memcontrol.c 192.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
B
Balbir Singh 已提交
26 27
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/mm_inline.h>
57
#include <linux/swap_cgroup.h>
58
#include <linux/cpu.h>
59
#include <linux/oom.h>
60
#include <linux/lockdep.h>
61
#include <linux/file.h>
62
#include <linux/tracehook.h>
63
#include <linux/psi.h>
64
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
68
#include "slab.h"
B
Balbir Singh 已提交
69

70
#include <linux/uaccess.h>
71

72 73
#include <trace/events/vmscan.h>

74 75
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
76

77 78
struct mem_cgroup *root_mem_cgroup __read_mostly;

79 80
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82

83
/* Socket memory accounting disabled? */
84
static bool cgroup_memory_nosocket __ro_after_init;
85

86
/* Kernel memory accounting disabled? */
87
bool cgroup_memory_nokmem __ro_after_init;
88

89
/* Whether the swap controller is active */
A
Andrew Morton 已提交
90
#ifdef CONFIG_MEMCG_SWAP
91
bool cgroup_memory_noswap __ro_after_init;
92
#else
93
#define cgroup_memory_noswap		1
94
#endif
95

96 97 98 99
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
103
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 105
}

106 107 108 109 110
/* memcg and lruvec stats flushing */
static void flush_memcg_stats_dwork(struct work_struct *w);
static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
static DEFINE_SPINLOCK(stats_flush_lock);

111 112
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
113

114 115 116 117 118
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

119
struct mem_cgroup_tree_per_node {
120
	struct rb_root rb_root;
121
	struct rb_node *rb_rightmost;
122 123 124 125 126 127 128 129 130
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
131 132 133 134 135
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
136

137 138 139
/*
 * cgroup_event represents events which userspace want to receive.
 */
140
struct mem_cgroup_event {
141
	/*
142
	 * memcg which the event belongs to.
143
	 */
144
	struct mem_cgroup *memcg;
145 146 147 148 149 150 151 152
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
153 154 155 156 157
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
158
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
159
			      struct eventfd_ctx *eventfd, const char *args);
160 161 162 163 164
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
165
	void (*unregister_event)(struct mem_cgroup *memcg,
166
				 struct eventfd_ctx *eventfd);
167 168 169 170 171 172
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
173
	wait_queue_entry_t wait;
174 175 176
	struct work_struct remove;
};

177 178
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179

180 181
/* Stuffs for move charges at task migration. */
/*
182
 * Types of charges to be moved.
183
 */
184 185 186
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
187

188 189
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
190
	spinlock_t	  lock; /* for from, to */
191
	struct mm_struct  *mm;
192 193
	struct mem_cgroup *from;
	struct mem_cgroup *to;
194
	unsigned long flags;
195
	unsigned long precharge;
196
	unsigned long moved_charge;
197
	unsigned long moved_swap;
198 199 200
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
201
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 203
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
204

205 206 207 208
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
209
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
210
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
211

212
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
213 214 215 216
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
217
	_KMEM,
V
Vladimir Davydov 已提交
218
	_TCP,
G
Glauber Costa 已提交
219 220
};

221 222
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
223
#define MEMFILE_ATTR(val)	((val) & 0xffff)
I
Ingo Molnar 已提交
224
/* Used for OOM notifier */
K
KAMEZAWA Hiroyuki 已提交
225
#define OOM_CONTROL		(0)
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

242 243 244 245 246 247
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

248 249 250 251 252 253 254 255
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

256
struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
257
{
258
	return container_of(vmpr, struct mem_cgroup, vmpressure);
259 260
}

261
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
262 263
extern spinlock_t css_set_lock;

264 265 266 267 268
bool mem_cgroup_kmem_disabled(void)
{
	return cgroup_memory_nokmem;
}

269 270
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages);
271

R
Roman Gushchin 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	if (nr_pages)
304
		obj_cgroup_uncharge_pages(objcg, nr_pages);
305 306

	spin_lock_irqsave(&css_set_lock, flags);
R
Roman Gushchin 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	list_del(&objcg->list);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

342 343 344 345 346 347
	/* 1) Ready to reparent active objcg. */
	list_add(&objcg->list, &memcg->objcg_list);
	/* 2) Reparent active objcg and already reparented objcgs to parent. */
	list_for_each_entry(iter, &memcg->objcg_list, list)
		WRITE_ONCE(iter->memcg, parent);
	/* 3) Move already reparented objcgs to the parent's list */
R
Roman Gushchin 已提交
348 349 350 351 352 353 354
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

355
/*
356
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
357 358 359 360 361
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
362
 *
363 364
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
365
 */
366 367
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
368

369 370 371 372 373 374 375 376 377 378 379 380 381
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

382 383 384 385 386 387
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
388
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
389 390
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
391
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
392 393 394
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
395
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
396

397 398
/*
 * A lot of the calls to the cache allocation functions are expected to be
399
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
400 401 402
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
403
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
404
EXPORT_SYMBOL(memcg_kmem_enabled_key);
405
#endif
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

422
	memcg = page_memcg(page);
423

424
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
425 426 427 428 429
		memcg = root_mem_cgroup;

	return &memcg->css;
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
449
	memcg = page_memcg_check(page);
450

451 452 453 454 455 456 457 458
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

459 460
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
461
{
462
	int nid = page_to_nid(page);
463

464
	return memcg->nodeinfo[nid];
465 466
}

467 468
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
469
{
470
	return soft_limit_tree.rb_tree_per_node[nid];
471 472
}

473
static struct mem_cgroup_tree_per_node *
474 475 476 477
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

478
	return soft_limit_tree.rb_tree_per_node[nid];
479 480
}

481 482
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
483
					 unsigned long new_usage_in_excess)
484 485 486
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
487
	struct mem_cgroup_per_node *mz_node;
488
	bool rightmost = true;
489 490 491 492 493 494 495 496 497

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
498
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
499
					tree_node);
500
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
501
			p = &(*p)->rb_left;
502
			rightmost = false;
503
		} else {
504
			p = &(*p)->rb_right;
505
		}
506
	}
507 508 509 510

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

511 512 513 514 515
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

516 517
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
518 519 520
{
	if (!mz->on_tree)
		return;
521 522 523 524

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

525 526 527 528
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

529 530
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
531
{
532 533 534
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
535
	__mem_cgroup_remove_exceeded(mz, mctz);
536
	spin_unlock_irqrestore(&mctz->lock, flags);
537 538
}

539 540 541
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
542
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
543 544 545 546 547 548 549
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
550 551 552

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
553
	unsigned long excess;
554 555
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
556

557
	mctz = soft_limit_tree_from_page(page);
558 559
	if (!mctz)
		return;
560 561 562 563 564
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
565
		mz = mem_cgroup_page_nodeinfo(memcg, page);
566
		excess = soft_limit_excess(memcg);
567 568 569 570 571
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
572 573 574
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
575 576
			/* if on-tree, remove it */
			if (mz->on_tree)
577
				__mem_cgroup_remove_exceeded(mz, mctz);
578 579 580 581
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
582
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
583
			spin_unlock_irqrestore(&mctz->lock, flags);
584 585 586 587 588 589
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
590 591 592
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
593

594
	for_each_node(nid) {
595
		mz = memcg->nodeinfo[nid];
596
		mctz = soft_limit_tree_node(nid);
597 598
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
599 600 601
	}
}

602 603
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
604
{
605
	struct mem_cgroup_per_node *mz;
606 607 608

retry:
	mz = NULL;
609
	if (!mctz->rb_rightmost)
610 611
		goto done;		/* Nothing to reclaim from */

612 613
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
614 615 616 617 618
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
619
	__mem_cgroup_remove_exceeded(mz, mctz);
620
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
621
	    !css_tryget(&mz->memcg->css))
622 623 624 625 626
		goto retry;
done:
	return mz;
}

627 628
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
629
{
630
	struct mem_cgroup_per_node *mz;
631

632
	spin_lock_irq(&mctz->lock);
633
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
634
	spin_unlock_irq(&mctz->lock);
635 636 637
	return mz;
}

638 639 640 641 642 643 644 645 646 647 648
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	if (mem_cgroup_disabled())
		return;

649 650
	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
651 652
}

653
/* idx can be of type enum memcg_stat_item or node_stat_item. */
654 655 656 657 658 659
static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
660
		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
661 662 663 664 665 666 667
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

668 669
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
670 671
{
	struct mem_cgroup_per_node *pn;
672
	struct mem_cgroup *memcg;
673 674

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
675
	memcg = pn->memcg;
676 677

	/* Update memcg */
678
	__mod_memcg_state(memcg, idx, val);
679

680
	/* Update lruvec */
681
	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
682 683
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

705 706 707 708
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
709
	struct mem_cgroup *memcg;
710 711 712
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

713 714
	rcu_read_lock();
	memcg = page_memcg(head);
715
	/* Untracked pages have no memcg, no lruvec. Update only the node */
716
	if (!memcg) {
717
		rcu_read_unlock();
718 719 720 721
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

722
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
723
	__mod_lruvec_state(lruvec, idx, val);
724
	rcu_read_unlock();
725
}
726
EXPORT_SYMBOL(__mod_lruvec_page_state);
727

728
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
729
{
730
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
731 732 733 734
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
735
	memcg = mem_cgroup_from_obj(p);
736

737 738 739 740 741 742 743
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
744 745
		__mod_node_page_state(pgdat, idx, val);
	} else {
746
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
747 748 749 750 751
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

752 753 754 755
/*
 * mod_objcg_mlstate() may be called with irq enabled, so
 * mod_memcg_lruvec_state() should be used.
 */
756 757 758
static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
				     struct pglist_data *pgdat,
				     enum node_stat_item idx, int nr)
759 760 761 762 763 764 765
{
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
766
	mod_memcg_lruvec_state(lruvec, idx, nr);
767 768 769
	rcu_read_unlock();
}

770 771 772 773
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
I
Ingo Molnar 已提交
774
 * @count: the number of events that occurred
775 776 777 778 779 780 781
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	if (mem_cgroup_disabled())
		return;

782 783
	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
784 785
}

786
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
787
{
788
	return READ_ONCE(memcg->vmstats.events[event]);
789 790
}

791 792
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
793 794 795 796
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
797
		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
798
	return x;
799 800
}

801
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
802
					 struct page *page,
803
					 int nr_pages)
804
{
805 806
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
807
		__count_memcg_events(memcg, PGPGIN, 1);
808
	else {
809
		__count_memcg_events(memcg, PGPGOUT, 1);
810 811
		nr_pages = -nr_pages; /* for event */
	}
812

813
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
814 815
}

816 817
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
818 819 820
{
	unsigned long val, next;

821 822
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
823
	/* from time_after() in jiffies.h */
824
	if ((long)(next - val) < 0) {
825 826 827 828
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
829 830 831
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
832 833 834
		default:
			break;
		}
835
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
836
		return true;
837
	}
838
	return false;
839 840 841 842 843 844
}

/*
 * Check events in order.
 *
 */
845
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
846 847
{
	/* threshold event is triggered in finer grain than soft limit */
848 849
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
850
		bool do_softlimit;
851

852 853
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
854
		mem_cgroup_threshold(memcg);
855 856
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
857
	}
858 859
}

860
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
861
{
862 863 864 865 866 867 868 869
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

870
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
871
}
M
Michal Hocko 已提交
872
EXPORT_SYMBOL(mem_cgroup_from_task);
873

874 875
static __always_inline struct mem_cgroup *active_memcg(void)
{
876
	if (!in_task())
877 878 879 880 881
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}

882 883 884 885
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
886 887 888 889 890 891
 * Obtain a reference on mm->memcg and returns it if successful. If mm
 * is NULL, then the memcg is chosen as follows:
 * 1) The active memcg, if set.
 * 2) current->mm->memcg, if available
 * 3) root memcg
 * If mem_cgroup is disabled, NULL is returned.
892 893
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
894
{
895 896 897 898
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
899

900 901 902 903 904 905 906 907 908
	/*
	 * Page cache insertions can happen without an
	 * actual mm context, e.g. during disk probing
	 * on boot, loopback IO, acct() writes etc.
	 *
	 * No need to css_get on root memcg as the reference
	 * counting is disabled on the root level in the
	 * cgroup core. See CSS_NO_REF.
	 */
909 910 911 912 913 914 915 916 917 918 919
	if (unlikely(!mm)) {
		memcg = active_memcg();
		if (unlikely(memcg)) {
			/* remote memcg must hold a ref */
			css_get(&memcg->css);
			return memcg;
		}
		mm = current->mm;
		if (unlikely(!mm))
			return root_mem_cgroup;
	}
920

921 922
	rcu_read_lock();
	do {
923 924
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
925
			memcg = root_mem_cgroup;
926
	} while (!css_tryget(&memcg->css));
927
	rcu_read_unlock();
928
	return memcg;
929
}
930 931
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

932 933 934 935 936 937 938
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
939
	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
940 941 942 943 944
		return true;

	return false;
}

945 946 947 948 949 950 951 952 953 954 955 956 957
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
958 959 960
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
961
 */
962
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
963
				   struct mem_cgroup *prev,
964
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
965
{
966
	struct mem_cgroup_reclaim_iter *iter;
967
	struct cgroup_subsys_state *css = NULL;
968
	struct mem_cgroup *memcg = NULL;
969
	struct mem_cgroup *pos = NULL;
970

971 972
	if (mem_cgroup_disabled())
		return NULL;
973

974 975
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
976

977
	if (prev && !reclaim)
978
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
979

980
	rcu_read_lock();
M
Michal Hocko 已提交
981

982
	if (reclaim) {
983
		struct mem_cgroup_per_node *mz;
984

985
		mz = root->nodeinfo[reclaim->pgdat->node_id];
986
		iter = &mz->iter;
987 988 989 990

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

991
		while (1) {
992
			pos = READ_ONCE(iter->position);
993 994
			if (!pos || css_tryget(&pos->css))
				break;
995
			/*
996 997 998 999 1000 1001
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1002
			 */
1003 1004
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1022
		}
K
KAMEZAWA Hiroyuki 已提交
1023

1024 1025 1026 1027 1028 1029
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1030

1031 1032
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1033

1034 1035
		if (css_tryget(css))
			break;
1036

1037
		memcg = NULL;
1038
	}
1039 1040 1041

	if (reclaim) {
		/*
1042 1043 1044
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1045
		 */
1046 1047
		(void)cmpxchg(&iter->position, pos, memcg);

1048 1049 1050 1051 1052 1053 1054
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1055
	}
1056

1057 1058
out_unlock:
	rcu_read_unlock();
1059 1060 1061
	if (prev && prev != root)
		css_put(&prev->css);

1062
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1063
}
K
KAMEZAWA Hiroyuki 已提交
1064

1065 1066 1067 1068 1069 1070 1071
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1072 1073 1074 1075 1076 1077
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1078

1079 1080
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1081 1082
{
	struct mem_cgroup_reclaim_iter *iter;
1083 1084
	struct mem_cgroup_per_node *mz;
	int nid;
1085

1086
	for_each_node(nid) {
1087
		mz = from->nodeinfo[nid];
1088 1089
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1090 1091 1092
	}
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1139
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

	memcg = page_memcg(page);

	if (!memcg)
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
	else
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
}
#endif

/**
 * lock_page_lruvec - lock and return lruvec for a given page.
 * @page: the page
 *
1172 1173 1174 1175 1176
 * These functions are safe to use under any of the following conditions:
 * - page locked
 * - PageLRU cleared
 * - lock_page_memcg()
 * - page->_refcount is zero
1177 1178 1179 1180 1181
 */
struct lruvec *lock_page_lruvec(struct page *page)
{
	struct lruvec *lruvec;

1182
	lruvec = mem_cgroup_page_lruvec(page);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	spin_lock(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irq(struct page *page)
{
	struct lruvec *lruvec;

1194
	lruvec = mem_cgroup_page_lruvec(page);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	spin_lock_irq(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
{
	struct lruvec *lruvec;

1206
	lruvec = mem_cgroup_page_lruvec(page);
1207 1208 1209 1210 1211 1212 1213
	spin_lock_irqsave(&lruvec->lru_lock, *flags);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

1214
/**
1215 1216 1217
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1218
 * @zid: zone id of the accounted pages
1219
 * @nr_pages: positive when adding or negative when removing
1220
 *
1221 1222 1223
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1224
 */
1225
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1226
				int zid, int nr_pages)
1227
{
1228
	struct mem_cgroup_per_node *mz;
1229
	unsigned long *lru_size;
1230
	long size;
1231 1232 1233 1234

	if (mem_cgroup_disabled())
		return;

1235
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1236
	lru_size = &mz->lru_zone_size[zid][lru];
1237 1238 1239 1240 1241

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1242 1243 1244
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1245 1246 1247 1248 1249 1250
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1251
}
1252

1253
/**
1254
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1255
 * @memcg: the memory cgroup
1256
 *
1257
 * Returns the maximum amount of memory @mem can be charged with, in
1258
 * pages.
1259
 */
1260
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1261
{
1262 1263 1264
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1265

1266
	count = page_counter_read(&memcg->memory);
1267
	limit = READ_ONCE(memcg->memory.max);
1268 1269 1270
	if (count < limit)
		margin = limit - count;

1271
	if (do_memsw_account()) {
1272
		count = page_counter_read(&memcg->memsw);
1273
		limit = READ_ONCE(memcg->memsw.max);
1274
		if (count < limit)
1275
			margin = min(margin, limit - count);
1276 1277
		else
			margin = 0;
1278 1279 1280
	}

	return margin;
1281 1282
}

1283
/*
Q
Qiang Huang 已提交
1284
 * A routine for checking "mem" is under move_account() or not.
1285
 *
Q
Qiang Huang 已提交
1286 1287 1288
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1289
 */
1290
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1291
{
1292 1293
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1294
	bool ret = false;
1295 1296 1297 1298 1299 1300 1301 1302 1303
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1304

1305 1306
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1307 1308
unlock:
	spin_unlock(&mc.lock);
1309 1310 1311
	return ret;
}

1312
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1313 1314
{
	if (mc.moving_task && current != mc.moving_task) {
1315
		if (mem_cgroup_under_move(memcg)) {
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1328 1329 1330 1331 1332
struct memory_stat {
	const char *name;
	unsigned int idx;
};

1333
static const struct memory_stat memory_stats[] = {
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	{ "anon",			NR_ANON_MAPPED			},
	{ "file",			NR_FILE_PAGES			},
	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
	{ "pagetables",			NR_PAGETABLE			},
	{ "percpu",			MEMCG_PERCPU_B			},
	{ "sock",			MEMCG_SOCK			},
	{ "shmem",			NR_SHMEM			},
	{ "file_mapped",		NR_FILE_MAPPED			},
	{ "file_dirty",			NR_FILE_DIRTY			},
	{ "file_writeback",		NR_WRITEBACK			},
1344 1345 1346
#ifdef CONFIG_SWAP
	{ "swapcached",			NR_SWAPCACHE			},
#endif
1347
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1348 1349 1350
	{ "anon_thp",			NR_ANON_THPS			},
	{ "file_thp",			NR_FILE_THPS			},
	{ "shmem_thp",			NR_SHMEM_THPS			},
1351
#endif
1352 1353 1354 1355 1356 1357 1358
	{ "inactive_anon",		NR_INACTIVE_ANON		},
	{ "active_anon",		NR_ACTIVE_ANON			},
	{ "inactive_file",		NR_INACTIVE_FILE		},
	{ "active_file",		NR_ACTIVE_FILE			},
	{ "unevictable",		NR_UNEVICTABLE			},
	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1359 1360

	/* The memory events */
1361 1362 1363 1364 1365 1366 1367
	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1368 1369
};

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/* Translate stat items to the correct unit for memory.stat output */
static int memcg_page_state_unit(int item)
{
	switch (item) {
	case MEMCG_PERCPU_B:
	case NR_SLAB_RECLAIMABLE_B:
	case NR_SLAB_UNRECLAIMABLE_B:
	case WORKINGSET_REFAULT_ANON:
	case WORKINGSET_REFAULT_FILE:
	case WORKINGSET_ACTIVATE_ANON:
	case WORKINGSET_ACTIVATE_FILE:
	case WORKINGSET_RESTORE_ANON:
	case WORKINGSET_RESTORE_FILE:
	case WORKINGSET_NODERECLAIM:
		return 1;
	case NR_KERNEL_STACK_KB:
		return SZ_1K;
	default:
		return PAGE_SIZE;
	}
}

static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
						    int item)
{
	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
}

1398 1399 1400 1401
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */
1417
	cgroup_rstat_flush(memcg->css.cgroup);
1418

1419 1420
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1421

1422
		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1423
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1424

1425
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1426 1427
			size += memcg_page_state_output(memcg,
							NR_SLAB_RECLAIMABLE_B);
1428 1429 1430
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1431 1432 1433

	/* Accumulated memory events */

1434 1435 1436 1437 1438 1439
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1440 1441 1442 1443 1444 1445
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1446 1447 1448 1449 1450 1451 1452 1453
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1454 1455

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1456
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1457
		       memcg_events(memcg, THP_FAULT_ALLOC));
1458
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1459 1460 1461 1462 1463 1464 1465 1466
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1467

1468
#define K(x) ((x) << (PAGE_SHIFT-10))
1469
/**
1470 1471
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1472 1473 1474 1475 1476 1477
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1478
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1479 1480 1481
{
	rcu_read_lock();

1482 1483 1484 1485 1486
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1487
	if (p) {
1488
		pr_cont(",task_memcg=");
1489 1490
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1491
	rcu_read_unlock();
1492 1493 1494 1495 1496 1497 1498 1499 1500
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1501
	char *buf;
1502

1503 1504
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1505
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1506 1507 1508
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1509
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1510 1511 1512 1513 1514 1515 1516
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1517
	}
1518 1519 1520 1521 1522 1523 1524 1525 1526

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1527 1528
}

D
David Rientjes 已提交
1529 1530 1531
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1532
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1533
{
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1547
	}
1548
	return max;
D
David Rientjes 已提交
1549 1550
}

1551 1552 1553 1554 1555
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1556
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1557
				     int order)
1558
{
1559 1560 1561
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1562
		.memcg = memcg,
1563 1564 1565
		.gfp_mask = gfp_mask,
		.order = order,
	};
1566
	bool ret = true;
1567

1568 1569
	if (mutex_lock_killable(&oom_lock))
		return true;
1570 1571 1572 1573

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1574 1575 1576 1577 1578
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1579 1580

unlock:
1581
	mutex_unlock(&oom_lock);
1582
	return ret;
1583 1584
}

1585
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1586
				   pg_data_t *pgdat,
1587 1588 1589 1590 1591 1592 1593 1594 1595
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1596
		.pgdat = pgdat,
1597 1598
	};

1599
	excess = soft_limit_excess(root_memcg);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1625
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1626
					pgdat, &nr_scanned);
1627
		*total_scanned += nr_scanned;
1628
		if (!soft_limit_excess(root_memcg))
1629
			break;
1630
	}
1631 1632
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1633 1634
}

1635 1636 1637 1638 1639 1640
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1641 1642
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1643 1644 1645 1646
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1647
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1648
{
1649
	struct mem_cgroup *iter, *failed = NULL;
1650

1651 1652
	spin_lock(&memcg_oom_lock);

1653
	for_each_mem_cgroup_tree(iter, memcg) {
1654
		if (iter->oom_lock) {
1655 1656 1657 1658 1659
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1660 1661
			mem_cgroup_iter_break(memcg, iter);
			break;
1662 1663
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1664
	}
K
KAMEZAWA Hiroyuki 已提交
1665

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1677
		}
1678 1679
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1680 1681 1682 1683

	spin_unlock(&memcg_oom_lock);

	return !failed;
1684
}
1685

1686
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1687
{
K
KAMEZAWA Hiroyuki 已提交
1688 1689
	struct mem_cgroup *iter;

1690
	spin_lock(&memcg_oom_lock);
1691
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1692
	for_each_mem_cgroup_tree(iter, memcg)
1693
		iter->oom_lock = false;
1694
	spin_unlock(&memcg_oom_lock);
1695 1696
}

1697
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1698 1699 1700
{
	struct mem_cgroup *iter;

1701
	spin_lock(&memcg_oom_lock);
1702
	for_each_mem_cgroup_tree(iter, memcg)
1703 1704
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1705 1706
}

1707
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1708 1709 1710
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1711
	/*
I
Ingo Molnar 已提交
1712
	 * Be careful about under_oom underflows because a child memcg
1713
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1714
	 */
1715
	spin_lock(&memcg_oom_lock);
1716
	for_each_mem_cgroup_tree(iter, memcg)
1717 1718 1719
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1720 1721
}

K
KAMEZAWA Hiroyuki 已提交
1722 1723
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1724
struct oom_wait_info {
1725
	struct mem_cgroup *memcg;
1726
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1727 1728
};

1729
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1730 1731
	unsigned mode, int sync, void *arg)
{
1732 1733
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1734 1735 1736
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1737
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1738

1739 1740
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1741 1742 1743 1744
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1745
static void memcg_oom_recover(struct mem_cgroup *memcg)
1746
{
1747 1748 1749 1750 1751 1752 1753 1754 1755
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1756
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1757 1758
}

1759 1760 1761 1762 1763 1764 1765 1766
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1767
{
1768 1769 1770
	enum oom_status ret;
	bool locked;

1771 1772 1773
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1774 1775
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1776
	/*
1777 1778 1779 1780
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1781 1782 1783 1784
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1785
	 *
1786 1787 1788 1789 1790 1791 1792
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1793
	 */
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1805 1806 1807 1808 1809 1810 1811 1812
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1813
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1814 1815 1816 1817 1818 1819
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1820

1821
	return ret;
1822 1823 1824 1825
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1826
 * @handle: actually kill/wait or just clean up the OOM state
1827
 *
1828 1829
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1830
 *
1831
 * Memcg supports userspace OOM handling where failed allocations must
1832 1833 1834 1835
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1836
 * the end of the page fault to complete the OOM handling.
1837 1838
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1839
 * completed, %false otherwise.
1840
 */
1841
bool mem_cgroup_oom_synchronize(bool handle)
1842
{
T
Tejun Heo 已提交
1843
	struct mem_cgroup *memcg = current->memcg_in_oom;
1844
	struct oom_wait_info owait;
1845
	bool locked;
1846 1847 1848

	/* OOM is global, do not handle */
	if (!memcg)
1849
		return false;
1850

1851
	if (!handle)
1852
		goto cleanup;
1853 1854 1855 1856 1857

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1858
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1859

1860
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1871 1872
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1873
	} else {
1874
		schedule();
1875 1876 1877 1878 1879
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1880 1881 1882 1883
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
I
Ingo Molnar 已提交
1884
		 * uncharges.  Wake any sleepers explicitly.
1885 1886 1887
		 */
		memcg_oom_recover(memcg);
	}
1888
cleanup:
T
Tejun Heo 已提交
1889
	current->memcg_in_oom = NULL;
1890
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1891
	return true;
1892 1893
}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

1922 1923 1924 1925 1926 1927 1928 1929
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1958
/**
1959
 * lock_page_memcg - lock a page and memcg binding
1960
 * @page: the page
1961
 *
1962
 * This function protects unlocked LRU pages from being moved to
1963 1964
 * another cgroup.
 *
1965 1966
 * It ensures lifetime of the locked memcg. Caller is responsible
 * for the lifetime of the page.
1967
 */
1968
void lock_page_memcg(struct page *page)
1969
{
1970
	struct page *head = compound_head(page); /* rmap on tail pages */
1971
	struct mem_cgroup *memcg;
1972
	unsigned long flags;
1973

1974 1975 1976 1977
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1978
         */
1979 1980 1981
	rcu_read_lock();

	if (mem_cgroup_disabled())
1982
		return;
1983
again:
1984
	memcg = page_memcg(head);
1985
	if (unlikely(!memcg))
1986
		return;
1987

1988 1989 1990 1991 1992 1993
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
1994
	if (atomic_read(&memcg->moving_account) <= 0)
1995
		return;
1996

1997
	spin_lock_irqsave(&memcg->move_lock, flags);
1998
	if (memcg != page_memcg(head)) {
1999
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2000 2001
		goto again;
	}
2002 2003

	/*
2004 2005 2006 2007
	 * When charge migration first begins, we can have multiple
	 * critical sections holding the fast-path RCU lock and one
	 * holding the slowpath move_lock. Track the task who has the
	 * move_lock for unlock_page_memcg().
2008 2009 2010
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2011
}
2012
EXPORT_SYMBOL(lock_page_memcg);
2013

2014
static void __unlock_page_memcg(struct mem_cgroup *memcg)
2015
{
2016 2017 2018 2019 2020 2021 2022 2023
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2024

2025
	rcu_read_unlock();
2026
}
2027 2028

/**
2029
 * unlock_page_memcg - unlock a page and memcg binding
2030 2031 2032 2033
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2034 2035
	struct page *head = compound_head(page);

2036
	__unlock_page_memcg(page_memcg(head));
2037
}
2038
EXPORT_SYMBOL(unlock_page_memcg);
2039

2040
struct obj_stock {
R
Roman Gushchin 已提交
2041 2042
#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
2043
	struct pglist_data *cached_pgdat;
R
Roman Gushchin 已提交
2044
	unsigned int nr_bytes;
2045 2046
	int nr_slab_reclaimable_b;
	int nr_slab_unreclaimable_b;
2047 2048
#else
	int dummy[0];
R
Roman Gushchin 已提交
2049
#endif
2050 2051 2052 2053 2054 2055 2056
};

struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	unsigned int nr_pages;
	struct obj_stock task_obj;
	struct obj_stock irq_obj;
R
Roman Gushchin 已提交
2057

2058
	struct work_struct work;
2059
	unsigned long flags;
2060
#define FLUSHING_CACHED_CHARGE	0
2061 2062
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2063
static DEFINE_MUTEX(percpu_charge_mutex);
2064

R
Roman Gushchin 已提交
2065
#ifdef CONFIG_MEMCG_KMEM
2066
static void drain_obj_stock(struct obj_stock *stock);
R
Roman Gushchin 已提交
2067 2068 2069 2070
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
2071
static inline void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
/*
 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
 * sequence used in this case to access content from object stock is slow.
 * To optimize for user context access, there are now two object stocks for
 * task context and interrupt context access respectively.
 *
 * The task context object stock can be accessed by disabling preemption only
 * which is cheap in non-preempt kernel. The interrupt context object stock
 * can only be accessed after disabling interrupt. User context code can
 * access interrupt object stock, but not vice versa.
 */
static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
{
	struct memcg_stock_pcp *stock;

	if (likely(in_task())) {
		*pflags = 0UL;
		preempt_disable();
		stock = this_cpu_ptr(&memcg_stock);
		return &stock->task_obj;
	}

	local_irq_save(*pflags);
	stock = this_cpu_ptr(&memcg_stock);
	return &stock->irq_obj;
}

static inline void put_obj_stock(unsigned long flags)
{
	if (likely(in_task()))
		preempt_enable();
	else
		local_irq_restore(flags);
}

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2126
 */
2127
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2128 2129
{
	struct memcg_stock_pcp *stock;
2130
	unsigned long flags;
2131
	bool ret = false;
2132

2133
	if (nr_pages > MEMCG_CHARGE_BATCH)
2134
		return ret;
2135

2136 2137 2138
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2139
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2140
		stock->nr_pages -= nr_pages;
2141 2142
		ret = true;
	}
2143 2144 2145

	local_irq_restore(flags);

2146 2147 2148 2149
	return ret;
}

/*
2150
 * Returns stocks cached in percpu and reset cached information.
2151 2152 2153 2154 2155
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2156 2157 2158
	if (!old)
		return;

2159
	if (stock->nr_pages) {
2160
		page_counter_uncharge(&old->memory, stock->nr_pages);
2161
		if (do_memsw_account())
2162
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2163
		stock->nr_pages = 0;
2164
	}
2165 2166

	css_put(&old->css);
2167 2168 2169 2170 2171
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2172 2173 2174
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2175
	/*
2176 2177 2178
	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
	 * drain_stock races is that we always operate on local CPU stock
	 * here with IRQ disabled
2179
	 */
2180 2181 2182
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2183 2184 2185
	drain_obj_stock(&stock->irq_obj);
	if (in_task())
		drain_obj_stock(&stock->task_obj);
2186
	drain_stock(stock);
2187
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2188 2189

	local_irq_restore(flags);
2190 2191 2192
}

/*
2193
 * Cache charges(val) to local per_cpu area.
2194
 * This will be consumed by consume_stock() function, later.
2195
 */
2196
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2197
{
2198 2199 2200 2201
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2202

2203
	stock = this_cpu_ptr(&memcg_stock);
2204
	if (stock->cached != memcg) { /* reset if necessary */
2205
		drain_stock(stock);
2206
		css_get(&memcg->css);
2207
		stock->cached = memcg;
2208
	}
2209
	stock->nr_pages += nr_pages;
2210

2211
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2212 2213
		drain_stock(stock);

2214
	local_irq_restore(flags);
2215 2216 2217
}

/*
2218
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2219
 * of the hierarchy under it.
2220
 */
2221
static void drain_all_stock(struct mem_cgroup *root_memcg)
2222
{
2223
	int cpu, curcpu;
2224

2225 2226 2227
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2228 2229 2230 2231 2232 2233
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2234
	curcpu = get_cpu();
2235 2236
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2237
		struct mem_cgroup *memcg;
2238
		bool flush = false;
2239

2240
		rcu_read_lock();
2241
		memcg = stock->cached;
2242 2243 2244
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
2245
		else if (obj_stock_flush_required(stock, root_memcg))
R
Roman Gushchin 已提交
2246
			flush = true;
2247 2248 2249 2250
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2251 2252 2253 2254 2255
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2256
	}
2257
	put_cpu();
2258
	mutex_unlock(&percpu_charge_mutex);
2259 2260
}

2261 2262 2263
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
	struct memcg_stock_pcp *stock;
2264

2265 2266
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2267

2268
	return 0;
2269 2270
}

2271 2272 2273
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2274
{
2275 2276
	unsigned long nr_reclaimed = 0;

2277
	do {
2278 2279
		unsigned long pflags;

2280 2281
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2282
			continue;
2283

2284
		memcg_memory_event(memcg, MEMCG_HIGH);
2285 2286

		psi_memstall_enter(&pflags);
2287 2288
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2289
		psi_memstall_leave(&pflags);
2290 2291
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2292 2293

	return nr_reclaimed;
2294 2295 2296 2297 2298 2299 2300
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2301
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2302 2303
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2318
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2357
static u64 calculate_overage(unsigned long usage, unsigned long high)
2358
{
2359
	u64 overage;
2360

2361 2362
	if (usage <= high)
		return 0;
2363

2364 2365 2366 2367 2368
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2369

2370 2371 2372 2373
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2374

2375 2376 2377
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2378

2379 2380
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2381
					    READ_ONCE(memcg->memory.high));
2382
		max_overage = max(overage, max_overage);
2383 2384 2385
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2386 2387 2388
	return max_overage;
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2415 2416
	if (!max_overage)
		return 0;
2417 2418 2419 2420 2421 2422 2423 2424 2425

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2426 2427 2428
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2429 2430 2431 2432 2433 2434 2435 2436 2437

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2438
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2449
	unsigned long nr_reclaimed;
2450
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2451
	int nr_retries = MAX_RECLAIM_RETRIES;
2452
	struct mem_cgroup *memcg;
2453
	bool in_retry = false;
2454 2455 2456 2457 2458 2459 2460

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2475 2476 2477 2478
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2479 2480
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2481

2482 2483 2484
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2485 2486 2487 2488 2489 2490 2491
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2492 2493 2494 2495 2496 2497 2498 2499 2500
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2522 2523
}

2524 2525
static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
			unsigned int nr_pages)
2526
{
2527
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2528
	int nr_retries = MAX_RECLAIM_RETRIES;
2529
	struct mem_cgroup *mem_over_limit;
2530
	struct page_counter *counter;
2531
	enum oom_status oom_status;
2532
	unsigned long nr_reclaimed;
2533 2534
	bool may_swap = true;
	bool drained = false;
2535
	unsigned long pflags;
2536

2537
retry:
2538
	if (consume_stock(memcg, nr_pages))
2539
		return 0;
2540

2541
	if (!do_memsw_account() ||
2542 2543
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2544
			goto done_restock;
2545
		if (do_memsw_account())
2546 2547
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2548
	} else {
2549
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2550
		may_swap = false;
2551
	}
2552

2553 2554 2555 2556
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2557

2558 2559 2560 2561 2562 2563 2564 2565 2566
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2567 2568 2569 2570 2571 2572
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2573
	if (unlikely(should_force_charge()))
2574
		goto force;
2575

2576 2577 2578 2579 2580 2581 2582 2583 2584
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2585 2586 2587
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2588
	if (!gfpflags_allow_blocking(gfp_mask))
2589
		goto nomem;
2590

2591
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2592

2593
	psi_memstall_enter(&pflags);
2594 2595
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2596
	psi_memstall_leave(&pflags);
2597

2598
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2599
		goto retry;
2600

2601
	if (!drained) {
2602
		drain_all_stock(mem_over_limit);
2603 2604 2605 2606
		drained = true;
		goto retry;
	}

2607 2608
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2609 2610 2611 2612 2613 2614 2615 2616 2617
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2618
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2619 2620 2621 2622 2623 2624 2625 2626
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2627 2628 2629
	if (nr_retries--)
		goto retry;

2630
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2631 2632
		goto nomem;

2633
	if (fatal_signal_pending(current))
2634
		goto force;
2635

2636 2637 2638 2639 2640 2641
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2642
		       get_order(nr_pages * PAGE_SIZE));
2643 2644
	switch (oom_status) {
	case OOM_SUCCESS:
2645
		nr_retries = MAX_RECLAIM_RETRIES;
2646 2647 2648 2649 2650 2651
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2652
nomem:
2653
	if (!(gfp_mask & __GFP_NOFAIL))
2654
		return -ENOMEM;
2655 2656 2657 2658 2659 2660 2661
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2662
	if (do_memsw_account())
2663 2664 2665
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2666 2667 2668 2669

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2670

2671
	/*
2672 2673
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2674
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2675 2676 2677 2678
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2679 2680
	 */
	do {
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2691 2692 2693
				schedule_work(&memcg->high_work);
				break;
			}
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2707
			current->memcg_nr_pages_over_high += batch;
2708 2709 2710
			set_notify_resume(current);
			break;
		}
2711
	} while ((memcg = parent_mem_cgroup(memcg)));
2712 2713

	return 0;
2714
}
2715

2716 2717 2718 2719 2720 2721 2722 2723 2724
static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
			     unsigned int nr_pages)
{
	if (mem_cgroup_is_root(memcg))
		return 0;

	return try_charge_memcg(memcg, gfp_mask, nr_pages);
}

2725
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2726
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2727
{
2728 2729 2730
	if (mem_cgroup_is_root(memcg))
		return;

2731
	page_counter_uncharge(&memcg->memory, nr_pages);
2732
	if (do_memsw_account())
2733
		page_counter_uncharge(&memcg->memsw, nr_pages);
2734
}
2735
#endif
2736

2737
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2738
{
2739
	VM_BUG_ON_PAGE(page_memcg(page), page);
2740
	/*
2741
	 * Any of the following ensures page's memcg stability:
2742
	 *
2743 2744 2745 2746
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2747
	 */
2748
	page->memcg_data = (unsigned long)memcg;
2749
}
2750

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
retry:
	memcg = obj_cgroup_memcg(objcg);
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
	rcu_read_unlock();

	return memcg;
}

2765
#ifdef CONFIG_MEMCG_KMEM
2766 2767 2768 2769 2770 2771 2772
/*
 * The allocated objcg pointers array is not accounted directly.
 * Moreover, it should not come from DMA buffer and is not readily
 * reclaimable. So those GFP bits should be masked off.
 */
#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)

2773
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2774
				 gfp_t gfp, bool new_page)
2775 2776
{
	unsigned int objects = objs_per_slab_page(s, page);
2777
	unsigned long memcg_data;
2778 2779
	void *vec;

2780
	gfp &= ~OBJCGS_CLEAR_MASK;
2781 2782 2783 2784 2785
	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
	if (new_page) {
		/*
		 * If the slab page is brand new and nobody can yet access
		 * it's memcg_data, no synchronization is required and
		 * memcg_data can be simply assigned.
		 */
		page->memcg_data = memcg_data;
	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
		/*
		 * If the slab page is already in use, somebody can allocate
		 * and assign obj_cgroups in parallel. In this case the existing
		 * objcg vector should be reused.
		 */
2800
		kfree(vec);
2801 2802
		return 0;
	}
2803

2804
	kmemleak_not_leak(vec);
2805 2806 2807
	return 0;
}

2808 2809 2810
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
2811 2812 2813 2814 2815 2816
 * A passed kernel object can be a slab object or a generic kernel page, so
 * different mechanisms for getting the memory cgroup pointer should be used.
 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
 * can not know for sure how the kernel object is implemented.
 * mem_cgroup_from_obj() can be safely used in such cases.
 *
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2830 2831 2832
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2833
	 */
2834
	if (page_objcgs_check(page)) {
2835 2836 2837 2838
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
2839
		objcg = page_objcgs(page)[off];
2840 2841 2842 2843
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2844
	}
2845

2846 2847 2848 2849 2850 2851 2852 2853
	/*
	 * page_memcg_check() is used here, because page_has_obj_cgroups()
	 * check above could fail because the object cgroups vector wasn't set
	 * at that moment, but it can be set concurrently.
	 * page_memcg_check(page) will guarantee that a proper memory
	 * cgroup pointer or NULL will be returned.
	 */
	return page_memcg_check(page);
2854 2855
}

R
Roman Gushchin 已提交
2856 2857 2858 2859 2860
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2861 2862 2863
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2864
	rcu_read_lock();
2865 2866
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2867 2868 2869 2870 2871 2872 2873
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2874
		objcg = NULL;
R
Roman Gushchin 已提交
2875 2876 2877 2878 2879 2880
	}
	rcu_read_unlock();

	return objcg;
}

2881
static int memcg_alloc_cache_id(void)
2882
{
2883 2884 2885
	int id, size;
	int err;

2886
	id = ida_simple_get(&memcg_cache_ida,
2887 2888 2889
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2890

2891
	if (id < memcg_nr_cache_ids)
2892 2893 2894 2895 2896 2897
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2898
	down_write(&memcg_cache_ids_sem);
2899 2900

	size = 2 * (id + 1);
2901 2902 2903 2904 2905
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2906
	err = memcg_update_all_list_lrus(size);
2907 2908 2909 2910 2911
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2912
	if (err) {
2913
		ida_simple_remove(&memcg_cache_ida, id);
2914 2915 2916 2917 2918 2919 2920
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2921
	ida_simple_remove(&memcg_cache_ida, id);
2922 2923
}

2924 2925 2926 2927 2928
/*
 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
 * @objcg: object cgroup to uncharge
 * @nr_pages: number of pages to uncharge
 */
2929 2930 2931 2932 2933 2934 2935
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages)
{
	struct mem_cgroup *memcg;

	memcg = get_mem_cgroup_from_objcg(objcg);

2936 2937 2938
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);
	refill_stock(memcg, nr_pages);
2939 2940 2941 2942

	css_put(&memcg->css);
}

2943 2944 2945
/*
 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
 * @objcg: object cgroup to charge
2946
 * @gfp: reclaim mode
2947
 * @nr_pages: number of pages to charge
2948 2949 2950
 *
 * Returns 0 on success, an error code on failure.
 */
2951 2952
static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
				   unsigned int nr_pages)
2953
{
2954
	struct page_counter *counter;
2955
	struct mem_cgroup *memcg;
2956 2957
	int ret;

2958 2959
	memcg = get_mem_cgroup_from_objcg(objcg);

2960
	ret = try_charge_memcg(memcg, gfp, nr_pages);
2961
	if (ret)
2962
		goto out;
2963 2964 2965

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2966 2967 2968 2969 2970 2971 2972 2973

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
2974
			goto out;
2975
		}
2976
		cancel_charge(memcg, nr_pages);
2977
		ret = -ENOMEM;
2978
	}
2979 2980
out:
	css_put(&memcg->css);
2981

2982
	return ret;
2983 2984
}

2985
/**
2986
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2987 2988 2989 2990 2991 2992
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2993
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2994
{
2995
	struct obj_cgroup *objcg;
2996
	int ret = 0;
2997

2998 2999 3000
	objcg = get_obj_cgroup_from_current();
	if (objcg) {
		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3001
		if (!ret) {
3002
			page->memcg_data = (unsigned long)objcg |
3003
				MEMCG_DATA_KMEM;
3004
			return 0;
3005
		}
3006
		obj_cgroup_put(objcg);
3007
	}
3008
	return ret;
3009
}
3010

3011
/**
3012
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3013 3014 3015
 * @page: page to uncharge
 * @order: allocation order
 */
3016
void __memcg_kmem_uncharge_page(struct page *page, int order)
3017
{
3018
	struct obj_cgroup *objcg;
3019
	unsigned int nr_pages = 1 << order;
3020

3021
	if (!PageMemcgKmem(page))
3022 3023
		return;

3024 3025
	objcg = __page_objcg(page);
	obj_cgroup_uncharge_pages(objcg, nr_pages);
3026
	page->memcg_data = 0;
3027
	obj_cgroup_put(objcg);
3028
}
R
Roman Gushchin 已提交
3029

3030 3031 3032 3033
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
		     enum node_stat_item idx, int nr)
{
	unsigned long flags;
3034
	struct obj_stock *stock = get_obj_stock(&flags);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	int *bytes;

	/*
	 * Save vmstat data in stock and skip vmstat array update unless
	 * accumulating over a page of vmstat data or when pgdat or idx
	 * changes.
	 */
	if (stock->cached_objcg != objcg) {
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		stock->cached_objcg = objcg;
		stock->cached_pgdat = pgdat;
	} else if (stock->cached_pgdat != pgdat) {
		/* Flush the existing cached vmstat data */
3051 3052
		struct pglist_data *oldpg = stock->cached_pgdat;

3053
		if (stock->nr_slab_reclaimable_b) {
3054
			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3055 3056 3057 3058
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
3059
			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = pgdat;
	}

	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
					       : &stock->nr_slab_unreclaimable_b;
	/*
	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
	 * cached locally at least once before pushing it out.
	 */
	if (!*bytes) {
		*bytes = nr;
		nr = 0;
	} else {
		*bytes += nr;
		if (abs(*bytes) > PAGE_SIZE) {
			nr = *bytes;
			*bytes = 0;
		} else {
			nr = 0;
		}
	}
	if (nr)
		mod_objcg_mlstate(objcg, pgdat, idx, nr);

3087
	put_obj_stock(flags);
3088 3089
}

R
Roman Gushchin 已提交
3090 3091 3092
static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	unsigned long flags;
3093
	struct obj_stock *stock = get_obj_stock(&flags);
R
Roman Gushchin 已提交
3094 3095 3096 3097 3098 3099 3100
	bool ret = false;

	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

3101
	put_obj_stock(flags);
R
Roman Gushchin 已提交
3102 3103 3104 3105

	return ret;
}

3106
static void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

3117 3118
		if (nr_pages)
			obj_cgroup_uncharge_pages(old, nr_pages);
R
Roman Gushchin 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	/*
	 * Flush the vmstat data in current stock
	 */
	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
		if (stock->nr_slab_reclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_RECLAIMABLE_B,
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_UNRECLAIMABLE_B,
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = NULL;
	}

R
Roman Gushchin 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161
	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

3162 3163 3164 3165 3166 3167 3168
	if (in_task() && stock->task_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}
	if (stock->irq_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
R
Roman Gushchin 已提交
3169 3170 3171 3172 3173 3174 3175
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

3176 3177
static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
			     bool allow_uncharge)
R
Roman Gushchin 已提交
3178 3179
{
	unsigned long flags;
3180
	struct obj_stock *stock = get_obj_stock(&flags);
3181
	unsigned int nr_pages = 0;
R
Roman Gushchin 已提交
3182 3183 3184 3185 3186

	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
3187 3188 3189
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		allow_uncharge = true;	/* Allow uncharge when objcg changes */
R
Roman Gushchin 已提交
3190 3191 3192
	}
	stock->nr_bytes += nr_bytes;

3193 3194 3195 3196
	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		stock->nr_bytes &= (PAGE_SIZE - 1);
	}
R
Roman Gushchin 已提交
3197

3198
	put_obj_stock(flags);
3199 3200 3201

	if (nr_pages)
		obj_cgroup_uncharge_pages(objcg, nr_pages);
R
Roman Gushchin 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
3213
	 * In theory, objcg->nr_charged_bytes can have enough
R
Roman Gushchin 已提交
3214
	 * pre-charged bytes to satisfy the allocation. However,
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	 * flushing objcg->nr_charged_bytes requires two atomic
	 * operations, and objcg->nr_charged_bytes can't be big.
	 * The shared objcg->nr_charged_bytes can also become a
	 * performance bottleneck if all tasks of the same memcg are
	 * trying to update it. So it's better to ignore it and try
	 * grab some new pages. The stock's nr_bytes will be flushed to
	 * objcg->nr_charged_bytes later on when objcg changes.
	 *
	 * The stock's nr_bytes may contain enough pre-charged bytes
	 * to allow one less page from being charged, but we can't rely
	 * on the pre-charged bytes not being changed outside of
	 * consume_obj_stock() or refill_obj_stock(). So ignore those
	 * pre-charged bytes as well when charging pages. To avoid a
	 * page uncharge right after a page charge, we set the
	 * allow_uncharge flag to false when calling refill_obj_stock()
	 * to temporarily allow the pre-charged bytes to exceed the page
	 * size limit. The maximum reachable value of the pre-charged
	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
	 * race.
R
Roman Gushchin 已提交
3234 3235 3236 3237 3238 3239 3240
	 */
	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

3241
	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
R
Roman Gushchin 已提交
3242
	if (!ret && nr_bytes)
3243
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
R
Roman Gushchin 已提交
3244 3245 3246 3247 3248 3249

	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
3250
	refill_obj_stock(objcg, size, true);
R
Roman Gushchin 已提交
3251 3252
}

3253
#endif /* CONFIG_MEMCG_KMEM */
3254

3255
/*
3256
 * Because page_memcg(head) is not set on tails, set it now.
3257
 */
3258
void split_page_memcg(struct page *head, unsigned int nr)
3259
{
3260
	struct mem_cgroup *memcg = page_memcg(head);
3261
	int i;
3262

3263
	if (mem_cgroup_disabled() || !memcg)
3264
		return;
3265

3266 3267
	for (i = 1; i < nr; i++)
		head[i].memcg_data = head->memcg_data;
3268 3269 3270 3271 3272

	if (PageMemcgKmem(head))
		obj_cgroup_get_many(__page_objcg(head), nr - 1);
	else
		css_get_many(&memcg->css, nr - 1);
3273 3274
}

A
Andrew Morton 已提交
3275
#ifdef CONFIG_MEMCG_SWAP
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3287
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3288 3289 3290
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3291
				struct mem_cgroup *from, struct mem_cgroup *to)
3292 3293 3294
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3295 3296
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3297 3298

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3299 3300
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3301 3302 3303 3304 3305 3306
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3307
				struct mem_cgroup *from, struct mem_cgroup *to)
3308 3309 3310
{
	return -EINVAL;
}
3311
#endif
K
KAMEZAWA Hiroyuki 已提交
3312

3313
static DEFINE_MUTEX(memcg_max_mutex);
3314

3315 3316
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3317
{
3318
	bool enlarge = false;
3319
	bool drained = false;
3320
	int ret;
3321 3322
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3323

3324
	do {
3325 3326 3327 3328
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3329

3330
		mutex_lock(&memcg_max_mutex);
3331 3332
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3333
		 * break our basic invariant rule memory.max <= memsw.max.
3334
		 */
3335
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3336
					   max <= memcg->memsw.max;
3337
		if (!limits_invariant) {
3338
			mutex_unlock(&memcg_max_mutex);
3339 3340 3341
			ret = -EINVAL;
			break;
		}
3342
		if (max > counter->max)
3343
			enlarge = true;
3344 3345
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3346 3347 3348 3349

		if (!ret)
			break;

3350 3351 3352 3353 3354 3355
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3356 3357 3358 3359 3360 3361
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3362

3363 3364
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3365

3366 3367 3368
	return ret;
}

3369
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3370 3371 3372 3373
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3374
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3375 3376
	unsigned long reclaimed;
	int loop = 0;
3377
	struct mem_cgroup_tree_per_node *mctz;
3378
	unsigned long excess;
3379 3380 3381 3382 3383
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3384
	mctz = soft_limit_tree_node(pgdat->node_id);
3385 3386 3387 3388 3389 3390

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3391
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3392 3393
		return 0;

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3408
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3409 3410 3411
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3412
		spin_lock_irq(&mctz->lock);
3413
		__mem_cgroup_remove_exceeded(mz, mctz);
3414 3415 3416 3417 3418 3419

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3420 3421 3422
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3423
		excess = soft_limit_excess(mz->memcg);
3424 3425 3426 3427 3428 3429 3430 3431 3432
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3433
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3434
		spin_unlock_irq(&mctz->lock);
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3452
/*
3453
 * Reclaims as many pages from the given memcg as possible.
3454 3455 3456 3457 3458
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3459
	int nr_retries = MAX_RECLAIM_RETRIES;
3460

3461 3462
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3463 3464 3465

	drain_all_stock(memcg);

3466
	/* try to free all pages in this cgroup */
3467
	while (nr_retries && page_counter_read(&memcg->memory)) {
3468
		int progress;
3469

3470 3471 3472
		if (signal_pending(current))
			return -EINTR;

3473 3474
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3475
		if (!progress) {
3476
			nr_retries--;
3477
			/* maybe some writeback is necessary */
3478
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3479
		}
3480 3481

	}
3482 3483

	return 0;
3484 3485
}

3486 3487 3488
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3489
{
3490
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3491

3492 3493
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3494
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3495 3496
}

3497 3498
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3499
{
3500
	return 1;
3501 3502
}

3503 3504
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3505
{
3506
	if (val == 1)
3507
		return 0;
3508

3509 3510 3511
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3512

3513
	return -EINVAL;
3514 3515
}

3516
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3517
{
3518
	unsigned long val;
3519

3520
	if (mem_cgroup_is_root(memcg)) {
3521 3522
		/* mem_cgroup_threshold() calls here from irqsafe context */
		cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3523
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3524
			memcg_page_state(memcg, NR_ANON_MAPPED);
3525 3526
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3527
	} else {
3528
		if (!swap)
3529
			val = page_counter_read(&memcg->memory);
3530
		else
3531
			val = page_counter_read(&memcg->memsw);
3532
	}
3533
	return val;
3534 3535
}

3536 3537 3538 3539 3540 3541 3542
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3543

3544
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3545
			       struct cftype *cft)
B
Balbir Singh 已提交
3546
{
3547
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3548
	struct page_counter *counter;
3549

3550
	switch (MEMFILE_TYPE(cft->private)) {
3551
	case _MEM:
3552 3553
		counter = &memcg->memory;
		break;
3554
	case _MEMSWAP:
3555 3556
		counter = &memcg->memsw;
		break;
3557
	case _KMEM:
3558
		counter = &memcg->kmem;
3559
		break;
V
Vladimir Davydov 已提交
3560
	case _TCP:
3561
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3562
		break;
3563 3564 3565
	default:
		BUG();
	}
3566 3567 3568 3569

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3570
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3571
		if (counter == &memcg->memsw)
3572
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3573 3574
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3575
		return (u64)counter->max * PAGE_SIZE;
3576 3577 3578 3579 3580 3581 3582 3583 3584
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3585
}
3586

3587
#ifdef CONFIG_MEMCG_KMEM
3588
static int memcg_online_kmem(struct mem_cgroup *memcg)
3589
{
R
Roman Gushchin 已提交
3590
	struct obj_cgroup *objcg;
3591 3592
	int memcg_id;

3593 3594 3595
	if (cgroup_memory_nokmem)
		return 0;

3596
	BUG_ON(memcg->kmemcg_id >= 0);
3597
	BUG_ON(memcg->kmem_state);
3598

3599
	memcg_id = memcg_alloc_cache_id();
3600 3601
	if (memcg_id < 0)
		return memcg_id;
3602

R
Roman Gushchin 已提交
3603 3604 3605 3606 3607 3608 3609 3610
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3611 3612
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3613
	memcg->kmemcg_id = memcg_id;
3614
	memcg->kmem_state = KMEM_ONLINE;
3615 3616

	return 0;
3617 3618
}

3619 3620 3621 3622 3623 3624 3625 3626
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3627

3628 3629 3630 3631 3632 3633
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3634
	memcg_reparent_objcgs(memcg, parent);
3635 3636 3637 3638

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3639 3640 3641 3642 3643 3644 3645 3646
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3647
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3648 3649 3650 3651 3652
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3653 3654
	rcu_read_unlock();

3655
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3656 3657 3658 3659 3660 3661

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3662 3663 3664
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3665
}
3666
#else
3667
static int memcg_online_kmem(struct mem_cgroup *memcg)
3668 3669 3670 3671 3672 3673 3674 3675 3676
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3677
#endif /* CONFIG_MEMCG_KMEM */
3678

3679 3680
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3681
{
3682
	int ret;
3683

3684 3685 3686
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3687
	return ret;
3688
}
3689

3690
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3691 3692 3693
{
	int ret;

3694
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3695

3696
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3697 3698 3699
	if (ret)
		goto out;

3700
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3701 3702 3703
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3704 3705 3706
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3707 3708 3709 3710 3711 3712
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3713
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3714 3715 3716 3717
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3718
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3719 3720
	}
out:
3721
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3722 3723 3724
	return ret;
}

3725 3726 3727 3728
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3729 3730
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3731
{
3732
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3733
	unsigned long nr_pages;
3734 3735
	int ret;

3736
	buf = strstrip(buf);
3737
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3738 3739
	if (ret)
		return ret;
3740

3741
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3742
	case RES_LIMIT:
3743 3744 3745 3746
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3747 3748
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3749
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3750
			break;
3751
		case _MEMSWAP:
3752
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3753
			break;
3754
		case _KMEM:
3755 3756 3757
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3758
			ret = memcg_update_kmem_max(memcg, nr_pages);
3759
			break;
V
Vladimir Davydov 已提交
3760
		case _TCP:
3761
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3762
			break;
3763
		}
3764
		break;
3765 3766 3767
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3768 3769
		break;
	}
3770
	return ret ?: nbytes;
B
Balbir Singh 已提交
3771 3772
}

3773 3774
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3775
{
3776
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3777
	struct page_counter *counter;
3778

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3789
	case _TCP:
3790
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3791
		break;
3792 3793 3794
	default:
		BUG();
	}
3795

3796
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3797
	case RES_MAX_USAGE:
3798
		page_counter_reset_watermark(counter);
3799 3800
		break;
	case RES_FAILCNT:
3801
		counter->failcnt = 0;
3802
		break;
3803 3804
	default:
		BUG();
3805
	}
3806

3807
	return nbytes;
3808 3809
}

3810
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3811 3812
					struct cftype *cft)
{
3813
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3814 3815
}

3816
#ifdef CONFIG_MMU
3817
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3818 3819
					struct cftype *cft, u64 val)
{
3820
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3821

3822
	if (val & ~MOVE_MASK)
3823
		return -EINVAL;
3824

3825
	/*
3826 3827 3828 3829
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3830
	 */
3831
	memcg->move_charge_at_immigrate = val;
3832 3833
	return 0;
}
3834
#else
3835
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3836 3837 3838 3839 3840
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3841

3842
#ifdef CONFIG_NUMA
3843 3844 3845 3846 3847 3848

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3849
				int nid, unsigned int lru_mask, bool tree)
3850
{
3851
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3852 3853 3854 3855 3856 3857 3858 3859
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3860 3861 3862 3863
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3864 3865 3866 3867 3868
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3869 3870
					     unsigned int lru_mask,
					     bool tree)
3871 3872 3873 3874 3875 3876 3877
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3878 3879 3880 3881
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3882 3883 3884 3885
	}
	return nr;
}

3886
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3887
{
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3900
	int nid;
3901
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3902

3903 3904
	cgroup_rstat_flush(memcg->css.cgroup);

3905
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3906 3907 3908 3909 3910 3911 3912
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3913
		seq_putc(m, '\n');
3914 3915
	}

3916
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3917 3918 3919 3920 3921 3922 3923 3924

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3925
		seq_putc(m, '\n');
3926 3927 3928 3929 3930 3931
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3932
static const unsigned int memcg1_stats[] = {
3933
	NR_FILE_PAGES,
3934
	NR_ANON_MAPPED,
3935 3936 3937
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3948
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3949
	"rss_huge",
3950
#endif
3951 3952 3953 3954 3955 3956 3957
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3958
/* Universal VM events cgroup1 shows, original sort order */
3959
static const unsigned int memcg1_events[] = {
3960 3961 3962 3963 3964 3965
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3966
static int memcg_stat_show(struct seq_file *m, void *v)
3967
{
3968
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3969
	unsigned long memory, memsw;
3970 3971
	struct mem_cgroup *mi;
	unsigned int i;
3972

3973
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3974

3975 3976
	cgroup_rstat_flush(memcg->css.cgroup);

3977
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3978 3979
		unsigned long nr;

3980
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3981
			continue;
3982 3983
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3984
	}
L
Lee Schermerhorn 已提交
3985

3986
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3987
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3988
			   memcg_events_local(memcg, memcg1_events[i]));
3989 3990

	for (i = 0; i < NR_LRU_LISTS; i++)
3991
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3992
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3993
			   PAGE_SIZE);
3994

K
KAMEZAWA Hiroyuki 已提交
3995
	/* Hierarchical information */
3996 3997
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3998 3999
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4000
	}
4001 4002
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4003
	if (do_memsw_account())
4004 4005
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4006

4007
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4008 4009
		unsigned long nr;

4010
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4011
			continue;
4012
		nr = memcg_page_state(memcg, memcg1_stats[i]);
4013
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4014
						(u64)nr * PAGE_SIZE);
4015 4016
	}

4017
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4018 4019
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4020
			   (u64)memcg_events(memcg, memcg1_events[i]));
4021

4022
	for (i = 0; i < NR_LRU_LISTS; i++)
4023
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4024 4025
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4026

K
KOSAKI Motohiro 已提交
4027 4028
#ifdef CONFIG_DEBUG_VM
	{
4029 4030
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4031 4032
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4033

4034
		for_each_online_pgdat(pgdat) {
4035
			mz = memcg->nodeinfo[pgdat->node_id];
K
KOSAKI Motohiro 已提交
4036

4037 4038
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4039
		}
4040 4041
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4042 4043 4044
	}
#endif

4045 4046 4047
	return 0;
}

4048 4049
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4050
{
4051
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4052

4053
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4054 4055
}

4056 4057
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4058
{
4059
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4060

4061
	if (val > 200)
K
KOSAKI Motohiro 已提交
4062 4063
		return -EINVAL;

S
Shakeel Butt 已提交
4064
	if (!mem_cgroup_is_root(memcg))
4065 4066 4067
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4068

K
KOSAKI Motohiro 已提交
4069 4070 4071
	return 0;
}

4072 4073 4074
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4075
	unsigned long usage;
4076 4077 4078 4079
	int i;

	rcu_read_lock();
	if (!swap)
4080
		t = rcu_dereference(memcg->thresholds.primary);
4081
	else
4082
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4083 4084 4085 4086

	if (!t)
		goto unlock;

4087
	usage = mem_cgroup_usage(memcg, swap);
4088 4089

	/*
4090
	 * current_threshold points to threshold just below or equal to usage.
4091 4092 4093
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4094
	i = t->current_threshold;
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4118
	t->current_threshold = i - 1;
4119 4120 4121 4122 4123 4124
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4125 4126
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4127
		if (do_memsw_account())
4128 4129 4130 4131
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4132 4133 4134 4135 4136 4137 4138
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4139 4140 4141 4142 4143 4144 4145
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4146 4147
}

4148
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4149 4150 4151
{
	struct mem_cgroup_eventfd_list *ev;

4152 4153
	spin_lock(&memcg_oom_lock);

4154
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4155
		eventfd_signal(ev->eventfd, 1);
4156 4157

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4158 4159 4160
	return 0;
}

4161
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4162
{
K
KAMEZAWA Hiroyuki 已提交
4163 4164
	struct mem_cgroup *iter;

4165
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4166
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4167 4168
}

4169
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4170
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4171
{
4172 4173
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4174 4175
	unsigned long threshold;
	unsigned long usage;
4176
	int i, size, ret;
4177

4178
	ret = page_counter_memparse(args, "-1", &threshold);
4179 4180 4181 4182
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4183

4184
	if (type == _MEM) {
4185
		thresholds = &memcg->thresholds;
4186
		usage = mem_cgroup_usage(memcg, false);
4187
	} else if (type == _MEMSWAP) {
4188
		thresholds = &memcg->memsw_thresholds;
4189
		usage = mem_cgroup_usage(memcg, true);
4190
	} else
4191 4192 4193
		BUG();

	/* Check if a threshold crossed before adding a new one */
4194
	if (thresholds->primary)
4195 4196
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4197
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4198 4199

	/* Allocate memory for new array of thresholds */
4200
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4201
	if (!new) {
4202 4203 4204
		ret = -ENOMEM;
		goto unlock;
	}
4205
	new->size = size;
4206 4207

	/* Copy thresholds (if any) to new array */
4208 4209 4210
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4211

4212
	/* Add new threshold */
4213 4214
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4215 4216

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4217
	sort(new->entries, size, sizeof(*new->entries),
4218 4219 4220
			compare_thresholds, NULL);

	/* Find current threshold */
4221
	new->current_threshold = -1;
4222
	for (i = 0; i < size; i++) {
4223
		if (new->entries[i].threshold <= usage) {
4224
			/*
4225 4226
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4227 4228
			 * it here.
			 */
4229
			++new->current_threshold;
4230 4231
		} else
			break;
4232 4233
	}

4234 4235 4236 4237 4238
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4239

4240
	/* To be sure that nobody uses thresholds */
4241 4242 4243 4244 4245 4246 4247 4248
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4249
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4250 4251
	struct eventfd_ctx *eventfd, const char *args)
{
4252
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4253 4254
}

4255
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4256 4257
	struct eventfd_ctx *eventfd, const char *args)
{
4258
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4259 4260
}

4261
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4262
	struct eventfd_ctx *eventfd, enum res_type type)
4263
{
4264 4265
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4266
	unsigned long usage;
4267
	int i, j, size, entries;
4268 4269

	mutex_lock(&memcg->thresholds_lock);
4270 4271

	if (type == _MEM) {
4272
		thresholds = &memcg->thresholds;
4273
		usage = mem_cgroup_usage(memcg, false);
4274
	} else if (type == _MEMSWAP) {
4275
		thresholds = &memcg->memsw_thresholds;
4276
		usage = mem_cgroup_usage(memcg, true);
4277
	} else
4278 4279
		BUG();

4280 4281 4282
	if (!thresholds->primary)
		goto unlock;

4283 4284 4285 4286
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4287
	size = entries = 0;
4288 4289
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4290
			size++;
4291 4292
		else
			entries++;
4293 4294
	}

4295
	new = thresholds->spare;
4296

4297 4298 4299 4300
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4301 4302
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4303 4304
		kfree(new);
		new = NULL;
4305
		goto swap_buffers;
4306 4307
	}

4308
	new->size = size;
4309 4310

	/* Copy thresholds and find current threshold */
4311 4312 4313
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4314 4315
			continue;

4316
		new->entries[j] = thresholds->primary->entries[i];
4317
		if (new->entries[j].threshold <= usage) {
4318
			/*
4319
			 * new->current_threshold will not be used
4320 4321 4322
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4323
			++new->current_threshold;
4324 4325 4326 4327
		}
		j++;
	}

4328
swap_buffers:
4329 4330
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4331

4332
	rcu_assign_pointer(thresholds->primary, new);
4333

4334
	/* To be sure that nobody uses thresholds */
4335
	synchronize_rcu();
4336 4337 4338 4339 4340 4341

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4342
unlock:
4343 4344
	mutex_unlock(&memcg->thresholds_lock);
}
4345

4346
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4347 4348
	struct eventfd_ctx *eventfd)
{
4349
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4350 4351
}

4352
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4353 4354
	struct eventfd_ctx *eventfd)
{
4355
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4356 4357
}

4358
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4359
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4360 4361 4362 4363 4364 4365 4366
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4367
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4368 4369 4370 4371 4372

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4373
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4374
		eventfd_signal(eventfd, 1);
4375
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4376 4377 4378 4379

	return 0;
}

4380
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4381
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4382 4383 4384
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4385
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4386

4387
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4388 4389 4390 4391 4392 4393
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4394
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4395 4396
}

4397
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4398
{
4399
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4400

4401
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4402
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4403 4404
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4405 4406 4407
	return 0;
}

4408
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4409 4410
	struct cftype *cft, u64 val)
{
4411
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4412 4413

	/* cannot set to root cgroup and only 0 and 1 are allowed */
S
Shakeel Butt 已提交
4414
	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4415 4416
		return -EINVAL;

4417
	memcg->oom_kill_disable = val;
4418
	if (!val)
4419
		memcg_oom_recover(memcg);
4420

4421 4422 4423
	return 0;
}

4424 4425
#ifdef CONFIG_CGROUP_WRITEBACK

4426 4427
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4438 4439 4440 4441 4442
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4453 4454 4455
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4456 4457
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4458 4459 4460
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4461 4462 4463
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4464
 *
4465 4466 4467 4468 4469
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4470
 */
4471 4472 4473
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4474 4475 4476 4477
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4478
	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4479

4480 4481 4482 4483
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_page_state(memcg, NR_ACTIVE_FILE);
4484

4485
	*pheadroom = PAGE_COUNTER_MAX;
4486
	while ((parent = parent_mem_cgroup(memcg))) {
4487
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4488
					    READ_ONCE(memcg->memory.high));
4489 4490
		unsigned long used = page_counter_read(&memcg->memory);

4491
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4492 4493 4494 4495
		memcg = parent;
	}
}

4496 4497 4498 4499
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
I
Ingo Molnar 已提交
4500
 * tracks ownership per-page while the latter per-inode.  This was a
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
I
Ingo Molnar 已提交
4515
 * Conditions like the above can lead to a cgroup getting repeatedly and
4516
 * severely throttled after making some progress after each
I
Ingo Molnar 已提交
4517
 * dirty_expire_interval while the underlying IO device is almost
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
4543
	struct mem_cgroup *memcg = page_memcg(page);
4544 4545 4546 4547 4548 4549
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4550 4551
	trace_track_foreign_dirty(page, wb);

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4612
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4613
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4614 4615 4616 4617 4618 4619
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4631 4632 4633 4634
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4635 4636
#endif	/* CONFIG_CGROUP_WRITEBACK */

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4650 4651 4652 4653 4654
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4655
static void memcg_event_remove(struct work_struct *work)
4656
{
4657 4658
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4659
	struct mem_cgroup *memcg = event->memcg;
4660 4661 4662

	remove_wait_queue(event->wqh, &event->wait);

4663
	event->unregister_event(memcg, event->eventfd);
4664 4665 4666 4667 4668 4669

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4670
	css_put(&memcg->css);
4671 4672 4673
}

/*
4674
 * Gets called on EPOLLHUP on eventfd when user closes it.
4675 4676 4677
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4678
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4679
			    int sync, void *key)
4680
{
4681 4682
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4683
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4684
	__poll_t flags = key_to_poll(key);
4685

4686
	if (flags & EPOLLHUP) {
4687 4688 4689 4690 4691 4692 4693 4694 4695
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4696
		spin_lock(&memcg->event_list_lock);
4697 4698 4699 4700 4701 4702 4703 4704
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4705
		spin_unlock(&memcg->event_list_lock);
4706 4707 4708 4709 4710
	}

	return 0;
}

4711
static void memcg_event_ptable_queue_proc(struct file *file,
4712 4713
		wait_queue_head_t *wqh, poll_table *pt)
{
4714 4715
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4716 4717 4718 4719 4720 4721

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4722 4723
 * DO NOT USE IN NEW FILES.
 *
4724 4725 4726 4727 4728
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4729 4730
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4731
{
4732
	struct cgroup_subsys_state *css = of_css(of);
4733
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4734
	struct mem_cgroup_event *event;
4735 4736 4737 4738
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4739
	const char *name;
4740 4741 4742
	char *endp;
	int ret;

4743 4744 4745
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4746 4747
	if (*endp != ' ')
		return -EINVAL;
4748
	buf = endp + 1;
4749

4750
	cfd = simple_strtoul(buf, &endp, 10);
4751 4752
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4753
	buf = endp + 1;
4754 4755 4756 4757 4758

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4759
	event->memcg = memcg;
4760
	INIT_LIST_HEAD(&event->list);
4761 4762 4763
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
4785
	ret = file_permission(cfile.file, MAY_READ);
4786 4787 4788
	if (ret < 0)
		goto out_put_cfile;

4789 4790 4791 4792 4793
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4794 4795
	 *
	 * DO NOT ADD NEW FILES.
4796
	 */
A
Al Viro 已提交
4797
	name = cfile.file->f_path.dentry->d_name.name;
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4809 4810
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4811 4812 4813 4814 4815
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4816
	/*
4817 4818 4819
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4820
	 */
A
Al Viro 已提交
4821
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4822
					       &memory_cgrp_subsys);
4823
	ret = -EINVAL;
4824
	if (IS_ERR(cfile_css))
4825
		goto out_put_cfile;
4826 4827
	if (cfile_css != css) {
		css_put(cfile_css);
4828
		goto out_put_cfile;
4829
	}
4830

4831
	ret = event->register_event(memcg, event->eventfd, buf);
4832 4833 4834
	if (ret)
		goto out_put_css;

4835
	vfs_poll(efile.file, &event->pt);
4836

4837
	spin_lock_irq(&memcg->event_list_lock);
4838
	list_add(&event->list, &memcg->event_list);
4839
	spin_unlock_irq(&memcg->event_list_lock);
4840 4841 4842 4843

	fdput(cfile);
	fdput(efile);

4844
	return nbytes;
4845 4846

out_put_css:
4847
	css_put(css);
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4860
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4861
	{
4862
		.name = "usage_in_bytes",
4863
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4864
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4865
	},
4866 4867
	{
		.name = "max_usage_in_bytes",
4868
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4869
		.write = mem_cgroup_reset,
4870
		.read_u64 = mem_cgroup_read_u64,
4871
	},
B
Balbir Singh 已提交
4872
	{
4873
		.name = "limit_in_bytes",
4874
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4875
		.write = mem_cgroup_write,
4876
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4877
	},
4878 4879 4880
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4881
		.write = mem_cgroup_write,
4882
		.read_u64 = mem_cgroup_read_u64,
4883
	},
B
Balbir Singh 已提交
4884 4885
	{
		.name = "failcnt",
4886
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4887
		.write = mem_cgroup_reset,
4888
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4889
	},
4890 4891
	{
		.name = "stat",
4892
		.seq_show = memcg_stat_show,
4893
	},
4894 4895
	{
		.name = "force_empty",
4896
		.write = mem_cgroup_force_empty_write,
4897
	},
4898 4899 4900 4901 4902
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4903
	{
4904
		.name = "cgroup.event_control",		/* XXX: for compat */
4905
		.write = memcg_write_event_control,
4906
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4907
	},
K
KOSAKI Motohiro 已提交
4908 4909 4910 4911 4912
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4913 4914 4915 4916 4917
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4918 4919
	{
		.name = "oom_control",
4920
		.seq_show = mem_cgroup_oom_control_read,
4921
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4922 4923
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4924 4925 4926
	{
		.name = "pressure_level",
	},
4927 4928 4929
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4930
		.seq_show = memcg_numa_stat_show,
4931 4932
	},
#endif
4933 4934 4935
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4936
		.write = mem_cgroup_write,
4937
		.read_u64 = mem_cgroup_read_u64,
4938 4939 4940 4941
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4942
		.read_u64 = mem_cgroup_read_u64,
4943 4944 4945 4946
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4947
		.write = mem_cgroup_reset,
4948
		.read_u64 = mem_cgroup_read_u64,
4949 4950 4951 4952
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4953
		.write = mem_cgroup_reset,
4954
		.read_u64 = mem_cgroup_read_u64,
4955
	},
4956 4957
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4958 4959
	{
		.name = "kmem.slabinfo",
4960
		.seq_show = memcg_slab_show,
4961 4962
	},
#endif
V
Vladimir Davydov 已提交
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4986
	{ },	/* terminate */
4987
};
4988

4989 4990 4991 4992 4993 4994 4995 4996
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
4997
 * However, there usually are many references to the offline CSS after
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5015 5016 5017 5018 5019 5020 5021 5022
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5023 5024
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5025
{
5026
	refcount_add(n, &memcg->id.ref);
5027 5028
}

5029
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5030
{
5031
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5032
		mem_cgroup_id_remove(memcg);
5033 5034 5035 5036 5037 5038

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5039 5040 5041 5042 5043
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5056
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5057 5058
{
	struct mem_cgroup_per_node *pn;
5059
	int tmp = node;
5060 5061 5062 5063 5064 5065 5066 5067
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5068 5069
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5070
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5071 5072
	if (!pn)
		return 1;
5073

5074 5075 5076
	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
						   GFP_KERNEL_ACCOUNT);
	if (!pn->lruvec_stats_percpu) {
5077 5078 5079 5080
		kfree(pn);
		return 1;
	}

5081 5082 5083 5084 5085
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5086
	memcg->nodeinfo[node] = pn;
5087 5088 5089
	return 0;
}

5090
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5091
{
5092 5093
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5094 5095 5096
	if (!pn)
		return;

5097
	free_percpu(pn->lruvec_stats_percpu);
5098
	kfree(pn);
5099 5100
}

5101
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5102
{
5103
	int node;
5104

5105
	for_each_node(node)
5106
		free_mem_cgroup_per_node_info(memcg, node);
5107
	free_percpu(memcg->vmstats_percpu);
5108
	kfree(memcg);
5109
}
5110

5111 5112 5113 5114 5115 5116
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

5117
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5118
{
5119
	struct mem_cgroup *memcg;
5120
	unsigned int size;
5121
	int node;
5122
	int __maybe_unused i;
5123
	long error = -ENOMEM;
B
Balbir Singh 已提交
5124

5125 5126 5127 5128
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5129
	if (!memcg)
5130
		return ERR_PTR(error);
5131

5132 5133 5134
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5135 5136
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5137
		goto fail;
5138
	}
5139

5140 5141
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5142
	if (!memcg->vmstats_percpu)
5143
		goto fail;
5144

B
Bob Liu 已提交
5145
	for_each_node(node)
5146
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5147
			goto fail;
5148

5149 5150
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5151

5152
	INIT_WORK(&memcg->high_work, high_work_func);
5153 5154 5155
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5156
	vmpressure_init(&memcg->vmpressure);
5157 5158
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5159
	memcg->socket_pressure = jiffies;
5160
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5161
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5162
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5163
#endif
5164 5165
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5166 5167 5168
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5169 5170 5171 5172 5173
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5174
#endif
5175
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5176 5177
	return memcg;
fail:
5178
	mem_cgroup_id_remove(memcg);
5179
	__mem_cgroup_free(memcg);
5180
	return ERR_PTR(error);
5181 5182
}

5183 5184
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5185
{
5186
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5187
	struct mem_cgroup *memcg, *old_memcg;
5188
	long error = -ENOMEM;
5189

5190
	old_memcg = set_active_memcg(parent);
5191
	memcg = mem_cgroup_alloc();
5192
	set_active_memcg(old_memcg);
5193 5194
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5195

5196
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5197
	memcg->soft_limit = PAGE_COUNTER_MAX;
5198
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5199 5200 5201
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5202

5203
		page_counter_init(&memcg->memory, &parent->memory);
5204
		page_counter_init(&memcg->swap, &parent->swap);
5205
		page_counter_init(&memcg->kmem, &parent->kmem);
5206
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5207
	} else {
5208 5209 5210 5211
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5212

5213 5214 5215 5216
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5217
	/* The following stuff does not apply to the root */
5218
	error = memcg_online_kmem(memcg);
5219 5220
	if (error)
		goto fail;
5221

5222
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5223
		static_branch_inc(&memcg_sockets_enabled_key);
5224

5225 5226
	return &memcg->css;
fail:
5227
	mem_cgroup_id_remove(memcg);
5228
	mem_cgroup_free(memcg);
5229
	return ERR_PTR(error);
5230 5231
}

5232
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5233
{
5234 5235
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5236
	/*
5237
	 * A memcg must be visible for expand_shrinker_info()
5238 5239 5240
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
5241
	if (alloc_shrinker_info(memcg)) {
5242 5243 5244 5245
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5246
	/* Online state pins memcg ID, memcg ID pins CSS */
5247
	refcount_set(&memcg->id.ref, 1);
5248
	css_get(css);
5249 5250 5251 5252

	if (unlikely(mem_cgroup_is_root(memcg)))
		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
				   2UL*HZ);
5253
	return 0;
B
Balbir Singh 已提交
5254 5255
}

5256
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5257
{
5258
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5259
	struct mem_cgroup_event *event, *tmp;
5260 5261 5262 5263 5264 5265

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5266
	spin_lock_irq(&memcg->event_list_lock);
5267
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5268 5269 5270
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5271
	spin_unlock_irq(&memcg->event_list_lock);
5272

R
Roman Gushchin 已提交
5273
	page_counter_set_min(&memcg->memory, 0);
5274
	page_counter_set_low(&memcg->memory, 0);
5275

5276
	memcg_offline_kmem(memcg);
5277
	reparent_shrinker_deferred(memcg);
5278
	wb_memcg_offline(memcg);
5279

5280 5281
	drain_all_stock(memcg);

5282
	mem_cgroup_id_put(memcg);
5283 5284
}

5285 5286 5287 5288 5289 5290 5291
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5292
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5293
{
5294
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5295
	int __maybe_unused i;
5296

5297 5298 5299 5300
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5301
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5302
		static_branch_dec(&memcg_sockets_enabled_key);
5303

5304
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5305
		static_branch_dec(&memcg_sockets_enabled_key);
5306

5307 5308 5309
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5310
	free_shrinker_info(memcg);
5311
	memcg_free_kmem(memcg);
5312
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5313 5314
}

5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5332 5333 5334 5335
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5336
	page_counter_set_min(&memcg->memory, 0);
5337
	page_counter_set_low(&memcg->memory, 0);
5338
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5339
	memcg->soft_limit = PAGE_COUNTER_MAX;
5340
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5341
	memcg_wb_domain_size_changed(memcg);
5342 5343
}

5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
void mem_cgroup_flush_stats(void)
{
	if (!spin_trylock(&stats_flush_lock))
		return;

	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
	spin_unlock(&stats_flush_lock);
}

static void flush_memcg_stats_dwork(struct work_struct *w)
{
	mem_cgroup_flush_stats();
	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
}

5359 5360 5361 5362 5363 5364
static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	struct memcg_vmstats_percpu *statc;
	long delta, v;
5365
	int i, nid;
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412

	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);

	for (i = 0; i < MEMCG_NR_STAT; i++) {
		/*
		 * Collect the aggregated propagation counts of groups
		 * below us. We're in a per-cpu loop here and this is
		 * a global counter, so the first cycle will get them.
		 */
		delta = memcg->vmstats.state_pending[i];
		if (delta)
			memcg->vmstats.state_pending[i] = 0;

		/* Add CPU changes on this level since the last flush */
		v = READ_ONCE(statc->state[i]);
		if (v != statc->state_prev[i]) {
			delta += v - statc->state_prev[i];
			statc->state_prev[i] = v;
		}

		if (!delta)
			continue;

		/* Aggregate counts on this level and propagate upwards */
		memcg->vmstats.state[i] += delta;
		if (parent)
			parent->vmstats.state_pending[i] += delta;
	}

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		delta = memcg->vmstats.events_pending[i];
		if (delta)
			memcg->vmstats.events_pending[i] = 0;

		v = READ_ONCE(statc->events[i]);
		if (v != statc->events_prev[i]) {
			delta += v - statc->events_prev[i];
			statc->events_prev[i] = v;
		}

		if (!delta)
			continue;

		memcg->vmstats.events[i] += delta;
		if (parent)
			parent->vmstats.events_pending[i] += delta;
	}
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442

	for_each_node_state(nid, N_MEMORY) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
		struct mem_cgroup_per_node *ppn = NULL;
		struct lruvec_stats_percpu *lstatc;

		if (parent)
			ppn = parent->nodeinfo[nid];

		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
			delta = pn->lruvec_stats.state_pending[i];
			if (delta)
				pn->lruvec_stats.state_pending[i] = 0;

			v = READ_ONCE(lstatc->state[i]);
			if (v != lstatc->state_prev[i]) {
				delta += v - lstatc->state_prev[i];
				lstatc->state_prev[i] = v;
			}

			if (!delta)
				continue;

			pn->lruvec_stats.state[i] += delta;
			if (ppn)
				ppn->lruvec_stats.state_pending[i] += delta;
		}
	}
5443 5444
}

5445
#ifdef CONFIG_MMU
5446
/* Handlers for move charge at task migration. */
5447
static int mem_cgroup_do_precharge(unsigned long count)
5448
{
5449
	int ret;
5450

5451 5452
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5453
	if (!ret) {
5454 5455 5456
		mc.precharge += count;
		return ret;
	}
5457

5458
	/* Try charges one by one with reclaim, but do not retry */
5459
	while (count--) {
5460
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5461 5462
		if (ret)
			return ret;
5463
		mc.precharge++;
5464
		cond_resched();
5465
	}
5466
	return 0;
5467 5468 5469 5470
}

union mc_target {
	struct page	*page;
5471
	swp_entry_t	ent;
5472 5473 5474
};

enum mc_target_type {
5475
	MC_TARGET_NONE = 0,
5476
	MC_TARGET_PAGE,
5477
	MC_TARGET_SWAP,
5478
	MC_TARGET_DEVICE,
5479 5480
};

D
Daisuke Nishimura 已提交
5481 5482
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5483
{
5484
	struct page *page = vm_normal_page(vma, addr, ptent);
5485

D
Daisuke Nishimura 已提交
5486 5487 5488
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5489
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5490
			return NULL;
5491 5492 5493 5494
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5495 5496 5497 5498 5499 5500
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5501
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5502
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5503
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5504 5505 5506 5507
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5508
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5509
		return NULL;
5510 5511 5512 5513 5514 5515 5516

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
5517
		page = pfn_swap_entry_to_page(ent);
5518 5519 5520 5521 5522 5523 5524 5525 5526
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5527 5528 5529
	if (non_swap_entry(ent))
		return NULL;

5530 5531 5532 5533
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5534
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5535
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5536 5537 5538

	return page;
}
5539 5540
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5541
			pte_t ptent, swp_entry_t *entry)
5542 5543 5544 5545
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5546

5547
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5548
			unsigned long addr, pte_t ptent)
5549 5550 5551
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5552
	if (!(mc.flags & MOVE_FILE))
5553 5554 5555
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5556
	/* shmem/tmpfs may report page out on swap: account for that too. */
5557 5558
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5559 5560
}

5561 5562 5563
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5564
 * @compound: charge the page as compound or small page
5565 5566 5567
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5568
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5569 5570 5571 5572 5573
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5574
				   bool compound,
5575 5576 5577
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5578 5579
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5580
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5581 5582 5583 5584
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5585
	VM_BUG_ON(compound && !PageTransHuge(page));
5586 5587

	/*
5588
	 * Prevent mem_cgroup_migrate() from looking at
5589
	 * page's memory cgroup of its source page while we change it.
5590
	 */
5591
	ret = -EBUSY;
5592 5593 5594 5595
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
5596
	if (page_memcg(page) != from)
5597 5598
		goto out_unlock;

5599
	pgdat = page_pgdat(page);
5600 5601
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5602

5603
	lock_page_memcg(page);
5604

5605 5606 5607 5608
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5609
			if (PageTransHuge(page)) {
5610 5611 5612 5613
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
5614
			}
5615 5616
		}
	} else {
5617 5618 5619 5620 5621 5622 5623 5624
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5625 5626 5627 5628
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5629

5630 5631
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5632

5633
			if (mapping_can_writeback(mapping)) {
5634 5635 5636 5637 5638
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5639 5640 5641
		}
	}

5642
	if (PageWriteback(page)) {
5643 5644
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5645 5646 5647
	}

	/*
5648 5649
	 * All state has been migrated, let's switch to the new memcg.
	 *
5650
	 * It is safe to change page's memcg here because the page
5651 5652
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
5653
	 * that would rely on a stable page's memory cgroup.
5654 5655
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5656
	 * to save space. As soon as we switch page's memory cgroup to a
5657 5658
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5659
	 */
5660
	smp_mb();
5661

5662 5663 5664
	css_get(&to->css);
	css_put(&from->css);

5665
	page->memcg_data = (unsigned long)to;
5666

5667
	__unlock_page_memcg(from);
5668 5669 5670 5671

	ret = 0;

	local_irq_disable();
5672
	mem_cgroup_charge_statistics(to, page, nr_pages);
5673
	memcg_check_events(to, page);
5674
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5675 5676 5677 5678 5679 5680 5681 5682
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5698 5699
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5700 5701 5702
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5703 5704
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5705 5706 5707 5708
 *
 * Called with pte lock held.
 */

5709
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5710 5711 5712
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5713
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5714 5715 5716 5717 5718
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5719
		page = mc_handle_swap_pte(vma, ptent, &ent);
5720
	else if (pte_none(ptent))
5721
		page = mc_handle_file_pte(vma, addr, ptent);
D
Daisuke Nishimura 已提交
5722 5723

	if (!page && !ent.val)
5724
		return ret;
5725 5726
	if (page) {
		/*
5727
		 * Do only loose check w/o serialization.
5728
		 * mem_cgroup_move_account() checks the page is valid or
5729
		 * not under LRU exclusion.
5730
		 */
5731
		if (page_memcg(page) == mc.from) {
5732
			ret = MC_TARGET_PAGE;
5733
			if (is_device_private_page(page))
5734
				ret = MC_TARGET_DEVICE;
5735 5736 5737 5738 5739 5740
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5741 5742 5743 5744 5745
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5746
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5747 5748 5749
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5750 5751 5752 5753
	}
	return ret;
}

5754 5755
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5756 5757
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5758 5759 5760 5761 5762 5763 5764 5765
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5766 5767 5768 5769 5770
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5771
	page = pmd_page(pmd);
5772
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5773
	if (!(mc.flags & MOVE_ANON))
5774
		return ret;
5775
	if (page_memcg(page) == mc.from) {
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5792 5793 5794 5795
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5796
	struct vm_area_struct *vma = walk->vma;
5797 5798 5799
	pte_t *pte;
	spinlock_t *ptl;

5800 5801
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5802 5803
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5804 5805
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5806
		 */
5807 5808
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5809
		spin_unlock(ptl);
5810
		return 0;
5811
	}
5812

5813 5814
	if (pmd_trans_unstable(pmd))
		return 0;
5815 5816
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5817
		if (get_mctgt_type(vma, addr, *pte, NULL))
5818 5819 5820 5821
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5822 5823 5824
	return 0;
}

5825 5826 5827 5828
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5829 5830 5831 5832
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5833
	mmap_read_lock(mm);
5834
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5835
	mmap_read_unlock(mm);
5836 5837 5838 5839 5840 5841 5842 5843 5844

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5845 5846 5847 5848 5849
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5850 5851
}

5852 5853
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5854
{
5855 5856 5857
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5858
	/* we must uncharge all the leftover precharges from mc.to */
5859
	if (mc.precharge) {
5860
		cancel_charge(mc.to, mc.precharge);
5861 5862 5863 5864 5865 5866 5867
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5868
		cancel_charge(mc.from, mc.moved_charge);
5869
		mc.moved_charge = 0;
5870
	}
5871 5872 5873
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5874
		if (!mem_cgroup_is_root(mc.from))
5875
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5876

5877 5878
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5879
		/*
5880 5881
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5882
		 */
5883
		if (!mem_cgroup_is_root(mc.to))
5884 5885
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5886 5887
		mc.moved_swap = 0;
	}
5888 5889 5890 5891 5892 5893 5894
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5895 5896
	struct mm_struct *mm = mc.mm;

5897 5898 5899 5900 5901 5902
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5903
	spin_lock(&mc.lock);
5904 5905
	mc.from = NULL;
	mc.to = NULL;
5906
	mc.mm = NULL;
5907
	spin_unlock(&mc.lock);
5908 5909

	mmput(mm);
5910 5911
}

5912
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5913
{
5914
	struct cgroup_subsys_state *css;
5915
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5916
	struct mem_cgroup *from;
5917
	struct task_struct *leader, *p;
5918
	struct mm_struct *mm;
5919
	unsigned long move_flags;
5920
	int ret = 0;
5921

5922 5923
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5924 5925
		return 0;

5926 5927 5928 5929 5930 5931 5932
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5933
	cgroup_taskset_for_each_leader(leader, css, tset) {
5934 5935
		WARN_ON_ONCE(p);
		p = leader;
5936
		memcg = mem_cgroup_from_css(css);
5937 5938 5939 5940
	}
	if (!p)
		return 0;

5941
	/*
I
Ingo Molnar 已提交
5942
	 * We are now committed to this value whatever it is. Changes in this
5943 5944 5945 5946 5947 5948 5949
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5966
		mc.mm = mm;
5967 5968 5969 5970 5971 5972 5973 5974 5975
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5976 5977
	} else {
		mmput(mm);
5978 5979 5980 5981
	}
	return ret;
}

5982
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5983
{
5984 5985
	if (mc.to)
		mem_cgroup_clear_mc();
5986 5987
}

5988 5989 5990
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5991
{
5992
	int ret = 0;
5993
	struct vm_area_struct *vma = walk->vma;
5994 5995
	pte_t *pte;
	spinlock_t *ptl;
5996 5997 5998
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5999

6000 6001
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6002
		if (mc.precharge < HPAGE_PMD_NR) {
6003
			spin_unlock(ptl);
6004 6005 6006 6007 6008 6009
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6010
				if (!mem_cgroup_move_account(page, true,
6011
							     mc.from, mc.to)) {
6012 6013 6014 6015 6016 6017
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6018 6019 6020 6021 6022 6023 6024 6025
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6026
		}
6027
		spin_unlock(ptl);
6028
		return 0;
6029 6030
	}

6031 6032
	if (pmd_trans_unstable(pmd))
		return 0;
6033 6034 6035 6036
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6037
		bool device = false;
6038
		swp_entry_t ent;
6039 6040 6041 6042

		if (!mc.precharge)
			break;

6043
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6044 6045
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6046
			fallthrough;
6047 6048
		case MC_TARGET_PAGE:
			page = target.page;
6049 6050 6051 6052 6053 6054 6055 6056
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6057
			if (!device && isolate_lru_page(page))
6058
				goto put;
6059 6060
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6061
				mc.precharge--;
6062 6063
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6064
			}
6065 6066
			if (!device)
				putback_lru_page(page);
6067
put:			/* get_mctgt_type() gets the page */
6068 6069
			put_page(page);
			break;
6070 6071
		case MC_TARGET_SWAP:
			ent = target.ent;
6072
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6073
				mc.precharge--;
6074 6075
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6076 6077
				mc.moved_swap++;
			}
6078
			break;
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6093
		ret = mem_cgroup_do_precharge(1);
6094 6095 6096 6097 6098 6099 6100
		if (!ret)
			goto retry;
	}

	return ret;
}

6101 6102 6103 6104
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6105
static void mem_cgroup_move_charge(void)
6106 6107
{
	lru_add_drain_all();
6108
	/*
6109 6110 6111
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6112 6113 6114
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6115
retry:
6116
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6117
		/*
6118
		 * Someone who are holding the mmap_lock might be waiting in
6119 6120 6121 6122 6123 6124 6125 6126 6127
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6128 6129 6130 6131
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6132 6133
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6134

6135
	mmap_read_unlock(mc.mm);
6136
	atomic_dec(&mc.from->moving_account);
6137 6138
}

6139
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6140
{
6141 6142
	if (mc.to) {
		mem_cgroup_move_charge();
6143
		mem_cgroup_clear_mc();
6144
	}
B
Balbir Singh 已提交
6145
}
6146
#else	/* !CONFIG_MMU */
6147
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6148 6149 6150
{
	return 0;
}
6151
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6152 6153
{
}
6154
static void mem_cgroup_move_task(void)
6155 6156 6157
{
}
#endif
B
Balbir Singh 已提交
6158

6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6169 6170 6171
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6172 6173 6174
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6175 6176
}

R
Roman Gushchin 已提交
6177 6178
static int memory_min_show(struct seq_file *m, void *v)
{
6179 6180
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6200 6201
static int memory_low_show(struct seq_file *m, void *v)
{
6202 6203
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6214
	err = page_counter_memparse(buf, "max", &low);
6215 6216 6217
	if (err)
		return err;

6218
	page_counter_set_low(&memcg->memory, low);
6219 6220 6221 6222 6223 6224

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6225 6226
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6227 6228 6229 6230 6231 6232
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6233
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6234
	bool drained = false;
6235 6236 6237 6238
	unsigned long high;
	int err;

	buf = strstrip(buf);
6239
	err = page_counter_memparse(buf, "max", &high);
6240 6241 6242
	if (err)
		return err;

6243 6244
	page_counter_set_high(&memcg->memory, high);

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6267

6268
	memcg_wb_domain_size_changed(memcg);
6269 6270 6271 6272 6273
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6274 6275
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6276 6277 6278 6279 6280 6281
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6282
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6283
	bool drained = false;
6284 6285 6286 6287
	unsigned long max;
	int err;

	buf = strstrip(buf);
6288
	err = page_counter_memparse(buf, "max", &max);
6289 6290 6291
	if (err)
		return err;

6292
	xchg(&memcg->memory.max, max);
6293 6294 6295 6296 6297 6298 6299

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6300
		if (signal_pending(current))
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6316
		memcg_memory_event(memcg, MEMCG_OOM);
6317 6318 6319
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6320

6321
	memcg_wb_domain_size_changed(memcg);
6322 6323 6324
	return nbytes;
}

6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6335 6336
static int memory_events_show(struct seq_file *m, void *v)
{
6337
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6338

6339 6340 6341 6342 6343 6344 6345
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6346

6347
	__memory_events_show(m, memcg->memory_events_local);
6348 6349 6350
	return 0;
}

6351 6352
static int memory_stat_show(struct seq_file *m, void *v)
{
6353
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6354
	char *buf;
6355

6356 6357 6358 6359 6360
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6361 6362 6363
	return 0;
}

6364
#ifdef CONFIG_NUMA
6365 6366 6367 6368 6369 6370
static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
						     int item)
{
	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
}

6371 6372 6373 6374 6375
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

6376 6377
	cgroup_rstat_flush(memcg->css.cgroup);

6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6390 6391
			size = lruvec_page_state_output(lruvec,
							memory_stats[i].idx);
6392 6393 6394 6395 6396 6397 6398 6399 6400
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6401 6402
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6403
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6432 6433 6434
static struct cftype memory_files[] = {
	{
		.name = "current",
6435
		.flags = CFTYPE_NOT_ON_ROOT,
6436 6437
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6438 6439 6440 6441 6442 6443
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6465
		.file_offset = offsetof(struct mem_cgroup, events_file),
6466 6467
		.seq_show = memory_events_show,
	},
6468 6469 6470 6471 6472 6473
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6474 6475 6476 6477
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6478 6479 6480 6481 6482 6483
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6484 6485 6486 6487 6488 6489
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6490 6491 6492
	{ }	/* terminate */
};

6493
struct cgroup_subsys memory_cgrp_subsys = {
6494
	.css_alloc = mem_cgroup_css_alloc,
6495
	.css_online = mem_cgroup_css_online,
6496
	.css_offline = mem_cgroup_css_offline,
6497
	.css_released = mem_cgroup_css_released,
6498
	.css_free = mem_cgroup_css_free,
6499
	.css_reset = mem_cgroup_css_reset,
6500
	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6501 6502
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6503
	.post_attach = mem_cgroup_move_task,
6504 6505
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6506
	.early_init = 0,
B
Balbir Singh 已提交
6507
};
6508

6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6551 6552
 */
static unsigned long effective_protection(unsigned long usage,
6553
					  unsigned long parent_usage,
6554 6555 6556 6557 6558
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6559
	unsigned long ep;
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6603 6604 6605 6606
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6607 6608 6609
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6610 6611 6612
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6623 6624
}

6625
/**
6626
 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6627
 * @root: the top ancestor of the sub-tree being checked
6628 6629
 * @memcg: the memory cgroup to check
 *
6630 6631
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6632
 */
6633 6634
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6635
{
6636
	unsigned long usage, parent_usage;
6637 6638
	struct mem_cgroup *parent;

6639
	if (mem_cgroup_disabled())
6640
		return;
6641

6642 6643
	if (!root)
		root = root_mem_cgroup;
6644 6645 6646 6647 6648 6649 6650 6651

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6652
	if (memcg == root)
6653
		return;
6654

6655
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6656
	if (!usage)
6657
		return;
R
Roman Gushchin 已提交
6658 6659

	parent = parent_mem_cgroup(memcg);
6660 6661
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6662
		return;
6663

6664
	if (parent == root) {
6665
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6666
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6667
		return;
R
Roman Gushchin 已提交
6668 6669
	}

6670 6671
	parent_usage = page_counter_read(&parent->memory);

6672
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6673 6674
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6675
			atomic_long_read(&parent->memory.children_min_usage)));
6676

6677
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6678 6679
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6680
			atomic_long_read(&parent->memory.children_low_usage)));
6681 6682
}

6683
static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
{
	unsigned int nr_pages = thp_nr_pages(page);
	int ret;

	ret = try_charge(memcg, gfp, nr_pages);
	if (ret)
		goto out;

	css_get(&memcg->css);
	commit_charge(page, memcg);

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
out:
	return ret;
}

6703
/**
6704
 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6705 6706 6707 6708 6709
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6710 6711
 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
 * charge to the active memcg.
6712
 *
6713 6714
 * Do not use this for pages allocated for swapin.
 *
6715
 * Returns 0 on success. Otherwise, an error code is returned.
6716
 */
6717 6718
int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
			gfp_t gfp_mask)
6719
{
6720 6721
	struct mem_cgroup *memcg;
	int ret;
6722

6723
	memcg = get_mem_cgroup_from_mm(mm);
6724
	ret = charge_memcg(page, memcg, gfp_mask);
6725
	css_put(&memcg->css);
6726

6727 6728
	return ret;
}
6729

6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
/**
 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp: reclaim mode
 * @entry: swap entry for which the page is allocated
 *
 * This function charges a page allocated for swapin. Please call this before
 * adding the page to the swapcache.
 *
 * Returns 0 on success. Otherwise, an error code is returned.
 */
int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
				  gfp_t gfp, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;
	int ret;
6748

6749 6750
	if (mem_cgroup_disabled())
		return 0;
6751

6752 6753 6754 6755 6756 6757
	id = lookup_swap_cgroup_id(entry);
	rcu_read_lock();
	memcg = mem_cgroup_from_id(id);
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = get_mem_cgroup_from_mm(mm);
	rcu_read_unlock();
6758

6759
	ret = charge_memcg(page, memcg, gfp);
6760

6761 6762 6763
	css_put(&memcg->css);
	return ret;
}
6764

6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
/*
 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
 * @entry: swap entry for which the page is charged
 *
 * Call this function after successfully adding the charged page to swapcache.
 *
 * Note: This function assumes the page for which swap slot is being uncharged
 * is order 0 page.
 */
void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
{
6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
	/*
	 * Cgroup1's unified memory+swap counter has been charged with the
	 * new swapcache page, finish the transfer by uncharging the swap
	 * slot. The swap slot would also get uncharged when it dies, but
	 * it can stick around indefinitely and we'd count the page twice
	 * the entire time.
	 *
	 * Cgroup2 has separate resource counters for memory and swap,
	 * so this is a non-issue here. Memory and swap charge lifetimes
	 * correspond 1:1 to page and swap slot lifetimes: we charge the
	 * page to memory here, and uncharge swap when the slot is freed.
	 */
6788
	if (!mem_cgroup_disabled() && do_memsw_account()) {
6789 6790 6791 6792 6793
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6794
		mem_cgroup_uncharge_swap(entry, 1);
6795
	}
6796 6797
}

6798 6799
struct uncharge_gather {
	struct mem_cgroup *memcg;
6800
	unsigned long nr_memory;
6801 6802 6803 6804 6805 6806
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6807
{
6808 6809 6810 6811 6812
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6813 6814
	unsigned long flags;

6815 6816
	if (ug->nr_memory) {
		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6817
		if (do_memsw_account())
6818
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6819 6820 6821
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6822
	}
6823 6824

	local_irq_save(flags);
6825
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6826
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6827
	memcg_check_events(ug->memcg, ug->dummy_page);
6828
	local_irq_restore(flags);
6829 6830 6831

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6832 6833 6834 6835
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6836
	unsigned long nr_pages;
6837 6838
	struct mem_cgroup *memcg;
	struct obj_cgroup *objcg;
6839
	bool use_objcg = PageMemcgKmem(page);
6840

6841 6842 6843 6844
	VM_BUG_ON_PAGE(PageLRU(page), page);

	/*
	 * Nobody should be changing or seriously looking at
6845
	 * page memcg or objcg at this point, we have fully
6846 6847
	 * exclusive access to the page.
	 */
6848
	if (use_objcg) {
6849 6850 6851 6852 6853 6854 6855 6856 6857
		objcg = __page_objcg(page);
		/*
		 * This get matches the put at the end of the function and
		 * kmem pages do not hold memcg references anymore.
		 */
		memcg = get_mem_cgroup_from_objcg(objcg);
	} else {
		memcg = __page_memcg(page);
	}
6858

6859 6860 6861 6862
	if (!memcg)
		return;

	if (ug->memcg != memcg) {
6863 6864 6865 6866
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
6867
		ug->memcg = memcg;
6868
		ug->dummy_page = page;
6869 6870

		/* pairs with css_put in uncharge_batch */
6871
		css_get(&memcg->css);
6872 6873
	}

6874
	nr_pages = compound_nr(page);
6875

6876
	if (use_objcg) {
6877
		ug->nr_memory += nr_pages;
6878
		ug->nr_kmem += nr_pages;
6879 6880 6881 6882 6883 6884 6885

		page->memcg_data = 0;
		obj_cgroup_put(objcg);
	} else {
		/* LRU pages aren't accounted at the root level */
		if (!mem_cgroup_is_root(memcg))
			ug->nr_memory += nr_pages;
6886
		ug->pgpgout++;
6887

6888 6889 6890 6891
		page->memcg_data = 0;
	}

	css_put(&memcg->css);
6892 6893
}

6894
/**
6895
 * __mem_cgroup_uncharge - uncharge a page
6896 6897
 * @page: page to uncharge
 *
6898
 * Uncharge a page previously charged with __mem_cgroup_charge().
6899
 */
6900
void __mem_cgroup_uncharge(struct page *page)
6901
{
6902 6903
	struct uncharge_gather ug;

6904
	/* Don't touch page->lru of any random page, pre-check: */
6905
	if (!page_memcg(page))
6906 6907
		return;

6908 6909 6910
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6911
}
6912

6913
/**
6914
 * __mem_cgroup_uncharge_list - uncharge a list of page
6915 6916 6917
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6918
 * __mem_cgroup_charge().
6919
 */
6920
void __mem_cgroup_uncharge_list(struct list_head *page_list)
6921
{
6922 6923 6924 6925 6926 6927 6928 6929
	struct uncharge_gather ug;
	struct page *page;

	uncharge_gather_clear(&ug);
	list_for_each_entry(page, page_list, lru)
		uncharge_page(page, &ug);
	if (ug.memcg)
		uncharge_batch(&ug);
6930 6931 6932
}

/**
6933 6934 6935
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6936
 *
6937 6938
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6939 6940 6941
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6942
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6943
{
6944
	struct mem_cgroup *memcg;
6945
	unsigned int nr_pages;
6946
	unsigned long flags;
6947 6948 6949 6950

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6951 6952
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6953 6954 6955 6956 6957

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6958
	if (page_memcg(newpage))
6959 6960
		return;

6961
	memcg = page_memcg(oldpage);
6962
	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6963
	if (!memcg)
6964 6965
		return;

6966
	/* Force-charge the new page. The old one will be freed soon */
6967
	nr_pages = thp_nr_pages(newpage);
6968

6969 6970 6971 6972 6973
	if (!mem_cgroup_is_root(memcg)) {
		page_counter_charge(&memcg->memory, nr_pages);
		if (do_memsw_account())
			page_counter_charge(&memcg->memsw, nr_pages);
	}
6974

6975
	css_get(&memcg->css);
6976
	commit_charge(newpage, memcg);
6977

6978
	local_irq_save(flags);
6979
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6980
	memcg_check_events(memcg, newpage);
6981
	local_irq_restore(flags);
6982 6983
}

6984
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6985 6986
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6987
void mem_cgroup_sk_alloc(struct sock *sk)
6988 6989 6990
{
	struct mem_cgroup *memcg;

6991 6992 6993
	if (!mem_cgroup_sockets_enabled)
		return;

6994 6995 6996 6997
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6998 6999
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
7000 7001
	if (memcg == root_mem_cgroup)
		goto out;
7002
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7003
		goto out;
S
Shakeel Butt 已提交
7004
	if (css_tryget(&memcg->css))
7005
		sk->sk_memcg = memcg;
7006
out:
7007 7008 7009
	rcu_read_unlock();
}

7010
void mem_cgroup_sk_free(struct sock *sk)
7011
{
7012 7013
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
7014 7015 7016 7017 7018 7019
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
7020
 * @gfp_mask: reclaim mode
7021 7022
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7023
 * @memcg's configured limit, %false if it doesn't.
7024
 */
7025 7026
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
			     gfp_t gfp_mask)
7027
{
7028
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7029
		struct page_counter *fail;
7030

7031 7032
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7033 7034
			return true;
		}
7035
		memcg->tcpmem_pressure = 1;
7036 7037 7038 7039
		if (gfp_mask & __GFP_NOFAIL) {
			page_counter_charge(&memcg->tcpmem, nr_pages);
			return true;
		}
7040
		return false;
7041
	}
7042

7043 7044
	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7045
		return true;
7046
	}
7047

7048 7049 7050 7051 7052
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7053 7054
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7055 7056 7057
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7058
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7059
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7060 7061
		return;
	}
7062

7063
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7064

7065
	refill_stock(memcg, nr_pages);
7066 7067
}

7068 7069 7070 7071 7072 7073 7074 7075 7076
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7077 7078
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7079 7080 7081 7082
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7083

7084
/*
7085 7086
 * subsys_initcall() for memory controller.
 *
7087 7088 7089 7090
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7091 7092 7093
 */
static int __init mem_cgroup_init(void)
{
7094 7095
	int cpu, node;

7096 7097 7098 7099 7100 7101 7102 7103
	/*
	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
	 * used for per-memcg-per-cpu caching of per-node statistics. In order
	 * to work fine, we should make sure that the overfill threshold can't
	 * exceed S32_MAX / PAGE_SIZE.
	 */
	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);

7104 7105
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7117
		rtpn->rb_root = RB_ROOT;
7118
		rtpn->rb_rightmost = NULL;
7119
		spin_lock_init(&rtpn->lock);
7120 7121 7122
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7123 7124 7125
	return 0;
}
subsys_initcall(mem_cgroup_init);
7126 7127

#ifdef CONFIG_MEMCG_SWAP
7128 7129
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7130
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7146 7147 7148 7149 7150 7151 7152 7153 7154
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7155
	struct mem_cgroup *memcg, *swap_memcg;
7156
	unsigned int nr_entries;
7157 7158 7159 7160 7161
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7162 7163 7164
	if (mem_cgroup_disabled())
		return;

7165
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7166 7167
		return;

7168
	memcg = page_memcg(page);
7169

7170
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7171 7172 7173
	if (!memcg)
		return;

7174 7175 7176 7177 7178 7179
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7180
	nr_entries = thp_nr_pages(page);
7181 7182 7183 7184 7185
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7186
	VM_BUG_ON_PAGE(oldid, page);
7187
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7188

7189
	page->memcg_data = 0;
7190 7191

	if (!mem_cgroup_is_root(memcg))
7192
		page_counter_uncharge(&memcg->memory, nr_entries);
7193

7194
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7195
		if (!mem_cgroup_is_root(swap_memcg))
7196 7197
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7198 7199
	}

7200 7201
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7202
	 * i_pages lock which is taken with interrupts-off. It is
7203
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7204
	 * only synchronisation we have for updating the per-CPU variables.
7205 7206
	 */
	VM_BUG_ON(!irqs_disabled());
7207
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7208
	memcg_check_events(memcg, page);
7209

7210
	css_put(&memcg->css);
7211 7212
}

7213
/**
7214
 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7215 7216 7217
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7218
 * Try to charge @page's memcg for the swap space at @entry.
7219 7220 7221
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
7222
int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7223
{
7224
	unsigned int nr_pages = thp_nr_pages(page);
7225
	struct page_counter *counter;
7226
	struct mem_cgroup *memcg;
7227 7228
	unsigned short oldid;

7229
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7230 7231
		return 0;

7232
	memcg = page_memcg(page);
7233

7234
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7235 7236 7237
	if (!memcg)
		return 0;

7238 7239
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7240
		return 0;
7241
	}
7242

7243 7244
	memcg = mem_cgroup_id_get_online(memcg);

7245
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7246
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7247 7248
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7249
		mem_cgroup_id_put(memcg);
7250
		return -ENOMEM;
7251
	}
7252

7253 7254 7255 7256
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7257
	VM_BUG_ON_PAGE(oldid, page);
7258
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7259 7260 7261 7262

	return 0;
}

7263
/**
7264
 * __mem_cgroup_uncharge_swap - uncharge swap space
7265
 * @entry: swap entry to uncharge
7266
 * @nr_pages: the amount of swap space to uncharge
7267
 */
7268
void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7269 7270 7271 7272
{
	struct mem_cgroup *memcg;
	unsigned short id;

7273
	id = swap_cgroup_record(entry, 0, nr_pages);
7274
	rcu_read_lock();
7275
	memcg = mem_cgroup_from_id(id);
7276
	if (memcg) {
7277
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7278
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7279
				page_counter_uncharge(&memcg->swap, nr_pages);
7280
			else
7281
				page_counter_uncharge(&memcg->memsw, nr_pages);
7282
		}
7283
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7284
		mem_cgroup_id_put_many(memcg, nr_pages);
7285 7286 7287 7288
	}
	rcu_read_unlock();
}

7289 7290 7291 7292
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7293
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7294 7295 7296
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7297
				      READ_ONCE(memcg->swap.max) -
7298 7299 7300 7301
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7302 7303 7304 7305 7306 7307 7308 7309
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7310
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7311 7312
		return false;

7313
	memcg = page_memcg(page);
7314 7315 7316
	if (!memcg)
		return false;

7317 7318 7319 7320 7321
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7322
			return true;
7323
	}
7324 7325 7326 7327

	return false;
}

7328
static int __init setup_swap_account(char *s)
7329 7330
{
	if (!strcmp(s, "1"))
7331
		cgroup_memory_noswap = false;
7332
	else if (!strcmp(s, "0"))
7333
		cgroup_memory_noswap = true;
7334 7335
	return 1;
}
7336
__setup("swapaccount=", setup_swap_account);
7337

7338 7339 7340 7341 7342 7343 7344 7345
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7369 7370
static int swap_max_show(struct seq_file *m, void *v)
{
7371 7372
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7387
	xchg(&memcg->swap.max, max);
7388 7389 7390 7391

	return nbytes;
}

7392 7393
static int swap_events_show(struct seq_file *m, void *v)
{
7394
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7395

7396 7397
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7398 7399 7400 7401 7402 7403 7404 7405
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7406 7407 7408 7409 7410 7411
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7412 7413 7414 7415 7416 7417
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7418 7419 7420 7421 7422 7423
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7424 7425 7426 7427 7428 7429
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7430 7431 7432
	{ }	/* terminate */
};

7433
static struct cftype memsw_files[] = {
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7460 7461 7462 7463 7464 7465 7466
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7467 7468
static int __init mem_cgroup_swap_init(void)
{
7469 7470 7471 7472 7473
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7474 7475 7476 7477 7478
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7479 7480
	return 0;
}
7481
core_initcall(mem_cgroup_swap_init);
7482 7483

#endif /* CONFIG_MEMCG_SWAP */