 803 804 805
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
I
Ingo Molnar 已提交
806
 * @count: the number of events that occurred
807 808 809 810 811 812 813
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	if (mem_cgroup_disabled())
		return;

814 815
	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
816 817
}

818
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
819
{
820
	return READ_ONCE(memcg->vmstats.events[event]);
821 822
}

823 824
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
825 826 827 828
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
829
		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
830
	return x;
831 832
}

833
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
834
					 struct page *page,
835
					 int nr_pages)
836
{
837 838
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
839
		__count_memcg_events(memcg, PGPGIN, 1);
840
	else {
841
		__count_memcg_events(memcg, PGPGOUT, 1);
842 843
		nr_pages = -nr_pages; /* for event */
	}
844

845
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
846 847
}

848 849
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
850 851 852
{
	unsigned long val, next;

853 854
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
855
	/* from time_after() in jiffies.h */
856
	if ((long)(next - val) < 0) {
857 858 859 860
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
861 862 863
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
864 865 866
		default:
			break;
		}
867
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
868
		return true;
869
	}
870
	return false;
871 872 873 874 875 876
}

/*
 * Check events in order.
 *
 */
877
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
878 879
{
	/* threshold event is triggered in finer grain than soft limit */
880 881
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
882
		bool do_softlimit;
883

884 885
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
886
		mem_cgroup_threshold(memcg);
887 888
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
889
	}
890 891
}

892
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893
{
894 895 896 897 898 899 900 901
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

902
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903
}
M
Michal Hocko 已提交
904
EXPORT_SYMBOL(mem_cgroup_from_task);
905

906 907 908 909 910 911 912 913
static __always_inline struct mem_cgroup *active_memcg(void)
{
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}

914 915 916 917
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
918 919 920 921 922 923
 * Obtain a reference on mm->memcg and returns it if successful. If mm
 * is NULL, then the memcg is chosen as follows:
 * 1) The active memcg, if set.
 * 2) current->mm->memcg, if available
 * 3) root memcg
 * If mem_cgroup is disabled, NULL is returned.
924 925
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
926
{
927 928 929 930
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
931

932 933 934 935 936 937 938 939 940
	/*
	 * Page cache insertions can happen without an
	 * actual mm context, e.g. during disk probing
	 * on boot, loopback IO, acct() writes etc.
	 *
	 * No need to css_get on root memcg as the reference
	 * counting is disabled on the root level in the
	 * cgroup core. See CSS_NO_REF.
	 */
941 942 943 944 945 946 947 948 949 950 951
	if (unlikely(!mm)) {
		memcg = active_memcg();
		if (unlikely(memcg)) {
			/* remote memcg must hold a ref */
			css_get(&memcg->css);
			return memcg;
		}
		mm = current->mm;
		if (unlikely(!mm))
			return root_mem_cgroup;
	}
952

953 954
	rcu_read_lock();
	do {
955 956
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
957
			memcg = root_mem_cgroup;
958
	} while (!css_tryget(&memcg->css));
959
	rcu_read_unlock();
960
	return memcg;
961
}
962 963
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

964 965 966 967 968 969 970 971 972 973 974 975 976
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

977 978 979 980 981 982 983 984 985 986 987 988 989
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
990 991 992
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
993
 */
994
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
995
				   struct mem_cgroup *prev,
996
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
997
{
998
	struct mem_cgroup_reclaim_iter *iter;
999
	struct cgroup_subsys_state *css = NULL;
1000
	struct mem_cgroup *memcg = NULL;
1001
	struct mem_cgroup *pos = NULL;
1002

1003 1004
	if (mem_cgroup_disabled())
		return NULL;
1005

1006 1007
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1008

1009
	if (prev && !reclaim)
1010
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1011

1012
	rcu_read_lock();
M
Michal Hocko 已提交
1013

1014
	if (reclaim) {
1015
		struct mem_cgroup_per_node *mz;
1016

1017
		mz = root->nodeinfo[reclaim->pgdat->node_id];
1018
		iter = &mz->iter;
1019 1020 1021 1022

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1023
		while (1) {
1024
			pos = READ_ONCE(iter->position);
1025 1026
			if (!pos || css_tryget(&pos->css))
				break;
1027
			/*
1028 1029 1030 1031 1032 1033
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1034
			 */
1035 1036
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1054
		}
K
KAMEZAWA Hiroyuki 已提交
1055

1056 1057 1058 1059 1060 1061
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1062

1063 1064
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1065

1066 1067
		if (css_tryget(css))
			break;
1068

1069
		memcg = NULL;
1070
	}
1071 1072 1073

	if (reclaim) {
		/*
1074 1075 1076
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1077
		 */
1078 1079
		(void)cmpxchg(&iter->position, pos, memcg);

1080 1081 1082 1083 1084 1085 1086
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1087
	}
1088

1089 1090
out_unlock:
	rcu_read_unlock();
1091 1092 1093
	if (prev && prev != root)
		css_put(&prev->css);

1094
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1095
}
K
KAMEZAWA Hiroyuki 已提交
1096

1097 1098 1099 1100 1101 1102 1103
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1104 1105 1106 1107 1108 1109
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1110

1111 1112
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1113 1114
{
	struct mem_cgroup_reclaim_iter *iter;
1115 1116
	struct mem_cgroup_per_node *mz;
	int nid;
1117

1118
	for_each_node(nid) {
1119
		mz = from->nodeinfo[nid];
1120 1121
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1122 1123 1124
	}
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1171
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

	memcg = page_memcg(page);

	if (!memcg)
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
	else
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
}
#endif

/**
 * lock_page_lruvec - lock and return lruvec for a given page.
 * @page: the page
 *
1204 1205 1206 1207 1208
 * These functions are safe to use under any of the following conditions:
 * - page locked
 * - PageLRU cleared
 * - lock_page_memcg()
 * - page->_refcount is zero
1209 1210 1211 1212 1213
 */
struct lruvec *lock_page_lruvec(struct page *page)
{
	struct lruvec *lruvec;

1214
	lruvec = mem_cgroup_page_lruvec(page);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	spin_lock(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irq(struct page *page)
{
	struct lruvec *lruvec;

1226
	lruvec = mem_cgroup_page_lruvec(page);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	spin_lock_irq(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
{
	struct lruvec *lruvec;

1238
	lruvec = mem_cgroup_page_lruvec(page);
1239 1240 1241 1242 1243 1244 1245
	spin_lock_irqsave(&lruvec->lru_lock, *flags);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

1246
/**
1247 1248 1249
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1250
 * @zid: zone id of the accounted pages
1251
 * @nr_pages: positive when adding or negative when removing
1252
 *
1253 1254 1255
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256
 */
1257
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258
				int zid, int nr_pages)
1259
{
1260
	struct mem_cgroup_per_node *mz;
1261
	unsigned long *lru_size;
1262
	long size;
1263 1264 1265 1266

	if (mem_cgroup_disabled())
		return;

1267
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268
	lru_size = &mz->lru_zone_size[zid][lru];
1269 1270 1271 1272 1273

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1274 1275 1276
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1277 1278 1279 1280 1281 1282
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1283
}
1284

1285
/**
1286
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1287
 * @memcg: the memory cgroup
1288
 *
1289
 * Returns the maximum amount of memory @mem can be charged with, in
1290
 * pages.
1291
 */
1292
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293
{
1294 1295 1296
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1297

1298
	count = page_counter_read(&memcg->memory);
1299
	limit = READ_ONCE(memcg->memory.max);
1300 1301 1302
	if (count < limit)
		margin = limit - count;

1303
	if (do_memsw_account()) {
1304
		count = page_counter_read(&memcg->memsw);
1305
		limit = READ_ONCE(memcg->memsw.max);
1306
		if (count < limit)
1307
			margin = min(margin, limit - count);
1308 1309
		else
			margin = 0;
1310 1311 1312
	}

	return margin;
1313 1314
}

1315
/*
Q
Qiang Huang 已提交
1316
 * A routine for checking "mem" is under move_account() or not.
1317
 *
Q
Qiang Huang 已提交
1318 1319 1320
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1321
 */
1322
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323
{
1324 1325
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1326
	bool ret = false;
1327 1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1336

1337 1338
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1339 1340
unlock:
	spin_unlock(&mc.lock);
1341 1342 1343
	return ret;
}

1344
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345 1346
{
	if (mc.moving_task && current != mc.moving_task) {
1347
		if (mem_cgroup_under_move(memcg)) {
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1360 1361 1362 1363 1364
struct memory_stat {
	const char *name;
	unsigned int idx;
};

1365
static const struct memory_stat memory_stats[] = {
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	{ "anon",			NR_ANON_MAPPED			},
	{ "file",			NR_FILE_PAGES			},
	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
	{ "pagetables",			NR_PAGETABLE			},
	{ "percpu",			MEMCG_PERCPU_B			},
	{ "sock",			MEMCG_SOCK			},
	{ "shmem",			NR_SHMEM			},
	{ "file_mapped",		NR_FILE_MAPPED			},
	{ "file_dirty",			NR_FILE_DIRTY			},
	{ "file_writeback",		NR_WRITEBACK			},
1376 1377 1378
#ifdef CONFIG_SWAP
	{ "swapcached",			NR_SWAPCACHE			},
#endif
1379
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 1381 1382
	{ "anon_thp",			NR_ANON_THPS			},
	{ "file_thp",			NR_FILE_THPS			},
	{ "shmem_thp",			NR_SHMEM_THPS			},
1383
#endif
1384 1385 1386 1387 1388 1389 1390
	{ "inactive_anon",		NR_INACTIVE_ANON		},
	{ "active_anon",		NR_ACTIVE_ANON			},
	{ "inactive_file",		NR_INACTIVE_FILE		},
	{ "active_file",		NR_ACTIVE_FILE			},
	{ "unevictable",		NR_UNEVICTABLE			},
	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1391 1392

	/* The memory events */
1393 1394 1395 1396 1397 1398 1399
	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1400 1401
};

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
/* Translate stat items to the correct unit for memory.stat output */
static int memcg_page_state_unit(int item)
{
	switch (item) {
	case MEMCG_PERCPU_B:
	case NR_SLAB_RECLAIMABLE_B:
	case NR_SLAB_UNRECLAIMABLE_B:
	case WORKINGSET_REFAULT_ANON:
	case WORKINGSET_REFAULT_FILE:
	case WORKINGSET_ACTIVATE_ANON:
	case WORKINGSET_ACTIVATE_FILE:
	case WORKINGSET_RESTORE_ANON:
	case WORKINGSET_RESTORE_FILE:
	case WORKINGSET_NODERECLAIM:
		return 1;
	case NR_KERNEL_STACK_KB:
		return SZ_1K;
	default:
		return PAGE_SIZE;
	}
}

static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
						    int item)
{
	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
}

1430 1431 1432 1433
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */
1449
	cgroup_rstat_flush(memcg->css.cgroup);
1450

1451 1452
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1453

1454
		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456

1457
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458 1459
			size += memcg_page_state_output(memcg,
							NR_SLAB_RECLAIMABLE_B);
1460 1461 1462
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1463 1464 1465

	/* Accumulated memory events */

1466 1467 1468 1469 1470 1471
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1472 1473 1474 1475 1476 1477
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1478 1479 1480 1481 1482 1483 1484 1485
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1486 1487

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489
		       memcg_events(memcg, THP_FAULT_ALLOC));
1490
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491 1492 1493 1494 1495 1496 1497 1498
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1499

1500
#define K(x) ((x) << (PAGE_SHIFT-10))
1501
/**
1502 1503
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1504 1505 1506 1507 1508 1509
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1510
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511 1512 1513
{
	rcu_read_lock();

1514 1515 1516 1517 1518
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1519
	if (p) {
1520
		pr_cont(",task_memcg=");
1521 1522
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1523
	rcu_read_unlock();
1524 1525 1526 1527 1528 1529 1530 1531 1532
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1533
	char *buf;
1534

1535 1536
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1537
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538 1539 1540
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1541
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542 1543 1544 1545 1546 1547 1548
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549
	}
1550 1551 1552 1553 1554 1555 1556 1557 1558

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1559 1560
}

D
David Rientjes 已提交
1561 1562 1563
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1564
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1565
{
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1579
	}
1580
	return max;
D
David Rientjes 已提交
1581 1582
}

1583 1584 1585 1586 1587
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1588
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589
				     int order)
1590
{
1591 1592 1593
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1594
		.memcg = memcg,
1595 1596 1597
		.gfp_mask = gfp_mask,
		.order = order,
	};
1598
	bool ret = true;
1599

1600 1601
	if (mutex_lock_killable(&oom_lock))
		return true;
1602 1603 1604 1605

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1606 1607 1608 1609 1610
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1611 1612

unlock:
1613
	mutex_unlock(&oom_lock);
1614
	return ret;
1615 1616
}

1617
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618
				   pg_data_t *pgdat,
1619 1620 1621 1622 1623 1624 1625 1626 1627
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1628
		.pgdat = pgdat,
1629 1630
	};

1631
	excess = soft_limit_excess(root_memcg);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1657
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658
					pgdat, &nr_scanned);
1659
		*total_scanned += nr_scanned;
1660
		if (!soft_limit_excess(root_memcg))
1661
			break;
1662
	}
1663 1664
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1665 1666
}

1667 1668 1669 1670 1671 1672
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1673 1674
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1675 1676 1677 1678
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1679
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1680
{
1681
	struct mem_cgroup *iter, *failed = NULL;
1682

1683 1684
	spin_lock(&memcg_oom_lock);

1685
	for_each_mem_cgroup_tree(iter, memcg) {
1686
		if (iter->oom_lock) {
1687 1688 1689 1690 1691
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1692 1693
			mem_cgroup_iter_break(memcg, iter);
			break;
1694 1695
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1696
	}
K
KAMEZAWA Hiroyuki 已提交
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1709
		}
1710 1711
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712 1713 1714 1715

	spin_unlock(&memcg_oom_lock);

	return !failed;
1716
}
1717

1718
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719
{
K
KAMEZAWA Hiroyuki 已提交
1720 1721
	struct mem_cgroup *iter;

1722
	spin_lock(&memcg_oom_lock);
1723
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724
	for_each_mem_cgroup_tree(iter, memcg)
1725
		iter->oom_lock = false;
1726
	spin_unlock(&memcg_oom_lock);
1727 1728
}

1729
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730 1731 1732
{
	struct mem_cgroup *iter;

1733
	spin_lock(&memcg_oom_lock);
1734
	for_each_mem_cgroup_tree(iter, memcg)
1735 1736
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1737 1738
}

1739
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740 1741 1742
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1743
	/*
I
Ingo Molnar 已提交
1744
	 * Be careful about under_oom underflows because a child memcg
1745
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1746
	 */
1747
	spin_lock(&memcg_oom_lock);
1748
	for_each_mem_cgroup_tree(iter, memcg)
1749 1750 1751
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1752 1753
}

K
KAMEZAWA Hiroyuki 已提交
1754 1755
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1756
struct oom_wait_info {
1757
	struct mem_cgroup *memcg;
1758
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1759 1760
};

1761
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1762 1763
	unsigned mode, int sync, void *arg)
{
1764 1765
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1766 1767 1768
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1770

1771 1772
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1773 1774 1775 1776
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1777
static void memcg_oom_recover(struct mem_cgroup *memcg)
1778
{
1779 1780 1781 1782 1783 1784 1785 1786 1787
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1788
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789 1790
}

1791 1792 1793 1794 1795 1796 1797 1798
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799
{
1800 1801 1802
	enum oom_status ret;
	bool locked;

1803 1804 1805
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1806 1807
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1808
	/*
1809 1810 1811 1812
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1813 1814 1815 1816
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1817
	 *
1818 1819 1820 1821 1822 1823 1824
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1825
	 */
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1837 1838 1839 1840 1841 1842 1843 1844
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1845
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1846 1847 1848 1849 1850 1851
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1852

1853
	return ret;
1854 1855 1856 1857
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858
 * @handle: actually kill/wait or just clean up the OOM state
1859
 *
1860 1861
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1862
 *
1863
 * Memcg supports userspace OOM handling where failed allocations must
1864 1865 1866 1867
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868
 * the end of the page fault to complete the OOM handling.
1869 1870
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1871
 * completed, %false otherwise.
1872
 */
1873
bool mem_cgroup_oom_synchronize(bool handle)
1874
{
T
Tejun Heo 已提交
1875
	struct mem_cgroup *memcg = current->memcg_in_oom;
1876
	struct oom_wait_info owait;
1877
	bool locked;
1878 1879 1880

	/* OOM is global, do not handle */
	if (!memcg)
1881
		return false;
1882

1883
	if (!handle)
1884
		goto cleanup;
1885 1886 1887 1888 1889

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1890
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1891

1892
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1903 1904
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1905
	} else {
1906
		schedule();
1907 1908 1909 1910 1911
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1912 1913 1914 1915
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
I
Ingo Molnar 已提交
1916
		 * uncharges.  Wake any sleepers explicitly.
1917 1918 1919
		 */
		memcg_oom_recover(memcg);
	}
1920
cleanup:
T
Tejun Heo 已提交
1921
	current->memcg_in_oom = NULL;
1922
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1923
	return true;
1924 1925
}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

1954 1955 1956 1957 1958 1959 1960 1961
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1990
/**
1991
 * lock_page_memcg - lock a page and memcg binding
1992
 * @page: the page
1993
 *
1994
 * This function protects unlocked LRU pages from being moved to
1995 1996
 * another cgroup.
 *
1997 1998
 * It ensures lifetime of the locked memcg. Caller is responsible
 * for the lifetime of the page.
1999
 */
2000
void lock_page_memcg(struct page *page)
2001
{
2002
	struct page *head = compound_head(page); /* rmap on tail pages */
2003
	struct mem_cgroup *memcg;
2004
	unsigned long flags;
2005

2006 2007 2008 2009
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2010
         */
2011 2012 2013
	rcu_read_lock();

	if (mem_cgroup_disabled())
2014
		return;
2015
again:
2016
	memcg = page_memcg(head);
2017
	if (unlikely(!memcg))
2018
		return;
2019

2020 2021 2022 2023 2024 2025
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
2026
	if (atomic_read(&memcg->moving_account) <= 0)
2027
		return;
2028

2029
	spin_lock_irqsave(&memcg->move_lock, flags);
2030
	if (memcg != page_memcg(head)) {
2031
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2032 2033
		goto again;
	}
2034 2035

	/*
2036 2037 2038 2039
	 * When charge migration first begins, we can have multiple
	 * critical sections holding the fast-path RCU lock and one
	 * holding the slowpath move_lock. Track the task who has the
	 * move_lock for unlock_page_memcg().
2040 2041 2042
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2043
}
2044
EXPORT_SYMBOL(lock_page_memcg);
2045

2046
static void __unlock_page_memcg(struct mem_cgroup *memcg)
2047
{
2048 2049 2050 2051 2052 2053 2054 2055
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2056

2057
	rcu_read_unlock();
2058
}
2059 2060

/**
2061
 * unlock_page_memcg - unlock a page and memcg binding
2062 2063 2064 2065
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2066 2067
	struct page *head = compound_head(page);

2068
	__unlock_page_memcg(page_memcg(head));
2069
}
2070
EXPORT_SYMBOL(unlock_page_memcg);
2071

2072
struct obj_stock {
R
Roman Gushchin 已提交
2073 2074
#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
2075
	struct pglist_data *cached_pgdat;
R
Roman Gushchin 已提交
2076
	unsigned int nr_bytes;
2077 2078
	int nr_slab_reclaimable_b;
	int nr_slab_unreclaimable_b;
2079 2080
#else
	int dummy[0];
R
Roman Gushchin 已提交
2081
#endif
2082 2083 2084 2085 2086 2087 2088
};

struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	unsigned int nr_pages;
	struct obj_stock task_obj;
	struct obj_stock irq_obj;
R
Roman Gushchin 已提交
2089

2090
	struct work_struct work;
2091
	unsigned long flags;
2092
#define FLUSHING_CACHED_CHARGE	0
2093 2094
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095
static DEFINE_MUTEX(percpu_charge_mutex);
2096

R
Roman Gushchin 已提交
2097
#ifdef CONFIG_MEMCG_KMEM
2098
static void drain_obj_stock(struct obj_stock *stock);
R
Roman Gushchin 已提交
2099 2100 2101 2102
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
2103
static inline void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/*
 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
 * sequence used in this case to access content from object stock is slow.
 * To optimize for user context access, there are now two object stocks for
 * task context and interrupt context access respectively.
 *
 * The task context object stock can be accessed by disabling preemption only
 * which is cheap in non-preempt kernel. The interrupt context object stock
 * can only be accessed after disabling interrupt. User context code can
 * access interrupt object stock, but not vice versa.
 */
static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
{
	struct memcg_stock_pcp *stock;

	if (likely(in_task())) {
		*pflags = 0UL;
		preempt_disable();
		stock = this_cpu_ptr(&memcg_stock);
		return &stock->task_obj;
	}

	local_irq_save(*pflags);
	stock = this_cpu_ptr(&memcg_stock);
	return &stock->irq_obj;
}

static inline void put_obj_stock(unsigned long flags)
{
	if (likely(in_task()))
		preempt_enable();
	else
		local_irq_restore(flags);
}

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2158
 */
2159
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160 2161
{
	struct memcg_stock_pcp *stock;
2162
	unsigned long flags;
2163
	bool ret = false;
2164

2165
	if (nr_pages > MEMCG_CHARGE_BATCH)
2166
		return ret;
2167

2168 2169 2170
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2171
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172
		stock->nr_pages -= nr_pages;
2173 2174
		ret = true;
	}
2175 2176 2177

	local_irq_restore(flags);

2178 2179 2180 2181
	return ret;
}

/*
2182
 * Returns stocks cached in percpu and reset cached information.
2183 2184 2185 2186 2187
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2188 2189 2190
	if (!old)
		return;

2191
	if (stock->nr_pages) {
2192
		page_counter_uncharge(&old->memory, stock->nr_pages);
2193
		if (do_memsw_account())
2194
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2195
		stock->nr_pages = 0;
2196
	}
2197 2198

	css_put(&old->css);
2199 2200 2201 2202 2203
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2204 2205 2206
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2207 2208 2209 2210
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2211 2212 2213
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2214 2215 2216
	drain_obj_stock(&stock->irq_obj);
	if (in_task())
		drain_obj_stock(&stock->task_obj);
2217
	drain_stock(stock);
2218
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219 2220

	local_irq_restore(flags);
2221 2222 2223
}

/*
2224
 * Cache charges(val) to local per_cpu area.
2225
 * This will be consumed by consume_stock() function, later.
2226
 */
2227
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228
{
2229 2230 2231 2232
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2233

2234
	stock = this_cpu_ptr(&memcg_stock);
2235
	if (stock->cached != memcg) { /* reset if necessary */
2236
		drain_stock(stock);
2237
		css_get(&memcg->css);
2238
		stock->cached = memcg;
2239
	}
2240
	stock->nr_pages += nr_pages;
2241

2242
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243 2244
		drain_stock(stock);

2245
	local_irq_restore(flags);
2246 2247 2248
}

/*
2249
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250
 * of the hierarchy under it.
2251
 */
2252
static void drain_all_stock(struct mem_cgroup *root_memcg)
2253
{
2254
	int cpu, curcpu;
2255

2256 2257 2258
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2259 2260 2261 2262 2263 2264
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2265
	curcpu = get_cpu();
2266 2267
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268
		struct mem_cgroup *memcg;
2269
		bool flush = false;
2270

2271
		rcu_read_lock();
2272
		memcg = stock->cached;
2273 2274 2275
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2276 2277
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2278 2279 2280 2281
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282 2283 2284 2285 2286
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2287
	}
2288
	put_cpu();
2289
	mutex_unlock(&percpu_charge_mutex);
2290 2291
}

2292
static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293
{
2294
	int nid;
2295

2296 2297 2298 2299
	for_each_node(nid) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
		struct batched_lruvec_stat *lstatc;
2300 2301
		int i;

2302
		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304 2305 2306
			stat[i] = lstatc->count[i];
			lstatc->count[i] = 0;
		}
2307

2308 2309 2310 2311 2312 2313
		do {
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
		} while ((pn = parent_nodeinfo(pn, nid)));
	}
}
2314

2315 2316 2317 2318
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
	struct memcg_stock_pcp *stock;
	struct mem_cgroup *memcg;
2319

2320 2321
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2322

2323 2324
	for_each_mem_cgroup(memcg)
		memcg_flush_lruvec_page_state(memcg, cpu);
2325

2326
	return 0;
2327 2328
}

2329 2330 2331
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2332
{
2333 2334
	unsigned long nr_reclaimed = 0;

2335
	do {
2336 2337
		unsigned long pflags;

2338 2339
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2340
			continue;
2341

2342
		memcg_memory_event(memcg, MEMCG_HIGH);
2343 2344

		psi_memstall_enter(&pflags);
2345 2346
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2347
		psi_memstall_leave(&pflags);
2348 2349
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2350 2351

	return nr_reclaimed;
2352 2353 2354 2355 2356 2357 2358
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2359
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360 2361
}

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2376
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2415
static u64 calculate_overage(unsigned long usage, unsigned long high)
2416
{
2417
	u64 overage;
2418

2419 2420
	if (usage <= high)
		return 0;
2421

2422 2423 2424 2425 2426
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2427

2428 2429 2430 2431
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2432

2433 2434 2435
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2436

2437 2438
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2439
					    READ_ONCE(memcg->memory.high));
2440
		max_overage = max(overage, max_overage);
2441 2442 2443
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2444 2445 2446
	return max_overage;
}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2473 2474
	if (!max_overage)
		return 0;
2475 2476 2477 2478 2479 2480 2481 2482 2483

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2484 2485 2486
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487 2488 2489 2490 2491 2492 2493 2494 2495

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2496
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2507
	unsigned long nr_reclaimed;
2508
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509
	int nr_retries = MAX_RECLAIM_RETRIES;
2510
	struct mem_cgroup *memcg;
2511
	bool in_retry = false;
2512 2513 2514 2515 2516 2517 2518

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2533 2534 2535 2536
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2537 2538
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2539

2540 2541 2542
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2543 2544 2545 2546 2547 2548 2549
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2550 2551 2552 2553 2554 2555 2556 2557 2558
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2580 2581
}

2582 2583
static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
			unsigned int nr_pages)
2584
{
2585
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586
	int nr_retries = MAX_RECLAIM_RETRIES;
2587
	struct mem_cgroup *mem_over_limit;
2588
	struct page_counter *counter;
2589
	enum oom_status oom_status;
2590
	unsigned long nr_reclaimed;
2591 2592
	bool may_swap = true;
	bool drained = false;
2593
	unsigned long pflags;
2594

2595
retry:
2596
	if (consume_stock(memcg, nr_pages))
2597
		return 0;
2598

2599
	if (!do_memsw_account() ||
2600 2601
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602
			goto done_restock;
2603
		if (do_memsw_account())
2604 2605
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606
	} else {
2607
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608
		may_swap = false;
2609
	}
2610

2611 2612 2613 2614
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2615

2616 2617 2618 2619 2620 2621 2622 2623 2624
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2625 2626 2627 2628 2629 2630
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2631
	if (unlikely(should_force_charge()))
2632
		goto force;
2633

2634 2635 2636 2637 2638 2639 2640 2641 2642
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2643 2644 2645
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2646
	if (!gfpflags_allow_blocking(gfp_mask))
2647
		goto nomem;
2648

2649
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650

2651
	psi_memstall_enter(&pflags);
2652 2653
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2654
	psi_memstall_leave(&pflags);
2655

2656
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657
		goto retry;
2658

2659
	if (!drained) {
2660
		drain_all_stock(mem_over_limit);
2661 2662 2663 2664
		drained = true;
		goto retry;
	}

2665 2666
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2667 2668 2669 2670 2671 2672 2673 2674 2675
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2676
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677 2678 2679 2680 2681 2682 2683 2684
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2685 2686 2687
	if (nr_retries--)
		goto retry;

2688
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689 2690
		goto nomem;

2691
	if (fatal_signal_pending(current))
2692
		goto force;
2693

2694 2695 2696 2697 2698 2699
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700
		       get_order(nr_pages * PAGE_SIZE));
2701 2702
	switch (oom_status) {
	case OOM_SUCCESS:
2703
		nr_retries = MAX_RECLAIM_RETRIES;
2704 2705 2706 2707 2708 2709
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2710
nomem:
2711
	if (!(gfp_mask & __GFP_NOFAIL))
2712
		return -ENOMEM;
2713 2714 2715 2716 2717 2718 2719
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2720
	if (do_memsw_account())
2721 2722 2723
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2724 2725 2726 2727

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2728

2729
	/*
2730 2731
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2732
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733 2734 2735 2736
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2737 2738
	 */
	do {
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2749 2750 2751
				schedule_work(&memcg->high_work);
				break;
			}
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2765
			current->memcg_nr_pages_over_high += batch;
2766 2767 2768
			set_notify_resume(current);
			break;
		}
2769
	} while ((memcg = parent_mem_cgroup(memcg)));
2770 2771

	return 0;
2772
}
2773

2774 2775 2776 2777 2778 2779 2780 2781 2782
static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
			     unsigned int nr_pages)
{
	if (mem_cgroup_is_root(memcg))
		return 0;

	return try_charge_memcg(memcg, gfp_mask, nr_pages);
}

2783
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785
{
2786 2787 2788
	if (mem_cgroup_is_root(memcg))
		return;

2789
	page_counter_uncharge(&memcg->memory, nr_pages);
2790
	if (do_memsw_account())
2791
		page_counter_uncharge(&memcg->memsw, nr_pages);
2792
}
2793
#endif
2794

2795
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796
{
2797
	VM_BUG_ON_PAGE(page_memcg(page), page);
2798
	/*
2799
	 * Any of the following ensures page's memcg stability:
2800
	 *
2801 2802 2803 2804
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2805
	 */
2806
	page->memcg_data = (unsigned long)memcg;
2807
}
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
retry:
	memcg = obj_cgroup_memcg(objcg);
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
	rcu_read_unlock();

	return memcg;
}

2823
#ifdef CONFIG_MEMCG_KMEM
2824 2825 2826 2827 2828 2829 2830
/*
 * The allocated objcg pointers array is not accounted directly.
 * Moreover, it should not come from DMA buffer and is not readily
 * reclaimable. So those GFP bits should be masked off.
 */
#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)

2831
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832
				 gfp_t gfp, bool new_page)
2833 2834
{
	unsigned int objects = objs_per_slab_page(s, page);
2835
	unsigned long memcg_data;
2836 2837
	void *vec;

2838
	gfp &= ~OBJCGS_CLEAR_MASK;
2839 2840 2841 2842 2843
	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
	if (new_page) {
		/*
		 * If the slab page is brand new and nobody can yet access
		 * it's memcg_data, no synchronization is required and
		 * memcg_data can be simply assigned.
		 */
		page->memcg_data = memcg_data;
	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
		/*
		 * If the slab page is already in use, somebody can allocate
		 * and assign obj_cgroups in parallel. In this case the existing
		 * objcg vector should be reused.
		 */
2858
		kfree(vec);
2859 2860
		return 0;
	}
2861

2862
	kmemleak_not_leak(vec);
2863 2864 2865
	return 0;
}

2866 2867 2868
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
2869 2870 2871 2872 2873 2874
 * A passed kernel object can be a slab object or a generic kernel page, so
 * different mechanisms for getting the memory cgroup pointer should be used.
 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
 * can not know for sure how the kernel object is implemented.
 * mem_cgroup_from_obj() can be safely used in such cases.
 *
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2888 2889 2890
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2891
	 */
2892
	if (page_objcgs_check(page)) {
2893 2894 2895 2896
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
2897
		objcg = page_objcgs(page)[off];
2898 2899 2900 2901
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2902
	}
2903

2904 2905 2906 2907 2908 2909 2910 2911
	/*
	 * page_memcg_check() is used here, because page_has_obj_cgroups()
	 * check above could fail because the object cgroups vector wasn't set
	 * at that moment, but it can be set concurrently.
	 * page_memcg_check(page) will guarantee that a proper memory
	 * cgroup pointer or NULL will be returned.
	 */
	return page_memcg_check(page);
2912 2913
}

R
Roman Gushchin 已提交
2914 2915 2916 2917 2918
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2919 2920 2921
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2922
	rcu_read_lock();
2923 2924
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2925 2926 2927 2928 2929 2930 2931
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2932
		objcg = NULL;
R
Roman Gushchin 已提交
2933 2934 2935 2936 2937 2938
	}
	rcu_read_unlock();

	return objcg;
}

2939
static int memcg_alloc_cache_id(void)
2940
{
2941 2942 2943
	int id, size;
	int err;

2944
	id = ida_simple_get(&memcg_cache_ida,
2945 2946 2947
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2948

2949
	if (id < memcg_nr_cache_ids)
2950 2951 2952 2953 2954 2955
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2956
	down_write(&memcg_cache_ids_sem);
2957 2958

	size = 2 * (id + 1);
2959 2960 2961 2962 2963
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2964
	err = memcg_update_all_list_lrus(size);
2965 2966 2967 2968 2969
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2970
	if (err) {
2971
		ida_simple_remove(&memcg_cache_ida, id);
2972 2973 2974 2975 2976 2977 2978
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2979
	ida_simple_remove(&memcg_cache_ida, id);
2980 2981
}

2982 2983 2984 2985 2986
/*
 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
 * @objcg: object cgroup to uncharge
 * @nr_pages: number of pages to uncharge
 */
2987 2988 2989 2990 2991 2992 2993
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages)
{
	struct mem_cgroup *memcg;

	memcg = get_mem_cgroup_from_objcg(objcg);

2994 2995 2996
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);
	refill_stock(memcg, nr_pages);
2997 2998 2999 3000

	css_put(&memcg->css);
}

3001 3002 3003
/*
 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
 * @objcg: object cgroup to charge
3004
 * @gfp: reclaim mode
3005
 * @nr_pages: number of pages to charge
3006 3007 3008
 *
 * Returns 0 on success, an error code on failure.
 */
3009 3010
static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
				   unsigned int nr_pages)
3011
{
3012
	struct page_counter *counter;
3013
	struct mem_cgroup *memcg;
3014 3015
	int ret;

3016 3017
	memcg = get_mem_cgroup_from_objcg(objcg);

3018
	ret = try_charge_memcg(memcg, gfp, nr_pages);
3019
	if (ret)
3020
		goto out;
3021 3022 3023

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024 3025 3026 3027 3028 3029 3030 3031

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
3032
			goto out;
3033
		}
3034
		cancel_charge(memcg, nr_pages);
3035
		ret = -ENOMEM;
3036
	}
3037 3038
out:
	css_put(&memcg->css);
3039

3040
	return ret;
3041 3042
}

3043
/**
3044
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 3046 3047 3048 3049 3050
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3051
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052
{
3053
	struct obj_cgroup *objcg;
3054
	int ret = 0;
3055

3056 3057 3058
	objcg = get_obj_cgroup_from_current();
	if (objcg) {
		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3059
		if (!ret) {
3060
			page->memcg_data = (unsigned long)objcg |
3061
				MEMCG_DATA_KMEM;
3062
			return 0;
3063
		}
3064
		obj_cgroup_put(objcg);
3065
	}
3066
	return ret;
3067
}
3068

3069
/**
3070
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 3072 3073
 * @page: page to uncharge
 * @order: allocation order
 */
3074
void __memcg_kmem_uncharge_page(struct page *page, int order)
3075
{
3076
	struct obj_cgroup *objcg;
3077
	unsigned int nr_pages = 1 << order;
3078

3079
	if (!PageMemcgKmem(page))
3080 3081
		return;

3082 3083
	objcg = __page_objcg(page);
	obj_cgroup_uncharge_pages(objcg, nr_pages);
3084
	page->memcg_data = 0;
3085
	obj_cgroup_put(objcg);
3086
}
R
Roman Gushchin 已提交
3087

3088 3089 3090 3091
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
		     enum node_stat_item idx, int nr)
{
	unsigned long flags;
3092
	struct obj_stock *stock = get_obj_stock(&flags);
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	int *bytes;

	/*
	 * Save vmstat data in stock and skip vmstat array update unless
	 * accumulating over a page of vmstat data or when pgdat or idx
	 * changes.
	 */
	if (stock->cached_objcg != objcg) {
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		stock->cached_objcg = objcg;
		stock->cached_pgdat = pgdat;
	} else if (stock->cached_pgdat != pgdat) {
		/* Flush the existing cached vmstat data */
		if (stock->nr_slab_reclaimable_b) {
			mod_objcg_mlstate(objcg, pgdat, NR_SLAB_RECLAIMABLE_B,
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
			mod_objcg_mlstate(objcg, pgdat, NR_SLAB_UNRECLAIMABLE_B,
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = pgdat;
	}

	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
					       : &stock->nr_slab_unreclaimable_b;
	/*
	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
	 * cached locally at least once before pushing it out.
	 */
	if (!*bytes) {
		*bytes = nr;
		nr = 0;
	} else {
		*bytes += nr;
		if (abs(*bytes) > PAGE_SIZE) {
			nr = *bytes;
			*bytes = 0;
		} else {
			nr = 0;
		}
	}
	if (nr)
		mod_objcg_mlstate(objcg, pgdat, idx, nr);

3143
	put_obj_stock(flags);
3144 3145
}

R
Roman Gushchin 已提交
3146 3147 3148
static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	unsigned long flags;
3149
	struct obj_stock *stock = get_obj_stock(&flags);
R
Roman Gushchin 已提交
3150 3151 3152 3153 3154 3155 3156
	bool ret = false;

	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

3157
	put_obj_stock(flags);
R
Roman Gushchin 已提交
3158 3159 3160 3161

	return ret;
}

3162
static void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

3173 3174
		if (nr_pages)
			obj_cgroup_uncharge_pages(old, nr_pages);
R
Roman Gushchin 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	/*
	 * Flush the vmstat data in current stock
	 */
	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
		if (stock->nr_slab_reclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_RECLAIMABLE_B,
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_UNRECLAIMABLE_B,
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = NULL;
	}

R
Roman Gushchin 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217
	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

3218 3219 3220 3221 3222 3223 3224
	if (in_task() && stock->task_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}
	if (stock->irq_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
R
Roman Gushchin 已提交
3225 3226 3227 3228 3229 3230 3231
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

3232 3233
static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
			     bool allow_uncharge)
R
Roman Gushchin 已提交
3234 3235
{
	unsigned long flags;
3236
	struct obj_stock *stock = get_obj_stock(&flags);
3237
	unsigned int nr_pages = 0;
R
Roman Gushchin 已提交
3238 3239 3240 3241 3242

	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
3243 3244 3245
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		allow_uncharge = true;	/* Allow uncharge when objcg changes */
R
Roman Gushchin 已提交
3246 3247 3248
	}
	stock->nr_bytes += nr_bytes;

3249 3250 3251 3252
	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		stock->nr_bytes &= (PAGE_SIZE - 1);
	}
R
Roman Gushchin 已提交
3253

3254
	put_obj_stock(flags);
3255 3256 3257

	if (nr_pages)
		obj_cgroup_uncharge_pages(objcg, nr_pages);
R
Roman Gushchin 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
3269
	 * In theory, objcg->nr_charged_bytes can have enough
R
Roman Gushchin 已提交
3270
	 * pre-charged bytes to satisfy the allocation. However,
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	 * flushing objcg->nr_charged_bytes requires two atomic
	 * operations, and objcg->nr_charged_bytes can't be big.
	 * The shared objcg->nr_charged_bytes can also become a
	 * performance bottleneck if all tasks of the same memcg are
	 * trying to update it. So it's better to ignore it and try
	 * grab some new pages. The stock's nr_bytes will be flushed to
	 * objcg->nr_charged_bytes later on when objcg changes.
	 *
	 * The stock's nr_bytes may contain enough pre-charged bytes
	 * to allow one less page from being charged, but we can't rely
	 * on the pre-charged bytes not being changed outside of
	 * consume_obj_stock() or refill_obj_stock(). So ignore those
	 * pre-charged bytes as well when charging pages. To avoid a
	 * page uncharge right after a page charge, we set the
	 * allow_uncharge flag to false when calling refill_obj_stock()
	 * to temporarily allow the pre-charged bytes to exceed the page
	 * size limit. The maximum reachable value of the pre-charged
	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
	 * race.
R
Roman Gushchin 已提交
3290 3291 3292 3293 3294 3295 3296
	 */
	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

3297
	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
R
Roman Gushchin 已提交
3298
	if (!ret && nr_bytes)
3299
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
R
Roman Gushchin 已提交
3300 3301 3302 3303 3304 3305

	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
3306
	refill_obj_stock(objcg, size, true);
R
Roman Gushchin 已提交
3307 3308
}

3309
#endif /* CONFIG_MEMCG_KMEM */
3310

3311
/*
3312
 * Because page_memcg(head) is not set on tails, set it now.
3313
 */
3314
void split_page_memcg(struct page *head, unsigned int nr)
3315
{
3316
	struct mem_cgroup *memcg = page_memcg(head);
3317
	int i;
3318

3319
	if (mem_cgroup_disabled() || !memcg)
3320
		return;
3321

3322 3323
	for (i = 1; i < nr; i++)
		head[i].memcg_data = head->memcg_data;
3324 3325 3326 3327 3328

	if (PageMemcgKmem(head))
		obj_cgroup_get_many(__page_objcg(head), nr - 1);
	else
		css_get_many(&memcg->css, nr - 1);
3329 3330
}

A
Andrew Morton 已提交
3331
#ifdef CONFIG_MEMCG_SWAP
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3343
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3344 3345 3346
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3347
				struct mem_cgroup *from, struct mem_cgroup *to)
3348 3349 3350
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3351 3352
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3353 3354

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3355 3356
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3357 3358 3359 3360 3361 3362
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3363
				struct mem_cgroup *from, struct mem_cgroup *to)
3364 3365 3366
{
	return -EINVAL;
}
3367
#endif
K
KAMEZAWA Hiroyuki 已提交
3368

3369
static DEFINE_MUTEX(memcg_max_mutex);
3370

3371 3372
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3373
{
3374
	bool enlarge = false;
3375
	bool drained = false;
3376
	int ret;
3377 3378
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3379

3380
	do {
3381 3382 3383 3384
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3385

3386
		mutex_lock(&memcg_max_mutex);
3387 3388
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3389
		 * break our basic invariant rule memory.max <= memsw.max.
3390
		 */
3391
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3392
					   max <= memcg->memsw.max;
3393
		if (!limits_invariant) {
3394
			mutex_unlock(&memcg_max_mutex);
3395 3396 3397
			ret = -EINVAL;
			break;
		}
3398
		if (max > counter->max)
3399
			enlarge = true;
3400 3401
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3402 3403 3404 3405

		if (!ret)
			break;

3406 3407 3408 3409 3410 3411
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3412 3413 3414 3415 3416 3417
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3418

3419 3420
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3421

3422 3423 3424
	return ret;
}

3425
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3426 3427 3428 3429
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3430
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3431 3432
	unsigned long reclaimed;
	int loop = 0;
3433
	struct mem_cgroup_tree_per_node *mctz;
3434
	unsigned long excess;
3435 3436 3437 3438 3439
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3440
	mctz = soft_limit_tree_node(pgdat->node_id);
3441 3442 3443 3444 3445 3446

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3447
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3448 3449
		return 0;

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3464
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3465 3466 3467
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3468
		spin_lock_irq(&mctz->lock);
3469
		__mem_cgroup_remove_exceeded(mz, mctz);
3470 3471 3472 3473 3474 3475

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3476 3477 3478
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3479
		excess = soft_limit_excess(mz->memcg);
3480 3481 3482 3483 3484 3485 3486 3487 3488
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3489
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3490
		spin_unlock_irq(&mctz->lock);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3508
/*
3509
 * Reclaims as many pages from the given memcg as possible.
3510 3511 3512 3513 3514
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3515
	int nr_retries = MAX_RECLAIM_RETRIES;
3516

3517 3518
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3519 3520 3521

	drain_all_stock(memcg);

3522
	/* try to free all pages in this cgroup */
3523
	while (nr_retries && page_counter_read(&memcg->memory)) {
3524
		int progress;
3525

3526 3527 3528
		if (signal_pending(current))
			return -EINTR;

3529 3530
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3531
		if (!progress) {
3532
			nr_retries--;
3533
			/* maybe some writeback is necessary */
3534
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3535
		}
3536 3537

	}
3538 3539

	return 0;
3540 3541
}

3542 3543 3544
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3545
{
3546
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3547

3548 3549
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3550
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3551 3552
}

3553 3554
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3555
{
3556
	return 1;
3557 3558
}

3559 3560
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3561
{
3562
	if (val == 1)
3563
		return 0;
3564

3565 3566 3567
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3568

3569
	return -EINVAL;
3570 3571
}

3572
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3573
{
3574
	unsigned long val;
3575

3576
	if (mem_cgroup_is_root(memcg)) {
3577
		cgroup_rstat_flush(memcg->css.cgroup);
3578
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3579
			memcg_page_state(memcg, NR_ANON_MAPPED);
3580 3581
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3582
	} else {
3583
		if (!swap)
3584
			val = page_counter_read(&memcg->memory);
3585
		else
3586
			val = page_counter_read(&memcg->memsw);
3587
	}
3588
	return val;
3589 3590
}

3591 3592 3593 3594 3595 3596 3597
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3598

3599
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3600
			       struct cftype *cft)
B
Balbir Singh 已提交
3601
{
3602
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603
	struct page_counter *counter;
3604

3605
	switch (MEMFILE_TYPE(cft->private)) {
3606
	case _MEM:
3607 3608
		counter = &memcg->memory;
		break;
3609
	case _MEMSWAP:
3610 3611
		counter = &memcg->memsw;
		break;
3612
	case _KMEM:
3613
		counter = &memcg->kmem;
3614
		break;
V
Vladimir Davydov 已提交
3615
	case _TCP:
3616
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3617
		break;
3618 3619 3620
	default:
		BUG();
	}
3621 3622 3623 3624

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3625
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3626
		if (counter == &memcg->memsw)
3627
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3628 3629
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3630
		return (u64)counter->max * PAGE_SIZE;
3631 3632 3633 3634 3635 3636 3637 3638 3639
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3640
}
3641

3642
#ifdef CONFIG_MEMCG_KMEM
3643
static int memcg_online_kmem(struct mem_cgroup *memcg)
3644
{
R
Roman Gushchin 已提交
3645
	struct obj_cgroup *objcg;
3646 3647
	int memcg_id;

3648 3649 3650
	if (cgroup_memory_nokmem)
		return 0;

3651
	BUG_ON(memcg->kmemcg_id >= 0);
3652
	BUG_ON(memcg->kmem_state);
3653

3654
	memcg_id = memcg_alloc_cache_id();
3655 3656
	if (memcg_id < 0)
		return memcg_id;
3657

R
Roman Gushchin 已提交
3658 3659 3660 3661 3662 3663 3664 3665
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3666 3667
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3668
	memcg->kmemcg_id = memcg_id;
3669
	memcg->kmem_state = KMEM_ONLINE;
3670 3671

	return 0;
3672 3673
}

3674 3675 3676 3677 3678 3679 3680 3681
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3682

3683 3684 3685 3686 3687 3688
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3689
	memcg_reparent_objcgs(memcg, parent);
3690 3691 3692 3693

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3694 3695 3696 3697 3698 3699 3700 3701
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3702
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3703 3704 3705 3706 3707
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3708 3709
	rcu_read_unlock();

3710
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3711 3712 3713 3714 3715 3716

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3717 3718 3719
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3720
}
3721
#else
3722
static int memcg_online_kmem(struct mem_cgroup *memcg)
3723 3724 3725 3726 3727 3728 3729 3730 3731
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3732
#endif /* CONFIG_MEMCG_KMEM */
3733

3734 3735
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3736
{
3737
	int ret;
3738

3739 3740 3741
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3742
	return ret;
3743
}
3744

3745
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3746 3747 3748
{
	int ret;

3749
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3750

3751
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3752 3753 3754
	if (ret)
		goto out;

3755
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3756 3757 3758
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3759 3760 3761
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3762 3763 3764 3765 3766 3767
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3768
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3769 3770 3771 3772
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3773
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3774 3775
	}
out:
3776
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3777 3778 3779
	return ret;
}

3780 3781 3782 3783
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3784 3785
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3786
{
3787
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3788
	unsigned long nr_pages;
3789 3790
	int ret;

3791
	buf = strstrip(buf);
3792
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3793 3794
	if (ret)
		return ret;
3795

3796
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3797
	case RES_LIMIT:
3798 3799 3800 3801
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3802 3803
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3804
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3805
			break;
3806
		case _MEMSWAP:
3807
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3808
			break;
3809
		case _KMEM:
3810 3811 3812
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3813
			ret = memcg_update_kmem_max(memcg, nr_pages);
3814
			break;
V
Vladimir Davydov 已提交
3815
		case _TCP:
3816
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3817
			break;
3818
		}
3819
		break;
3820 3821 3822
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3823 3824
		break;
	}
3825
	return ret ?: nbytes;
B
Balbir Singh 已提交
3826 3827
}

3828 3829
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3830
{
3831
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3832
	struct page_counter *counter;
3833

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3844
	case _TCP:
3845
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3846
		break;
3847 3848 3849
	default:
		BUG();
	}
3850

3851
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3852
	case RES_MAX_USAGE:
3853
		page_counter_reset_watermark(counter);
3854 3855
		break;
	case RES_FAILCNT:
3856
		counter->failcnt = 0;
3857
		break;
3858 3859
	default:
		BUG();
3860
	}
3861

3862
	return nbytes;
3863 3864
}

3865
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3866 3867
					struct cftype *cft)
{
3868
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3869 3870
}

3871
#ifdef CONFIG_MMU
3872
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3873 3874
					struct cftype *cft, u64 val)
{
3875
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3876

3877
	if (val & ~MOVE_MASK)
3878
		return -EINVAL;
3879

3880
	/*
3881 3882 3883 3884
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3885
	 */
3886
	memcg->move_charge_at_immigrate = val;
3887 3888
	return 0;
}
3889
#else
3890
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3891 3892 3893 3894 3895
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3896

3897
#ifdef CONFIG_NUMA
3898 3899 3900 3901 3902 3903

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3904
				int nid, unsigned int lru_mask, bool tree)
3905
{
3906
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3907 3908 3909 3910 3911 3912 3913 3914
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3915 3916 3917 3918
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3919 3920 3921 3922 3923
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3924 3925
					     unsigned int lru_mask,
					     bool tree)
3926 3927 3928 3929 3930 3931 3932
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3933 3934 3935 3936
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3937 3938 3939 3940
	}
	return nr;
}

3941
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3942
{
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3955
	int nid;
3956
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3957

3958 3959
	cgroup_rstat_flush(memcg->css.cgroup);

3960
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3961 3962 3963 3964 3965 3966 3967
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3968
		seq_putc(m, '\n');
3969 3970
	}

3971
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3972 3973 3974 3975 3976 3977 3978 3979

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3980
		seq_putc(m, '\n');
3981 3982 3983 3984 3985 3986
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3987
static const unsigned int memcg1_stats[] = {
3988
	NR_FILE_PAGES,
3989
	NR_ANON_MAPPED,
3990 3991 3992
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4003
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4004
	"rss_huge",
4005
#endif
4006 4007 4008 4009 4010 4011 4012
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4013
/* Universal VM events cgroup1 shows, original sort order */
4014
static const unsigned int memcg1_events[] = {
4015 4016 4017 4018 4019 4020
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4021
static int memcg_stat_show(struct seq_file *m, void *v)
4022
{
4023
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4024
	unsigned long memory, memsw;
4025 4026
	struct mem_cgroup *mi;
	unsigned int i;
4027

4028
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4029

4030 4031
	cgroup_rstat_flush(memcg->css.cgroup);

4032
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4033 4034
		unsigned long nr;

4035
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4036
			continue;
4037 4038
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4039
	}
L
Lee Schermerhorn 已提交
4040

4041
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4042
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4043
			   memcg_events_local(memcg, memcg1_events[i]));
4044 4045

	for (i = 0; i < NR_LRU_LISTS; i++)
4046
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4047
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4048
			   PAGE_SIZE);
4049

K
KAMEZAWA Hiroyuki 已提交
4050
	/* Hierarchical information */
4051 4052
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4053 4054
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4055
	}
4056 4057
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4058
	if (do_memsw_account())
4059 4060
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4061

4062
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4063 4064
		unsigned long nr;

4065
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4066
			continue;
4067
		nr = memcg_page_state(memcg, memcg1_stats[i]);
4068
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4069
						(u64)nr * PAGE_SIZE);
4070 4071
	}

4072
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4073 4074
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4075
			   (u64)memcg_events(memcg, memcg1_events[i]));
4076

4077
	for (i = 0; i < NR_LRU_LISTS; i++)
4078
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4079 4080
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4081

K
KOSAKI Motohiro 已提交
4082 4083
#ifdef CONFIG_DEBUG_VM
	{
4084 4085
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4086 4087
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4088

4089
		for_each_online_pgdat(pgdat) {
4090
			mz = memcg->nodeinfo[pgdat->node_id];
K
KOSAKI Motohiro 已提交
4091

4092 4093
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4094
		}
4095 4096
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4097 4098 4099
	}
#endif

4100 4101 4102
	return 0;
}

4103 4104
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4105
{
4106
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4107

4108
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4109 4110
}

4111 4112
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4113
{
4114
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4115

4116
	if (val > 100)
K
KOSAKI Motohiro 已提交
4117 4118
		return -EINVAL;

S
Shakeel Butt 已提交
4119
	if (!mem_cgroup_is_root(memcg))
4120 4121 4122
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4123

K
KOSAKI Motohiro 已提交
4124 4125 4126
	return 0;
}

4127 4128 4129
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4130
	unsigned long usage;
4131 4132 4133 4134
	int i;

	rcu_read_lock();
	if (!swap)
4135
		t = rcu_dereference(memcg->thresholds.primary);
4136
	else
4137
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4138 4139 4140 4141

	if (!t)
		goto unlock;

4142
	usage = mem_cgroup_usage(memcg, swap);
4143 4144

	/*
4145
	 * current_threshold points to threshold just below or equal to usage.
4146 4147 4148
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4149
	i = t->current_threshold;
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4173
	t->current_threshold = i - 1;
4174 4175 4176 4177 4178 4179
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4180 4181
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4182
		if (do_memsw_account())
4183 4184 4185 4186
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4187 4188 4189 4190 4191 4192 4193
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4194 4195 4196 4197 4198 4199 4200
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4201 4202
}

4203
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4204 4205 4206
{
	struct mem_cgroup_eventfd_list *ev;

4207 4208
	spin_lock(&memcg_oom_lock);

4209
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4210
		eventfd_signal(ev->eventfd, 1);
4211 4212

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4213 4214 4215
	return 0;
}

4216
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4217
{
K
KAMEZAWA Hiroyuki 已提交
4218 4219
	struct mem_cgroup *iter;

4220
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4221
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4222 4223
}

4224
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4225
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4226
{
4227 4228
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4229 4230
	unsigned long threshold;
	unsigned long usage;
4231
	int i, size, ret;
4232

4233
	ret = page_counter_memparse(args, "-1", &threshold);
4234 4235 4236 4237
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4238

4239
	if (type == _MEM) {
4240
		thresholds = &memcg->thresholds;
4241
		usage = mem_cgroup_usage(memcg, false);
4242
	} else if (type == _MEMSWAP) {
4243
		thresholds = &memcg->memsw_thresholds;
4244
		usage = mem_cgroup_usage(memcg, true);
4245
	} else
4246 4247 4248
		BUG();

	/* Check if a threshold crossed before adding a new one */
4249
	if (thresholds->primary)
4250 4251
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4252
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4253 4254

	/* Allocate memory for new array of thresholds */
4255
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4256
	if (!new) {
4257 4258 4259
		ret = -ENOMEM;
		goto unlock;
	}
4260
	new->size = size;
4261 4262

	/* Copy thresholds (if any) to new array */
4263 4264 4265
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4266

4267
	/* Add new threshold */
4268 4269
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4270 4271

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4272
	sort(new->entries, size, sizeof(*new->entries),
4273 4274 4275
			compare_thresholds, NULL);

	/* Find current threshold */
4276
	new->current_threshold = -1;
4277
	for (i = 0; i < size; i++) {
4278
		if (new->entries[i].threshold <= usage) {
4279
			/*
4280 4281
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4282 4283
			 * it here.
			 */
4284
			++new->current_threshold;
4285 4286
		} else
			break;
4287 4288
	}

4289 4290 4291 4292 4293
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4294

4295
	/* To be sure that nobody uses thresholds */
4296 4297 4298 4299 4300 4301 4302 4303
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4304
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4305 4306
	struct eventfd_ctx *eventfd, const char *args)
{
4307
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4308 4309
}

4310
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4311 4312
	struct eventfd_ctx *eventfd, const char *args)
{
4313
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4314 4315
}

4316
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4317
	struct eventfd_ctx *eventfd, enum res_type type)
4318
{
4319 4320
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4321
	unsigned long usage;
4322
	int i, j, size, entries;
4323 4324

	mutex_lock(&memcg->thresholds_lock);
4325 4326

	if (type == _MEM) {
4327
		thresholds = &memcg->thresholds;
4328
		usage = mem_cgroup_usage(memcg, false);
4329
	} else if (type == _MEMSWAP) {
4330
		thresholds = &memcg->memsw_thresholds;
4331
		usage = mem_cgroup_usage(memcg, true);
4332
	} else
4333 4334
		BUG();

4335 4336 4337
	if (!thresholds->primary)
		goto unlock;

4338 4339 4340 4341
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4342
	size = entries = 0;
4343 4344
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4345
			size++;
4346 4347
		else
			entries++;
4348 4349
	}

4350
	new = thresholds->spare;
4351

4352 4353 4354 4355
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4356 4357
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4358 4359
		kfree(new);
		new = NULL;
4360
		goto swap_buffers;
4361 4362
	}

4363
	new->size = size;
4364 4365

	/* Copy thresholds and find current threshold */
4366 4367 4368
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4369 4370
			continue;

4371
		new->entries[j] = thresholds->primary->entries[i];
4372
		if (new->entries[j].threshold <= usage) {
4373
			/*
4374
			 * new->current_threshold will not be used
4375 4376 4377
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4378
			++new->current_threshold;
4379 4380 4381 4382
		}
		j++;
	}

4383
swap_buffers:
4384 4385
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4386

4387
	rcu_assign_pointer(thresholds->primary, new);
4388

4389
	/* To be sure that nobody uses thresholds */
4390
	synchronize_rcu();
4391 4392 4393 4394 4395 4396

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4397
unlock:
4398 4399
	mutex_unlock(&memcg->thresholds_lock);
}
4400

4401
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4402 4403
	struct eventfd_ctx *eventfd)
{
4404
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4405 4406
}

4407
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4408 4409
	struct eventfd_ctx *eventfd)
{
4410
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4411 4412
}

4413
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4414
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4415 4416 4417 4418 4419 4420 4421
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4422
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4423 4424 4425 4426 4427

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4428
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4429
		eventfd_signal(eventfd, 1);
4430
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4431 4432 4433 4434

	return 0;
}

4435
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4436
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4437 4438 4439
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4440
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4441

4442
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4443 4444 4445 4446 4447 4448
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4449
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4450 4451
}

4452
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4453
{
4454
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4455

4456
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4457
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4458 4459
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4460 4461 4462
	return 0;
}

4463
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4464 4465
	struct cftype *cft, u64 val)
{
4466
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4467 4468

	/* cannot set to root cgroup and only 0 and 1 are allowed */
S
Shakeel Butt 已提交
4469
	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4470 4471
		return -EINVAL;

4472
	memcg->oom_kill_disable = val;
4473
	if (!val)
4474
		memcg_oom_recover(memcg);
4475

4476 4477 4478
	return 0;
}

4479 4480
#ifdef CONFIG_CGROUP_WRITEBACK

4481 4482
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4493 4494 4495 4496 4497
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4508 4509 4510
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4511 4512
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4513 4514 4515
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4516 4517 4518
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4519
 *
4520 4521 4522 4523 4524
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4525
 */
4526 4527 4528
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4529 4530 4531 4532
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4533
	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4534

4535 4536 4537 4538
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_page_state(memcg, NR_ACTIVE_FILE);
4539

4540
	*pheadroom = PAGE_COUNTER_MAX;
4541
	while ((parent = parent_mem_cgroup(memcg))) {
4542
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4543
					    READ_ONCE(memcg->memory.high));
4544 4545
		unsigned long used = page_counter_read(&memcg->memory);

4546
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4547 4548 4549 4550
		memcg = parent;
	}
}

4551 4552 4553 4554
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
I
Ingo Molnar 已提交
4555
 * tracks ownership per-page while the latter per-inode.  This was a
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
I
Ingo Molnar 已提交
4570
 * Conditions like the above can lead to a cgroup getting repeatedly and
4571
 * severely throttled after making some progress after each
I
Ingo Molnar 已提交
4572
 * dirty_expire_interval while the underlying IO device is almost
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
4598
	struct mem_cgroup *memcg = page_memcg(page);
4599 4600 4601 4602 4603 4604
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4605 4606
	trace_track_foreign_dirty(page, wb);

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4667
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4668 4669 4670 4671 4672 4673 4674
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4686 4687 4688 4689
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4690 4691
#endif	/* CONFIG_CGROUP_WRITEBACK */

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4705 4706 4707 4708 4709
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4710
static void memcg_event_remove(struct work_struct *work)
4711
{
4712 4713
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4714
	struct mem_cgroup *memcg = event->memcg;
4715 4716 4717

	remove_wait_queue(event->wqh, &event->wait);

4718
	event->unregister_event(memcg, event->eventfd);
4719 4720 4721 4722 4723 4724

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4725
	css_put(&memcg->css);
4726 4727 4728
}

/*
4729
 * Gets called on EPOLLHUP on eventfd when user closes it.
4730 4731 4732
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4733
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4734
			    int sync, void *key)
4735
{
4736 4737
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4738
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4739
	__poll_t flags = key_to_poll(key);
4740

4741
	if (flags & EPOLLHUP) {
4742 4743 4744 4745 4746 4747 4748 4749 4750
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4751
		spin_lock(&memcg->event_list_lock);
4752 4753 4754 4755 4756 4757 4758 4759
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4760
		spin_unlock(&memcg->event_list_lock);
4761 4762 4763 4764 4765
	}

	return 0;
}

4766
static void memcg_event_ptable_queue_proc(struct file *file,
4767 4768
		wait_queue_head_t *wqh, poll_table *pt)
{
4769 4770
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4771 4772 4773 4774 4775 4776

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4777 4778
 * DO NOT USE IN NEW FILES.
 *
4779 4780 4781 4782 4783
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4784 4785
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4786
{
4787
	struct cgroup_subsys_state *css = of_css(of);
4788
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4789
	struct mem_cgroup_event *event;
4790 4791 4792 4793
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4794
	const char *name;
4795 4796 4797
	char *endp;
	int ret;

4798 4799 4800
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4801 4802
	if (*endp != ' ')
		return -EINVAL;
4803
	buf = endp + 1;
4804

4805
	cfd = simple_strtoul(buf, &endp, 10);
4806 4807
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4808
	buf = endp + 1;
4809 4810 4811 4812 4813

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4814
	event->memcg = memcg;
4815
	INIT_LIST_HEAD(&event->list);
4816 4817 4818
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
4840
	ret = file_permission(cfile.file, MAY_READ);
4841 4842 4843
	if (ret < 0)
		goto out_put_cfile;

4844 4845 4846 4847 4848
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4849 4850
	 *
	 * DO NOT ADD NEW FILES.
4851
	 */
A
Al Viro 已提交
4852
	name = cfile.file->f_path.dentry->d_name.name;
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4864 4865
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4866 4867 4868 4869 4870
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4871
	/*
4872 4873 4874
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4875
	 */
A
Al Viro 已提交
4876
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4877
					       &memory_cgrp_subsys);
4878
	ret = -EINVAL;
4879
	if (IS_ERR(cfile_css))
4880
		goto out_put_cfile;
4881 4882
	if (cfile_css != css) {
		css_put(cfile_css);
4883
		goto out_put_cfile;
4884
	}
4885

4886
	ret = event->register_event(memcg, event->eventfd, buf);
4887 4888 4889
	if (ret)
		goto out_put_css;

4890
	vfs_poll(efile.file, &event->pt);
4891

4892 4893 4894
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4895 4896 4897 4898

	fdput(cfile);
	fdput(efile);

4899
	return nbytes;
4900 4901

out_put_css:
4902
	css_put(css);
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4915
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4916
	{
4917
		.name = "usage_in_bytes",
4918
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4919
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4920
	},
4921 4922
	{
		.name = "max_usage_in_bytes",
4923
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4924
		.write = mem_cgroup_reset,
4925
		.read_u64 = mem_cgroup_read_u64,
4926
	},
B
Balbir Singh 已提交
4927
	{
4928
		.name = "limit_in_bytes",
4929
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4930
		.write = mem_cgroup_write,
4931
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4932
	},
4933 4934 4935
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4936
		.write = mem_cgroup_write,
4937
		.read_u64 = mem_cgroup_read_u64,
4938
	},
B
Balbir Singh 已提交
4939 4940
	{
		.name = "failcnt",
4941
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4942
		.write = mem_cgroup_reset,
4943
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4944
	},
4945 4946
	{
		.name = "stat",
4947
		.seq_show = memcg_stat_show,
4948
	},
4949 4950
	{
		.name = "force_empty",
4951
		.write = mem_cgroup_force_empty_write,
4952
	},
4953 4954 4955 4956 4957
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4958
	{
4959
		.name = "cgroup.event_control",		/* XXX: for compat */
4960
		.write = memcg_write_event_control,
4961
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4962
	},
K
KOSAKI Motohiro 已提交
4963 4964 4965 4966 4967
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4968 4969 4970 4971 4972
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4973 4974
	{
		.name = "oom_control",
4975
		.seq_show = mem_cgroup_oom_control_read,
4976
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4977 4978
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4979 4980 4981
	{
		.name = "pressure_level",
	},
4982 4983 4984
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4985
		.seq_show = memcg_numa_stat_show,
4986 4987
	},
#endif
4988 4989 4990
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4991
		.write = mem_cgroup_write,
4992
		.read_u64 = mem_cgroup_read_u64,
4993 4994 4995 4996
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4997
		.read_u64 = mem_cgroup_read_u64,
4998 4999 5000 5001
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5002
		.write = mem_cgroup_reset,
5003
		.read_u64 = mem_cgroup_read_u64,
5004 5005 5006 5007
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5008
		.write = mem_cgroup_reset,
5009
		.read_u64 = mem_cgroup_read_u64,
5010
	},
5011 5012
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5013 5014
	{
		.name = "kmem.slabinfo",
5015
		.seq_show = memcg_slab_show,
5016 5017
	},
#endif
V
Vladimir Davydov 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5041
	{ },	/* terminate */
5042
};
5043

5044 5045 5046 5047 5048 5049 5050 5051
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5052
 * However, there usually are many references to the offline CSS after
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5070 5071 5072 5073 5074 5075 5076 5077
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5078 5079
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5080
{
5081
	refcount_add(n, &memcg->id.ref);
5082 5083
}

5084
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5085
{
5086
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5087
		mem_cgroup_id_remove(memcg);
5088 5089 5090 5091 5092 5093

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5094 5095 5096 5097 5098
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5111
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5112 5113
{
	struct mem_cgroup_per_node *pn;
5114
	int tmp = node;
5115 5116 5117 5118 5119 5120 5121 5122
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5123 5124
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5125
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5126 5127
	if (!pn)
		return 1;
5128

5129 5130
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5131 5132 5133 5134 5135
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5136
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5137
					       GFP_KERNEL_ACCOUNT);
5138
	if (!pn->lruvec_stat_cpu) {
5139
		free_percpu(pn->lruvec_stat_local);
5140 5141 5142 5143
		kfree(pn);
		return 1;
	}

5144 5145 5146 5147 5148
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5149
	memcg->nodeinfo[node] = pn;
5150 5151 5152
	return 0;
}

5153
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5154
{
5155 5156
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5157 5158 5159
	if (!pn)
		return;

5160
	free_percpu(pn->lruvec_stat_cpu);
5161
	free_percpu(pn->lruvec_stat_local);
5162
	kfree(pn);
5163 5164
}

5165
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5166
{
5167
	int node;
5168

5169
	for_each_node(node)
5170
		free_mem_cgroup_per_node_info(memcg, node);
5171
	free_percpu(memcg->vmstats_percpu);
5172
	kfree(memcg);
5173
}
5174

5175 5176
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
5177 5178
	int cpu;

5179
	memcg_wb_domain_exit(memcg);
5180
	/*
5181 5182
	 * Flush percpu lruvec stats to guarantee the value
	 * correctness on parent's and all ancestor levels.
5183
	 */
5184 5185
	for_each_online_cpu(cpu)
		memcg_flush_lruvec_page_state(memcg, cpu);
5186 5187 5188
	__mem_cgroup_free(memcg);
}

5189
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5190
{
5191
	struct mem_cgroup *memcg;
5192
	unsigned int size;
5193
	int node;
5194
	int __maybe_unused i;
5195
	long error = -ENOMEM;
B
Balbir Singh 已提交
5196

5197 5198 5199 5200
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5201
	if (!memcg)
5202
		return ERR_PTR(error);
5203

5204 5205 5206
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5207 5208
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5209
		goto fail;
5210
	}
5211

5212 5213
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5214
	if (!memcg->vmstats_percpu)
5215
		goto fail;
5216

B
Bob Liu 已提交
5217
	for_each_node(node)
5218
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5219
			goto fail;
5220

5221 5222
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5223

5224
	INIT_WORK(&memcg->high_work, high_work_func);
5225 5226 5227
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5228
	vmpressure_init(&memcg->vmpressure);
5229 5230
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5231
	memcg->socket_pressure = jiffies;
5232
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5233
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5234
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5235
#endif
5236 5237
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5238 5239 5240
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5241 5242 5243 5244 5245
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5246
#endif
5247
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5248 5249
	return memcg;
fail:
5250
	mem_cgroup_id_remove(memcg);
5251
	__mem_cgroup_free(memcg);
5252
	return ERR_PTR(error);
5253 5254
}

5255 5256
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5257
{
5258
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5259
	struct mem_cgroup *memcg, *old_memcg;
5260
	long error = -ENOMEM;
5261

5262
	old_memcg = set_active_memcg(parent);
5263
	memcg = mem_cgroup_alloc();
5264
	set_active_memcg(old_memcg);
5265 5266
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5267

5268
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5269
	memcg->soft_limit = PAGE_COUNTER_MAX;
5270
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5271 5272 5273
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5274

5275
		page_counter_init(&memcg->memory, &parent->memory);
5276
		page_counter_init(&memcg->swap, &parent->swap);
5277
		page_counter_init(&memcg->kmem, &parent->kmem);
5278
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5279
	} else {
5280 5281 5282 5283
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5284

5285 5286 5287 5288
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5289
	/* The following stuff does not apply to the root */
5290
	error = memcg_online_kmem(memcg);
5291 5292
	if (error)
		goto fail;
5293

5294
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5295
		static_branch_inc(&memcg_sockets_enabled_key);
5296

5297 5298
	return &memcg->css;
fail:
5299
	mem_cgroup_id_remove(memcg);
5300
	mem_cgroup_free(memcg);
5301
	return ERR_PTR(error);
5302 5303
}

5304
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5305
{
5306 5307
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5308
	/*
5309
	 * A memcg must be visible for expand_shrinker_info()
5310 5311 5312
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
5313
	if (alloc_shrinker_info(memcg)) {
5314 5315 5316 5317
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5318
	/* Online state pins memcg ID, memcg ID pins CSS */
5319
	refcount_set(&memcg->id.ref, 1);
5320
	css_get(css);
5321
	return 0;
B
Balbir Singh 已提交
5322 5323
}

5324
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5325
{
5326
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5327
	struct mem_cgroup_event *event, *tmp;
5328 5329 5330 5331 5332 5333

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5334 5335
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5336 5337 5338
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5339
	spin_unlock(&memcg->event_list_lock);
5340

R
Roman Gushchin 已提交
5341
	page_counter_set_min(&memcg->memory, 0);
5342
	page_counter_set_low(&memcg->memory, 0);
5343

5344
	memcg_offline_kmem(memcg);
5345
	reparent_shrinker_deferred(memcg);
5346
	wb_memcg_offline(memcg);
5347

5348 5349
	drain_all_stock(memcg);

5350
	mem_cgroup_id_put(memcg);
5351 5352
}

5353 5354 5355 5356 5357 5358 5359
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5360
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5361
{
5362
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5363
	int __maybe_unused i;
5364

5365 5366 5367 5368
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5369
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5370
		static_branch_dec(&memcg_sockets_enabled_key);
5371

5372
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5373
		static_branch_dec(&memcg_sockets_enabled_key);
5374

5375 5376 5377
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5378
	free_shrinker_info(memcg);
5379
	memcg_free_kmem(memcg);
5380
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5381 5382
}

5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5400 5401 5402 5403
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5404
	page_counter_set_min(&memcg->memory, 0);
5405
	page_counter_set_low(&memcg->memory, 0);
5406
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5407
	memcg->soft_limit = PAGE_COUNTER_MAX;
5408
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5409
	memcg_wb_domain_size_changed(memcg);
5410 5411
}

5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	struct memcg_vmstats_percpu *statc;
	long delta, v;
	int i;

	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);

	for (i = 0; i < MEMCG_NR_STAT; i++) {
		/*
		 * Collect the aggregated propagation counts of groups
		 * below us. We're in a per-cpu loop here and this is
		 * a global counter, so the first cycle will get them.
		 */
		delta = memcg->vmstats.state_pending[i];
		if (delta)
			memcg->vmstats.state_pending[i] = 0;

		/* Add CPU changes on this level since the last flush */
		v = READ_ONCE(statc->state[i]);
		if (v != statc->state_prev[i]) {
			delta += v - statc->state_prev[i];
			statc->state_prev[i] = v;
		}

		if (!delta)
			continue;

		/* Aggregate counts on this level and propagate upwards */
		memcg->vmstats.state[i] += delta;
		if (parent)
			parent->vmstats.state_pending[i] += delta;
	}

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		delta = memcg->vmstats.events_pending[i];
		if (delta)
			memcg->vmstats.events_pending[i] = 0;

		v = READ_ONCE(statc->events[i]);
		if (v != statc->events_prev[i]) {
			delta += v - statc->events_prev[i];
			statc->events_prev[i] = v;
		}

		if (!delta)
			continue;

		memcg->vmstats.events[i] += delta;
		if (parent)
			parent->vmstats.events_pending[i] += delta;
	}
}

5468
#ifdef CONFIG_MMU
5469
/* Handlers for move charge at task migration. */
5470
static int mem_cgroup_do_precharge(unsigned long count)
5471
{
5472
	int ret;
5473

5474 5475
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5476
	if (!ret) {
5477 5478 5479
		mc.precharge += count;
		return ret;
	}
5480

5481
	/* Try charges one by one with reclaim, but do not retry */
5482
	while (count--) {
5483
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5484 5485
		if (ret)
			return ret;
5486
		mc.precharge++;
5487
		cond_resched();
5488
	}
5489
	return 0;
5490 5491 5492 5493
}

union mc_target {
	struct page	*page;
5494
	swp_entry_t	ent;
5495 5496 5497
};

enum mc_target_type {
5498
	MC_TARGET_NONE = 0,
5499
	MC_TARGET_PAGE,
5500
	MC_TARGET_SWAP,
5501
	MC_TARGET_DEVICE,
5502 5503
};

D
Daisuke Nishimura 已提交
5504 5505
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5506
{
5507
	struct page *page = vm_normal_page(vma, addr, ptent);
5508

D
Daisuke Nishimura 已提交
5509 5510 5511
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5512
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5513
			return NULL;
5514 5515 5516 5517
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5518 5519 5520 5521 5522 5523
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5524
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5525
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5526
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5527 5528 5529 5530
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5531
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5532
		return NULL;
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5550 5551 5552
	if (non_swap_entry(ent))
		return NULL;

5553 5554 5555 5556
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5557
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5558
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5559 5560 5561

	return page;
}
5562 5563
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5564
			pte_t ptent, swp_entry_t *entry)
5565 5566 5567 5568
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5569

5570 5571 5572 5573 5574
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5575
	if (!(mc.flags & MOVE_FILE))
5576 5577 5578
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5579
	/* shmem/tmpfs may report page out on swap: account for that too. */
5580 5581
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5582 5583
}

5584 5585 5586
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5587
 * @compound: charge the page as compound or small page
5588 5589 5590
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5591
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5592 5593 5594 5595 5596
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5597
				   bool compound,
5598 5599 5600
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5601 5602
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5603
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5604 5605 5606 5607
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5608
	VM_BUG_ON(compound && !PageTransHuge(page));
5609 5610

	/*
5611
	 * Prevent mem_cgroup_migrate() from looking at
5612
	 * page's memory cgroup of its source page while we change it.
5613
	 */
5614
	ret = -EBUSY;
5615 5616 5617 5618
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
5619
	if (page_memcg(page) != from)
5620 5621
		goto out_unlock;

5622
	pgdat = page_pgdat(page);
5623 5624
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5625

5626
	lock_page_memcg(page);
5627

5628 5629 5630 5631
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5632
			if (PageTransHuge(page)) {
5633 5634 5635 5636
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
5637
			}
5638 5639
		}
	} else {
5640 5641 5642 5643 5644 5645 5646 5647
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5648 5649 5650 5651
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5652

5653 5654
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5655

5656
			if (mapping_can_writeback(mapping)) {
5657 5658 5659 5660 5661
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5662 5663 5664
		}
	}

5665
	if (PageWriteback(page)) {
5666 5667
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5668 5669 5670
	}

	/*
5671 5672
	 * All state has been migrated, let's switch to the new memcg.
	 *
5673
	 * It is safe to change page's memcg here because the page
5674 5675
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
5676
	 * that would rely on a stable page's memory cgroup.
5677 5678
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5679
	 * to save space. As soon as we switch page's memory cgroup to a
5680 5681
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5682
	 */
5683
	smp_mb();
5684

5685 5686 5687
	css_get(&to->css);
	css_put(&from->css);

5688
	page->memcg_data = (unsigned long)to;
5689

5690
	__unlock_page_memcg(from);
5691 5692 5693 5694

	ret = 0;

	local_irq_disable();
5695
	mem_cgroup_charge_statistics(to, page, nr_pages);
5696
	memcg_check_events(to, page);
5697
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5698 5699 5700 5701 5702 5703 5704 5705
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5721 5722
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5723 5724 5725
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5726 5727
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5728 5729 5730 5731
 *
 * Called with pte lock held.
 */

5732
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5733 5734 5735
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5736
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5737 5738 5739 5740 5741
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5742
		page = mc_handle_swap_pte(vma, ptent, &ent);
5743
	else if (pte_none(ptent))
5744
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5745 5746

	if (!page && !ent.val)
5747
		return ret;
5748 5749
	if (page) {
		/*
5750
		 * Do only loose check w/o serialization.
5751
		 * mem_cgroup_move_account() checks the page is valid or
5752
		 * not under LRU exclusion.
5753
		 */
5754
		if (page_memcg(page) == mc.from) {
5755
			ret = MC_TARGET_PAGE;
5756
			if (is_device_private_page(page))
5757
				ret = MC_TARGET_DEVICE;
5758 5759 5760 5761 5762 5763
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5764 5765 5766 5767 5768
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5769
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5770 5771 5772
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5773 5774 5775 5776
	}
	return ret;
}

5777 5778
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5779 5780
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5781 5782 5783 5784 5785 5786 5787 5788
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5789 5790 5791 5792 5793
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5794
	page = pmd_page(pmd);
5795
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5796
	if (!(mc.flags & MOVE_ANON))
5797
		return ret;
5798
	if (page_memcg(page) == mc.from) {
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5815 5816 5817 5818
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5819
	struct vm_area_struct *vma = walk->vma;
5820 5821 5822
	pte_t *pte;
	spinlock_t *ptl;

5823 5824
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5825 5826
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5827 5828
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5829
		 */
5830 5831
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5832
		spin_unlock(ptl);
5833
		return 0;
5834
	}
5835

5836 5837
	if (pmd_trans_unstable(pmd))
		return 0;
5838 5839
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5840
		if (get_mctgt_type(vma, addr, *pte, NULL))
5841 5842 5843 5844
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5845 5846 5847
	return 0;
}

5848 5849 5850 5851
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5852 5853 5854 5855
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5856
	mmap_read_lock(mm);
5857
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5858
	mmap_read_unlock(mm);
5859 5860 5861 5862 5863 5864 5865 5866 5867

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5868 5869 5870 5871 5872
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5873 5874
}

5875 5876
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5877
{
5878 5879 5880
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5881
	/* we must uncharge all the leftover precharges from mc.to */
5882
	if (mc.precharge) {
5883
		cancel_charge(mc.to, mc.precharge);
5884 5885 5886 5887 5888 5889 5890
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5891
		cancel_charge(mc.from, mc.moved_charge);
5892
		mc.moved_charge = 0;
5893
	}
5894 5895 5896
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5897
		if (!mem_cgroup_is_root(mc.from))
5898
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5899

5900 5901
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5902
		/*
5903 5904
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5905
		 */
5906
		if (!mem_cgroup_is_root(mc.to))
5907 5908
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5909 5910
		mc.moved_swap = 0;
	}
5911 5912 5913 5914 5915 5916 5917
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5918 5919
	struct mm_struct *mm = mc.mm;

5920 5921 5922 5923 5924 5925
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5926
	spin_lock(&mc.lock);
5927 5928
	mc.from = NULL;
	mc.to = NULL;
5929
	mc.mm = NULL;
5930
	spin_unlock(&mc.lock);
5931 5932

	mmput(mm);
5933 5934
}

5935
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5936
{
5937
	struct cgroup_subsys_state *css;
5938
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5939
	struct mem_cgroup *from;
5940
	struct task_struct *leader, *p;
5941
	struct mm_struct *mm;
5942
	unsigned long move_flags;
5943
	int ret = 0;
5944

5945 5946
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5947 5948
		return 0;

5949 5950 5951 5952 5953 5954 5955
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5956
	cgroup_taskset_for_each_leader(leader, css, tset) {
5957 5958
		WARN_ON_ONCE(p);
		p = leader;
5959
		memcg = mem_cgroup_from_css(css);
5960 5961 5962 5963
	}
	if (!p)
		return 0;

5964
	/*
I
Ingo Molnar 已提交
5965
	 * We are now committed to this value whatever it is. Changes in this
5966 5967 5968 5969 5970 5971 5972
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5989
		mc.mm = mm;
5990 5991 5992 5993 5994 5995 5996 5997 5998
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5999 6000
	} else {
		mmput(mm);
6001 6002 6003 6004
	}
	return ret;
}

6005
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6006
{
6007 6008
	if (mc.to)
		mem_cgroup_clear_mc();
6009 6010
}

6011 6012 6013
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6014
{
6015
	int ret = 0;
6016
	struct vm_area_struct *vma = walk->vma;
6017 6018
	pte_t *pte;
	spinlock_t *ptl;
6019 6020 6021
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6022

6023 6024
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6025
		if (mc.precharge < HPAGE_PMD_NR) {
6026
			spin_unlock(ptl);
6027 6028 6029 6030 6031 6032
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6033
				if (!mem_cgroup_move_account(page, true,
6034
							     mc.from, mc.to)) {
6035 6036 6037 6038 6039 6040
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6041 6042 6043 6044 6045 6046 6047 6048
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6049
		}
6050
		spin_unlock(ptl);
6051
		return 0;
6052 6053
	}

6054 6055
	if (pmd_trans_unstable(pmd))
		return 0;
6056 6057 6058 6059
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6060
		bool device = false;
6061
		swp_entry_t ent;
6062 6063 6064 6065

		if (!mc.precharge)
			break;

6066
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6067 6068
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6069
			fallthrough;
6070 6071
		case MC_TARGET_PAGE:
			page = target.page;
6072 6073 6074 6075 6076 6077 6078 6079
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6080
			if (!device && isolate_lru_page(page))
6081
				goto put;
6082 6083
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6084
				mc.precharge--;
6085 6086
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6087
			}
6088 6089
			if (!device)
				putback_lru_page(page);
6090
put:			/* get_mctgt_type() gets the page */
6091 6092
			put_page(page);
			break;
6093 6094
		case MC_TARGET_SWAP:
			ent = target.ent;
6095
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6096
				mc.precharge--;
6097 6098
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6099 6100
				mc.moved_swap++;
			}
6101
			break;
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6116
		ret = mem_cgroup_do_precharge(1);
6117 6118 6119 6120 6121 6122 6123
		if (!ret)
			goto retry;
	}

	return ret;
}

6124 6125 6126 6127
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6128
static void mem_cgroup_move_charge(void)
6129 6130
{
	lru_add_drain_all();
6131
	/*
6132 6133 6134
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6135 6136 6137
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6138
retry:
6139
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6140
		/*
6141
		 * Someone who are holding the mmap_lock might be waiting in
6142 6143 6144 6145 6146 6147 6148 6149 6150
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6151 6152 6153 6154
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6155 6156
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6157

6158
	mmap_read_unlock(mc.mm);
6159
	atomic_dec(&mc.from->moving_account);
6160 6161
}

6162
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6163
{
6164 6165
	if (mc.to) {
		mem_cgroup_move_charge();
6166
		mem_cgroup_clear_mc();
6167
	}
B
Balbir Singh 已提交
6168
}
6169
#else	/* !CONFIG_MMU */
6170
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6171 6172 6173
{
	return 0;
}
6174
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6175 6176
{
}
6177
static void mem_cgroup_move_task(void)
6178 6179 6180
{
}
#endif
B
Balbir Singh 已提交
6181

6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6192 6193 6194
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6195 6196 6197
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6198 6199
}

R
Roman Gushchin 已提交
6200 6201
static int memory_min_show(struct seq_file *m, void *v)
{
6202 6203
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6223 6224
static int memory_low_show(struct seq_file *m, void *v)
{
6225 6226
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6237
	err = page_counter_memparse(buf, "max", &low);
6238 6239 6240
	if (err)
		return err;

6241
	page_counter_set_low(&memcg->memory, low);
6242 6243 6244 6245 6246 6247

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6248 6249
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6250 6251 6252 6253 6254 6255
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6256
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6257
	bool drained = false;
6258 6259 6260 6261
	unsigned long high;
	int err;

	buf = strstrip(buf);
6262
	err = page_counter_memparse(buf, "max", &high);
6263 6264 6265
	if (err)
		return err;

6266 6267
	page_counter_set_high(&memcg->memory, high);

6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6290

6291
	memcg_wb_domain_size_changed(memcg);
6292 6293 6294 6295 6296
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6297 6298
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6299 6300 6301 6302 6303 6304
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6305
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6306
	bool drained = false;
6307 6308 6309 6310
	unsigned long max;
	int err;

	buf = strstrip(buf);
6311
	err = page_counter_memparse(buf, "max", &max);
6312 6313 6314
	if (err)
		return err;

6315
	xchg(&memcg->memory.max, max);
6316 6317 6318 6319 6320 6321 6322

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6323
		if (signal_pending(current))
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6339
		memcg_memory_event(memcg, MEMCG_OOM);
6340 6341 6342
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6343

6344
	memcg_wb_domain_size_changed(memcg);
6345 6346 6347
	return nbytes;
}

6348 6349 6350 6351 6352 6353 6354 6355 6356 6357
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6358 6359
static int memory_events_show(struct seq_file *m, void *v)
{
6360
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6361

6362 6363 6364 6365 6366 6367 6368
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6369

6370
	__memory_events_show(m, memcg->memory_events_local);
6371 6372 6373
	return 0;
}

6374 6375
static int memory_stat_show(struct seq_file *m, void *v)
{
6376
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6377
	char *buf;
6378

6379 6380 6381 6382 6383
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6384 6385 6386
	return 0;
}

6387
#ifdef CONFIG_NUMA
6388 6389 6390 6391 6392 6393
static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
						     int item)
{
	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
}

6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6411 6412
			size = lruvec_page_state_output(lruvec,
							memory_stats[i].idx);
6413 6414 6415 6416 6417 6418 6419 6420 6421
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6422 6423
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6424
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6453 6454 6455
static struct cftype memory_files[] = {
	{
		.name = "current",
6456
		.flags = CFTYPE_NOT_ON_ROOT,
6457 6458
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6459 6460 6461 6462 6463 6464
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6486
		.file_offset = offsetof(struct mem_cgroup, events_file),
6487 6488
		.seq_show = memory_events_show,
	},
6489 6490 6491 6492 6493 6494
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6495 6496 6497 6498
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6499 6500 6501 6502 6503 6504
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6505 6506 6507 6508 6509 6510
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6511 6512 6513
	{ }	/* terminate */
};

6514
struct cgroup_subsys memory_cgrp_subsys = {
6515
	.css_alloc = mem_cgroup_css_alloc,
6516
	.css_online = mem_cgroup_css_online,
6517
	.css_offline = mem_cgroup_css_offline,
6518
	.css_released = mem_cgroup_css_released,
6519
	.css_free = mem_cgroup_css_free,
6520
	.css_reset = mem_cgroup_css_reset,
6521
	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6522 6523
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6524
	.post_attach = mem_cgroup_move_task,
6525 6526
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6527
	.early_init = 0,
B
Balbir Singh 已提交
6528
};
6529

6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6572 6573
 */
static unsigned long effective_protection(unsigned long usage,
6574
					  unsigned long parent_usage,
6575 6576 6577 6578 6579
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6580
	unsigned long ep;
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6624 6625 6626 6627
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6628 6629 6630
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6631 6632 6633
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6644 6645
}

6646
/**
R
Roman Gushchin 已提交
6647
 * mem_cgroup_protected - check if memory consumption is in the normal range
6648
 * @root: the top ancestor of the sub-tree being checked
6649 6650
 * @memcg: the memory cgroup to check
 *
6651 6652
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6653
 */
6654 6655
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6656
{
6657
	unsigned long usage, parent_usage;
6658 6659
	struct mem_cgroup *parent;

6660
	if (mem_cgroup_disabled())
6661
		return;
6662

6663 6664
	if (!root)
		root = root_mem_cgroup;
6665 6666 6667 6668 6669 6670 6671 6672

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6673
	if (memcg == root)
6674
		return;
6675

6676
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6677
	if (!usage)
6678
		return;
R
Roman Gushchin 已提交
6679 6680

	parent = parent_mem_cgroup(memcg);
6681 6682
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6683
		return;
6684

6685
	if (parent == root) {
6686
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6687
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6688
		return;
R
Roman Gushchin 已提交
6689 6690
	}

6691 6692
	parent_usage = page_counter_read(&parent->memory);

6693
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6694 6695
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6696
			atomic_long_read(&parent->memory.children_min_usage)));
6697

6698
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6699 6700
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6701
			atomic_long_read(&parent->memory.children_low_usage)));
6702 6703
}

6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
			       gfp_t gfp)
{
	unsigned int nr_pages = thp_nr_pages(page);
	int ret;

	ret = try_charge(memcg, gfp, nr_pages);
	if (ret)
		goto out;

	css_get(&memcg->css);
	commit_charge(page, memcg);

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
out:
	return ret;
}

6725
/**
6726
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6727 6728 6729 6730 6731
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6732 6733
 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
 * charge to the active memcg.
6734
 *
6735 6736
 * Do not use this for pages allocated for swapin.
 *
6737
 * Returns 0 on success. Otherwise, an error code is returned.
6738
 */
6739
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6740
{
6741 6742
	struct mem_cgroup *memcg;
	int ret;
6743 6744

	if (mem_cgroup_disabled())
6745
		return 0;
6746

6747 6748 6749
	memcg = get_mem_cgroup_from_mm(mm);
	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
	css_put(&memcg->css);
6750

6751 6752
	return ret;
}
6753

6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771
/**
 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp: reclaim mode
 * @entry: swap entry for which the page is allocated
 *
 * This function charges a page allocated for swapin. Please call this before
 * adding the page to the swapcache.
 *
 * Returns 0 on success. Otherwise, an error code is returned.
 */
int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
				  gfp_t gfp, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;
	int ret;
6772

6773 6774
	if (mem_cgroup_disabled())
		return 0;
6775

6776 6777 6778 6779 6780 6781
	id = lookup_swap_cgroup_id(entry);
	rcu_read_lock();
	memcg = mem_cgroup_from_id(id);
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = get_mem_cgroup_from_mm(mm);
	rcu_read_unlock();
6782

6783
	ret = __mem_cgroup_charge(page, memcg, gfp);
6784

6785 6786 6787
	css_put(&memcg->css);
	return ret;
}
6788

6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
/*
 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
 * @entry: swap entry for which the page is charged
 *
 * Call this function after successfully adding the charged page to swapcache.
 *
 * Note: This function assumes the page for which swap slot is being uncharged
 * is order 0 page.
 */
void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
{
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811
	/*
	 * Cgroup1's unified memory+swap counter has been charged with the
	 * new swapcache page, finish the transfer by uncharging the swap
	 * slot. The swap slot would also get uncharged when it dies, but
	 * it can stick around indefinitely and we'd count the page twice
	 * the entire time.
	 *
	 * Cgroup2 has separate resource counters for memory and swap,
	 * so this is a non-issue here. Memory and swap charge lifetimes
	 * correspond 1:1 to page and swap slot lifetimes: we charge the
	 * page to memory here, and uncharge swap when the slot is freed.
	 */
6812
	if (!mem_cgroup_disabled() && do_memsw_account()) {
6813 6814 6815 6816 6817
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6818
		mem_cgroup_uncharge_swap(entry, 1);
6819
	}
6820 6821
}

6822 6823
struct uncharge_gather {
	struct mem_cgroup *memcg;
6824
	unsigned long nr_memory;
6825 6826 6827 6828 6829 6830
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6831
{
6832 6833 6834 6835 6836
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6837 6838
	unsigned long flags;

6839 6840
	if (ug->nr_memory) {
		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6841
		if (do_memsw_account())
6842
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6843 6844 6845
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6846
	}
6847 6848

	local_irq_save(flags);
6849
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6850
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6851
	memcg_check_events(ug->memcg, ug->dummy_page);
6852
	local_irq_restore(flags);
6853 6854 6855

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6856 6857 6858 6859
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6860
	unsigned long nr_pages;
6861 6862
	struct mem_cgroup *memcg;
	struct obj_cgroup *objcg;
6863
	bool use_objcg = PageMemcgKmem(page);
6864

6865 6866 6867 6868
	VM_BUG_ON_PAGE(PageLRU(page), page);

	/*
	 * Nobody should be changing or seriously looking at
6869
	 * page memcg or objcg at this point, we have fully
6870 6871
	 * exclusive access to the page.
	 */
6872
	if (use_objcg) {
6873 6874 6875 6876 6877 6878 6879 6880 6881
		objcg = __page_objcg(page);
		/*
		 * This get matches the put at the end of the function and
		 * kmem pages do not hold memcg references anymore.
		 */
		memcg = get_mem_cgroup_from_objcg(objcg);
	} else {
		memcg = __page_memcg(page);
	}
6882

6883 6884 6885 6886
	if (!memcg)
		return;

	if (ug->memcg != memcg) {
6887 6888 6889 6890
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
6891
		ug->memcg = memcg;
6892
		ug->dummy_page = page;
6893 6894

		/* pairs with css_put in uncharge_batch */
6895
		css_get(&memcg->css);
6896 6897
	}

6898
	nr_pages = compound_nr(page);
6899

6900
	if (use_objcg) {
6901
		ug->nr_memory += nr_pages;
6902
		ug->nr_kmem += nr_pages;
6903 6904 6905 6906 6907 6908 6909

		page->memcg_data = 0;
		obj_cgroup_put(objcg);
	} else {
		/* LRU pages aren't accounted at the root level */
		if (!mem_cgroup_is_root(memcg))
			ug->nr_memory += nr_pages;
6910
		ug->pgpgout++;
6911

6912 6913 6914 6915
		page->memcg_data = 0;
	}

	css_put(&memcg->css);
6916 6917
}

6918 6919 6920 6921
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6922
 * Uncharge a page previously charged with mem_cgroup_charge().
6923 6924 6925
 */
void mem_cgroup_uncharge(struct page *page)
{
6926 6927
	struct uncharge_gather ug;

6928 6929 6930
	if (mem_cgroup_disabled())
		return;

6931
	/* Don't touch page->lru of any random page, pre-check: */
6932
	if (!page_memcg(page))
6933 6934
		return;

6935 6936 6937
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6938
}
6939

6940 6941 6942 6943 6944
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6945
 * mem_cgroup_charge().
6946 6947 6948
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
6949 6950 6951
	struct uncharge_gather ug;
	struct page *page;

6952 6953
	if (mem_cgroup_disabled())
		return;
6954

6955 6956 6957 6958 6959
	uncharge_gather_clear(&ug);
	list_for_each_entry(page, page_list, lru)
		uncharge_page(page, &ug);
	if (ug.memcg)
		uncharge_batch(&ug);
6960 6961 6962
}

/**
6963 6964 6965
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6966
 *
6967 6968
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6969 6970 6971
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6972
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6973
{
6974
	struct mem_cgroup *memcg;
6975
	unsigned int nr_pages;
6976
	unsigned long flags;
6977 6978 6979 6980

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6981 6982
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6983 6984 6985 6986 6987

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6988
	if (page_memcg(newpage))
6989 6990
		return;

6991
	memcg = page_memcg(oldpage);
6992
	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6993
	if (!memcg)
6994 6995
		return;

6996
	/* Force-charge the new page. The old one will be freed soon */
6997
	nr_pages = thp_nr_pages(newpage);
6998

6999 7000 7001 7002 7003
	if (!mem_cgroup_is_root(memcg)) {
		page_counter_charge(&memcg->memory, nr_pages);
		if (do_memsw_account())
			page_counter_charge(&memcg->memsw, nr_pages);
	}
7004

7005
	css_get(&memcg->css);
7006
	commit_charge(newpage, memcg);
7007

7008
	local_irq_save(flags);
7009
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7010
	memcg_check_events(memcg, newpage);
7011
	local_irq_restore(flags);
7012 7013
}

7014
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7015 7016
EXPORT_SYMBOL(memcg_sockets_enabled_key);

7017
void mem_cgroup_sk_alloc(struct sock *sk)
7018 7019 7020
{
	struct mem_cgroup *memcg;

7021 7022 7023
	if (!mem_cgroup_sockets_enabled)
		return;

7024 7025 7026 7027
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

7028 7029
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
7030 7031
	if (memcg == root_mem_cgroup)
		goto out;
7032
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7033
		goto out;
S
Shakeel Butt 已提交
7034
	if (css_tryget(&memcg->css))
7035
		sk->sk_memcg = memcg;
7036
out:
7037 7038 7039
	rcu_read_unlock();
}

7040
void mem_cgroup_sk_free(struct sock *sk)
7041
{
7042 7043
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7056
	gfp_t gfp_mask = GFP_KERNEL;
7057

7058
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7059
		struct page_counter *fail;
7060

7061 7062
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7063 7064
			return true;
		}
7065 7066
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
7067
		return false;
7068
	}
7069

7070 7071 7072 7073
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7074
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7075

7076 7077 7078 7079
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7080 7081 7082 7083 7084
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7085 7086
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7087 7088 7089
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7090
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7091
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7092 7093
		return;
	}
7094

7095
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7096

7097
	refill_stock(memcg, nr_pages);
7098 7099
}

7100 7101 7102 7103 7104 7105 7106 7107 7108
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7109 7110
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7111 7112 7113 7114
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7115

7116
/*
7117 7118
 * subsys_initcall() for memory controller.
 *
7119 7120 7121 7122
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7123 7124 7125
 */
static int __init mem_cgroup_init(void)
{
7126 7127
	int cpu, node;

7128 7129 7130 7131 7132 7133 7134 7135
	/*
	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
	 * used for per-memcg-per-cpu caching of per-node statistics. In order
	 * to work fine, we should make sure that the overfill threshold can't
	 * exceed S32_MAX / PAGE_SIZE.
	 */
	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);

7136 7137
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7149
		rtpn->rb_root = RB_ROOT;
7150
		rtpn->rb_rightmost = NULL;
7151
		spin_lock_init(&rtpn->lock);
7152 7153 7154
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7155 7156 7157
	return 0;
}
subsys_initcall(mem_cgroup_init);
7158 7159

#ifdef CONFIG_MEMCG_SWAP
7160 7161
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7162
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7178 7179 7180 7181 7182 7183 7184 7185 7186
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7187
	struct mem_cgroup *memcg, *swap_memcg;
7188
	unsigned int nr_entries;
7189 7190 7191 7192 7193
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7194 7195 7196
	if (mem_cgroup_disabled())
		return;

7197
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7198 7199
		return;

7200
	memcg = page_memcg(page);
7201

7202
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7203 7204 7205
	if (!memcg)
		return;

7206 7207 7208 7209 7210 7211
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7212
	nr_entries = thp_nr_pages(page);
7213 7214 7215 7216 7217
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7218
	VM_BUG_ON_PAGE(oldid, page);
7219
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7220

7221
	page->memcg_data = 0;
7222 7223

	if (!mem_cgroup_is_root(memcg))
7224
		page_counter_uncharge(&memcg->memory, nr_entries);
7225

7226
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7227
		if (!mem_cgroup_is_root(swap_memcg))
7228 7229
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7230 7231
	}

7232 7233
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7234
	 * i_pages lock which is taken with interrupts-off. It is
7235
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7236
	 * only synchronisation we have for updating the per-CPU variables.
7237 7238
	 */
	VM_BUG_ON(!irqs_disabled());
7239
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7240
	memcg_check_events(memcg, page);
7241

7242
	css_put(&memcg->css);
7243 7244
}

7245 7246
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7247 7248 7249
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7250
 * Try to charge @page's memcg for the swap space at @entry.
7251 7252 7253 7254 7255
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7256
	unsigned int nr_pages = thp_nr_pages(page);
7257
	struct page_counter *counter;
7258
	struct mem_cgroup *memcg;
7259 7260
	unsigned short oldid;

7261 7262 7263
	if (mem_cgroup_disabled())
		return 0;

7264
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7265 7266
		return 0;

7267
	memcg = page_memcg(page);
7268

7269
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7270 7271 7272
	if (!memcg)
		return 0;

7273 7274
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7275
		return 0;
7276
	}
7277

7278 7279
	memcg = mem_cgroup_id_get_online(memcg);

7280
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7281
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7282 7283
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7284
		mem_cgroup_id_put(memcg);
7285
		return -ENOMEM;
7286
	}
7287

7288 7289 7290 7291
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7292
	VM_BUG_ON_PAGE(oldid, page);
7293
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7294 7295 7296 7297

	return 0;
}

7298
/**
7299
 * mem_cgroup_uncharge_swap - uncharge swap space
7300
 * @entry: swap entry to uncharge
7301
 * @nr_pages: the amount of swap space to uncharge
7302
 */
7303
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7304 7305 7306 7307
{
	struct mem_cgroup *memcg;
	unsigned short id;

7308
	id = swap_cgroup_record(entry, 0, nr_pages);
7309
	rcu_read_lock();
7310
	memcg = mem_cgroup_from_id(id);
7311
	if (memcg) {
7312
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7313
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7314
				page_counter_uncharge(&memcg->swap, nr_pages);
7315
			else
7316
				page_counter_uncharge(&memcg->memsw, nr_pages);
7317
		}
7318
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7319
		mem_cgroup_id_put_many(memcg, nr_pages);
7320 7321 7322 7323
	}
	rcu_read_unlock();
}

7324 7325 7326 7327
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7328
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7329 7330 7331
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7332
				      READ_ONCE(memcg->swap.max) -
7333 7334 7335 7336
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7337 7338 7339 7340 7341 7342 7343 7344
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7345
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7346 7347
		return false;

7348
	memcg = page_memcg(page);
7349 7350 7351
	if (!memcg)
		return false;

7352 7353 7354 7355 7356
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7357
			return true;
7358
	}
7359 7360 7361 7362

	return false;
}

7363
static int __init setup_swap_account(char *s)
7364 7365
{
	if (!strcmp(s, "1"))
7366
		cgroup_memory_noswap = false;
7367
	else if (!strcmp(s, "0"))
7368
		cgroup_memory_noswap = true;
7369 7370
	return 1;
}
7371
__setup("swapaccount=", setup_swap_account);
7372

7373 7374 7375 7376 7377 7378 7379 7380
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7404 7405
static int swap_max_show(struct seq_file *m, void *v)
{
7406 7407
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7422
	xchg(&memcg->swap.max, max);
7423 7424 7425 7426

	return nbytes;
}

7427 7428
static int swap_events_show(struct seq_file *m, void *v)
{
7429
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7430

7431 7432
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7433 7434 7435 7436 7437 7438 7439 7440
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7441 7442 7443 7444 7445 7446
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7447 7448 7449 7450 7451 7452
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7453 7454 7455 7456 7457 7458
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7459 7460 7461 7462 7463 7464
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7465 7466 7467
	{ }	/* terminate */
};

7468
static struct cftype memsw_files[] = {
7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7495 7496 7497 7498 7499 7500 7501
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7502 7503
static int __init mem_cgroup_swap_init(void)
{
7504 7505 7506 7507 7508
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7509 7510 7511 7512 7513
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7514 7515
	return 0;
}
7516
core_initcall(mem_cgroup_swap_init);
7517 7518

#endif /* CONFIG_MEMCG_SWAP */