i915_gem.c 135.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54 55 56
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

57
	if (!i915_gem_object_is_coherent(obj))
58 59 60 61 62
		return true;

	return obj->pin_display;
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68 69 70 71
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106
	if (!i915_reset_in_progress(error))
107 108
		return 0;

109 110 111 112 113
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
114
	ret = wait_event_interruptible_timeout(error->reset_queue,
115
					       !i915_reset_in_progress(error),
116
					       I915_RESET_TIMEOUT);
117 118 119 120
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
121
		return ret;
122 123
	} else {
		return 0;
124
	}
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130 131
	int ret;

132
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
133 134 135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
142

143 144
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145
			    struct drm_file *file)
146
{
147
	struct drm_i915_private *dev_priv = to_i915(dev);
148
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
149
	struct drm_i915_gem_get_aperture *args = data;
150
	struct i915_vma *vma;
151
	size_t pinned;
152

153
	pinned = 0;
154
	mutex_lock(&dev->struct_mutex);
155
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156
		if (i915_vma_is_pinned(vma))
157
			pinned += vma->node.size;
158
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	mutex_unlock(&dev->struct_mutex);
162

163
	args->aper_size = ggtt->base.total;
164
	args->aper_available_size = args->aper_size - pinned;
165

166 167 168
	return 0;
}

169
static struct sg_table *
170
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171
{
172
	struct address_space *mapping = obj->base.filp->f_mapping;
173
	drm_dma_handle_t *phys;
174 175
	struct sg_table *st;
	struct scatterlist *sg;
176
	char *vaddr;
177
	int i;
178

179
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180
		return ERR_PTR(-EINVAL);
181

182 183 184 185 186 187 188 189 190 191 192
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
193 194 195 196 197
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
198 199 200 201
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
202 203 204 205 206 207

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

208
		put_page(page);
209 210 211
		vaddr += PAGE_SIZE;
	}

212
	i915_gem_chipset_flush(to_i915(obj->base.dev));
213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
215 216 217 218
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
219 220 221

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
222 223
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
224 225 226 227 228
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
229

230
	sg_dma_address(sg) = phys->busaddr;
231 232
	sg_dma_len(sg) = obj->base.size;

233 234 235 236 237
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
238
	return st;
239 240 241
}

static void
242
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
243 244
				struct sg_table *pages,
				bool needs_clflush)
245
{
C
Chris Wilson 已提交
246
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
247

C
Chris Wilson 已提交
248 249
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
250

251 252
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
253
	    !i915_gem_object_is_coherent(obj))
254
		drm_clflush_sg(pages);
255 256 257 258 259 260 261 262 263

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
264
	__i915_gem_object_release_shmem(obj, pages, false);
265

C
Chris Wilson 已提交
266
	if (obj->mm.dirty) {
267
		struct address_space *mapping = obj->base.filp->f_mapping;
268
		char *vaddr = obj->phys_handle->vaddr;
269 270 271
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
272 273 274 275 276 277 278 279 280 281 282 283 284
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
285
			if (obj->mm.madv == I915_MADV_WILLNEED)
286
				mark_page_accessed(page);
287
			put_page(page);
288 289
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
290
		obj->mm.dirty = false;
291 292
	}

293 294
	sg_free_table(pages);
	kfree(pages);
295 296

	drm_pci_free(obj->base.dev, obj->phys_handle);
297 298 299 300 301
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
302
	i915_gem_object_unpin_pages(obj);
303 304 305 306 307 308 309 310
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

311 312
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

313
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
314 315 316
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
317 318 319
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
320

321 322 323 324
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
325
	 */
326 327 328 329 330 331
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
332 333 334 335 336
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

337 338 339 340 341 342 343 344 345 346 347 348 349
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

350 351 352 353 354
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
355
{
356
	struct drm_i915_gem_request *rq;
357

358
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
392 393
	}

394 395 396 397 398 399
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

400
	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
425
	unsigned int seq = __read_seqcount_begin(&resv->seq);
426
	struct dma_fence *excl;
427
	bool prune_fences = false;
428 429 430 431

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
432 433
		int ret;

434 435
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
436 437 438
		if (ret)
			return ret;

439 440 441 442
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
443
			if (timeout < 0)
444
				break;
445

446 447 448 449 450 451
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
452 453

		prune_fences = count && timeout >= 0;
454 455
	} else {
		excl = reservation_object_get_excl_rcu(resv);
456 457
	}

458
	if (excl && timeout >= 0) {
459
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
460 461
		prune_fences = timeout >= 0;
	}
462 463 464

	dma_fence_put(excl);

465 466 467 468 469 470 471
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
		reservation_object_lock(resv, NULL);
		if (!__read_seqcount_retry(&resv->seq, seq))
			reservation_object_add_excl_fence(resv, NULL);
		reservation_object_unlock(resv);
	}

472
	return timeout;
473 474
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

539 540 541 542 543 544
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
545
 */
546 547 548 549 550
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
551
{
552 553 554 555 556 557 558
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
559

560 561 562
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
563
	return timeout < 0 ? timeout : 0;
564 565 566 567 568 569 570 571 572
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

573 574 575 576
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
577
	int ret;
578

579 580
	if (align > obj->base.size)
		return -EINVAL;
581

582
	if (obj->ops == &i915_gem_phys_ops)
583 584
		return 0;

C
Chris Wilson 已提交
585
	if (obj->mm.madv != I915_MADV_WILLNEED)
586 587 588 589 590
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
591 592 593 594
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

595
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
596 597
	if (obj->mm.pages)
		return -EBUSY;
598

599
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
600 601
	obj->ops = &i915_gem_phys_ops;

602 603 604 605 606 607 608 609 610
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
611 612 613 614 615
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
616
		     struct drm_file *file)
617 618
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
619
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
620 621 622 623

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
624
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
625 626
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
627

628
	drm_clflush_virt_range(vaddr, args->size);
629
	i915_gem_chipset_flush(to_i915(obj->base.dev));
630

631
	intel_fb_obj_flush(obj, ORIGIN_CPU);
632
	return 0;
633 634
}

635
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
636
{
637
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
638 639 640 641
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
642
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
643
	kmem_cache_free(dev_priv->objects, obj);
644 645
}

646 647
static int
i915_gem_create(struct drm_file *file,
648
		struct drm_i915_private *dev_priv,
649 650
		uint64_t size,
		uint32_t *handle_p)
651
{
652
	struct drm_i915_gem_object *obj;
653 654
	int ret;
	u32 handle;
655

656
	size = roundup(size, PAGE_SIZE);
657 658
	if (size == 0)
		return -EINVAL;
659 660

	/* Allocate the new object */
661
	obj = i915_gem_object_create(dev_priv, size);
662 663
	if (IS_ERR(obj))
		return PTR_ERR(obj);
664

665
	ret = drm_gem_handle_create(file, &obj->base, &handle);
666
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
667
	i915_gem_object_put(obj);
668 669
	if (ret)
		return ret;
670

671
	*handle_p = handle;
672 673 674
	return 0;
}

675 676 677 678 679 680
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
681
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
682
	args->size = args->pitch * args->height;
683
	return i915_gem_create(file, to_i915(dev),
684
			       args->size, &args->handle);
685 686 687 688
}

/**
 * Creates a new mm object and returns a handle to it.
689 690 691
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
692 693 694 695 696
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
697
	struct drm_i915_private *dev_priv = to_i915(dev);
698
	struct drm_i915_gem_create *args = data;
699

700
	i915_gem_flush_free_objects(dev_priv);
701

702
	return i915_gem_create(file, dev_priv,
703
			       args->size, &args->handle);
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

732
static inline int
733 734
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

758 759 760 761 762 763
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
764
				    unsigned int *needs_clflush)
765 766 767
{
	int ret;

768
	lockdep_assert_held(&obj->base.dev->struct_mutex);
769

770
	*needs_clflush = 0;
771 772
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
773

774 775 776 777 778
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
779 780 781
	if (ret)
		return ret;

C
Chris Wilson 已提交
782
	ret = i915_gem_object_pin_pages(obj);
783 784 785
	if (ret)
		return ret;

786 787
	i915_gem_object_flush_gtt_write_domain(obj);

788 789 790 791 792 793
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
794
		*needs_clflush = !i915_gem_object_is_coherent(obj);
795 796 797

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
798 799 800
		if (ret)
			goto err_unpin;

801
		*needs_clflush = 0;
802 803
	}

804
	/* return with the pages pinned */
805
	return 0;
806 807 808 809

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
810 811 812 813 814 815 816
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

817 818
	lockdep_assert_held(&obj->base.dev->struct_mutex);

819 820 821 822
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

823 824 825 826 827 828
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
829 830 831
	if (ret)
		return ret;

C
Chris Wilson 已提交
832
	ret = i915_gem_object_pin_pages(obj);
833 834 835
	if (ret)
		return ret;

836 837
	i915_gem_object_flush_gtt_write_domain(obj);

838 839 840 841 842 843 844 845 846 847 848 849
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
850
		*needs_clflush |= !i915_gem_object_is_coherent(obj);
851 852 853

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
854 855 856
		if (ret)
			goto err_unpin;

857 858 859 860 861 862 863
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
864
	obj->mm.dirty = true;
865
	/* return with the pages pinned */
866
	return 0;
867 868 869 870

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
871 872
}

873 874 875 876
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
877
	if (unlikely(swizzled)) {
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

895 896 897
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
898
shmem_pread_slow(struct page *page, int offset, int length,
899 900 901 902 903 904 905 906
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
907
		shmem_clflush_swizzled_range(vaddr + offset, length,
908
					     page_do_bit17_swizzling);
909 910

	if (page_do_bit17_swizzling)
911
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
912
	else
913
		ret = __copy_to_user(user_data, vaddr + offset, length);
914 915
	kunmap(page);

916
	return ret ? - EFAULT : 0;
917 918
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
995 996
{
	void *vaddr;
997
	unsigned long unwritten;
998 999

	/* We can use the cpu mem copy function because this is X86. */
1000 1001 1002 1003 1004 1005 1006 1007 1008
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1009 1010 1011 1012
	return unwritten;
}

static int
1013 1014
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1015
{
1016 1017
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1018
	struct drm_mm_node node;
1019 1020 1021
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1022 1023
	int ret;

1024 1025 1026 1027 1028 1029 1030
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1031 1032 1033
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1034
		ret = i915_vma_put_fence(vma);
1035 1036 1037 1038 1039
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1040
	if (IS_ERR(vma)) {
1041
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1042
		if (ret)
1043 1044
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1045 1046 1047 1048 1049 1050
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1051
	mutex_unlock(&i915->drm.struct_mutex);
1052

1053 1054 1055
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1072
					       node.start, I915_CACHE_NONE, 0);
1073 1074 1075 1076
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1077 1078 1079

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1080 1081 1082 1083 1084 1085 1086 1087 1088
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1089
	mutex_lock(&i915->drm.struct_mutex);
1090 1091 1092 1093
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1094
				       node.start, node.size);
1095 1096
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1097
		i915_vma_unpin(vma);
1098
	}
1099 1100 1101
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1102

1103 1104 1105
	return ret;
}

1106 1107
/**
 * Reads data from the object referenced by handle.
1108 1109 1110
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1111 1112 1113 1114 1115
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1116
		     struct drm_file *file)
1117 1118
{
	struct drm_i915_gem_pread *args = data;
1119
	struct drm_i915_gem_object *obj;
1120
	int ret;
1121

1122 1123 1124 1125
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1126
		       u64_to_user_ptr(args->data_ptr),
1127 1128 1129
		       args->size))
		return -EFAULT;

1130
	obj = i915_gem_object_lookup(file, args->handle);
1131 1132
	if (!obj)
		return -ENOENT;
1133

1134
	/* Bounds check source.  */
1135
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1136
		ret = -EINVAL;
1137
		goto out;
C
Chris Wilson 已提交
1138 1139
	}

C
Chris Wilson 已提交
1140 1141
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1142 1143 1144 1145
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1146
	if (ret)
1147
		goto out;
1148

1149
	ret = i915_gem_object_pin_pages(obj);
1150
	if (ret)
1151
		goto out;
1152

1153
	ret = i915_gem_shmem_pread(obj, args);
1154
	if (ret == -EFAULT || ret == -ENODEV)
1155
		ret = i915_gem_gtt_pread(obj, args);
1156

1157 1158
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1159
	i915_gem_object_put(obj);
1160
	return ret;
1161 1162
}

1163 1164
/* This is the fast write path which cannot handle
 * page faults in the source data
1165
 */
1166

1167 1168 1169 1170
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1171
{
1172
	void *vaddr;
1173
	unsigned long unwritten;
1174

1175
	/* We can use the cpu mem copy function because this is X86. */
1176 1177
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1178
						      user_data, length);
1179 1180 1181 1182 1183 1184 1185
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1186 1187 1188 1189

	return unwritten;
}

1190 1191 1192
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1193
 * @obj: i915 GEM object
1194
 * @args: pwrite arguments structure
1195
 */
1196
static int
1197 1198
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1199
{
1200
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1201 1202
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1203 1204 1205
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1206
	int ret;
1207

1208 1209 1210
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1211

1212
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1213
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1214
				       PIN_MAPPABLE | PIN_NONBLOCK);
1215 1216 1217
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1218
		ret = i915_vma_put_fence(vma);
1219 1220 1221 1222 1223
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1224
	if (IS_ERR(vma)) {
1225
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1226
		if (ret)
1227 1228
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1229
	}
D
Daniel Vetter 已提交
1230 1231 1232 1233 1234

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1235 1236
	mutex_unlock(&i915->drm.struct_mutex);

1237
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1238

1239 1240 1241 1242
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1243 1244
		/* Operation in this page
		 *
1245 1246 1247
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1248
		 */
1249
		u32 page_base = node.start;
1250 1251
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1262
		/* If we get a fault while copying data, then (presumably) our
1263 1264
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1265 1266
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1267
		 */
1268 1269 1270 1271
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1272
		}
1273

1274 1275 1276
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1277
	}
1278
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1279 1280

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1281
out_unpin:
1282 1283 1284
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1285
				       node.start, node.size);
1286 1287
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1288
		i915_vma_unpin(vma);
1289
	}
1290
out_unlock:
1291
	intel_runtime_pm_put(i915);
1292
	mutex_unlock(&i915->drm.struct_mutex);
1293
	return ret;
1294 1295
}

1296
static int
1297
shmem_pwrite_slow(struct page *page, int offset, int length,
1298 1299 1300 1301
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1302
{
1303 1304
	char *vaddr;
	int ret;
1305

1306
	vaddr = kmap(page);
1307
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1308
		shmem_clflush_swizzled_range(vaddr + offset, length,
1309
					     page_do_bit17_swizzling);
1310
	if (page_do_bit17_swizzling)
1311 1312
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1313
	else
1314
		ret = __copy_from_user(vaddr + offset, user_data, length);
1315
	if (needs_clflush_after)
1316
		shmem_clflush_swizzled_range(vaddr + offset, length,
1317
					     page_do_bit17_swizzling);
1318
	kunmap(page);
1319

1320
	return ret ? -EFAULT : 0;
1321 1322
}

1323 1324 1325 1326 1327
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1328
static int
1329 1330 1331 1332
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1333
{
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1366
	unsigned int needs_clflush;
1367 1368
	unsigned int offset, idx;
	int ret;
1369

1370
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1371 1372 1373
	if (ret)
		return ret;

1374 1375 1376 1377
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1378

1379 1380 1381
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1382

1383 1384 1385 1386 1387 1388 1389
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1390

1391 1392 1393 1394 1395 1396
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1397

1398 1399 1400
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1401

1402 1403 1404 1405
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1406
		if (ret)
1407
			break;
1408

1409 1410 1411
		remain -= length;
		user_data += length;
		offset = 0;
1412
	}
1413

1414
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1415
	i915_gem_obj_finish_shmem_access(obj);
1416
	return ret;
1417 1418 1419 1420
}

/**
 * Writes data to the object referenced by handle.
1421 1422 1423
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1424 1425 1426 1427 1428
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1429
		      struct drm_file *file)
1430 1431
{
	struct drm_i915_gem_pwrite *args = data;
1432
	struct drm_i915_gem_object *obj;
1433 1434 1435 1436 1437 1438
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1439
		       u64_to_user_ptr(args->data_ptr),
1440 1441 1442
		       args->size))
		return -EFAULT;

1443
	obj = i915_gem_object_lookup(file, args->handle);
1444 1445
	if (!obj)
		return -ENOENT;
1446

1447
	/* Bounds check destination. */
1448
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1449
		ret = -EINVAL;
1450
		goto err;
C
Chris Wilson 已提交
1451 1452
	}

C
Chris Wilson 已提交
1453 1454
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1455 1456 1457 1458 1459 1460
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1461 1462 1463 1464 1465
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1466 1467 1468
	if (ret)
		goto err;

1469
	ret = i915_gem_object_pin_pages(obj);
1470
	if (ret)
1471
		goto err;
1472

D
Daniel Vetter 已提交
1473
	ret = -EFAULT;
1474 1475 1476 1477 1478 1479
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1480
	if (!i915_gem_object_has_struct_page(obj) ||
1481
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1482 1483
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1484 1485
		 * textures). Fallback to the shmem path in that case.
		 */
1486
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1487

1488
	if (ret == -EFAULT || ret == -ENOSPC) {
1489 1490
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1491
		else
1492
			ret = i915_gem_shmem_pwrite(obj, args);
1493
	}
1494

1495
	i915_gem_object_unpin_pages(obj);
1496
err:
C
Chris Wilson 已提交
1497
	i915_gem_object_put(obj);
1498
	return ret;
1499 1500
}

1501
static inline enum fb_op_origin
1502 1503
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1504 1505
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1506 1507
}

1508 1509 1510 1511 1512 1513 1514 1515
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1516
			break;
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1529
	list_move_tail(&obj->global_link, list);
1530 1531
}

1532
/**
1533 1534
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1535 1536 1537
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1538 1539 1540
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1541
			  struct drm_file *file)
1542 1543
{
	struct drm_i915_gem_set_domain *args = data;
1544
	struct drm_i915_gem_object *obj;
1545 1546
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1547
	int err;
1548

1549
	/* Only handle setting domains to types used by the CPU. */
1550
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1551 1552 1553 1554 1555 1556 1557 1558
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1559
	obj = i915_gem_object_lookup(file, args->handle);
1560 1561
	if (!obj)
		return -ENOENT;
1562

1563 1564 1565 1566
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1567
	err = i915_gem_object_wait(obj,
1568 1569 1570 1571
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1572
	if (err)
C
Chris Wilson 已提交
1573
		goto out;
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1585
		goto out;
1586 1587 1588

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1589
		goto out_unpin;
1590

1591
	if (read_domains & I915_GEM_DOMAIN_GTT)
1592
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1593
	else
1594
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1595

1596 1597
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1598

1599
	mutex_unlock(&dev->struct_mutex);
1600

1601 1602 1603
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1604
out_unpin:
1605
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1606 1607
out:
	i915_gem_object_put(obj);
1608
	return err;
1609 1610 1611 1612
}

/**
 * Called when user space has done writes to this buffer
1613 1614 1615
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1616 1617 1618
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1619
			 struct drm_file *file)
1620 1621
{
	struct drm_i915_gem_sw_finish *args = data;
1622
	struct drm_i915_gem_object *obj;
1623

1624
	obj = i915_gem_object_lookup(file, args->handle);
1625 1626
	if (!obj)
		return -ENOENT;
1627 1628

	/* Pinned buffers may be scanout, so flush the cache */
1629
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1630
	i915_gem_object_put(obj);
1631 1632

	return 0;
1633 1634 1635
}

/**
1636 1637 1638 1639 1640
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1641 1642 1643
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1654 1655 1656
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1657
		    struct drm_file *file)
1658 1659
{
	struct drm_i915_gem_mmap *args = data;
1660
	struct drm_i915_gem_object *obj;
1661 1662
	unsigned long addr;

1663 1664 1665
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1666
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1667 1668
		return -ENODEV;

1669 1670
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1671
		return -ENOENT;
1672

1673 1674 1675
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1676
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1677
		i915_gem_object_put(obj);
1678 1679 1680
		return -EINVAL;
	}

1681
	addr = vm_mmap(obj->base.filp, 0, args->size,
1682 1683
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1684 1685 1686 1687
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1688
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1689
			i915_gem_object_put(obj);
1690 1691
			return -EINTR;
		}
1692 1693 1694 1695 1696 1697 1698
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1699 1700

		/* This may race, but that's ok, it only gets set */
1701
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1702
	}
C
Chris Wilson 已提交
1703
	i915_gem_object_put(obj);
1704 1705 1706 1707 1708 1709 1710 1711
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1712 1713
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1714
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1715 1716
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1778 1779
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1780
		min_t(unsigned int, chunk,
1781
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1782 1783 1784 1785 1786 1787 1788 1789

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1790 1791
/**
 * i915_gem_fault - fault a page into the GTT
1792
 * @vmf: fault info
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1804 1805 1806
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1807
 */
1808
int i915_gem_fault(struct vm_fault *vmf)
1809
{
1810
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1811
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1812
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1813
	struct drm_device *dev = obj->base.dev;
1814 1815
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1816
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1817
	struct i915_vma *vma;
1818
	pgoff_t page_offset;
1819
	unsigned int flags;
1820
	int ret;
1821

1822
	/* We don't use vmf->pgoff since that has the fake offset */
1823
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1824

C
Chris Wilson 已提交
1825 1826
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1827
	/* Try to flush the object off the GPU first without holding the lock.
1828
	 * Upon acquiring the lock, we will perform our sanity checks and then
1829 1830 1831
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1832 1833 1834 1835
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1836
	if (ret)
1837 1838
		goto err;

1839 1840 1841 1842
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1843 1844 1845 1846 1847
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1848

1849
	/* Access to snoopable pages through the GTT is incoherent. */
1850
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1851
		ret = -EFAULT;
1852
		goto err_unlock;
1853 1854
	}

1855 1856 1857 1858 1859 1860 1861 1862
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1863
	/* Now pin it into the GTT as needed */
1864
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1865 1866
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1867
		struct i915_ggtt_view view =
1868
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1869

1870 1871 1872 1873 1874
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1875 1876
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1877 1878
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1879
		goto err_unlock;
C
Chris Wilson 已提交
1880
	}
1881

1882 1883
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1884
		goto err_unpin;
1885

1886
	ret = i915_vma_get_fence(vma);
1887
	if (ret)
1888
		goto err_unpin;
1889

1890
	/* Mark as being mmapped into userspace for later revocation */
1891
	assert_rpm_wakelock_held(dev_priv);
1892 1893 1894
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1895
	/* Finally, remap it using the new GTT offset */
1896
	ret = remap_io_mapping(area,
1897
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1898 1899 1900
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1901

1902
err_unpin:
C
Chris Wilson 已提交
1903
	__i915_vma_unpin(vma);
1904
err_unlock:
1905
	mutex_unlock(&dev->struct_mutex);
1906 1907
err_rpm:
	intel_runtime_pm_put(dev_priv);
1908
	i915_gem_object_unpin_pages(obj);
1909
err:
1910
	switch (ret) {
1911
	case -EIO:
1912 1913 1914 1915 1916 1917 1918
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1919 1920 1921
			ret = VM_FAULT_SIGBUS;
			break;
		}
1922
	case -EAGAIN:
D
Daniel Vetter 已提交
1923 1924 1925 1926
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1927
		 */
1928 1929
	case 0:
	case -ERESTARTSYS:
1930
	case -EINTR:
1931 1932 1933 1934 1935
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1936 1937
		ret = VM_FAULT_NOPAGE;
		break;
1938
	case -ENOMEM:
1939 1940
		ret = VM_FAULT_OOM;
		break;
1941
	case -ENOSPC:
1942
	case -EFAULT:
1943 1944
		ret = VM_FAULT_SIGBUS;
		break;
1945
	default:
1946
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1947 1948
		ret = VM_FAULT_SIGBUS;
		break;
1949
	}
1950
	return ret;
1951 1952
}

1953 1954 1955 1956
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1957
 * Preserve the reservation of the mmapping with the DRM core code, but
1958 1959 1960 1961 1962 1963 1964 1965 1966
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1967
void
1968
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1969
{
1970 1971
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1972 1973 1974
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1975 1976 1977 1978
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1979
	 */
1980
	lockdep_assert_held(&i915->drm.struct_mutex);
1981
	intel_runtime_pm_get(i915);
1982

1983
	if (list_empty(&obj->userfault_link))
1984
		goto out;
1985

1986
	list_del_init(&obj->userfault_link);
1987 1988
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1989 1990 1991 1992 1993 1994 1995 1996 1997

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1998 1999 2000

out:
	intel_runtime_pm_put(i915);
2001 2002
}

2003
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2004
{
2005
	struct drm_i915_gem_object *obj, *on;
2006
	int i;
2007

2008 2009 2010 2011 2012 2013
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2014

2015 2016 2017
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2018 2019 2020
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2021 2022 2023 2024 2025 2026 2027 2028

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2039 2040 2041 2042 2043 2044 2045

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2046 2047
}

2048 2049
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2050
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2051
	int err;
2052

2053
	err = drm_gem_create_mmap_offset(&obj->base);
2054
	if (likely(!err))
2055
		return 0;
2056

2057 2058 2059 2060 2061
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2062

2063
		i915_gem_drain_freed_objects(dev_priv);
2064
		err = drm_gem_create_mmap_offset(&obj->base);
2065 2066 2067 2068
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2069

2070
	return err;
2071 2072 2073 2074 2075 2076 2077
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2078
int
2079 2080
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2081
		  uint32_t handle,
2082
		  uint64_t *offset)
2083
{
2084
	struct drm_i915_gem_object *obj;
2085 2086
	int ret;

2087
	obj = i915_gem_object_lookup(file, handle);
2088 2089
	if (!obj)
		return -ENOENT;
2090

2091
	ret = i915_gem_object_create_mmap_offset(obj);
2092 2093
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2094

C
Chris Wilson 已提交
2095
	i915_gem_object_put(obj);
2096
	return ret;
2097 2098
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2120
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2121 2122
}

D
Daniel Vetter 已提交
2123 2124 2125
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2126
{
2127
	i915_gem_object_free_mmap_offset(obj);
2128

2129 2130
	if (obj->base.filp == NULL)
		return;
2131

D
Daniel Vetter 已提交
2132 2133 2134 2135 2136
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2137
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2138
	obj->mm.madv = __I915_MADV_PURGED;
2139
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2140
}
2141

2142
/* Try to discard unwanted pages */
2143
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2144
{
2145 2146
	struct address_space *mapping;

2147 2148 2149
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2150
	switch (obj->mm.madv) {
2151 2152 2153 2154 2155 2156 2157 2158 2159
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2160
	mapping = obj->base.filp->f_mapping,
2161
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2162 2163
}

2164
static void
2165 2166
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2167
{
2168 2169
	struct sgt_iter sgt_iter;
	struct page *page;
2170

2171
	__i915_gem_object_release_shmem(obj, pages, true);
2172

2173
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2174

2175
	if (i915_gem_object_needs_bit17_swizzle(obj))
2176
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2177

2178
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2179
		if (obj->mm.dirty)
2180
			set_page_dirty(page);
2181

C
Chris Wilson 已提交
2182
		if (obj->mm.madv == I915_MADV_WILLNEED)
2183
			mark_page_accessed(page);
2184

2185
		put_page(page);
2186
	}
C
Chris Wilson 已提交
2187
	obj->mm.dirty = false;
2188

2189 2190
	sg_free_table(pages);
	kfree(pages);
2191
}
C
Chris Wilson 已提交
2192

2193 2194 2195 2196 2197
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2198 2199
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2200 2201
}

2202 2203
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2204
{
2205
	struct sg_table *pages;
2206

C
Chris Wilson 已提交
2207
	if (i915_gem_object_has_pinned_pages(obj))
2208
		return;
2209

2210
	GEM_BUG_ON(obj->bind_count);
2211 2212 2213 2214
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2215
	mutex_lock_nested(&obj->mm.lock, subclass);
2216 2217
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2218

2219 2220 2221
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2222 2223
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2224

C
Chris Wilson 已提交
2225
	if (obj->mm.mapping) {
2226 2227
		void *ptr;

C
Chris Wilson 已提交
2228
		ptr = ptr_mask_bits(obj->mm.mapping);
2229 2230
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2231
		else
2232 2233
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2234
		obj->mm.mapping = NULL;
2235 2236
	}

2237 2238
	__i915_gem_object_reset_page_iter(obj);

2239 2240 2241
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2242 2243
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2244 2245
}

2246
static bool i915_sg_trim(struct sg_table *orig_st)
2247 2248 2249 2250 2251 2252
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2253
		return false;
2254

2255
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2256
		return false;
2257 2258 2259 2260 2261 2262 2263

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2264
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2265 2266 2267 2268

	sg_free_table(orig_st);

	*orig_st = new_st;
2269
	return true;
2270 2271
}

2272
static struct sg_table *
C
Chris Wilson 已提交
2273
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2274
{
2275
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2276 2277
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2278
	struct address_space *mapping;
2279 2280
	struct sg_table *st;
	struct scatterlist *sg;
2281
	struct sgt_iter sgt_iter;
2282
	struct page *page;
2283
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2284
	unsigned int max_segment;
I
Imre Deak 已提交
2285
	int ret;
C
Chris Wilson 已提交
2286
	gfp_t gfp;
2287

C
Chris Wilson 已提交
2288 2289 2290 2291
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2292 2293
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2294

2295
	max_segment = swiotlb_max_segment();
2296
	if (!max_segment)
2297
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2298

2299 2300
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2301
		return ERR_PTR(-ENOMEM);
2302

2303
rebuild_st:
2304 2305
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2306
		return ERR_PTR(-ENOMEM);
2307
	}
2308

2309 2310 2311 2312 2313
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2314
	mapping = obj->base.filp->f_mapping;
2315
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2316
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2317 2318 2319
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2320 2321
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2322 2323 2324 2325 2326
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2327 2328 2329 2330 2331 2332 2333
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2334
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2335 2336
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2337
				goto err_sg;
I
Imre Deak 已提交
2338
			}
C
Chris Wilson 已提交
2339
		}
2340 2341 2342
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2343 2344 2345 2346 2347 2348 2349 2350
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2351 2352 2353

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2354
	}
2355
	if (sg) /* loop terminated early; short sg table */
2356
		sg_mark_end(sg);
2357

2358 2359 2360
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2361
	ret = i915_gem_gtt_prepare_pages(obj, st);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2381

2382
	if (i915_gem_object_needs_bit17_swizzle(obj))
2383
		i915_gem_object_do_bit_17_swizzle(obj, st);
2384

2385
	return st;
2386

2387
err_sg:
2388
	sg_mark_end(sg);
2389
err_pages:
2390 2391
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2392 2393
	sg_free_table(st);
	kfree(st);
2394 2395 2396 2397 2398 2399 2400 2401 2402

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2403 2404 2405
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2406 2407 2408 2409 2410 2411
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2412
	lockdep_assert_held(&obj->mm.lock);
2413 2414 2415 2416 2417

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2418 2419 2420 2421 2422 2423 2424

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2425 2426 2427 2428 2429 2430
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2431 2432
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2444 2445
}

2446
/* Ensure that the associated pages are gathered from the backing storage
2447
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2448
 * multiple times before they are released by a single call to
2449
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2450 2451 2452
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2453
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2454
{
2455
	int err;
2456

2457 2458 2459
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2460

2461
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2462 2463 2464
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2465

2466 2467 2468
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2469

2470 2471
unlock:
	mutex_unlock(&obj->mm.lock);
2472
	return err;
2473 2474
}

2475
/* The 'mapping' part of i915_gem_object_pin_map() below */
2476 2477
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2478 2479
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2480
	struct sg_table *sgt = obj->mm.pages;
2481 2482
	struct sgt_iter sgt_iter;
	struct page *page;
2483 2484
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2485
	unsigned long i = 0;
2486
	pgprot_t pgprot;
2487 2488 2489
	void *addr;

	/* A single page can always be kmapped */
2490
	if (n_pages == 1 && type == I915_MAP_WB)
2491 2492
		return kmap(sg_page(sgt->sgl));

2493 2494 2495 2496 2497 2498
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2499

2500 2501
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2502 2503 2504 2505

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2506 2507 2508 2509 2510 2511 2512 2513 2514
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2515

2516 2517
	if (pages != stack_pages)
		drm_free_large(pages);
2518 2519 2520 2521 2522

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2523 2524
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2525
{
2526 2527 2528
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2529 2530
	int ret;

2531
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2532

2533
	ret = mutex_lock_interruptible(&obj->mm.lock);
2534 2535 2536
	if (ret)
		return ERR_PTR(ret);

2537 2538
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2539
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2540 2541 2542
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2543

2544 2545 2546
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2547 2548 2549
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2550

C
Chris Wilson 已提交
2551
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2552 2553 2554
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2555
			goto err_unpin;
2556
		}
2557 2558 2559 2560 2561 2562

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2563
		ptr = obj->mm.mapping = NULL;
2564 2565
	}

2566 2567 2568 2569
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2570
			goto err_unpin;
2571 2572
		}

C
Chris Wilson 已提交
2573
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2574 2575
	}

2576 2577
out_unlock:
	mutex_unlock(&obj->mm.lock);
2578 2579
	return ptr;

2580 2581 2582 2583 2584
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2585 2586
}

2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2656
static bool ban_context(const struct i915_gem_context *ctx)
2657
{
2658 2659
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2660 2661
}

2662
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2663
{
2664
	ctx->guilty_count++;
2665 2666 2667
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2668 2669

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2670
			 ctx->name, ctx->ban_score,
2671
			 yesno(i915_gem_context_is_banned(ctx)));
2672

2673
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2674 2675
		return;

2676 2677 2678
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2679 2680 2681 2682
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2683
	ctx->active_count++;
2684 2685
}

2686
struct drm_i915_gem_request *
2687
i915_gem_find_active_request(struct intel_engine_cs *engine)
2688
{
2689 2690
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2691

2692 2693 2694 2695 2696 2697 2698 2699
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2700
	spin_lock_irqsave(&engine->timeline->lock, flags);
2701
	list_for_each_entry(request, &engine->timeline->requests, link) {
2702 2703
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2704
			continue;
2705

2706
		GEM_BUG_ON(request->engine != engine);
2707 2708
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2709 2710 2711

		active = request;
		break;
2712
	}
2713
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2714

2715
	return active;
2716 2717
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2732
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2733 2734 2735
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2736
	int err = 0;
2737 2738

	/* Ensure irq handler finishes, and not run again. */
2739 2740 2741
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2753 2754 2755 2756 2757 2758 2759 2760
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2761
		tasklet_kill(&engine->irq_tasklet);
2762
		tasklet_disable(&engine->irq_tasklet);
2763

2764 2765 2766
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2767 2768 2769 2770 2771 2772 2773
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2774
	i915_gem_revoke_fences(dev_priv);
2775 2776

	return err;
2777 2778
}

2779
static void skip_request(struct drm_i915_gem_request *request)
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2794 2795

	dma_fence_set_error(&request->fence, -EIO);
2796 2797
}

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2821 2822 2823 2824 2825 2826
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2859
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2860 2861 2862
{
	struct drm_i915_gem_request *request;

2863
	request = i915_gem_find_active_request(engine);
2864 2865 2866
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2867

2868 2869 2870 2871
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2872 2873 2874

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2875
}
2876

2877
void i915_gem_reset(struct drm_i915_private *dev_priv)
2878
{
2879
	struct intel_engine_cs *engine;
2880
	enum intel_engine_id id;
2881

2882 2883
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2884 2885
	i915_gem_retire_requests(dev_priv);

2886 2887 2888
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2889
		i915_gem_reset_engine(engine);
2890 2891 2892 2893
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2894

2895
	i915_gem_restore_fences(dev_priv);
2896 2897 2898 2899 2900 2901 2902

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2903 2904
}

2905 2906
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2907 2908 2909
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2910
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2911

2912
	for_each_engine(engine, dev_priv, id) {
2913
		tasklet_enable(&engine->irq_tasklet);
2914 2915
		kthread_unpark(engine->breadcrumbs.signaler);
	}
2916 2917
}

2918 2919
static void nop_submit_request(struct drm_i915_gem_request *request)
{
2920
	dma_fence_set_error(&request->fence, -EIO);
2921 2922
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2923 2924
}

2925
static void engine_set_wedged(struct intel_engine_cs *engine)
2926
{
2927 2928 2929
	struct drm_i915_gem_request *request;
	unsigned long flags;

2930 2931 2932 2933 2934 2935
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2936
	engine->submit_request = nop_submit_request;
2937

2938 2939 2940 2941 2942 2943
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2944 2945 2946 2947
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2948
	intel_engine_init_global_seqno(engine,
2949
				       intel_engine_last_submit(engine));
2950

2951 2952 2953 2954 2955 2956
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2957
	if (i915.enable_execlists) {
2958 2959 2960 2961
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2962 2963 2964
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2965 2966
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2967 2968

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2969
	}
2970 2971
}

2972
static int __i915_gem_set_wedged_BKL(void *data)
2973
{
2974
	struct drm_i915_private *i915 = data;
2975
	struct intel_engine_cs *engine;
2976
	enum intel_engine_id id;
2977

2978
	for_each_engine(engine, i915, id)
2979
		engine_set_wedged(engine);
2980 2981 2982 2983 2984 2985

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2986 2987
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2988

2989
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2990

2991
	i915_gem_context_lost(dev_priv);
2992
	i915_gem_retire_requests(dev_priv);
2993 2994

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2995 2996
}

2997
static void
2998 2999
i915_gem_retire_work_handler(struct work_struct *work)
{
3000
	struct drm_i915_private *dev_priv =
3001
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3002
	struct drm_device *dev = &dev_priv->drm;
3003

3004
	/* Come back later if the device is busy... */
3005
	if (mutex_trylock(&dev->struct_mutex)) {
3006
		i915_gem_retire_requests(dev_priv);
3007
		mutex_unlock(&dev->struct_mutex);
3008
	}
3009 3010 3011 3012 3013

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3014 3015
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3016 3017
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3018
				   round_jiffies_up_relative(HZ));
3019
	}
3020
}
3021

3022 3023 3024 3025
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3026
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3027
	struct drm_device *dev = &dev_priv->drm;
3028
	struct intel_engine_cs *engine;
3029
	enum intel_engine_id id;
3030 3031 3032 3033 3034
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3035 3036 3037 3038 3039
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
3040 3041
		 intel_engines_are_idle(dev_priv),
		 10);
3042
	if (READ_ONCE(dev_priv->gt.active_requests))
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3056 3057 3058 3059 3060 3061 3062
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3063
	if (dev_priv->gt.active_requests)
3064
		goto out_unlock;
3065

3066
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3067 3068
		DRM_ERROR("Timeout waiting for engines to idle\n");

3069 3070
	for_each_engine(engine, dev_priv, id) {
		intel_engine_disarm_breadcrumbs(engine);
3071
		i915_gem_batch_pool_fini(&engine->batch_pool);
3072
	}
3073

3074 3075 3076
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3077

3078 3079 3080 3081 3082
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3083

3084 3085 3086 3087
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3088
	}
3089 3090
}

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3101 3102 3103 3104 3105 3106

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3107 3108 3109
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3121 3122
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3123 3124 3125
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3150 3151
	ktime_t start;
	long ret;
3152

3153 3154 3155
	if (args->flags != 0)
		return -EINVAL;

3156
	obj = i915_gem_object_lookup(file, args->bo_handle);
3157
	if (!obj)
3158 3159
		return -ENOENT;

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3181 3182
	}

C
Chris Wilson 已提交
3183
	i915_gem_object_put(obj);
3184
	return ret;
3185 3186
}

3187
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3188
{
3189
	int ret, i;
3190

3191 3192 3193 3194 3195
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3196

3197 3198 3199 3200 3201 3202 3203
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3216 3217 3218
		if (ret)
			return ret;
	}
3219

3220
	return 0;
3221 3222
}

3223 3224
/** Flushes the GTT write domain for the object if it's dirty. */
static void
3225
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3226
{
3227
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3228

3229
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3230 3231
		return;

3232
	/* No actual flushing is required for the GTT write domain.  Writes
3233
	 * to it "immediately" go to main memory as far as we know, so there's
3234
	 * no chipset flush.  It also doesn't land in render cache.
3235 3236 3237 3238
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3239 3240 3241 3242 3243 3244 3245
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3246
	 */
3247
	wmb();
3248
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3249
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3250

3251
	intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3252

3253
	obj->base.write_domain = 0;
3254 3255 3256 3257
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3258
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3259
{
3260
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3261 3262
		return;

3263
	i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3264
	obj->base.write_domain = 0;
3265 3266
}

3267 3268 3269 3270 3271
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
		return;

3272
	i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3286 3287
/**
 * Moves a single object to the GTT read, and possibly write domain.
3288 3289
 * @obj: object to act on
 * @write: ask for write access or read only
3290 3291 3292 3293
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3294
int
3295
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3296
{
3297
	int ret;
3298

3299
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3300

3301 3302 3303 3304 3305 3306
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3307 3308 3309
	if (ret)
		return ret;

3310 3311 3312
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3313 3314 3315 3316 3317 3318 3319 3320
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3321
	ret = i915_gem_object_pin_pages(obj);
3322 3323 3324
	if (ret)
		return ret;

3325
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3326

3327 3328 3329 3330 3331 3332 3333
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3334 3335 3336
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3337
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3338
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3339
	if (write) {
3340 3341
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3342
		obj->mm.dirty = true;
3343 3344
	}

C
Chris Wilson 已提交
3345
	i915_gem_object_unpin_pages(obj);
3346 3347 3348
	return 0;
}

3349 3350
/**
 * Changes the cache-level of an object across all VMA.
3351 3352
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3364 3365 3366
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3367
	struct i915_vma *vma;
3368
	int ret;
3369

3370 3371
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3372
	if (obj->cache_level == cache_level)
3373
		return 0;
3374

3375 3376 3377 3378 3379
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3380 3381
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3382 3383 3384
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3385
		if (i915_vma_is_pinned(vma)) {
3386 3387 3388 3389
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3402 3403
	}

3404 3405 3406 3407 3408 3409 3410
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3411
	if (obj->bind_count) {
3412 3413 3414 3415
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3416 3417 3418 3419 3420 3421
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3422 3423 3424
		if (ret)
			return ret;

3425 3426
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3443 3444 3445 3446 3447
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3448 3449 3450 3451 3452 3453 3454 3455
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3456 3457
		}

3458
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3459 3460 3461 3462 3463 3464 3465
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3466 3467
	}

3468
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3469
	    i915_gem_object_is_coherent(obj))
3470 3471
		obj->cache_dirty = true;

3472
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3473 3474 3475
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3476 3477 3478
	return 0;
}

B
Ben Widawsky 已提交
3479 3480
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3481
{
B
Ben Widawsky 已提交
3482
	struct drm_i915_gem_caching *args = data;
3483
	struct drm_i915_gem_object *obj;
3484
	int err = 0;
3485

3486 3487 3488 3489 3490 3491
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3492

3493 3494 3495 3496 3497 3498
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3499 3500 3501 3502
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3503 3504 3505 3506
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3507 3508 3509
out:
	rcu_read_unlock();
	return err;
3510 3511
}

B
Ben Widawsky 已提交
3512 3513
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3514
{
3515
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3516
	struct drm_i915_gem_caching *args = data;
3517 3518
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3519
	int ret = 0;
3520

B
Ben Widawsky 已提交
3521 3522
	switch (args->caching) {
	case I915_CACHING_NONE:
3523 3524
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3525
	case I915_CACHING_CACHED:
3526 3527 3528 3529 3530 3531
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3532
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3533 3534
			return -ENODEV;

3535 3536
		level = I915_CACHE_LLC;
		break;
3537
	case I915_CACHING_DISPLAY:
3538
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3539
		break;
3540 3541 3542 3543
	default:
		return -EINVAL;
	}

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3555
	if (ret)
3556
		goto out;
B
Ben Widawsky 已提交
3557

3558 3559 3560
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3561 3562 3563

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3564 3565 3566

out:
	i915_gem_object_put(obj);
3567 3568 3569
	return ret;
}

3570
/*
3571 3572 3573
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3574
 */
C
Chris Wilson 已提交
3575
struct i915_vma *
3576 3577
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3578
				     const struct i915_ggtt_view *view)
3579
{
C
Chris Wilson 已提交
3580
	struct i915_vma *vma;
3581 3582
	int ret;

3583 3584
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3585 3586 3587
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3588
	obj->pin_display++;
3589

3590 3591 3592 3593 3594 3595 3596 3597 3598
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3599
	ret = i915_gem_object_set_cache_level(obj,
3600 3601
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3602 3603
	if (ret) {
		vma = ERR_PTR(ret);
3604
		goto err_unpin_display;
C
Chris Wilson 已提交
3605
	}
3606

3607 3608
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3609 3610 3611 3612
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3613
	 */
3614
	vma = ERR_PTR(-ENOSPC);
3615
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3616 3617
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3634
	if (IS_ERR(vma))
3635
		goto err_unpin_display;
3636

3637 3638
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3639
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3640
	__i915_gem_object_flush_for_display(obj);
3641
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3642

3643 3644 3645
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3646
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3647

C
Chris Wilson 已提交
3648
	return vma;
3649 3650

err_unpin_display:
3651
	obj->pin_display--;
C
Chris Wilson 已提交
3652
	return vma;
3653 3654 3655
}

void
C
Chris Wilson 已提交
3656
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3657
{
3658
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3659

C
Chris Wilson 已提交
3660
	if (WARN_ON(vma->obj->pin_display == 0))
3661 3662
		return;

3663
	if (--vma->obj->pin_display == 0)
3664
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3665

3666
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3667
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3668

C
Chris Wilson 已提交
3669
	i915_vma_unpin(vma);
3670 3671
}

3672 3673
/**
 * Moves a single object to the CPU read, and possibly write domain.
3674 3675
 * @obj: object to act on
 * @write: requesting write or read-only access
3676 3677 3678 3679
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3680
int
3681
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3682 3683 3684
{
	int ret;

3685
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3686

3687 3688 3689 3690 3691 3692
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3693 3694 3695
	if (ret)
		return ret;

3696 3697 3698
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3699
	i915_gem_object_flush_gtt_write_domain(obj);
3700

3701
	/* Flush the CPU cache if it's still invalid. */
3702
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3703
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3704
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3705 3706 3707 3708 3709
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3710
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3711 3712 3713 3714 3715

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3716 3717
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3718
	}
3719 3720 3721 3722

	return 0;
}

3723 3724 3725
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3726 3727 3728 3729
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3730 3731 3732
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3733
static int
3734
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3735
{
3736
	struct drm_i915_private *dev_priv = to_i915(dev);
3737
	struct drm_i915_file_private *file_priv = file->driver_priv;
3738
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3739
	struct drm_i915_gem_request *request, *target = NULL;
3740
	long ret;
3741

3742 3743 3744
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3745

3746
	spin_lock(&file_priv->mm.lock);
3747
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3748 3749
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3750

3751 3752 3753 3754
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3755

3756
		target = request;
3757
	}
3758
	if (target)
3759
		i915_gem_request_get(target);
3760
	spin_unlock(&file_priv->mm.lock);
3761

3762
	if (target == NULL)
3763
		return 0;
3764

3765 3766 3767
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3768
	i915_gem_request_put(target);
3769

3770
	return ret < 0 ? ret : 0;
3771 3772
}

C
Chris Wilson 已提交
3773
struct i915_vma *
3774 3775
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3776
			 u64 size,
3777 3778
			 u64 alignment,
			 u64 flags)
3779
{
3780 3781
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3782 3783
	struct i915_vma *vma;
	int ret;
3784

3785 3786
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3787
	vma = i915_vma_instance(obj, vm, view);
3788
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3789
		return vma;
3790 3791 3792 3793

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3794
			return ERR_PTR(-ENOSPC);
3795

3796 3797 3798 3799 3800 3801 3802 3803
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3804
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3823
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3824 3825 3826
				return ERR_PTR(-ENOSPC);
		}

3827 3828
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3829 3830 3831
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3832
		     !!(flags & PIN_MAPPABLE),
3833
		     i915_vma_is_map_and_fenceable(vma));
3834 3835
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3836
			return ERR_PTR(ret);
3837 3838
	}

C
Chris Wilson 已提交
3839 3840 3841
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3842

C
Chris Wilson 已提交
3843
	return vma;
3844 3845
}

3846
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3861 3862 3863 3864 3865 3866 3867 3868 3869
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3870 3871
}

3872
static __always_inline unsigned int
3873
__busy_set_if_active(const struct dma_fence *fence,
3874 3875
		     unsigned int (*flag)(unsigned int id))
{
3876
	struct drm_i915_gem_request *rq;
3877

3878 3879 3880 3881
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3882
	 *
3883
	 * Note we only report on the status of native fences.
3884
	 */
3885 3886 3887 3888 3889 3890 3891 3892 3893
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3894 3895
}

3896
static __always_inline unsigned int
3897
busy_check_reader(const struct dma_fence *fence)
3898
{
3899
	return __busy_set_if_active(fence, __busy_read_flag);
3900 3901
}

3902
static __always_inline unsigned int
3903
busy_check_writer(const struct dma_fence *fence)
3904
{
3905 3906 3907 3908
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3909 3910
}

3911 3912
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3913
		    struct drm_file *file)
3914 3915
{
	struct drm_i915_gem_busy *args = data;
3916
	struct drm_i915_gem_object *obj;
3917 3918
	struct reservation_object_list *list;
	unsigned int seq;
3919
	int err;
3920

3921
	err = -ENOENT;
3922 3923
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3924
	if (!obj)
3925
		goto out;
3926

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3945

3946 3947
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3948

3949 3950 3951 3952
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3953

3954 3955 3956 3957 3958 3959
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3960
	}
3961

3962 3963 3964 3965
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3966 3967 3968
out:
	rcu_read_unlock();
	return err;
3969 3970 3971 3972 3973 3974
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3975
	return i915_gem_ring_throttle(dev, file_priv);
3976 3977
}

3978 3979 3980 3981
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3982
	struct drm_i915_private *dev_priv = to_i915(dev);
3983
	struct drm_i915_gem_madvise *args = data;
3984
	struct drm_i915_gem_object *obj;
3985
	int err;
3986 3987 3988 3989 3990 3991 3992 3993 3994

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3995
	obj = i915_gem_object_lookup(file_priv, args->handle);
3996 3997 3998 3999 4000 4001
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4002

C
Chris Wilson 已提交
4003
	if (obj->mm.pages &&
4004
	    i915_gem_object_is_tiled(obj) &&
4005
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4006 4007
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4008
			__i915_gem_object_unpin_pages(obj);
4009 4010 4011
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4012
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4013
			__i915_gem_object_pin_pages(obj);
4014 4015
			obj->mm.quirked = true;
		}
4016 4017
	}

C
Chris Wilson 已提交
4018 4019
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4020

C
Chris Wilson 已提交
4021
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4022
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4023 4024
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4025
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4026
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4027

4028
out:
4029
	i915_gem_object_put(obj);
4030
	return err;
4031 4032
}

4033 4034 4035 4036 4037 4038 4039
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4040
	intel_fb_obj_flush(obj, ORIGIN_CS);
4041 4042
}

4043 4044
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4045
{
4046 4047
	mutex_init(&obj->mm.lock);

4048
	INIT_LIST_HEAD(&obj->global_link);
4049
	INIT_LIST_HEAD(&obj->userfault_link);
4050
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4051
	INIT_LIST_HEAD(&obj->vma_list);
4052
	INIT_LIST_HEAD(&obj->batch_pool_link);
4053

4054 4055
	obj->ops = ops;

4056 4057 4058
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4059
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4060
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4061 4062 4063 4064

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4065

4066
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4067 4068
}

4069
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4070 4071
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4072

4073 4074
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4075 4076

	.pwrite = i915_gem_object_pwrite_gtt,
4077 4078
};

4079
struct drm_i915_gem_object *
4080
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4081
{
4082
	struct drm_i915_gem_object *obj;
4083
	struct address_space *mapping;
D
Daniel Vetter 已提交
4084
	gfp_t mask;
4085
	int ret;
4086

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4098
	obj = i915_gem_object_alloc(dev_priv);
4099
	if (obj == NULL)
4100
		return ERR_PTR(-ENOMEM);
4101

4102
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4103 4104
	if (ret)
		goto fail;
4105

4106
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4107
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4108 4109 4110 4111 4112
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4113
	mapping = obj->base.filp->f_mapping;
4114
	mapping_set_gfp_mask(mapping, mask);
4115

4116
	i915_gem_object_init(obj, &i915_gem_object_ops);
4117

4118 4119
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4120

4121
	if (HAS_LLC(dev_priv)) {
4122
		/* On some devices, we can have the GPU use the LLC (the CPU
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4138 4139
	trace_i915_gem_object_create(obj);

4140
	return obj;
4141 4142 4143 4144

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4145 4146
}

4147 4148 4149 4150 4151 4152 4153 4154
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4155
	if (obj->mm.madv != I915_MADV_WILLNEED)
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4171 4172
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4173
{
4174
	struct drm_i915_gem_object *obj, *on;
4175

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4191 4192
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4193

4194
		list_del(&obj->global_link);
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4205

4206 4207
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4208
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4209 4210 4211 4212 4213
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4214
		reservation_object_fini(&obj->__builtin_resv);
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4237

4238 4239 4240 4241 4242 4243 4244
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4245

4246 4247 4248
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4249

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4264

4265 4266 4267
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4268

4269 4270 4271
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4272
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4273
		obj->mm.madv = I915_MADV_DONTNEED;
4274

4275 4276 4277 4278 4279 4280
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4281 4282
}

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4294 4295 4296 4297 4298 4299
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4300 4301
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4302 4303
}

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
	 * of the reset, so we only reset recent machines with logical
	 * context support (that must be reset to remove any stray contexts).
	 */
	if (HAS_HW_CONTEXTS(i915)) {
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4321
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4322
{
4323
	struct drm_device *dev = &dev_priv->drm;
4324
	int ret;
4325

4326
	intel_runtime_pm_get(dev_priv);
4327 4328
	intel_suspend_gt_powersave(dev_priv);

4329
	mutex_lock(&dev->struct_mutex);
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4341
		goto err_unlock;
4342

4343 4344 4345
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4346
	if (ret)
4347
		goto err_unlock;
4348

4349
	i915_gem_retire_requests(dev_priv);
4350
	GEM_BUG_ON(dev_priv->gt.active_requests);
4351

4352
	assert_kernel_context_is_current(dev_priv);
4353
	i915_gem_context_lost(dev_priv);
4354 4355
	mutex_unlock(&dev->struct_mutex);

4356
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4357
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4358 4359 4360 4361 4362 4363 4364 4365

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4366

4367 4368 4369
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4370
	WARN_ON(dev_priv->gt.awake);
4371
	WARN_ON(!intel_engines_are_idle(dev_priv));
4372

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4392
	i915_gem_sanitize(dev_priv);
4393
	goto out_rpm_put;
4394

4395
err_unlock:
4396
	mutex_unlock(&dev->struct_mutex);
4397 4398
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4399
	return ret;
4400 4401
}

4402
void i915_gem_resume(struct drm_i915_private *dev_priv)
4403
{
4404
	struct drm_device *dev = &dev_priv->drm;
4405

4406 4407
	WARN_ON(dev_priv->gt.awake);

4408
	mutex_lock(&dev->struct_mutex);
4409
	i915_gem_restore_gtt_mappings(dev_priv);
4410 4411 4412 4413 4414

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4415
	dev_priv->gt.resume(dev_priv);
4416 4417 4418 4419

	mutex_unlock(&dev->struct_mutex);
}

4420
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4421
{
4422
	if (INTEL_GEN(dev_priv) < 5 ||
4423 4424 4425 4426 4427 4428
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4429
	if (IS_GEN5(dev_priv))
4430 4431
		return;

4432
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4433
	if (IS_GEN6(dev_priv))
4434
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4435
	else if (IS_GEN7(dev_priv))
4436
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4437
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4438
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4439 4440
	else
		BUG();
4441
}
D
Daniel Vetter 已提交
4442

4443
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4444 4445 4446 4447 4448 4449 4450
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4451
static void init_unused_rings(struct drm_i915_private *dev_priv)
4452
{
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4465 4466 4467
	}
}

4468
static int __i915_gem_restart_engines(void *data)
4469
{
4470
	struct drm_i915_private *i915 = data;
4471
	struct intel_engine_cs *engine;
4472
	enum intel_engine_id id;
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4486
	int ret;
4487

4488 4489
	dev_priv->gt.last_init_time = ktime_get();

4490 4491 4492
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4493
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4494
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4495

4496
	if (IS_HASWELL(dev_priv))
4497
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4498
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4499

4500
	if (HAS_PCH_NOP(dev_priv)) {
4501
		if (IS_IVYBRIDGE(dev_priv)) {
4502 4503 4504
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4505
		} else if (INTEL_GEN(dev_priv) >= 7) {
4506 4507 4508 4509
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4510 4511
	}

4512
	i915_gem_init_swizzling(dev_priv);
4513

4514 4515 4516 4517 4518 4519
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4520
	init_unused_rings(dev_priv);
4521

4522
	BUG_ON(!dev_priv->kernel_context);
4523

4524
	ret = i915_ppgtt_init_hw(dev_priv);
4525 4526 4527 4528 4529 4530
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4531 4532 4533
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4534

4535
	intel_mocs_init_l3cc_table(dev_priv);
4536

4537
	/* We can't enable contexts until all firmware is loaded */
4538
	ret = intel_guc_setup(dev_priv);
4539 4540
	if (ret)
		goto out;
4541

4542 4543
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4544
	return ret;
4545 4546
}

4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4568
int i915_gem_init(struct drm_i915_private *dev_priv)
4569 4570 4571
{
	int ret;

4572
	mutex_lock(&dev_priv->drm.struct_mutex);
4573

4574 4575
	i915_gem_clflush_init(dev_priv);

4576
	if (!i915.enable_execlists) {
4577
		dev_priv->gt.resume = intel_legacy_submission_resume;
4578
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4579
	} else {
4580
		dev_priv->gt.resume = intel_lr_context_resume;
4581
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4582 4583
	}

4584 4585 4586 4587 4588 4589 4590 4591
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4592
	i915_gem_init_userptr(dev_priv);
4593 4594 4595 4596

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4597

4598
	ret = i915_gem_context_init(dev_priv);
4599 4600
	if (ret)
		goto out_unlock;
4601

4602
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4603
	if (ret)
4604
		goto out_unlock;
4605

4606
	ret = i915_gem_init_hw(dev_priv);
4607
	if (ret == -EIO) {
4608
		/* Allow engine initialisation to fail by marking the GPU as
4609 4610 4611 4612
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4613
		i915_gem_set_wedged(dev_priv);
4614
		ret = 0;
4615
	}
4616 4617

out_unlock:
4618
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4619
	mutex_unlock(&dev_priv->drm.struct_mutex);
4620

4621
	return ret;
4622 4623
}

4624 4625 4626 4627 4628
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4629
void
4630
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4631
{
4632
	struct intel_engine_cs *engine;
4633
	enum intel_engine_id id;
4634

4635
	for_each_engine(engine, dev_priv, id)
4636
		dev_priv->gt.cleanup_engine(engine);
4637 4638
}

4639 4640 4641
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4642
	int i;
4643 4644 4645 4646

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4647 4648 4649
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4650 4651 4652 4653
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4654
	if (intel_vgpu_active(dev_priv))
4655 4656 4657 4658
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4659 4660 4661 4662 4663 4664 4665
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4666
	i915_gem_restore_fences(dev_priv);
4667

4668
	i915_gem_detect_bit_6_swizzle(dev_priv);
4669 4670
}

4671
int
4672
i915_gem_load_init(struct drm_i915_private *dev_priv)
4673
{
4674
	int err = -ENOMEM;
4675

4676 4677
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4678 4679
		goto err_out;

4680 4681
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4682 4683
		goto err_objects;

4684 4685 4686 4687 4688
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4689 4690
		goto err_vmas;

4691 4692 4693 4694 4695 4696
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4697 4698
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4699
	err = i915_gem_timeline_init__global(dev_priv);
4700 4701
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4702
		goto err_dependencies;
4703

4704
	INIT_LIST_HEAD(&dev_priv->context_list);
4705 4706
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4707 4708
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4709
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4710
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4711
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4712
			  i915_gem_retire_work_handler);
4713
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4714
			  i915_gem_idle_work_handler);
4715
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4716
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4717

4718
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4719

4720 4721
	dev_priv->mm.interruptible = true;

4722 4723
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4724
	spin_lock_init(&dev_priv->fb_tracking.lock);
4725 4726 4727

	return 0;

4728 4729
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4730 4731 4732 4733 4734 4735 4736 4737
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4738
}
4739

4740
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4741
{
4742
	i915_gem_drain_freed_objects(dev_priv);
4743
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4744
	WARN_ON(dev_priv->mm.object_count);
4745

4746 4747 4748 4749 4750
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4751
	kmem_cache_destroy(dev_priv->dependencies);
4752 4753 4754
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4755 4756 4757

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4758 4759
}

4760 4761 4762 4763 4764 4765 4766 4767 4768
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;
}

4769 4770 4771
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4772 4773 4774 4775 4776
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4787 4788 4789
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4790 4791
	 */

4792 4793
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4794

4795
	for (p = phases; *p; p++) {
4796
		list_for_each_entry(obj, *p, global_link) {
4797 4798 4799
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4800
	}
4801
	mutex_unlock(&dev_priv->drm.struct_mutex);
4802 4803 4804 4805

	return 0;
}

4806
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4807
{
4808
	struct drm_i915_file_private *file_priv = file->driver_priv;
4809
	struct drm_i915_gem_request *request;
4810 4811 4812 4813 4814

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4815
	spin_lock(&file_priv->mm.lock);
4816
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4817
		request->file_priv = NULL;
4818
	spin_unlock(&file_priv->mm.lock);
4819

4820
	if (!list_empty(&file_priv->rps.link)) {
4821
		spin_lock(&to_i915(dev)->rps.client_lock);
4822
		list_del(&file_priv->rps.link);
4823
		spin_unlock(&to_i915(dev)->rps.client_lock);
4824
	}
4825 4826 4827 4828 4829
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4830
	int ret;
4831

4832
	DRM_DEBUG("\n");
4833 4834 4835 4836 4837 4838

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4839
	file_priv->dev_priv = to_i915(dev);
4840
	file_priv->file = file;
4841
	INIT_LIST_HEAD(&file_priv->rps.link);
4842 4843 4844 4845

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4846
	file_priv->bsd_engine = -1;
4847

4848 4849 4850
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4851

4852
	return ret;
4853 4854
}

4855 4856
/**
 * i915_gem_track_fb - update frontbuffer tracking
4857 4858 4859
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4860 4861 4862 4863
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4864 4865 4866 4867
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4868 4869 4870 4871 4872 4873 4874 4875 4876
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4877
	if (old) {
4878 4879
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4880 4881 4882
	}

	if (new) {
4883 4884
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4885 4886 4887
	}
}

4888 4889
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4890
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4891 4892 4893 4894 4895 4896 4897
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4898
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4899
	if (IS_ERR(obj))
4900 4901 4902 4903 4904 4905
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4906
	ret = i915_gem_object_pin_pages(obj);
4907 4908 4909
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4910
	sg = obj->mm.pages;
4911
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4912
	obj->mm.dirty = true; /* Backing store is now out of date */
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4924
	i915_gem_object_put(obj);
4925 4926
	return ERR_PTR(ret);
}
4927 4928 4929 4930 4931 4932

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4933
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4934 4935 4936 4937 4938
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4939
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5064
	if (!obj->mm.dirty)
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5080 5081 5082

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5083
#include "selftests/mock_gem_device.c"
5084
#include "selftests/huge_gem_object.c"
5085
#include "selftests/i915_gem_object.c"
5086
#include "selftests/i915_gem_coherency.c"
5087
#endif