i915_gem.c 161.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68 69 70 71
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
	i915_gem_timelines_park(i915);

	i915_pmu_gt_parked(i915);

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

234 235
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
236
			    struct drm_file *file)
237
{
238
	struct drm_i915_private *dev_priv = to_i915(dev);
239
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
240
	struct drm_i915_gem_get_aperture *args = data;
241
	struct i915_vma *vma;
242
	u64 pinned;
243

244
	pinned = ggtt->base.reserved;
245
	mutex_lock(&dev->struct_mutex);
246
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
247
		if (i915_vma_is_pinned(vma))
248
			pinned += vma->node.size;
249
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
250
		if (i915_vma_is_pinned(vma))
251
			pinned += vma->node.size;
252
	mutex_unlock(&dev->struct_mutex);
253

254
	args->aper_size = ggtt->base.total;
255
	args->aper_available_size = args->aper_size - pinned;
256

257 258 259
	return 0;
}

260
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
261
{
262
	struct address_space *mapping = obj->base.filp->f_mapping;
263
	drm_dma_handle_t *phys;
264 265
	struct sg_table *st;
	struct scatterlist *sg;
266
	char *vaddr;
267
	int i;
268
	int err;
269

270
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
271
		return -EINVAL;
272

273 274 275 276 277
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
278
			     roundup_pow_of_two(obj->base.size),
279 280
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
281
		return -ENOMEM;
282 283

	vaddr = phys->vaddr;
284 285 286 287 288
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
289
		if (IS_ERR(page)) {
290
			err = PTR_ERR(page);
291 292
			goto err_phys;
		}
293 294 295 296 297 298

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

299
		put_page(page);
300 301 302
		vaddr += PAGE_SIZE;
	}

303
	i915_gem_chipset_flush(to_i915(obj->base.dev));
304 305

	st = kmalloc(sizeof(*st), GFP_KERNEL);
306
	if (!st) {
307
		err = -ENOMEM;
308 309
		goto err_phys;
	}
310 311 312

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
313
		err = -ENOMEM;
314
		goto err_phys;
315 316 317 318 319
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
320

321
	sg_dma_address(sg) = phys->busaddr;
322 323
	sg_dma_len(sg) = obj->base.size;

324
	obj->phys_handle = phys;
325

326
	__i915_gem_object_set_pages(obj, st, sg->length);
327 328

	return 0;
329 330 331

err_phys:
	drm_pci_free(obj->base.dev, phys);
332 333

	return err;
334 335
}

336 337
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
338 339
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
340 341 342 343
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

344
static void
345
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
346 347
				struct sg_table *pages,
				bool needs_clflush)
348
{
C
Chris Wilson 已提交
349
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
350

C
Chris Wilson 已提交
351 352
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
353

354
	if (needs_clflush &&
355
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
356
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
357
		drm_clflush_sg(pages);
358

359
	__start_cpu_write(obj);
360 361 362 363 364 365
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
366
	__i915_gem_object_release_shmem(obj, pages, false);
367

C
Chris Wilson 已提交
368
	if (obj->mm.dirty) {
369
		struct address_space *mapping = obj->base.filp->f_mapping;
370
		char *vaddr = obj->phys_handle->vaddr;
371 372 373
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
374 375 376 377 378 379 380 381 382 383 384 385 386
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
387
			if (obj->mm.madv == I915_MADV_WILLNEED)
388
				mark_page_accessed(page);
389
			put_page(page);
390 391
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
392
		obj->mm.dirty = false;
393 394
	}

395 396
	sg_free_table(pages);
	kfree(pages);
397 398

	drm_pci_free(obj->base.dev, obj->phys_handle);
399 400 401 402 403
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
404
	i915_gem_object_unpin_pages(obj);
405 406 407 408 409 410 411 412
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

413 414
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

415
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
416 417 418
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
419 420 421
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
422

423 424 425 426
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
427
	 */
428
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
429 430 431
	if (ret)
		return ret;

432 433 434 435 436 437 438 439 440 441 442 443 444
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

445 446 447 448
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
449
			   struct intel_rps_client *rps_client)
450
{
451
	struct i915_request *rq;
452

453
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
454

455 456 457 458 459 460 461 462 463
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
464
	if (i915_request_completed(rq))
465 466
		goto out;

467 468
	/*
	 * This client is about to stall waiting for the GPU. In many cases
469 470 471 472 473 474 475 476 477 478 479 480 481 482
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
483
	if (rps_client && !i915_request_started(rq)) {
484
		if (INTEL_GEN(rq->i915) >= 6)
485
			gen6_rps_boost(rq, rps_client);
486 487
	}

488
	timeout = i915_request_wait(rq, flags, timeout);
489 490

out:
491 492
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
493 494 495 496 497 498 499 500

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
501
				 struct intel_rps_client *rps_client)
502
{
503
	unsigned int seq = __read_seqcount_begin(&resv->seq);
504
	struct dma_fence *excl;
505
	bool prune_fences = false;
506 507 508 509

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
510 511
		int ret;

512 513
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
514 515 516
		if (ret)
			return ret;

517 518 519
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
520
							     rps_client);
521
			if (timeout < 0)
522
				break;
523

524 525 526 527 528 529
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
530

531 532 533 534 535 536 537 538 539
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
540
		prune_fences = count && timeout >= 0;
541 542
	} else {
		excl = reservation_object_get_excl_rcu(resv);
543 544
	}

545
	if (excl && timeout >= 0)
546 547
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
548 549 550

	dma_fence_put(excl);

551 552
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
553 554 555
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
556
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
557 558 559 560 561
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
562 563
	}

564
	return timeout;
565 566
}

567 568
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
569
{
570
	struct i915_request *rq;
571 572
	struct intel_engine_cs *engine;

573
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
574 575 576 577 578
		return;

	rq = to_request(fence);
	engine = rq->engine;

579 580
	rcu_read_lock();
	if (engine->schedule)
581
		engine->schedule(rq, attr);
582
	rcu_read_unlock();
583 584
}

585 586
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
587 588 589 590 591 592 593
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
594
			__fence_set_priority(array->fences[i], attr);
595
	} else {
596
		__fence_set_priority(fence, attr);
597 598 599 600 601 602
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
603
			      const struct i915_sched_attr *attr)
604 605 606 607 608 609 610 611 612 613 614 615 616 617
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
618
			fence_set_priority(shared[i], attr);
619 620 621 622 623 624 625 626 627
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
628
		fence_set_priority(excl, attr);
629 630 631 632 633
		dma_fence_put(excl);
	}
	return 0;
}

634 635 636 637 638
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
639
 * @rps_client: client (user process) to charge for any waitboosting
640
 */
641 642 643 644
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
645
		     struct intel_rps_client *rps_client)
646
{
647 648 649 650 651 652 653
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
654

655 656
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
657
						   rps_client);
658
	return timeout < 0 ? timeout : 0;
659 660 661 662 663 664
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

665
	return &fpriv->rps_client;
666 667
}

668 669 670
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
671
		     struct drm_file *file)
672 673
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
674
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
675 676 677 678

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
679
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
680 681
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
682

683
	drm_clflush_virt_range(vaddr, args->size);
684
	i915_gem_chipset_flush(to_i915(obj->base.dev));
685

686
	intel_fb_obj_flush(obj, ORIGIN_CPU);
687
	return 0;
688 689
}

690
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
691
{
692
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
693 694 695 696
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
697
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
698
	kmem_cache_free(dev_priv->objects, obj);
699 700
}

701 702
static int
i915_gem_create(struct drm_file *file,
703
		struct drm_i915_private *dev_priv,
704 705
		uint64_t size,
		uint32_t *handle_p)
706
{
707
	struct drm_i915_gem_object *obj;
708 709
	int ret;
	u32 handle;
710

711
	size = roundup(size, PAGE_SIZE);
712 713
	if (size == 0)
		return -EINVAL;
714 715

	/* Allocate the new object */
716
	obj = i915_gem_object_create(dev_priv, size);
717 718
	if (IS_ERR(obj))
		return PTR_ERR(obj);
719

720
	ret = drm_gem_handle_create(file, &obj->base, &handle);
721
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
722
	i915_gem_object_put(obj);
723 724
	if (ret)
		return ret;
725

726
	*handle_p = handle;
727 728 729
	return 0;
}

730 731 732 733 734 735
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
736
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
737
	args->size = args->pitch * args->height;
738
	return i915_gem_create(file, to_i915(dev),
739
			       args->size, &args->handle);
740 741
}

742 743 744 745 746 747
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

748 749
/**
 * Creates a new mm object and returns a handle to it.
750 751 752
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
753 754 755 756 757
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
758
	struct drm_i915_private *dev_priv = to_i915(dev);
759
	struct drm_i915_gem_create *args = data;
760

761
	i915_gem_flush_free_objects(dev_priv);
762

763
	return i915_gem_create(file, dev_priv,
764
			       args->size, &args->handle);
765 766
}

767 768 769 770 771 772 773
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

774
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
775
{
776 777 778 779 780
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
781 782 783 784 785 786 787 788 789 790
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
791 792
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
793
	 */
794

795 796
	wmb();

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

812
	if (!(obj->write_domain & flush_domains))
813 814
		return;

815
	switch (obj->write_domain) {
816
	case I915_GEM_DOMAIN_GTT:
817
		i915_gem_flush_ggtt_writes(dev_priv);
818 819 820

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
821

822
		for_each_ggtt_vma(vma, obj) {
823 824 825 826 827
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
828 829 830 831 832
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
833 834 835 836 837

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
838 839
	}

840
	obj->write_domain = 0;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

869
static inline int
870 871
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

895 896 897 898 899 900
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
901
				    unsigned int *needs_clflush)
902 903 904
{
	int ret;

905
	lockdep_assert_held(&obj->base.dev->struct_mutex);
906

907
	*needs_clflush = 0;
908 909
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
910

911 912 913 914 915
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
916 917 918
	if (ret)
		return ret;

C
Chris Wilson 已提交
919
	ret = i915_gem_object_pin_pages(obj);
920 921 922
	if (ret)
		return ret;

923 924
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
925 926 927 928 929 930 931
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

932
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
933

934 935 936 937 938
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
939
	if (!obj->cache_dirty &&
940
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
941
		*needs_clflush = CLFLUSH_BEFORE;
942

943
out:
944
	/* return with the pages pinned */
945
	return 0;
946 947 948 949

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
950 951 952 953 954 955 956
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

957 958
	lockdep_assert_held(&obj->base.dev->struct_mutex);

959 960 961 962
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

963 964 965 966 967 968
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
969 970 971
	if (ret)
		return ret;

C
Chris Wilson 已提交
972
	ret = i915_gem_object_pin_pages(obj);
973 974 975
	if (ret)
		return ret;

976 977
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
978 979 980 981 982 983 984
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

985
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
986

987 988 989 990 991
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
992
	if (!obj->cache_dirty) {
993
		*needs_clflush |= CLFLUSH_AFTER;
994

995 996 997 998
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
999
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1000 1001
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1002

1003
out:
1004
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1005
	obj->mm.dirty = true;
1006
	/* return with the pages pinned */
1007
	return 0;
1008 1009 1010 1011

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1012 1013
}

1014 1015 1016 1017
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1018
	if (unlikely(swizzled)) {
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1036 1037 1038
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1039
shmem_pread_slow(struct page *page, int offset, int length,
1040 1041 1042 1043 1044 1045 1046 1047
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1048
		shmem_clflush_swizzled_range(vaddr + offset, length,
1049
					     page_do_bit17_swizzling);
1050 1051

	if (page_do_bit17_swizzling)
1052
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1053
	else
1054
		ret = __copy_to_user(user_data, vaddr + offset, length);
1055 1056
	kunmap(page);

1057
	return ret ? - EFAULT : 0;
1058 1059
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1136
{
1137
	void __iomem *vaddr;
1138
	unsigned long unwritten;
1139 1140

	/* We can use the cpu mem copy function because this is X86. */
1141 1142 1143 1144
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1145 1146
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1147 1148 1149 1150
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1151 1152
		io_mapping_unmap(vaddr);
	}
1153 1154 1155 1156
	return unwritten;
}

static int
1157 1158
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1159
{
1160 1161
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1162
	struct drm_mm_node node;
1163 1164 1165
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1166 1167
	int ret;

1168 1169 1170 1171 1172 1173
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1174 1175 1176
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1177 1178 1179
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1180
		ret = i915_vma_put_fence(vma);
1181 1182 1183 1184 1185
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1186
	if (IS_ERR(vma)) {
1187
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1188
		if (ret)
1189 1190
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1191 1192 1193 1194 1195 1196
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1197
	mutex_unlock(&i915->drm.struct_mutex);
1198

1199 1200 1201
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1218
					       node.start, I915_CACHE_NONE, 0);
1219 1220 1221 1222
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1223

1224
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1225
				  user_data, page_length)) {
1226 1227 1228 1229 1230 1231 1232 1233 1234
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1235
	mutex_lock(&i915->drm.struct_mutex);
1236 1237 1238 1239
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1240
				       node.start, node.size);
1241 1242
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1243
		i915_vma_unpin(vma);
1244
	}
1245 1246 1247
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1248

1249 1250 1251
	return ret;
}

1252 1253
/**
 * Reads data from the object referenced by handle.
1254 1255 1256
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1257 1258 1259 1260 1261
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1262
		     struct drm_file *file)
1263 1264
{
	struct drm_i915_gem_pread *args = data;
1265
	struct drm_i915_gem_object *obj;
1266
	int ret;
1267

1268 1269 1270 1271
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1272
		       u64_to_user_ptr(args->data_ptr),
1273 1274 1275
		       args->size))
		return -EFAULT;

1276
	obj = i915_gem_object_lookup(file, args->handle);
1277 1278
	if (!obj)
		return -ENOENT;
1279

1280
	/* Bounds check source.  */
1281
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1282
		ret = -EINVAL;
1283
		goto out;
C
Chris Wilson 已提交
1284 1285
	}

C
Chris Wilson 已提交
1286 1287
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1288 1289 1290 1291
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1292
	if (ret)
1293
		goto out;
1294

1295
	ret = i915_gem_object_pin_pages(obj);
1296
	if (ret)
1297
		goto out;
1298

1299
	ret = i915_gem_shmem_pread(obj, args);
1300
	if (ret == -EFAULT || ret == -ENODEV)
1301
		ret = i915_gem_gtt_pread(obj, args);
1302

1303 1304
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1305
	i915_gem_object_put(obj);
1306
	return ret;
1307 1308
}

1309 1310
/* This is the fast write path which cannot handle
 * page faults in the source data
1311
 */
1312

1313 1314 1315 1316
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1317
{
1318
	void __iomem *vaddr;
1319
	unsigned long unwritten;
1320

1321
	/* We can use the cpu mem copy function because this is X86. */
1322 1323
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1324
						      user_data, length);
1325 1326
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1327 1328 1329
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1330 1331
		io_mapping_unmap(vaddr);
	}
1332 1333 1334 1335

	return unwritten;
}

1336 1337 1338
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1339
 * @obj: i915 GEM object
1340
 * @args: pwrite arguments structure
1341
 */
1342
static int
1343 1344
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1345
{
1346
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1347 1348
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1349 1350 1351
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1352
	int ret;
1353

1354 1355 1356
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1375
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1376 1377 1378
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1379 1380 1381
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1382
		ret = i915_vma_put_fence(vma);
1383 1384 1385 1386 1387
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1388
	if (IS_ERR(vma)) {
1389
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1390
		if (ret)
1391
			goto out_rpm;
1392
		GEM_BUG_ON(!node.allocated);
1393
	}
D
Daniel Vetter 已提交
1394 1395 1396 1397 1398

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1399 1400
	mutex_unlock(&i915->drm.struct_mutex);

1401
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1402

1403 1404 1405 1406
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1407 1408
		/* Operation in this page
		 *
1409 1410 1411
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1412
		 */
1413
		u32 page_base = node.start;
1414 1415
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1426
		/* If we get a fault while copying data, then (presumably) our
1427 1428
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1429 1430
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1431
		 */
1432
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1433 1434 1435
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1436
		}
1437

1438 1439 1440
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1441
	}
1442
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1443 1444

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1445
out_unpin:
1446 1447 1448
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1449
				       node.start, node.size);
1450 1451
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1452
		i915_vma_unpin(vma);
1453
	}
1454
out_rpm:
1455
	intel_runtime_pm_put(i915);
1456
out_unlock:
1457
	mutex_unlock(&i915->drm.struct_mutex);
1458
	return ret;
1459 1460
}

1461
static int
1462
shmem_pwrite_slow(struct page *page, int offset, int length,
1463 1464 1465 1466
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1467
{
1468 1469
	char *vaddr;
	int ret;
1470

1471
	vaddr = kmap(page);
1472
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1473
		shmem_clflush_swizzled_range(vaddr + offset, length,
1474
					     page_do_bit17_swizzling);
1475
	if (page_do_bit17_swizzling)
1476 1477
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1478
	else
1479
		ret = __copy_from_user(vaddr + offset, user_data, length);
1480
	if (needs_clflush_after)
1481
		shmem_clflush_swizzled_range(vaddr + offset, length,
1482
					     page_do_bit17_swizzling);
1483
	kunmap(page);
1484

1485
	return ret ? -EFAULT : 0;
1486 1487
}

1488 1489 1490 1491 1492
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1493
static int
1494 1495 1496 1497
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1498
{
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1531
	unsigned int needs_clflush;
1532 1533
	unsigned int offset, idx;
	int ret;
1534

1535
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1536 1537 1538
	if (ret)
		return ret;

1539 1540 1541 1542
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1543

1544 1545 1546
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1547

1548 1549 1550 1551 1552 1553 1554
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1555

1556 1557 1558 1559 1560 1561
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1562

1563 1564 1565
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1566

1567 1568 1569 1570
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1571
		if (ret)
1572
			break;
1573

1574 1575 1576
		remain -= length;
		user_data += length;
		offset = 0;
1577
	}
1578

1579
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1580
	i915_gem_obj_finish_shmem_access(obj);
1581
	return ret;
1582 1583 1584 1585
}

/**
 * Writes data to the object referenced by handle.
1586 1587 1588
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1589 1590 1591 1592 1593
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1594
		      struct drm_file *file)
1595 1596
{
	struct drm_i915_gem_pwrite *args = data;
1597
	struct drm_i915_gem_object *obj;
1598 1599 1600 1601 1602 1603
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1604
		       u64_to_user_ptr(args->data_ptr),
1605 1606 1607
		       args->size))
		return -EFAULT;

1608
	obj = i915_gem_object_lookup(file, args->handle);
1609 1610
	if (!obj)
		return -ENOENT;
1611

1612
	/* Bounds check destination. */
1613
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1614
		ret = -EINVAL;
1615
		goto err;
C
Chris Wilson 已提交
1616 1617
	}

C
Chris Wilson 已提交
1618 1619
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1620 1621 1622 1623 1624 1625
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1626 1627 1628 1629 1630
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1631 1632 1633
	if (ret)
		goto err;

1634
	ret = i915_gem_object_pin_pages(obj);
1635
	if (ret)
1636
		goto err;
1637

D
Daniel Vetter 已提交
1638
	ret = -EFAULT;
1639 1640 1641 1642 1643 1644
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1645
	if (!i915_gem_object_has_struct_page(obj) ||
1646
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1647 1648
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1649 1650
		 * textures). Fallback to the shmem path in that case.
		 */
1651
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1652

1653
	if (ret == -EFAULT || ret == -ENOSPC) {
1654 1655
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1656
		else
1657
			ret = i915_gem_shmem_pwrite(obj, args);
1658
	}
1659

1660
	i915_gem_object_unpin_pages(obj);
1661
err:
C
Chris Wilson 已提交
1662
	i915_gem_object_put(obj);
1663
	return ret;
1664 1665
}

1666 1667 1668 1669 1670 1671
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1672 1673
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1674
	for_each_ggtt_vma(vma, obj) {
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1685
	spin_lock(&i915->mm.obj_lock);
1686
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1687 1688
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1689 1690
}

1691
/**
1692 1693
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1694 1695 1696
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1697 1698 1699
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1700
			  struct drm_file *file)
1701 1702
{
	struct drm_i915_gem_set_domain *args = data;
1703
	struct drm_i915_gem_object *obj;
1704 1705
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1706
	int err;
1707

1708
	/* Only handle setting domains to types used by the CPU. */
1709
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1710 1711 1712 1713 1714 1715 1716 1717
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1718
	obj = i915_gem_object_lookup(file, args->handle);
1719 1720
	if (!obj)
		return -ENOENT;
1721

1722 1723 1724 1725
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1726
	err = i915_gem_object_wait(obj,
1727 1728 1729 1730
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1731
	if (err)
C
Chris Wilson 已提交
1732
		goto out;
1733

T
Tina Zhang 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1747 1748 1749 1750 1751 1752 1753 1754 1755
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1756
		goto out;
1757 1758 1759

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1760
		goto out_unpin;
1761

1762 1763 1764 1765
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1766
	else
1767
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1768

1769 1770
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1771

1772
	mutex_unlock(&dev->struct_mutex);
1773

1774
	if (write_domain != 0)
1775 1776
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1777

C
Chris Wilson 已提交
1778
out_unpin:
1779
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1780 1781
out:
	i915_gem_object_put(obj);
1782
	return err;
1783 1784 1785 1786
}

/**
 * Called when user space has done writes to this buffer
1787 1788 1789
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1790 1791 1792
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1793
			 struct drm_file *file)
1794 1795
{
	struct drm_i915_gem_sw_finish *args = data;
1796
	struct drm_i915_gem_object *obj;
1797

1798
	obj = i915_gem_object_lookup(file, args->handle);
1799 1800
	if (!obj)
		return -ENOENT;
1801

T
Tina Zhang 已提交
1802 1803 1804 1805 1806
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1807
	/* Pinned buffers may be scanout, so flush the cache */
1808
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1809
	i915_gem_object_put(obj);
1810 1811

	return 0;
1812 1813 1814
}

/**
1815 1816 1817 1818 1819
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1820 1821 1822
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1833 1834 1835
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1836
		    struct drm_file *file)
1837 1838
{
	struct drm_i915_gem_mmap *args = data;
1839
	struct drm_i915_gem_object *obj;
1840 1841
	unsigned long addr;

1842 1843 1844
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1845
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1846 1847
		return -ENODEV;

1848 1849
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1850
		return -ENOENT;
1851

1852 1853 1854
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1855
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1856
		i915_gem_object_put(obj);
1857
		return -ENXIO;
1858 1859
	}

1860
	addr = vm_mmap(obj->base.filp, 0, args->size,
1861 1862
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1863 1864 1865 1866
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1867
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1868
			i915_gem_object_put(obj);
1869 1870
			return -EINTR;
		}
1871 1872 1873 1874 1875 1876 1877
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1878 1879

		/* This may race, but that's ok, it only gets set */
1880
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1881
	}
C
Chris Wilson 已提交
1882
	i915_gem_object_put(obj);
1883 1884 1885 1886 1887 1888 1889 1890
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1891 1892
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1893
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1894 1895
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1916 1917 1918
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1946
	return 2;
1947 1948
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1960 1961
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1962
		min_t(unsigned int, chunk,
1963
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1964 1965 1966 1967 1968 1969 1970 1971

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1972 1973
/**
 * i915_gem_fault - fault a page into the GTT
1974
 * @vmf: fault info
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1986 1987 1988
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1989
 */
1990
int i915_gem_fault(struct vm_fault *vmf)
1991
{
1992
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1993
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1994
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1995
	struct drm_device *dev = obj->base.dev;
1996 1997
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1998
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1999
	struct i915_vma *vma;
2000
	pgoff_t page_offset;
2001
	unsigned int flags;
2002
	int ret;
2003

2004
	/* We don't use vmf->pgoff since that has the fake offset */
2005
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2006

C
Chris Wilson 已提交
2007 2008
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2009
	/* Try to flush the object off the GPU first without holding the lock.
2010
	 * Upon acquiring the lock, we will perform our sanity checks and then
2011 2012 2013
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2014 2015 2016 2017
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2018
	if (ret)
2019 2020
		goto err;

2021 2022 2023 2024
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2025 2026 2027 2028 2029
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2030

2031
	/* Access to snoopable pages through the GTT is incoherent. */
2032
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2033
		ret = -EFAULT;
2034
		goto err_unlock;
2035 2036
	}

2037 2038 2039 2040 2041 2042 2043 2044
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

2045
	/* Now pin it into the GTT as needed */
2046
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2047 2048
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2049
		struct i915_ggtt_view view =
2050
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2051

2052 2053 2054 2055 2056
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2057 2058
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
2059 2060
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2061
		goto err_unlock;
C
Chris Wilson 已提交
2062
	}
2063

2064 2065
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2066
		goto err_unpin;
2067

2068
	ret = i915_vma_pin_fence(vma);
2069
	if (ret)
2070
		goto err_unpin;
2071

2072
	/* Finally, remap it using the new GTT offset */
2073
	ret = remap_io_mapping(area,
2074
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2075
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2076
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2077
			       &ggtt->iomap);
2078 2079
	if (ret)
		goto err_fence;
2080

2081 2082 2083 2084 2085 2086
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2087 2088
	i915_vma_set_ggtt_write(vma);

2089
err_fence:
2090
	i915_vma_unpin_fence(vma);
2091
err_unpin:
C
Chris Wilson 已提交
2092
	__i915_vma_unpin(vma);
2093
err_unlock:
2094
	mutex_unlock(&dev->struct_mutex);
2095 2096
err_rpm:
	intel_runtime_pm_put(dev_priv);
2097
	i915_gem_object_unpin_pages(obj);
2098
err:
2099
	switch (ret) {
2100
	case -EIO:
2101 2102 2103 2104 2105 2106 2107
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2108 2109 2110
			ret = VM_FAULT_SIGBUS;
			break;
		}
2111
	case -EAGAIN:
D
Daniel Vetter 已提交
2112 2113 2114 2115
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2116
		 */
2117 2118
	case 0:
	case -ERESTARTSYS:
2119
	case -EINTR:
2120 2121 2122 2123 2124
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2125 2126
		ret = VM_FAULT_NOPAGE;
		break;
2127
	case -ENOMEM:
2128 2129
		ret = VM_FAULT_OOM;
		break;
2130
	case -ENOSPC:
2131
	case -EFAULT:
2132 2133
		ret = VM_FAULT_SIGBUS;
		break;
2134
	default:
2135
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2136 2137
		ret = VM_FAULT_SIGBUS;
		break;
2138
	}
2139
	return ret;
2140 2141
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2153
	for_each_ggtt_vma(vma, obj)
2154 2155 2156
		i915_vma_unset_userfault(vma);
}

2157 2158 2159 2160
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2161
 * Preserve the reservation of the mmapping with the DRM core code, but
2162 2163 2164 2165 2166 2167 2168 2169 2170
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2171
void
2172
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2173
{
2174 2175
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2176 2177 2178
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2179 2180 2181 2182
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2183
	 */
2184
	lockdep_assert_held(&i915->drm.struct_mutex);
2185
	intel_runtime_pm_get(i915);
2186

2187
	if (!obj->userfault_count)
2188
		goto out;
2189

2190
	__i915_gem_object_release_mmap(obj);
2191 2192 2193 2194 2195 2196 2197 2198 2199

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2200 2201 2202

out:
	intel_runtime_pm_put(i915);
2203 2204
}

2205
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2206
{
2207
	struct drm_i915_gem_object *obj, *on;
2208
	int i;
2209

2210 2211 2212 2213 2214 2215
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2216

2217
	list_for_each_entry_safe(obj, on,
2218 2219
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2220 2221 2222 2223 2224 2225 2226 2227

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2238 2239 2240 2241

		if (!reg->vma)
			continue;

2242
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2243 2244
		reg->dirty = true;
	}
2245 2246
}

2247 2248
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2249
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2250
	int err;
2251

2252
	err = drm_gem_create_mmap_offset(&obj->base);
2253
	if (likely(!err))
2254
		return 0;
2255

2256 2257 2258 2259 2260
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2261

2262
		i915_gem_drain_freed_objects(dev_priv);
2263
		err = drm_gem_create_mmap_offset(&obj->base);
2264 2265 2266 2267
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2268

2269
	return err;
2270 2271 2272 2273 2274 2275 2276
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2277
int
2278 2279
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2280
		  uint32_t handle,
2281
		  uint64_t *offset)
2282
{
2283
	struct drm_i915_gem_object *obj;
2284 2285
	int ret;

2286
	obj = i915_gem_object_lookup(file, handle);
2287 2288
	if (!obj)
		return -ENOENT;
2289

2290
	ret = i915_gem_object_create_mmap_offset(obj);
2291 2292
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2293

C
Chris Wilson 已提交
2294
	i915_gem_object_put(obj);
2295
	return ret;
2296 2297
}

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2319
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2320 2321
}

D
Daniel Vetter 已提交
2322 2323 2324
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2325
{
2326
	i915_gem_object_free_mmap_offset(obj);
2327

2328 2329
	if (obj->base.filp == NULL)
		return;
2330

D
Daniel Vetter 已提交
2331 2332 2333 2334 2335
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2336
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2337
	obj->mm.madv = __I915_MADV_PURGED;
2338
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2339
}
2340

2341
/* Try to discard unwanted pages */
2342
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2343
{
2344 2345
	struct address_space *mapping;

2346
	lockdep_assert_held(&obj->mm.lock);
2347
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2348

C
Chris Wilson 已提交
2349
	switch (obj->mm.madv) {
2350 2351 2352 2353 2354 2355 2356 2357 2358
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2359
	mapping = obj->base.filp->f_mapping,
2360
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2361 2362
}

2363
static void
2364 2365
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2366
{
2367 2368
	struct sgt_iter sgt_iter;
	struct page *page;
2369

2370
	__i915_gem_object_release_shmem(obj, pages, true);
2371

2372
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2373

2374
	if (i915_gem_object_needs_bit17_swizzle(obj))
2375
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2376

2377
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2378
		if (obj->mm.dirty)
2379
			set_page_dirty(page);
2380

C
Chris Wilson 已提交
2381
		if (obj->mm.madv == I915_MADV_WILLNEED)
2382
			mark_page_accessed(page);
2383

2384
		put_page(page);
2385
	}
C
Chris Wilson 已提交
2386
	obj->mm.dirty = false;
2387

2388 2389
	sg_free_table(pages);
	kfree(pages);
2390
}
C
Chris Wilson 已提交
2391

2392 2393 2394
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2395
	void __rcu **slot;
2396

2397
	rcu_read_lock();
C
Chris Wilson 已提交
2398 2399
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2400
	rcu_read_unlock();
2401 2402
}

2403 2404
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2405
{
2406
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2407
	struct sg_table *pages;
2408

C
Chris Wilson 已提交
2409
	if (i915_gem_object_has_pinned_pages(obj))
2410
		return;
2411

2412
	GEM_BUG_ON(obj->bind_count);
2413
	if (!i915_gem_object_has_pages(obj))
2414 2415 2416
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2417
	mutex_lock_nested(&obj->mm.lock, subclass);
2418 2419
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2420

2421 2422 2423
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2424 2425
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2426

2427 2428 2429 2430
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2431
	if (obj->mm.mapping) {
2432 2433
		void *ptr;

2434
		ptr = page_mask_bits(obj->mm.mapping);
2435 2436
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2437
		else
2438 2439
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2440
		obj->mm.mapping = NULL;
2441 2442
	}

2443 2444
	__i915_gem_object_reset_page_iter(obj);

2445 2446 2447
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2448 2449
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2450 2451
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2452 2453
}

2454
static bool i915_sg_trim(struct sg_table *orig_st)
2455 2456 2457 2458 2459 2460
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2461
		return false;
2462

2463
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2464
		return false;
2465 2466 2467 2468 2469 2470 2471

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2472
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2473 2474 2475 2476

	sg_free_table(orig_st);

	*orig_st = new_st;
2477
	return true;
2478 2479
}

2480
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2481
{
2482
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2483 2484
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2485
	struct address_space *mapping;
2486 2487
	struct sg_table *st;
	struct scatterlist *sg;
2488
	struct sgt_iter sgt_iter;
2489
	struct page *page;
2490
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2491
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2492
	unsigned int sg_page_sizes;
2493
	gfp_t noreclaim;
I
Imre Deak 已提交
2494
	int ret;
2495

C
Chris Wilson 已提交
2496 2497 2498 2499
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2500 2501
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2502

2503 2504
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2505
		return -ENOMEM;
2506

2507
rebuild_st:
2508 2509
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2510
		return -ENOMEM;
2511
	}
2512

2513 2514 2515 2516 2517
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2518
	mapping = obj->base.filp->f_mapping;
2519
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2520 2521
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2522 2523
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2524
	sg_page_sizes = 0;
2525
	for (i = 0; i < page_count; i++) {
2526 2527 2528 2529 2530 2531 2532
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2533
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2534 2535 2536 2537 2538 2539 2540 2541
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2542
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2543
			cond_resched();
2544

C
Chris Wilson 已提交
2545 2546 2547
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2548 2549 2550 2551
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2552
			 */
2553 2554 2555
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2568
				 * this we want __GFP_RETRY_MAYFAIL.
2569
				 */
M
Michal Hocko 已提交
2570
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2571
			}
2572 2573
		} while (1);

2574 2575 2576
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2577
			if (i) {
M
Matthew Auld 已提交
2578
				sg_page_sizes |= sg->length;
2579
				sg = sg_next(sg);
2580
			}
2581 2582 2583 2584 2585 2586
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2587 2588 2589

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2590
	}
2591
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2592
		sg_page_sizes |= sg->length;
2593
		sg_mark_end(sg);
2594
	}
2595

2596 2597 2598
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2599
	ret = i915_gem_gtt_prepare_pages(obj, st);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2619

2620
	if (i915_gem_object_needs_bit17_swizzle(obj))
2621
		i915_gem_object_do_bit_17_swizzle(obj, st);
2622

M
Matthew Auld 已提交
2623
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2624 2625

	return 0;
2626

2627
err_sg:
2628
	sg_mark_end(sg);
2629
err_pages:
2630 2631
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2632 2633
	sg_free_table(st);
	kfree(st);
2634 2635 2636 2637 2638 2639 2640 2641 2642

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2643 2644 2645
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2646
	return ret;
2647 2648 2649
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2650
				 struct sg_table *pages,
M
Matthew Auld 已提交
2651
				 unsigned int sg_page_sizes)
2652
{
2653 2654 2655 2656
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2657
	lockdep_assert_held(&obj->mm.lock);
2658 2659 2660 2661 2662

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2663 2664

	if (i915_gem_object_is_tiled(obj) &&
2665
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2666 2667 2668 2669
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2670

M
Matthew Auld 已提交
2671 2672
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2673 2674

	/*
M
Matthew Auld 已提交
2675 2676 2677 2678 2679 2680
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2681 2682 2683 2684 2685 2686 2687
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2688 2689 2690 2691

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2692 2693 2694 2695
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2696
	int err;
2697 2698 2699 2700 2701 2702

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2703
	err = obj->ops->get_pages(obj);
2704
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2705

2706
	return err;
2707 2708
}

2709
/* Ensure that the associated pages are gathered from the backing storage
2710
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2711
 * multiple times before they are released by a single call to
2712
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2713 2714 2715
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2716
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2717
{
2718
	int err;
2719

2720 2721 2722
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2723

2724
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2725 2726
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2727 2728 2729
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2730

2731 2732 2733
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2734

2735 2736
unlock:
	mutex_unlock(&obj->mm.lock);
2737
	return err;
2738 2739
}

2740
/* The 'mapping' part of i915_gem_object_pin_map() below */
2741 2742
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2743 2744
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2745
	struct sg_table *sgt = obj->mm.pages;
2746 2747
	struct sgt_iter sgt_iter;
	struct page *page;
2748 2749
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2750
	unsigned long i = 0;
2751
	pgprot_t pgprot;
2752 2753 2754
	void *addr;

	/* A single page can always be kmapped */
2755
	if (n_pages == 1 && type == I915_MAP_WB)
2756 2757
		return kmap(sg_page(sgt->sgl));

2758 2759
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2760
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2761 2762 2763
		if (!pages)
			return NULL;
	}
2764

2765 2766
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2767 2768 2769 2770

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2771
	switch (type) {
2772 2773 2774
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2775 2776 2777 2778 2779 2780 2781 2782
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2783

2784
	if (pages != stack_pages)
M
Michal Hocko 已提交
2785
		kvfree(pages);
2786 2787 2788 2789 2790

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2791 2792
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2793
{
2794 2795 2796
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2797 2798
	int ret;

T
Tina Zhang 已提交
2799 2800
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2801

2802
	ret = mutex_lock_interruptible(&obj->mm.lock);
2803 2804 2805
	if (ret)
		return ERR_PTR(ret);

2806 2807 2808
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2809
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2810
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2811 2812
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2813 2814 2815
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2816

2817 2818 2819
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2820 2821
		pinned = false;
	}
2822
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2823

2824
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2825 2826 2827
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2828
			goto err_unpin;
2829
		}
2830 2831 2832 2833 2834 2835

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2836
		ptr = obj->mm.mapping = NULL;
2837 2838
	}

2839 2840 2841 2842
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2843
			goto err_unpin;
2844 2845
		}

2846
		obj->mm.mapping = page_pack_bits(ptr, type);
2847 2848
	}

2849 2850
out_unlock:
	mutex_unlock(&obj->mm.lock);
2851 2852
	return ptr;

2853 2854 2855 2856 2857
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2858 2859
}

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2877
	if (i915_gem_object_has_pages(obj))
2878 2879
		return -ENODEV;

2880 2881 2882
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2932
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2933
{
2934
	bool banned;
2935

2936
	atomic_inc(&ctx->guilty_count);
2937

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	banned = false;
	if (i915_gem_context_is_bannable(ctx)) {
		unsigned int score;

		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
					  &ctx->ban_score);
		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;

		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
				 ctx->name, score, yesno(banned));
	}
2949
	if (!banned)
2950 2951
		return;

2952 2953 2954 2955 2956 2957
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2958 2959 2960 2961
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2962
	atomic_inc(&ctx->active_count);
2963 2964
}

2965
struct i915_request *
2966
i915_gem_find_active_request(struct intel_engine_cs *engine)
2967
{
2968
	struct i915_request *request, *active = NULL;
2969
	unsigned long flags;
2970

2971 2972 2973 2974 2975 2976 2977 2978
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2979
	spin_lock_irqsave(&engine->timeline->lock, flags);
2980
	list_for_each_entry(request, &engine->timeline->requests, link) {
2981
		if (__i915_request_completed(request, request->global_seqno))
2982
			continue;
2983

2984
		GEM_BUG_ON(request->engine != engine);
2985 2986
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2987 2988 2989

		active = request;
		break;
2990
	}
2991
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2992

2993
	return active;
2994 2995
}

2996 2997 2998 2999
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3000
struct i915_request *
3001 3002
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3003
	struct i915_request *request = NULL;
3004

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

3026 3027
	/*
	 * Prevent request submission to the hardware until we have
3028 3029
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
3030
	 * to a second via its execlists->tasklet *just* as we are
3031
	 * calling engine->init_hw() and also writing the ELSP.
3032
	 * Turning off the execlists->tasklet until the reset is over
3033
	 * prevents the race.
3034 3035 3036 3037 3038 3039 3040
	 *
	 * Note that this needs to be a single atomic operation on the
	 * tasklet (flush existing tasks, prevent new tasks) to prevent
	 * a race between reset and set-wedged. It is not, so we do the best
	 * we can atm and make sure we don't lock the machine up in the more
	 * common case of recursively being called from set-wedged from inside
	 * i915_reset.
3041
	 */
3042 3043
	if (!atomic_read(&engine->execlists.tasklet.count))
		tasklet_kill(&engine->execlists.tasklet);
3044
	tasklet_disable(&engine->execlists.tasklet);
3045

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	/*
	 * We're using worker to queue preemption requests from the tasklet in
	 * GuC submission mode.
	 * Even though tasklet was disabled, we may still have a worker queued.
	 * Let's make sure that all workers scheduled before disabling the
	 * tasklet are completed before continuing with the reset.
	 */
	if (engine->i915->guc.preempt_wq)
		flush_workqueue(engine->i915->guc.preempt_wq);

3056 3057 3058
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

3059 3060 3061
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3062 3063 3064 3065

	return request;
}

3066
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3067 3068
{
	struct intel_engine_cs *engine;
3069
	struct i915_request *request;
3070
	enum intel_engine_id id;
3071
	int err = 0;
3072

3073
	for_each_engine(engine, dev_priv, id) {
3074 3075 3076 3077
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3078
		}
3079 3080

		engine->hangcheck.active_request = request;
3081 3082
	}

3083
	i915_gem_revoke_fences(dev_priv);
3084
	intel_uc_sanitize(dev_priv);
3085 3086

	return err;
3087 3088
}

3089
static void skip_request(struct i915_request *request)
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3104 3105

	dma_fence_set_error(&request->fence, -EIO);
3106 3107
}

3108
static void engine_skip_context(struct i915_request *request)
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

3131
/* Returns the request if it was guilty of the hang */
3132
static struct i915_request *
3133
i915_gem_reset_request(struct intel_engine_cs *engine,
3134 3135
		       struct i915_request *request,
		       bool stalled)
3136
{
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3158 3159 3160 3161 3162 3163 3164 3165 3166
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
3167 3168
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
3169 3170 3171 3172

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
3173
	} else {
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
3191 3192
	}

3193
	return request;
3194 3195
}

3196
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3197 3198
			   struct i915_request *request,
			   bool stalled)
3199
{
3200 3201 3202 3203 3204 3205
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3206

3207
	if (request)
3208
		request = i915_gem_reset_request(engine, request, stalled);
3209 3210

	if (request) {
3211 3212 3213
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3214 3215 3216

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3217
}
3218

3219 3220
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3221
{
3222
	struct intel_engine_cs *engine;
3223
	enum intel_engine_id id;
3224

3225 3226
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3227
	i915_retire_requests(dev_priv);
3228

3229 3230 3231
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3232 3233
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3234
				      stalled_mask & ENGINE_MASK(id));
3235 3236
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
3237
			intel_context_unpin(ctx, engine);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3249
		if (intel_engine_is_idle(engine)) {
3250
			struct i915_request *rq;
3251

3252 3253
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3254
			if (!IS_ERR(rq))
3255
				__i915_request_add(rq, false);
3256
		}
3257
	}
3258

3259
	i915_gem_restore_fences(dev_priv);
3260 3261
}

3262 3263
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3264
	tasklet_enable(&engine->execlists.tasklet);
3265
	kthread_unpark(engine->breadcrumbs.signaler);
3266 3267

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3268 3269
}

3270 3271
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3272 3273 3274
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3275
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3276

3277
	for_each_engine(engine, dev_priv, id) {
3278
		engine->hangcheck.active_request = NULL;
3279
		i915_gem_reset_finish_engine(engine);
3280
	}
3281 3282
}

3283
static void nop_submit_request(struct i915_request *request)
3284
{
3285 3286 3287
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3288 3289
	dma_fence_set_error(&request->fence, -EIO);

3290
	i915_request_submit(request);
3291 3292
}

3293
static void nop_complete_submit_request(struct i915_request *request)
3294
{
3295 3296
	unsigned long flags;

3297 3298 3299
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3300
	dma_fence_set_error(&request->fence, -EIO);
3301 3302

	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3303
	__i915_request_submit(request);
3304
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3305
	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3306 3307
}

3308
void i915_gem_set_wedged(struct drm_i915_private *i915)
3309
{
3310 3311 3312
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3313 3314
	GEM_TRACE("start\n");

3315
	if (GEM_SHOW_DEBUG()) {
3316 3317 3318 3319 3320 3321
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3322 3323 3324
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3325 3326 3327 3328 3329
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3330 3331
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3332

3333
		engine->submit_request = nop_submit_request;
3334
		engine->schedule = NULL;
3335
	}
3336
	i915->caps.scheduler = 0;
3337

3338 3339 3340
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3341 3342 3343 3344
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3345
	 */
3346
	synchronize_rcu();
3347

3348 3349 3350
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3351

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3363
	 */
3364
	synchronize_rcu();
3365

3366 3367
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3368

3369 3370
		/*
		 * Mark all pending requests as complete so that any concurrent
3371 3372 3373 3374 3375 3376 3377
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
		spin_lock_irqsave(&engine->timeline->lock, flags);
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3378 3379

		i915_gem_reset_finish_engine(engine);
3380
	}
3381

3382 3383
	GEM_TRACE("end\n");

3384
	wake_up_all(&i915->gpu_error.reset_queue);
3385 3386
}

3387 3388 3389 3390 3391 3392 3393 3394 3395
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3396 3397
	GEM_TRACE("start\n");

3398 3399
	/*
	 * Before unwedging, make sure that all pending operations
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3410
			struct i915_request *rq;
3411 3412 3413 3414 3415 3416

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

3417 3418
			/*
			 * We can't use our normal waiter as we want to
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}
3433 3434
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3435

3436 3437
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3438 3439 3440 3441 3442 3443 3444 3445
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3446
	i915_gem_contexts_lost(i915);
3447

3448 3449
	GEM_TRACE("end\n");

3450 3451 3452 3453 3454 3455
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3456
static void
3457 3458
i915_gem_retire_work_handler(struct work_struct *work)
{
3459
	struct drm_i915_private *dev_priv =
3460
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3461
	struct drm_device *dev = &dev_priv->drm;
3462

3463
	/* Come back later if the device is busy... */
3464
	if (mutex_trylock(&dev->struct_mutex)) {
3465
		i915_retire_requests(dev_priv);
3466
		mutex_unlock(&dev->struct_mutex);
3467
	}
3468

3469 3470
	/*
	 * Keep the retire handler running until we are finally idle.
3471 3472 3473
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3474
	if (READ_ONCE(dev_priv->gt.awake))
3475 3476
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3477
				   round_jiffies_up_relative(HZ));
3478
}
3479

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3539 3540 3541 3542 3543 3544 3545
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3546 3547 3548 3549
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3550
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3551
	unsigned int epoch = I915_EPOCH_INVALID;
3552 3553 3554 3555 3556
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3557 3558
	/*
	 * Wait for last execlists context complete, but bail out in case a
3559 3560 3561 3562 3563
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3564
	 */
3565 3566 3567 3568
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3569 3570 3571 3572

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3573
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3574 3575 3576 3577 3578 3579 3580
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3581 3582 3583 3584
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3585
	if (new_requests_since_last_retire(dev_priv))
3586
		goto out_unlock;
3587

3588
	epoch = __i915_gem_park(dev_priv);
3589

3590 3591
	rearm_hangcheck = false;
out_unlock:
3592
	mutex_unlock(&dev_priv->drm.struct_mutex);
3593

3594 3595 3596 3597
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3598
	}
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3616 3617
}

3618 3619
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3620
	struct drm_i915_private *i915 = to_i915(gem->dev);
3621 3622
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3623
	struct i915_lut_handle *lut, *ln;
3624

3625 3626 3627 3628 3629 3630
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3631
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3632 3633 3634 3635
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3636 3637 3638 3639 3640 3641 3642
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3643
			i915_vma_close(vma);
3644

3645 3646
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3647

3648 3649
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3650
	}
3651 3652

	mutex_unlock(&i915->drm.struct_mutex);
3653 3654
}

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3666 3667
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3668 3669 3670
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3671 3672 3673 3674 3675 3676 3677
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3678
 *  -EAGAIN: incomplete, restart syscall
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3695 3696
	ktime_t start;
	long ret;
3697

3698 3699 3700
	if (args->flags != 0)
		return -EINVAL;

3701
	obj = i915_gem_object_lookup(file, args->bo_handle);
3702
	if (!obj)
3703 3704
		return -ENOENT;

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3726 3727 3728 3729

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3730 3731
	}

C
Chris Wilson 已提交
3732
	i915_gem_object_put(obj);
3733
	return ret;
3734 3735
}

3736
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3737
{
3738
	int ret, i;
3739

3740 3741 3742 3743 3744
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3745

3746 3747 3748
	return 0;
}

3749 3750
static int wait_for_engines(struct drm_i915_private *i915)
{
3751
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3752 3753
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3754
		GEM_TRACE_DUMP();
3755 3756
		i915_gem_set_wedged(i915);
		return -EIO;
3757 3758 3759 3760 3761
	}

	return 0;
}

3762 3763 3764 3765
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3766 3767 3768 3769
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3780
		i915_retire_requests(i915);
3781 3782

		ret = wait_for_engines(i915);
3783 3784
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3785
	}
3786

3787
	return ret;
3788 3789
}

3790 3791
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3792 3793 3794 3795 3796 3797 3798
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3799
	obj->write_domain = 0;
3800 3801 3802 3803
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3804
	if (!READ_ONCE(obj->pin_global))
3805 3806 3807 3808 3809 3810 3811
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3836
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3857
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3858 3859 3860 3861 3862
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3863 3864
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3865
	if (write) {
3866 3867
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3868 3869 3870 3871 3872 3873 3874
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3875 3876
/**
 * Moves a single object to the GTT read, and possibly write domain.
3877 3878
 * @obj: object to act on
 * @write: ask for write access or read only
3879 3880 3881 3882
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3883
int
3884
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3885
{
3886
	int ret;
3887

3888
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3889

3890 3891 3892 3893 3894 3895
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3896 3897 3898
	if (ret)
		return ret;

3899
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3900 3901
		return 0;

3902 3903 3904 3905 3906 3907 3908 3909
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3910
	ret = i915_gem_object_pin_pages(obj);
3911 3912 3913
	if (ret)
		return ret;

3914
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3915

3916 3917 3918 3919
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3920
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3921 3922
		mb();

3923 3924 3925
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3926 3927
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3928
	if (write) {
3929 3930
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3931
		obj->mm.dirty = true;
3932 3933
	}

C
Chris Wilson 已提交
3934
	i915_gem_object_unpin_pages(obj);
3935 3936 3937
	return 0;
}

3938 3939
/**
 * Changes the cache-level of an object across all VMA.
3940 3941
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3953 3954 3955
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3956
	struct i915_vma *vma;
3957
	int ret;
3958

3959 3960
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3961
	if (obj->cache_level == cache_level)
3962
		return 0;
3963

3964 3965 3966 3967 3968
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3969 3970
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3971 3972 3973
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3974
		if (i915_vma_is_pinned(vma)) {
3975 3976 3977 3978
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3979 3980
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3992 3993
	}

3994 3995 3996 3997 3998 3999 4000
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4001
	if (obj->bind_count) {
4002 4003 4004 4005
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4006 4007 4008 4009 4010 4011
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4012 4013 4014
		if (ret)
			return ret;

4015 4016
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4033
			for_each_ggtt_vma(vma, obj) {
4034 4035 4036 4037
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4038 4039 4040 4041 4042 4043 4044 4045
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4046 4047
		}

4048
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4049 4050 4051 4052 4053 4054 4055
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4056 4057
	}

4058
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4059
		vma->node.color = cache_level;
4060
	i915_gem_object_set_cache_coherency(obj, cache_level);
4061
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4062

4063 4064 4065
	return 0;
}

B
Ben Widawsky 已提交
4066 4067
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4068
{
B
Ben Widawsky 已提交
4069
	struct drm_i915_gem_caching *args = data;
4070
	struct drm_i915_gem_object *obj;
4071
	int err = 0;
4072

4073 4074 4075 4076 4077 4078
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4079

4080 4081 4082 4083 4084 4085
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4086 4087 4088 4089
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4090 4091 4092 4093
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4094 4095 4096
out:
	rcu_read_unlock();
	return err;
4097 4098
}

B
Ben Widawsky 已提交
4099 4100
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4101
{
4102
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4103
	struct drm_i915_gem_caching *args = data;
4104 4105
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4106
	int ret = 0;
4107

B
Ben Widawsky 已提交
4108 4109
	switch (args->caching) {
	case I915_CACHING_NONE:
4110 4111
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4112
	case I915_CACHING_CACHED:
4113 4114 4115 4116 4117 4118
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4119
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4120 4121
			return -ENODEV;

4122 4123
		level = I915_CACHE_LLC;
		break;
4124
	case I915_CACHING_DISPLAY:
4125
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4126
		break;
4127 4128 4129 4130
	default:
		return -EINVAL;
	}

4131 4132 4133 4134
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4135 4136 4137 4138 4139 4140 4141 4142 4143
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4144 4145 4146 4147 4148 4149 4150
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4151
	if (ret)
4152
		goto out;
B
Ben Widawsky 已提交
4153

4154 4155 4156
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4157 4158 4159

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4160 4161 4162

out:
	i915_gem_object_put(obj);
4163 4164 4165
	return ret;
}

4166
/*
4167 4168 4169 4170
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4171
 */
C
Chris Wilson 已提交
4172
struct i915_vma *
4173 4174
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4175 4176
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4177
{
C
Chris Wilson 已提交
4178
	struct i915_vma *vma;
4179 4180
	int ret;

4181 4182
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4183
	/* Mark the global pin early so that we account for the
4184 4185
	 * display coherency whilst setting up the cache domains.
	 */
4186
	obj->pin_global++;
4187

4188 4189 4190 4191 4192 4193 4194 4195 4196
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4197
	ret = i915_gem_object_set_cache_level(obj,
4198 4199
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4200 4201
	if (ret) {
		vma = ERR_PTR(ret);
4202
		goto err_unpin_global;
C
Chris Wilson 已提交
4203
	}
4204

4205 4206
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4207 4208 4209 4210
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4211
	 */
4212
	vma = ERR_PTR(-ENOSPC);
4213 4214
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4215
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4216 4217 4218 4219
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4220
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4221
	if (IS_ERR(vma))
4222
		goto err_unpin_global;
4223

4224 4225
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4226
	__i915_gem_object_flush_for_display(obj);
4227

4228 4229 4230
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4231
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4232

C
Chris Wilson 已提交
4233
	return vma;
4234

4235 4236
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4237
	return vma;
4238 4239 4240
}

void
C
Chris Wilson 已提交
4241
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4242
{
4243
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4244

4245
	if (WARN_ON(vma->obj->pin_global == 0))
4246 4247
		return;

4248
	if (--vma->obj->pin_global == 0)
4249
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4250

4251
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4252
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4253

C
Chris Wilson 已提交
4254
	i915_vma_unpin(vma);
4255 4256
}

4257 4258
/**
 * Moves a single object to the CPU read, and possibly write domain.
4259 4260
 * @obj: object to act on
 * @write: requesting write or read-only access
4261 4262 4263 4264
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4265
int
4266
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4267 4268 4269
{
	int ret;

4270
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4271

4272 4273 4274 4275 4276 4277
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4278 4279 4280
	if (ret)
		return ret;

4281
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4282

4283
	/* Flush the CPU cache if it's still invalid. */
4284
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4285
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4286
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4287 4288 4289 4290 4291
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4292
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4293 4294 4295 4296

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4297 4298
	if (write)
		__start_cpu_write(obj);
4299 4300 4301 4302

	return 0;
}

4303 4304 4305
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4306 4307 4308 4309
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4310 4311 4312
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4313
static int
4314
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4315
{
4316
	struct drm_i915_private *dev_priv = to_i915(dev);
4317
	struct drm_i915_file_private *file_priv = file->driver_priv;
4318
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4319
	struct i915_request *request, *target = NULL;
4320
	long ret;
4321

4322 4323 4324
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4325

4326
	spin_lock(&file_priv->mm.lock);
4327
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4328 4329
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4330

4331 4332 4333 4334
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4335

4336
		target = request;
4337
	}
4338
	if (target)
4339
		i915_request_get(target);
4340
	spin_unlock(&file_priv->mm.lock);
4341

4342
	if (target == NULL)
4343
		return 0;
4344

4345
	ret = i915_request_wait(target,
4346 4347
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4348
	i915_request_put(target);
4349

4350
	return ret < 0 ? ret : 0;
4351 4352
}

C
Chris Wilson 已提交
4353
struct i915_vma *
4354 4355
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4356
			 u64 size,
4357 4358
			 u64 alignment,
			 u64 flags)
4359
{
4360 4361
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4362 4363
	struct i915_vma *vma;
	int ret;
4364

4365 4366
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4367 4368
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4399
	vma = i915_vma_instance(obj, vm, view);
4400
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4401
		return vma;
4402 4403

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4404 4405 4406
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4407

4408
			if (flags & PIN_MAPPABLE &&
4409
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4410 4411 4412
				return ERR_PTR(-ENOSPC);
		}

4413 4414
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4415 4416 4417
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4418
		     !!(flags & PIN_MAPPABLE),
4419
		     i915_vma_is_map_and_fenceable(vma));
4420 4421
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4422
			return ERR_PTR(ret);
4423 4424
	}

C
Chris Wilson 已提交
4425 4426 4427
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4428

C
Chris Wilson 已提交
4429
	return vma;
4430 4431
}

4432
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4447 4448 4449 4450 4451 4452 4453 4454 4455
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4456 4457
}

4458
static __always_inline unsigned int
4459
__busy_set_if_active(const struct dma_fence *fence,
4460 4461
		     unsigned int (*flag)(unsigned int id))
{
4462
	struct i915_request *rq;
4463

4464 4465 4466 4467
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4468
	 *
4469
	 * Note we only report on the status of native fences.
4470
	 */
4471 4472 4473 4474
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4475 4476
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4477 4478
		return 0;

4479
	return flag(rq->engine->uabi_id);
4480 4481
}

4482
static __always_inline unsigned int
4483
busy_check_reader(const struct dma_fence *fence)
4484
{
4485
	return __busy_set_if_active(fence, __busy_read_flag);
4486 4487
}

4488
static __always_inline unsigned int
4489
busy_check_writer(const struct dma_fence *fence)
4490
{
4491 4492 4493 4494
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4495 4496
}

4497 4498
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4499
		    struct drm_file *file)
4500 4501
{
	struct drm_i915_gem_busy *args = data;
4502
	struct drm_i915_gem_object *obj;
4503 4504
	struct reservation_object_list *list;
	unsigned int seq;
4505
	int err;
4506

4507
	err = -ENOENT;
4508 4509
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4510
	if (!obj)
4511
		goto out;
4512

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4531

4532 4533
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4534

4535 4536 4537 4538
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4539

4540 4541 4542 4543 4544 4545
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4546
	}
4547

4548 4549 4550 4551
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4552 4553 4554
out:
	rcu_read_unlock();
	return err;
4555 4556 4557 4558 4559 4560
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4561
	return i915_gem_ring_throttle(dev, file_priv);
4562 4563
}

4564 4565 4566 4567
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4568
	struct drm_i915_private *dev_priv = to_i915(dev);
4569
	struct drm_i915_gem_madvise *args = data;
4570
	struct drm_i915_gem_object *obj;
4571
	int err;
4572 4573 4574 4575 4576 4577 4578 4579 4580

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4581
	obj = i915_gem_object_lookup(file_priv, args->handle);
4582 4583 4584 4585 4586 4587
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4588

4589
	if (i915_gem_object_has_pages(obj) &&
4590
	    i915_gem_object_is_tiled(obj) &&
4591
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4592 4593
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4594
			__i915_gem_object_unpin_pages(obj);
4595 4596 4597
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4598
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4599
			__i915_gem_object_pin_pages(obj);
4600 4601
			obj->mm.quirked = true;
		}
4602 4603
	}

C
Chris Wilson 已提交
4604 4605
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4606

C
Chris Wilson 已提交
4607
	/* if the object is no longer attached, discard its backing storage */
4608 4609
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4610 4611
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4612
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4613
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4614

4615
out:
4616
	i915_gem_object_put(obj);
4617
	return err;
4618 4619
}

4620
static void
4621
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4622 4623 4624 4625
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4626
	intel_fb_obj_flush(obj, ORIGIN_CS);
4627 4628
}

4629 4630
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4631
{
4632 4633
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4634
	INIT_LIST_HEAD(&obj->vma_list);
4635
	INIT_LIST_HEAD(&obj->lut_list);
4636
	INIT_LIST_HEAD(&obj->batch_pool_link);
4637

4638 4639
	obj->ops = ops;

4640 4641 4642
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4643
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4644
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4645 4646 4647 4648

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4649

4650
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4651 4652
}

4653
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4654 4655
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4656

4657 4658
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4659 4660

	.pwrite = i915_gem_object_pwrite_gtt,
4661 4662
};

M
Matthew Auld 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4687
struct drm_i915_gem_object *
4688
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4689
{
4690
	struct drm_i915_gem_object *obj;
4691
	struct address_space *mapping;
4692
	unsigned int cache_level;
D
Daniel Vetter 已提交
4693
	gfp_t mask;
4694
	int ret;
4695

4696 4697 4698 4699 4700
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4701
	if (size >> PAGE_SHIFT > INT_MAX)
4702 4703 4704 4705 4706
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4707
	obj = i915_gem_object_alloc(dev_priv);
4708
	if (obj == NULL)
4709
		return ERR_PTR(-ENOMEM);
4710

M
Matthew Auld 已提交
4711
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4712 4713
	if (ret)
		goto fail;
4714

4715
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4716
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4717 4718 4719 4720 4721
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4722
	mapping = obj->base.filp->f_mapping;
4723
	mapping_set_gfp_mask(mapping, mask);
4724
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4725

4726
	i915_gem_object_init(obj, &i915_gem_object_ops);
4727

4728 4729
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4730

4731
	if (HAS_LLC(dev_priv))
4732
		/* On some devices, we can have the GPU use the LLC (the CPU
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4744 4745 4746
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4747

4748
	i915_gem_object_set_cache_coherency(obj, cache_level);
4749

4750 4751
	trace_i915_gem_object_create(obj);

4752
	return obj;
4753 4754 4755 4756

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4757 4758
}

4759 4760 4761 4762 4763 4764 4765 4766
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4767
	if (obj->mm.madv != I915_MADV_WILLNEED)
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4783 4784
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4785
{
4786
	struct drm_i915_gem_object *obj, *on;
4787

4788
	intel_runtime_pm_get(i915);
4789
	llist_for_each_entry_safe(obj, on, freed, freed) {
4790 4791 4792 4793
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4794 4795
		mutex_lock(&i915->drm.struct_mutex);

4796 4797 4798 4799 4800 4801 4802
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4803 4804
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4805

4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4818
		mutex_unlock(&i915->drm.struct_mutex);
4819 4820

		GEM_BUG_ON(obj->bind_count);
4821
		GEM_BUG_ON(obj->userfault_count);
4822
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4823
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4824 4825 4826

		if (obj->ops->release)
			obj->ops->release(obj);
4827

4828 4829
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4830
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4831
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4832 4833 4834 4835

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4836
		reservation_object_fini(&obj->__builtin_resv);
4837 4838 4839 4840 4841
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4842

4843 4844 4845
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4846 4847
		if (on)
			cond_resched();
4848
	}
4849
	intel_runtime_pm_put(i915);
4850 4851 4852 4853 4854 4855
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4866
		__i915_gem_free_objects(i915, freed);
4867
	}
4868 4869 4870 4871 4872 4873 4874
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4875

4876 4877
	/*
	 * All file-owned VMA should have been released by this point through
4878 4879 4880 4881 4882 4883
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4884

4885
	spin_lock(&i915->mm.free_lock);
4886
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4887 4888
		spin_unlock(&i915->mm.free_lock);

4889
		__i915_gem_free_objects(i915, freed);
4890
		if (need_resched())
4891 4892 4893
			return;

		spin_lock(&i915->mm.free_lock);
4894
	}
4895
	spin_unlock(&i915->mm.free_lock);
4896
}
4897

4898 4899 4900 4901 4902 4903
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4904 4905 4906 4907 4908 4909 4910 4911 4912
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4913 4914
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4915
		queue_work(i915->wq, &i915->mm.free_work);
4916
}
4917

4918 4919 4920
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4921

4922 4923 4924
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4925
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4926
		obj->mm.madv = I915_MADV_DONTNEED;
4927

4928 4929
	/*
	 * Before we free the object, make sure any pure RCU-only
4930 4931 4932 4933
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4934
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4935
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4936 4937
}

4938 4939 4940 4941
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4942 4943
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4944 4945 4946 4947 4948
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4949
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4950
{
4951
	struct i915_gem_context *kernel_context = i915->kernel_context;
4952 4953 4954
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

4955 4956 4957 4958
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
		GEM_BUG_ON(engine->last_retired_context != kernel_context);
	}
4959 4960
}

4961 4962
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4963 4964 4965 4966 4967 4968
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4969 4970 4971 4972 4973 4974
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4975
	 * of the reset, so this could be applied to even earlier gen.
4976
	 */
4977 4978
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4979 4980
}

4981
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4982
{
4983
	struct drm_device *dev = &dev_priv->drm;
4984
	int ret;
4985

4986
	intel_runtime_pm_get(dev_priv);
4987 4988
	intel_suspend_gt_powersave(dev_priv);

4989
	mutex_lock(&dev->struct_mutex);
4990 4991 4992 4993 4994 4995 4996 4997 4998

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4999 5000 5001 5002
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
5003

5004 5005 5006 5007 5008
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
					     I915_WAIT_LOCKED);
		if (ret && ret != -EIO)
			goto err_unlock;
5009

5010 5011
		assert_kernel_context_is_current(dev_priv);
	}
5012
	i915_gem_contexts_lost(dev_priv);
5013 5014
	mutex_unlock(&dev->struct_mutex);

5015
	intel_uc_suspend(dev_priv);
5016

5017
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5018
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5019 5020 5021 5022

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
5023
	drain_delayed_work(&dev_priv->gt.idle_work);
5024

5025 5026 5027
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
5028
	WARN_ON(dev_priv->gt.awake);
5029 5030
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5031

5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
5051
	intel_uc_sanitize(dev_priv);
5052
	i915_gem_sanitize(dev_priv);
5053 5054 5055

	intel_runtime_pm_put(dev_priv);
	return 0;
5056

5057
err_unlock:
5058
	mutex_unlock(&dev->struct_mutex);
5059
	intel_runtime_pm_put(dev_priv);
5060
	return ret;
5061 5062
}

5063
void i915_gem_resume(struct drm_i915_private *i915)
5064
{
5065
	WARN_ON(i915->gt.awake);
5066

5067 5068
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5069

5070 5071
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5072

5073 5074
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5075 5076 5077
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5078
	i915->gt.resume(i915);
5079

5080 5081 5082
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5083
	intel_uc_resume(i915);
5084

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5095 5096 5097 5098
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5099
	goto out_unlock;
5100 5101
}

5102
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5103
{
5104
	if (INTEL_GEN(dev_priv) < 5 ||
5105 5106 5107 5108 5109 5110
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5111
	if (IS_GEN5(dev_priv))
5112 5113
		return;

5114
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5115
	if (IS_GEN6(dev_priv))
5116
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5117
	else if (IS_GEN7(dev_priv))
5118
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5119
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5120
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5121 5122
	else
		BUG();
5123
}
D
Daniel Vetter 已提交
5124

5125
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5126 5127 5128 5129 5130 5131 5132
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5133
static void init_unused_rings(struct drm_i915_private *dev_priv)
5134
{
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5147 5148 5149
	}
}

5150
static int __i915_gem_restart_engines(void *data)
5151
{
5152
	struct drm_i915_private *i915 = data;
5153
	struct intel_engine_cs *engine;
5154
	enum intel_engine_id id;
5155 5156 5157 5158
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5159 5160 5161
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5162
			return err;
5163
		}
5164 5165 5166 5167 5168 5169 5170
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5171
	int ret;
5172

5173 5174
	dev_priv->gt.last_init_time = ktime_get();

5175 5176 5177
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5178
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5179
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5180

5181
	if (IS_HASWELL(dev_priv))
5182
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5183
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5184

5185
	if (HAS_PCH_NOP(dev_priv)) {
5186
		if (IS_IVYBRIDGE(dev_priv)) {
5187 5188 5189
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5190
		} else if (INTEL_GEN(dev_priv) >= 7) {
5191 5192 5193 5194
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5195 5196
	}

5197 5198
	intel_gt_workarounds_apply(dev_priv);

5199
	i915_gem_init_swizzling(dev_priv);
5200

5201 5202 5203 5204 5205 5206
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5207
	init_unused_rings(dev_priv);
5208

5209
	BUG_ON(!dev_priv->kernel_context);
5210 5211 5212 5213
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5214

5215
	ret = i915_ppgtt_init_hw(dev_priv);
5216
	if (ret) {
5217
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5218 5219 5220
		goto out;
	}

5221 5222 5223 5224 5225 5226
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5227 5228
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5229 5230
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5231
		goto out;
5232
	}
5233

5234
	intel_mocs_init_l3cc_table(dev_priv);
5235

5236 5237
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5238 5239
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5240
	return ret;
5241 5242
}

5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5264
		struct i915_request *rq;
5265

5266
		rq = i915_request_alloc(engine, ctx);
5267 5268 5269 5270 5271
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5272
		err = 0;
5273 5274 5275
		if (engine->init_context)
			err = engine->init_context(rq);

5276
		__i915_request_add(rq, true);
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5294
		state = to_intel_context(ctx, engine)->state;
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5357
int i915_gem_init(struct drm_i915_private *dev_priv)
5358 5359 5360
{
	int ret;

5361 5362 5363 5364 5365 5366 5367 5368 5369
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5370
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5371

5372
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5373
		dev_priv->gt.resume = intel_lr_context_resume;
5374
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5375 5376 5377
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5378 5379
	}

5380 5381 5382 5383
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5384 5385 5386 5387
	ret = intel_wopcm_init(&dev_priv->wopcm);
	if (ret)
		return ret;

5388
	ret = intel_uc_init_misc(dev_priv);
5389 5390 5391
	if (ret)
		return ret;

5392 5393 5394 5395 5396 5397
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5398
	mutex_lock(&dev_priv->drm.struct_mutex);
5399 5400
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5401
	ret = i915_gem_init_ggtt(dev_priv);
5402 5403 5404 5405
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5406

5407
	ret = i915_gem_contexts_init(dev_priv);
5408 5409 5410 5411
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5412

5413
	ret = intel_engines_init(dev_priv);
5414 5415 5416 5417
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5418

5419 5420
	intel_init_gt_powersave(dev_priv);

5421
	ret = intel_uc_init(dev_priv);
5422
	if (ret)
5423
		goto err_pm;
5424

5425 5426 5427 5428
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5440
	ret = __intel_engines_record_defaults(dev_priv);
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
	i915_gem_contexts_lost(dev_priv);
	intel_uc_fini_hw(dev_priv);
5469 5470
err_uc_init:
	intel_uc_fini(dev_priv);
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5484
	intel_uc_fini_misc(dev_priv);
5485

5486 5487 5488
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5489
	if (ret == -EIO) {
5490 5491
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5492 5493 5494
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5495 5496 5497 5498
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5499
		ret = 0;
5500 5501
	}

5502
	i915_gem_drain_freed_objects(dev_priv);
5503
	return ret;
5504 5505
}

5506 5507 5508 5509 5510
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5511
void
5512
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5513
{
5514
	struct intel_engine_cs *engine;
5515
	enum intel_engine_id id;
5516

5517
	for_each_engine(engine, dev_priv, id)
5518
		dev_priv->gt.cleanup_engine(engine);
5519 5520
}

5521 5522 5523
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5524
	int i;
5525

5526
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5527 5528
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5529
	else if (INTEL_GEN(dev_priv) >= 4 ||
5530 5531
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5532 5533 5534 5535
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5536
	if (intel_vgpu_active(dev_priv))
5537 5538 5539 5540
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5541 5542 5543 5544 5545 5546 5547
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5548
	i915_gem_restore_fences(dev_priv);
5549

5550
	i915_gem_detect_bit_6_swizzle(dev_priv);
5551 5552
}

5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5569
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5570
{
5571
	int err = -ENOMEM;
5572

5573 5574
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5575 5576
		goto err_out;

5577 5578
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5579 5580
		goto err_objects;

5581 5582 5583 5584
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5585
	dev_priv->requests = KMEM_CACHE(i915_request,
5586 5587
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5588
					SLAB_TYPESAFE_BY_RCU);
5589
	if (!dev_priv->requests)
5590
		goto err_luts;
5591

5592 5593 5594 5595 5596 5597
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5598 5599 5600 5601
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5602
	mutex_lock(&dev_priv->drm.struct_mutex);
5603
	INIT_LIST_HEAD(&dev_priv->gt.rings);
5604
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5605
	err = i915_gem_timeline_init__global(dev_priv);
5606 5607
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
5608
		goto err_priorities;
5609

5610
	i915_gem_init__mm(dev_priv);
5611

5612
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5613
			  i915_gem_retire_work_handler);
5614
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5615
			  i915_gem_idle_work_handler);
5616
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5617
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5618

5619 5620
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5621
	spin_lock_init(&dev_priv->fb_tracking.lock);
5622

M
Matthew Auld 已提交
5623 5624 5625 5626
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5627 5628
	return 0;

5629 5630
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
5631 5632
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5633 5634
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5635 5636
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5637 5638 5639 5640 5641 5642
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5643
}
5644

5645
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5646
{
5647
	i915_gem_drain_freed_objects(dev_priv);
5648 5649
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5650
	WARN_ON(dev_priv->mm.object_count);
5651

5652 5653 5654 5655 5656
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

5657
	kmem_cache_destroy(dev_priv->priorities);
5658
	kmem_cache_destroy(dev_priv->dependencies);
5659
	kmem_cache_destroy(dev_priv->requests);
5660
	kmem_cache_destroy(dev_priv->luts);
5661 5662
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5663 5664 5665

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5666 5667

	i915_gemfs_fini(dev_priv);
5668 5669
}

5670 5671
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5672 5673 5674
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5675 5676 5677 5678 5679
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5680 5681 5682
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5683 5684 5685 5686 5687
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5698 5699
	 *
	 * To try and reduce the hibernation image, we manually shrink
5700
	 * the objects as well, see i915_gem_freeze()
5701 5702
	 */

5703
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5704
	i915_gem_drain_freed_objects(dev_priv);
5705

5706
	spin_lock(&dev_priv->mm.obj_lock);
5707
	for (p = phases; *p; p++) {
5708
		list_for_each_entry(obj, *p, mm.link)
5709
			__start_cpu_write(obj);
5710
	}
5711
	spin_unlock(&dev_priv->mm.obj_lock);
5712 5713 5714 5715

	return 0;
}

5716
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5717
{
5718
	struct drm_i915_file_private *file_priv = file->driver_priv;
5719
	struct i915_request *request;
5720 5721 5722 5723 5724

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5725
	spin_lock(&file_priv->mm.lock);
5726
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5727
		request->file_priv = NULL;
5728
	spin_unlock(&file_priv->mm.lock);
5729 5730
}

5731
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5732 5733
{
	struct drm_i915_file_private *file_priv;
5734
	int ret;
5735

5736
	DRM_DEBUG("\n");
5737 5738 5739 5740 5741 5742

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5743
	file_priv->dev_priv = i915;
5744
	file_priv->file = file;
5745 5746 5747 5748

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5749
	file_priv->bsd_engine = -1;
5750

5751
	ret = i915_gem_context_open(i915, file);
5752 5753
	if (ret)
		kfree(file_priv);
5754

5755
	return ret;
5756 5757
}

5758 5759
/**
 * i915_gem_track_fb - update frontbuffer tracking
5760 5761 5762
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5763 5764 5765 5766
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5767 5768 5769 5770
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5771 5772 5773 5774 5775 5776 5777 5778 5779
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5780
	if (old) {
5781 5782
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5783 5784 5785
	}

	if (new) {
5786 5787
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5788 5789 5790
	}
}

5791 5792
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5793
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5794 5795 5796
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5797 5798 5799
	struct file *file;
	size_t offset;
	int err;
5800

5801
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5802
	if (IS_ERR(obj))
5803 5804
		return obj;

5805
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5806

5807 5808 5809 5810 5811 5812
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5813

5814 5815 5816 5817 5818
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5819

5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5834 5835 5836 5837

	return obj;

fail:
5838
	i915_gem_object_put(obj);
5839
	return ERR_PTR(err);
5840
}
5841 5842 5843 5844 5845 5846

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5847
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5848 5849 5850 5851 5852
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5853
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5978
	if (!obj->mm.dirty)
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5994

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

6041 6042
	obj->ops = &i915_gem_phys_ops;

6043
	err = ____i915_gem_object_get_pages(obj);
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6063 6064
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6065
#include "selftests/mock_gem_device.c"
6066
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6067
#include "selftests/huge_pages.c"
6068
#include "selftests/i915_gem_object.c"
6069
#include "selftests/i915_gem_coherency.c"
6070
#endif