i915_gem.c 139.2 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56 57 58 59 60 61 62
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105
	if (!i915_reset_in_progress(error))
106 107
		return 0;

108 109 110 111 112
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
113
	ret = wait_event_interruptible_timeout(error->reset_queue,
114
					       !i915_reset_in_progress(error),
115
					       10*HZ);
116 117 118 119
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
120
		return ret;
121 122
	} else {
		return 0;
123
	}
124 125
}

126
int i915_mutex_lock_interruptible(struct drm_device *dev)
127
{
128
	struct drm_i915_private *dev_priv = dev->dev_private;
129 130
	int ret;

131
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

139
	WARN_ON(i915_verify_lists(dev));
140 141
	return 0;
}
142

143 144
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145
			    struct drm_file *file)
146
{
147
	struct drm_i915_private *dev_priv = to_i915(dev);
148
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
149
	struct drm_i915_gem_get_aperture *args = data;
150
	struct i915_vma *vma;
151
	size_t pinned;
152

153
	pinned = 0;
154
	mutex_lock(&dev->struct_mutex);
155
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156 157
		if (vma->pin_count)
			pinned += vma->node.size;
158
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	mutex_unlock(&dev->struct_mutex);
162

163
	args->aper_size = ggtt->base.total;
164
	args->aper_available_size = args->aper_size - pinned;
165

166 167 168
	return 0;
}

169 170
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171
{
172 173 174 175 176
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

194
		put_page(page);
195 196 197
		vaddr += PAGE_SIZE;
	}

198
	i915_gem_chipset_flush(to_i915(obj->base.dev));
199 200 201 202 203 204 205 206 207 208 209 210 211

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
228
	if (WARN_ON(ret)) {
229 230 231 232 233 234 235 236 237 238
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
239
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
240
		char *vaddr = obj->phys_handle->vaddr;
241 242 243
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
258
				mark_page_accessed(page);
259
			put_page(page);
260 261
			vaddr += PAGE_SIZE;
		}
262
		obj->dirty = 0;
263 264
	}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
288
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
289 290 291 292 293 294 295
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
296 297 298 299 300 301 302
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
303
	int ret;
304 305 306 307 308 309 310 311 312 313 314 315 316 317

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

318 319 320 321
	ret = drop_pages(obj);
	if (ret)
		return ret;

322 323 324 325 326 327
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
328 329 330
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
331 332 333 334 335 336 337 338 339
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
340
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
341
	int ret = 0;
342 343 344 345 346 347 348

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
349

350
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
351 352 353 354 355 356 357 358 359 360
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
361 362 363 364
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
365 366
	}

367
	drm_clflush_virt_range(vaddr, args->size);
368
	i915_gem_chipset_flush(to_i915(dev));
369 370

out:
371
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
372
	return ret;
373 374
}

375 376 377
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
378
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
379 380 381 382 383
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
384
	kmem_cache_free(dev_priv->objects, obj);
385 386
}

387 388 389 390 391
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
392
{
393
	struct drm_i915_gem_object *obj;
394 395
	int ret;
	u32 handle;
396

397
	size = roundup(size, PAGE_SIZE);
398 399
	if (size == 0)
		return -EINVAL;
400 401

	/* Allocate the new object */
402
	obj = i915_gem_object_create(dev, size);
403 404
	if (IS_ERR(obj))
		return PTR_ERR(obj);
405

406
	ret = drm_gem_handle_create(file, &obj->base, &handle);
407
	/* drop reference from allocate - handle holds it now */
408 409 410
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
411

412
	*handle_p = handle;
413 414 415
	return 0;
}

416 417 418 419 420 421
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
422
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
423 424
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
425
			       args->size, &args->handle);
426 427 428 429
}

/**
 * Creates a new mm object and returns a handle to it.
430 431 432
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
433 434 435 436 437 438
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

508
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

532 533 534
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
535
static int
536 537 538 539 540 541 542
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

543
	if (unlikely(page_do_bit17_swizzling))
544 545 546 547 548 549 550 551 552 553 554
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

555
	return ret ? -EFAULT : 0;
556 557
}

558 559 560 561
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
562
	if (unlikely(swizzled)) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

580 581 582 583 584 585 586 587 588 589 590 591
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
592 593 594
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
595 596 597 598 599 600 601 602 603 604 605

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

606
	return ret ? - EFAULT : 0;
607 608
}

609
static int
610 611 612 613
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
614
{
615
	char __user *user_data;
616
	ssize_t remain;
617
	loff_t offset;
618
	int shmem_page_offset, page_length, ret = 0;
619
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620
	int prefaulted = 0;
621
	int needs_clflush = 0;
622
	struct sg_page_iter sg_iter;
623

624
	user_data = u64_to_user_ptr(args->data_ptr);
625 626
	remain = args->size;

627
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628

629
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 631 632
	if (ret)
		return ret;

633
	offset = args->offset;
634

635 636
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
637
		struct page *page = sg_page_iter_page(&sg_iter);
638 639 640 641

		if (remain <= 0)
			break;

642 643 644 645 646
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
647
		shmem_page_offset = offset_in_page(offset);
648 649 650 651
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

652 653 654
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

655 656 657 658 659
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
660 661 662

		mutex_unlock(&dev->struct_mutex);

663
		if (likely(!i915.prefault_disable) && !prefaulted) {
664
			ret = fault_in_multipages_writeable(user_data, remain);
665 666 667 668 669 670 671
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
672

673 674 675
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
676

677
		mutex_lock(&dev->struct_mutex);
678 679

		if (ret)
680 681
			goto out;

682
next_page:
683
		remain -= page_length;
684
		user_data += page_length;
685 686 687
		offset += page_length;
	}

688
out:
689 690
	i915_gem_object_unpin_pages(obj);

691 692 693
	return ret;
}

694 695
/**
 * Reads data from the object referenced by handle.
696 697 698
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
699 700 701 702 703
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
704
		     struct drm_file *file)
705 706
{
	struct drm_i915_gem_pread *args = data;
707
	struct drm_i915_gem_object *obj;
708
	int ret = 0;
709

710 711 712 713
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
714
		       u64_to_user_ptr(args->data_ptr),
715 716 717
		       args->size))
		return -EFAULT;

718
	ret = i915_mutex_lock_interruptible(dev);
719
	if (ret)
720
		return ret;
721

722
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
723
	if (&obj->base == NULL) {
724 725
		ret = -ENOENT;
		goto unlock;
726
	}
727

728
	/* Bounds check source.  */
729 730
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
731
		ret = -EINVAL;
732
		goto out;
C
Chris Wilson 已提交
733 734
	}

735 736 737 738 739 740 741 742
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
743 744
	trace_i915_gem_object_pread(obj, args->offset, args->size);

745
	ret = i915_gem_shmem_pread(dev, obj, args, file);
746

747
out:
748
	drm_gem_object_unreference(&obj->base);
749
unlock:
750
	mutex_unlock(&dev->struct_mutex);
751
	return ret;
752 753
}

754 755
/* This is the fast write path which cannot handle
 * page faults in the source data
756
 */
757 758 759 760 761 762

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
763
{
764 765
	void __iomem *vaddr_atomic;
	void *vaddr;
766
	unsigned long unwritten;
767

P
Peter Zijlstra 已提交
768
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
769 770 771
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
772
						      user_data, length);
P
Peter Zijlstra 已提交
773
	io_mapping_unmap_atomic(vaddr_atomic);
774
	return unwritten;
775 776
}

777 778 779
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
780 781 782 783
 * @dev: drm device pointer
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
784
 */
785
static int
786
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
787
			 struct drm_i915_gem_object *obj,
788
			 struct drm_i915_gem_pwrite *args,
789
			 struct drm_file *file)
790
{
791 792 793
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
	uint64_t remain, offset;
794
	char __user *user_data;
795
	int ret;
D
Daniel Vetter 已提交
796

797
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
	}
D
Daniel Vetter 已提交
814 815 816 817 818 819 820 821

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
822

823
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
824
	obj->dirty = true;
825

826 827 828 829
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
830 831
		/* Operation in this page
		 *
832 833 834
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
835
		 */
836 837 838 839 840 841 842 843 844 845 846 847 848
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
849
		/* If we get a fault while copying data, then (presumably) our
850 851
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
852
		 */
853
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
854 855
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
856
			goto out_flush;
D
Daniel Vetter 已提交
857
		}
858

859 860 861
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
862 863
	}

864
out_flush:
865
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
866
out_unpin:
867 868 869 870 871 872 873 874 875 876
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
877
out:
878
	return ret;
879 880
}

881 882 883 884
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
885
static int
886 887 888 889 890
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
891
{
892
	char *vaddr;
893
	int ret;
894

895
	if (unlikely(page_do_bit17_swizzling))
896
		return -EINVAL;
897

898 899 900 901
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
902 903
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
904 905 906 907
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
908

909
	return ret ? -EFAULT : 0;
910 911
}

912 913
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
914
static int
915 916 917 918 919
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
920
{
921 922
	char *vaddr;
	int ret;
923

924
	vaddr = kmap(page);
925
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
926 927 928
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
929 930
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
931 932
						user_data,
						page_length);
933 934 935 936 937
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
938 939 940
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
941
	kunmap(page);
942

943
	return ret ? -EFAULT : 0;
944 945 946
}

static int
947 948 949 950
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
951 952
{
	ssize_t remain;
953 954
	loff_t offset;
	char __user *user_data;
955
	int shmem_page_offset, page_length, ret = 0;
956
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
957
	int hit_slowpath = 0;
958 959
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
960
	struct sg_page_iter sg_iter;
961

962
	user_data = u64_to_user_ptr(args->data_ptr);
963 964
	remain = args->size;

965
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
966

967 968 969 970 971
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
972
		needs_clflush_after = cpu_write_needs_clflush(obj);
973 974 975
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
976
	}
977 978 979 980 981
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
982

983 984 985 986
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

987
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
988

989 990
	i915_gem_object_pin_pages(obj);

991
	offset = args->offset;
992
	obj->dirty = 1;
993

994 995
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
996
		struct page *page = sg_page_iter_page(&sg_iter);
997
		int partial_cacheline_write;
998

999 1000 1001
		if (remain <= 0)
			break;

1002 1003 1004 1005 1006
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1007
		shmem_page_offset = offset_in_page(offset);
1008 1009 1010 1011 1012

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1013 1014 1015 1016 1017 1018 1019
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1020 1021 1022
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1023 1024 1025 1026 1027 1028
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1029 1030 1031

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1032 1033 1034 1035
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1036

1037
		mutex_lock(&dev->struct_mutex);
1038 1039

		if (ret)
1040 1041
			goto out;

1042
next_page:
1043
		remain -= page_length;
1044
		user_data += page_length;
1045
		offset += page_length;
1046 1047
	}

1048
out:
1049 1050
	i915_gem_object_unpin_pages(obj);

1051
	if (hit_slowpath) {
1052 1053 1054 1055 1056 1057 1058
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1059
			if (i915_gem_clflush_object(obj, obj->pin_display))
1060
				needs_clflush_after = true;
1061
		}
1062
	}
1063

1064
	if (needs_clflush_after)
1065
		i915_gem_chipset_flush(to_i915(dev));
1066 1067
	else
		obj->cache_dirty = true;
1068

1069
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1070
	return ret;
1071 1072 1073 1074
}

/**
 * Writes data to the object referenced by handle.
1075 1076 1077
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1078 1079 1080 1081 1082
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1083
		      struct drm_file *file)
1084
{
1085
	struct drm_i915_private *dev_priv = dev->dev_private;
1086
	struct drm_i915_gem_pwrite *args = data;
1087
	struct drm_i915_gem_object *obj;
1088 1089 1090 1091 1092 1093
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1094
		       u64_to_user_ptr(args->data_ptr),
1095 1096 1097
		       args->size))
		return -EFAULT;

1098
	if (likely(!i915.prefault_disable)) {
1099
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1100 1101 1102 1103
						   args->size);
		if (ret)
			return -EFAULT;
	}
1104

1105 1106
	intel_runtime_pm_get(dev_priv);

1107
	ret = i915_mutex_lock_interruptible(dev);
1108
	if (ret)
1109
		goto put_rpm;
1110

1111
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1112
	if (&obj->base == NULL) {
1113 1114
		ret = -ENOENT;
		goto unlock;
1115
	}
1116

1117
	/* Bounds check destination. */
1118 1119
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1120
		ret = -EINVAL;
1121
		goto out;
C
Chris Wilson 已提交
1122 1123
	}

1124 1125 1126 1127 1128 1129 1130 1131
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1132 1133
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1134
	ret = -EFAULT;
1135 1136 1137 1138 1139 1140
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1141 1142 1143
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1144
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1145 1146 1147
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1148
	}
1149

1150 1151 1152 1153 1154 1155
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1156

1157
out:
1158
	drm_gem_object_unreference(&obj->base);
1159
unlock:
1160
	mutex_unlock(&dev->struct_mutex);
1161 1162 1163
put_rpm:
	intel_runtime_pm_put(dev_priv);

1164 1165 1166
	return ret;
}

1167 1168
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1169
{
1170 1171
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1172

1173
	if (__i915_reset_in_progress(reset_counter)) {
1174 1175 1176 1177 1178
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1179
		return -EAGAIN;
1180 1181 1182 1183 1184
	}

	return 0;
}

1185 1186 1187 1188 1189 1190
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1191
		       struct intel_engine_cs *engine)
1192
{
1193
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1194 1195
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1228
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1229
{
1230
	unsigned long timeout;
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1242

1243
	if (req->engine->irq_refcount)
1244 1245
		return -EBUSY;

1246 1247 1248 1249
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1250
	timeout = local_clock_us(&cpu) + 5;
1251
	while (!need_resched()) {
D
Daniel Vetter 已提交
1252
		if (i915_gem_request_completed(req, true))
1253 1254
			return 0;

1255 1256 1257
		if (signal_pending_state(state, current))
			break;

1258
		if (busywait_stop(timeout, cpu))
1259
			break;
1260

1261 1262
		cpu_relax_lowlatency();
	}
1263

D
Daniel Vetter 已提交
1264
	if (i915_gem_request_completed(req, false))
1265 1266 1267
		return 0;

	return -EAGAIN;
1268 1269
}

1270
/**
1271 1272
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1273 1274
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1275
 * @rps: RPS client
1276
 *
1277 1278 1279 1280 1281 1282 1283
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1284
 * Returns 0 if the request was found within the alloted time. Else returns the
1285 1286
 * errno with remaining time filled in timeout argument.
 */
1287
int __i915_wait_request(struct drm_i915_gem_request *req,
1288
			bool interruptible,
1289
			s64 *timeout,
1290
			struct intel_rps_client *rps)
1291
{
1292
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1293
	struct drm_i915_private *dev_priv = req->i915;
1294
	const bool irq_test_in_progress =
1295
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1296
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1297
	DEFINE_WAIT(wait);
1298
	unsigned long timeout_expire;
1299
	s64 before = 0; /* Only to silence a compiler warning. */
1300 1301
	int ret;

1302
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1303

1304 1305 1306
	if (list_empty(&req->list))
		return 0;

1307
	if (i915_gem_request_completed(req, true))
1308 1309
		return 0;

1310 1311 1312 1313 1314 1315 1316 1317 1318
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1319 1320 1321 1322 1323

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1324
	}
1325

1326
	if (INTEL_INFO(dev_priv)->gen >= 6)
1327
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1328

1329
	trace_i915_gem_request_wait_begin(req);
1330 1331

	/* Optimistic spin for the next jiffie before touching IRQs */
1332
	ret = __i915_spin_request(req, state);
1333 1334 1335
	if (ret == 0)
		goto out;

1336
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1337 1338 1339 1340
		ret = -ENODEV;
		goto out;
	}

1341 1342
	for (;;) {
		struct timer_list timer;
1343

1344
		prepare_to_wait(&engine->irq_queue, &wait, state);
1345

1346
		/* We need to check whether any gpu reset happened in between
1347 1348 1349 1350 1351 1352
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1353
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1354
			ret = 0;
1355 1356
			break;
		}
1357

1358
		if (i915_gem_request_completed(req, false)) {
1359 1360 1361
			ret = 0;
			break;
		}
1362

1363
		if (signal_pending_state(state, current)) {
1364 1365 1366 1367
			ret = -ERESTARTSYS;
			break;
		}

1368
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1369 1370 1371 1372 1373
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1374
		if (timeout || missed_irq(dev_priv, engine)) {
1375 1376
			unsigned long expire;

1377
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1378
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1379 1380 1381
			mod_timer(&timer, expire);
		}

1382
		io_schedule();
1383 1384 1385 1386 1387 1388

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1389
	if (!irq_test_in_progress)
1390
		engine->irq_put(engine);
1391

1392
	finish_wait(&engine->irq_queue, &wait);
1393

1394 1395 1396
out:
	trace_i915_gem_request_wait_end(req);

1397
	if (timeout) {
1398
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1399 1400

		*timeout = tres < 0 ? 0 : tres;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1411 1412
	}

1413
	return ret;
1414 1415
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1453 1454 1455

	put_pid(request->pid);
	request->pid = NULL;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1475
	if (request->previous_context) {
1476
		if (i915.enable_execlists)
1477 1478
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1479 1480
	}

1481
	i915_gem_context_unreference(request->ctx);
1482 1483 1484 1485 1486 1487
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1488
	struct intel_engine_cs *engine = req->engine;
1489 1490
	struct drm_i915_gem_request *tmp;

1491
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1506
/**
1507
 * Waits for a request to be signaled, and cleans up the
1508
 * request and object lists appropriately for that event.
1509
 * @req: request to wait on
1510 1511
 */
int
1512
i915_wait_request(struct drm_i915_gem_request *req)
1513
{
1514
	struct drm_i915_private *dev_priv = req->i915;
1515
	bool interruptible;
1516 1517
	int ret;

1518 1519
	interruptible = dev_priv->mm.interruptible;

1520
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1521

1522
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1523 1524
	if (ret)
		return ret;
1525

1526 1527 1528 1529
	/* If the GPU hung, we want to keep the requests to find the guilty. */
	if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
		__i915_gem_request_retire__upto(req);

1530 1531 1532
	return 0;
}

1533 1534 1535
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1536 1537
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1538
 */
1539
int
1540 1541 1542
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1543
	int ret, i;
1544

1545
	if (!obj->active)
1546 1547
		return 0;

1548 1549 1550 1551 1552
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1553

1554
			i = obj->last_write_req->engine->id;
1555 1556 1557 1558 1559 1560
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1561
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1562 1563 1564 1565 1566 1567 1568 1569 1570
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1571
		GEM_BUG_ON(obj->active);
1572 1573 1574 1575 1576 1577 1578 1579 1580
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1581
	int ring = req->engine->id;
1582 1583 1584 1585 1586 1587

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1588 1589
	if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
		__i915_gem_request_retire__upto(req);
1590 1591
}

1592 1593 1594 1595 1596
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1597
					    struct intel_rps_client *rps,
1598 1599 1600 1601
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1602
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1603
	int ret, i, n = 0;
1604 1605 1606 1607

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1608
	if (!obj->active)
1609 1610
		return 0;

1611 1612 1613 1614 1615 1616 1617 1618 1619
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1620
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1631
	mutex_unlock(&dev->struct_mutex);
1632
	ret = 0;
1633
	for (i = 0; ret == 0 && i < n; i++)
1634
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1635 1636
	mutex_lock(&dev->struct_mutex);

1637 1638 1639 1640 1641 1642 1643
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1644 1645
}

1646 1647 1648 1649 1650 1651
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1652
/**
1653 1654
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1655 1656 1657
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1658 1659 1660
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1661
			  struct drm_file *file)
1662 1663
{
	struct drm_i915_gem_set_domain *args = data;
1664
	struct drm_i915_gem_object *obj;
1665 1666
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1667 1668
	int ret;

1669
	/* Only handle setting domains to types used by the CPU. */
1670
	if (write_domain & I915_GEM_GPU_DOMAINS)
1671 1672
		return -EINVAL;

1673
	if (read_domains & I915_GEM_GPU_DOMAINS)
1674 1675 1676 1677 1678 1679 1680 1681
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1682
	ret = i915_mutex_lock_interruptible(dev);
1683
	if (ret)
1684
		return ret;
1685

1686
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1687
	if (&obj->base == NULL) {
1688 1689
		ret = -ENOENT;
		goto unlock;
1690
	}
1691

1692 1693 1694 1695
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1696
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1697
							  to_rps_client(file),
1698
							  !write_domain);
1699 1700 1701
	if (ret)
		goto unref;

1702
	if (read_domains & I915_GEM_DOMAIN_GTT)
1703
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1704
	else
1705
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1706

1707 1708 1709 1710 1711
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1712
unref:
1713
	drm_gem_object_unreference(&obj->base);
1714
unlock:
1715 1716 1717 1718 1719 1720
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1721 1722 1723
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1724 1725 1726
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1727
			 struct drm_file *file)
1728 1729
{
	struct drm_i915_gem_sw_finish *args = data;
1730
	struct drm_i915_gem_object *obj;
1731 1732
	int ret = 0;

1733
	ret = i915_mutex_lock_interruptible(dev);
1734
	if (ret)
1735
		return ret;
1736

1737
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1738
	if (&obj->base == NULL) {
1739 1740
		ret = -ENOENT;
		goto unlock;
1741 1742 1743
	}

	/* Pinned buffers may be scanout, so flush the cache */
1744
	if (obj->pin_display)
1745
		i915_gem_object_flush_cpu_write_domain(obj);
1746

1747
	drm_gem_object_unreference(&obj->base);
1748
unlock:
1749 1750 1751 1752 1753
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1754 1755 1756 1757 1758
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1759 1760 1761
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1772 1773 1774
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1775
		    struct drm_file *file)
1776 1777 1778 1779 1780
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1781 1782 1783
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1784
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1785 1786
		return -ENODEV;

1787
	obj = drm_gem_object_lookup(file, args->handle);
1788
	if (obj == NULL)
1789
		return -ENOENT;
1790

1791 1792 1793 1794 1795 1796 1797 1798
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1799
	addr = vm_mmap(obj->filp, 0, args->size,
1800 1801
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1802 1803 1804 1805
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1806 1807 1808 1809
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1810 1811 1812 1813 1814 1815 1816 1817
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1818
	drm_gem_object_unreference_unlocked(obj);
1819 1820 1821 1822 1823 1824 1825 1826
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1827 1828
/**
 * i915_gem_fault - fault a page into the GTT
1829 1830
 * @vma: VMA in question
 * @vmf: fault info
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1845 1846
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1847 1848
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1849
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1850 1851 1852
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1853
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1854

1855 1856
	intel_runtime_pm_get(dev_priv);

1857 1858 1859 1860
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1861 1862 1863
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1864

C
Chris Wilson 已提交
1865 1866
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1867 1868 1869 1870 1871 1872 1873 1874 1875
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1876 1877
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1878
		ret = -EFAULT;
1879 1880 1881
		goto unlock;
	}

1882
	/* Use a partial view if the object is bigger than the aperture. */
1883
	if (obj->base.size >= ggtt->mappable_end &&
1884
	    obj->tiling_mode == I915_TILING_NONE) {
1885
		static const unsigned int chunk_size = 256; // 1 MiB
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1899 1900
	if (ret)
		goto unlock;
1901

1902 1903 1904
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1905

1906
	ret = i915_gem_object_get_fence(obj);
1907
	if (ret)
1908
		goto unpin;
1909

1910
	/* Finally, remap it using the new GTT offset */
1911
	pfn = ggtt->mappable_base +
1912
		i915_gem_obj_ggtt_offset_view(obj, &view);
1913
	pfn >>= PAGE_SHIFT;
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1924

1925 1926
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1927 1928 1929 1930 1931
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1953
unpin:
1954
	i915_gem_object_ggtt_unpin_view(obj, &view);
1955
unlock:
1956
	mutex_unlock(&dev->struct_mutex);
1957
out:
1958
	switch (ret) {
1959
	case -EIO:
1960 1961 1962 1963 1964 1965 1966
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1967 1968 1969
			ret = VM_FAULT_SIGBUS;
			break;
		}
1970
	case -EAGAIN:
D
Daniel Vetter 已提交
1971 1972 1973 1974
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1975
		 */
1976 1977
	case 0:
	case -ERESTARTSYS:
1978
	case -EINTR:
1979 1980 1981 1982 1983
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1984 1985
		ret = VM_FAULT_NOPAGE;
		break;
1986
	case -ENOMEM:
1987 1988
		ret = VM_FAULT_OOM;
		break;
1989
	case -ENOSPC:
1990
	case -EFAULT:
1991 1992
		ret = VM_FAULT_SIGBUS;
		break;
1993
	default:
1994
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1995 1996
		ret = VM_FAULT_SIGBUS;
		break;
1997
	}
1998 1999 2000

	intel_runtime_pm_put(dev_priv);
	return ret;
2001 2002
}

2003 2004 2005 2006
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2007
 * Preserve the reservation of the mmapping with the DRM core code, but
2008 2009 2010 2011 2012 2013 2014 2015 2016
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2017
void
2018
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2019
{
2020 2021 2022 2023 2024 2025
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2026 2027
	if (!obj->fault_mappable)
		return;
2028

2029 2030
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

2041
	obj->fault_mappable = false;
2042 2043
}

2044 2045 2046 2047 2048 2049 2050 2051 2052
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

2053
uint32_t
2054
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2055
{
2056
	uint32_t gtt_size;
2057 2058

	if (INTEL_INFO(dev)->gen >= 4 ||
2059 2060
	    tiling_mode == I915_TILING_NONE)
		return size;
2061 2062

	/* Previous chips need a power-of-two fence region when tiling */
2063
	if (IS_GEN3(dev))
2064
		gtt_size = 1024*1024;
2065
	else
2066
		gtt_size = 512*1024;
2067

2068 2069
	while (gtt_size < size)
		gtt_size <<= 1;
2070

2071
	return gtt_size;
2072 2073
}

2074 2075
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2076 2077 2078 2079
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
2080 2081
 *
 * Return the required GTT alignment for an object, taking into account
2082
 * potential fence register mapping.
2083
 */
2084 2085 2086
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2087 2088 2089 2090 2091
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2092
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2093
	    tiling_mode == I915_TILING_NONE)
2094 2095
		return 4096;

2096 2097 2098 2099
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2100
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2101 2102
}

2103 2104 2105 2106 2107
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2108 2109
	dev_priv->mm.shrinker_no_lock_stealing = true;

2110 2111
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2112
		goto out;
2113 2114 2115 2116 2117 2118 2119 2120

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2121 2122 2123 2124 2125
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2126 2127
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2128
		goto out;
2129 2130

	i915_gem_shrink_all(dev_priv);
2131 2132 2133 2134 2135
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2136 2137 2138 2139 2140 2141 2142
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2143
int
2144 2145
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2146
		  uint32_t handle,
2147
		  uint64_t *offset)
2148
{
2149
	struct drm_i915_gem_object *obj;
2150 2151
	int ret;

2152
	ret = i915_mutex_lock_interruptible(dev);
2153
	if (ret)
2154
		return ret;
2155

2156
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2157
	if (&obj->base == NULL) {
2158 2159 2160
		ret = -ENOENT;
		goto unlock;
	}
2161

2162
	if (obj->madv != I915_MADV_WILLNEED) {
2163
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2164
		ret = -EFAULT;
2165
		goto out;
2166 2167
	}

2168 2169 2170
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2171

2172
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2173

2174
out:
2175
	drm_gem_object_unreference(&obj->base);
2176
unlock:
2177
	mutex_unlock(&dev->struct_mutex);
2178
	return ret;
2179 2180
}

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2202
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2203 2204
}

D
Daniel Vetter 已提交
2205 2206 2207
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2208
{
2209
	i915_gem_object_free_mmap_offset(obj);
2210

2211 2212
	if (obj->base.filp == NULL)
		return;
2213

D
Daniel Vetter 已提交
2214 2215 2216 2217 2218
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2219
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2220 2221
	obj->madv = __I915_MADV_PURGED;
}
2222

2223 2224 2225
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2226
{
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2241 2242
}

2243
static void
2244
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2245
{
2246 2247
	struct sgt_iter sgt_iter;
	struct page *page;
2248
	int ret;
2249

2250
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2251

C
Chris Wilson 已提交
2252
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2253
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2254 2255 2256
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2257
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2258 2259 2260
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2261 2262
	i915_gem_gtt_finish_object(obj);

2263
	if (i915_gem_object_needs_bit17_swizzle(obj))
2264 2265
		i915_gem_object_save_bit_17_swizzle(obj);

2266 2267
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2268

2269
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2270
		if (obj->dirty)
2271
			set_page_dirty(page);
2272

2273
		if (obj->madv == I915_MADV_WILLNEED)
2274
			mark_page_accessed(page);
2275

2276
		put_page(page);
2277
	}
2278
	obj->dirty = 0;
2279

2280 2281
	sg_free_table(obj->pages);
	kfree(obj->pages);
2282
}
C
Chris Wilson 已提交
2283

2284
int
2285 2286 2287 2288
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2289
	if (obj->pages == NULL)
2290 2291
		return 0;

2292 2293 2294
	if (obj->pages_pin_count)
		return -EBUSY;

2295
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2296

2297 2298 2299
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2300
	list_del(&obj->global_list);
2301

2302
	if (obj->mapping) {
2303 2304 2305 2306
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2307 2308 2309
		obj->mapping = NULL;
	}

2310
	ops->put_pages(obj);
2311
	obj->pages = NULL;
2312

2313
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2314 2315 2316 2317

	return 0;
}

2318
static int
C
Chris Wilson 已提交
2319
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2320
{
C
Chris Wilson 已提交
2321
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2322 2323
	int page_count, i;
	struct address_space *mapping;
2324 2325
	struct sg_table *st;
	struct scatterlist *sg;
2326
	struct sgt_iter sgt_iter;
2327
	struct page *page;
2328
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2329
	int ret;
C
Chris Wilson 已提交
2330
	gfp_t gfp;
2331

C
Chris Wilson 已提交
2332 2333 2334 2335 2336 2337 2338
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2339 2340 2341 2342
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2343
	page_count = obj->base.size / PAGE_SIZE;
2344 2345
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2346
		return -ENOMEM;
2347
	}
2348

2349 2350 2351 2352 2353
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2354
	mapping = file_inode(obj->base.filp)->i_mapping;
2355
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2356
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2357 2358 2359
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2360 2361
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2362 2363 2364 2365 2366
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2367 2368 2369 2370 2371 2372 2373 2374
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2375
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2376 2377
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2378
				goto err_pages;
I
Imre Deak 已提交
2379
			}
C
Chris Wilson 已提交
2380
		}
2381 2382 2383 2384 2385 2386 2387 2388
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2389 2390 2391 2392 2393 2394 2395 2396 2397
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2398 2399 2400

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2401
	}
2402 2403 2404 2405
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2406 2407
	obj->pages = st;

I
Imre Deak 已提交
2408 2409 2410 2411
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2412
	if (i915_gem_object_needs_bit17_swizzle(obj))
2413 2414
		i915_gem_object_do_bit_17_swizzle(obj);

2415 2416 2417 2418
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2419 2420 2421
	return 0;

err_pages:
2422
	sg_mark_end(sg);
2423 2424
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2425 2426
	sg_free_table(st);
	kfree(st);
2427 2428 2429 2430 2431 2432 2433 2434 2435

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2436 2437 2438 2439
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2456
	if (obj->pages)
2457 2458
		return 0;

2459
	if (obj->madv != I915_MADV_WILLNEED) {
2460
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2461
		return -EFAULT;
2462 2463
	}

2464 2465
	BUG_ON(obj->pages_pin_count);

2466 2467 2468 2469
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2470
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2471 2472 2473 2474

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2475
	return 0;
2476 2477
}

2478 2479 2480 2481 2482
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2483 2484
	struct sgt_iter sgt_iter;
	struct page *page;
2485 2486
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2487 2488 2489 2490 2491 2492 2493
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2494 2495 2496 2497 2498 2499
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2500

2501 2502
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2503 2504 2505 2506 2507 2508

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2509 2510
	if (pages != stack_pages)
		drm_free_large(pages);
2511 2512 2513 2514 2515

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2528 2529 2530
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2531 2532 2533 2534 2535 2536 2537 2538
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2539
void i915_vma_move_to_active(struct i915_vma *vma,
2540
			     struct drm_i915_gem_request *req)
2541
{
2542
	struct drm_i915_gem_object *obj = vma->obj;
2543
	struct intel_engine_cs *engine;
2544

2545
	engine = i915_gem_request_get_engine(req);
2546 2547

	/* Add a reference if we're newly entering the active list. */
2548
	if (obj->active == 0)
2549
		drm_gem_object_reference(&obj->base);
2550
	obj->active |= intel_engine_flag(engine);
2551

2552
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2553
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2554

2555
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2556 2557
}

2558 2559
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2560
{
2561 2562
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2563 2564

	i915_gem_request_assign(&obj->last_write_req, NULL);
2565
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2566 2567
}

2568
static void
2569
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2570
{
2571
	struct i915_vma *vma;
2572

2573 2574
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2575

2576
	list_del_init(&obj->engine_list[ring]);
2577 2578
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2579
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2580 2581 2582 2583 2584
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2585

2586 2587 2588 2589 2590 2591 2592
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2593 2594 2595
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2596
	}
2597

2598
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2599
	drm_gem_object_unreference(&obj->base);
2600 2601
}

2602
static int
2603
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2604
{
2605
	struct intel_engine_cs *engine;
2606
	int ret;
2607

2608
	/* Carefully retire all requests without writing to the rings */
2609
	for_each_engine(engine, dev_priv) {
2610
		ret = intel_engine_idle(engine);
2611 2612
		if (ret)
			return ret;
2613
	}
2614
	i915_gem_retire_requests(dev_priv);
2615 2616

	/* Finally reset hw state */
2617
	for_each_engine(engine, dev_priv)
2618
		intel_ring_init_seqno(engine, seqno);
2619

2620
	return 0;
2621 2622
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2634
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2649
int
2650
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2651
{
2652 2653
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2654
		int ret = i915_gem_init_seqno(dev_priv, 0);
2655 2656
		if (ret)
			return ret;
2657

2658 2659
		dev_priv->next_seqno = 1;
	}
2660

2661
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2662
	return 0;
2663 2664
}

2665 2666 2667 2668 2669
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2670
void __i915_add_request(struct drm_i915_gem_request *request,
2671 2672
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2673
{
2674
	struct intel_engine_cs *engine;
2675
	struct drm_i915_private *dev_priv;
2676
	struct intel_ringbuffer *ringbuf;
2677
	u32 request_start;
2678
	u32 reserved_tail;
2679 2680
	int ret;

2681
	if (WARN_ON(request == NULL))
2682
		return;
2683

2684
	engine = request->engine;
2685
	dev_priv = request->i915;
2686 2687
	ringbuf = request->ringbuf;

2688 2689 2690 2691 2692
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2693
	request_start = intel_ring_get_tail(ringbuf);
2694 2695 2696
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2697 2698 2699 2700 2701 2702 2703
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2704 2705
	if (flush_caches) {
		if (i915.enable_execlists)
2706
			ret = logical_ring_flush_all_caches(request);
2707
		else
2708
			ret = intel_ring_flush_all_caches(request);
2709 2710 2711
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2712

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2735 2736 2737 2738 2739
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2740
	request->postfix = intel_ring_get_tail(ringbuf);
2741

2742
	if (i915.enable_execlists)
2743
		ret = engine->emit_request(request);
2744
	else {
2745
		ret = engine->add_request(request);
2746 2747

		request->tail = intel_ring_get_tail(ringbuf);
2748
	}
2749 2750
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2751

2752
	i915_queue_hangcheck(engine->i915);
2753

2754 2755 2756
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
2757
	intel_mark_busy(dev_priv);
2758

2759
	/* Sanity check that the reserved size was large enough. */
2760 2761 2762 2763 2764 2765 2766
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2767 2768
}

2769
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2770
				   const struct i915_gem_context *ctx)
2771
{
2772
	unsigned long elapsed;
2773

2774 2775 2776
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2777 2778
		return true;

2779 2780
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2781
		if (!i915_gem_context_is_default(ctx)) {
2782
			DRM_DEBUG("context hanging too fast, banning!\n");
2783
			return true;
2784 2785 2786
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2787
			return true;
2788
		}
2789 2790 2791 2792 2793
	}

	return false;
}

2794
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2795
				  struct i915_gem_context *ctx,
2796
				  const bool guilty)
2797
{
2798 2799 2800 2801
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2802

2803 2804 2805
	hs = &ctx->hang_stats;

	if (guilty) {
2806
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2807 2808 2809 2810
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2811 2812 2813
	}
}

2814 2815 2816 2817
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2818
	kmem_cache_free(req->i915->requests, req);
2819 2820
}

2821
static inline int
2822
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2823
			 struct i915_gem_context *ctx,
2824
			 struct drm_i915_gem_request **req_out)
2825
{
2826
	struct drm_i915_private *dev_priv = engine->i915;
2827
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2828
	struct drm_i915_gem_request *req;
2829 2830
	int ret;

2831 2832 2833
	if (!req_out)
		return -EINVAL;

2834
	*req_out = NULL;
2835

2836 2837 2838 2839 2840
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2841 2842 2843
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2844 2845
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2846 2847
		return -ENOMEM;

2848
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2849 2850
	if (ret)
		goto err;
2851

2852 2853
	kref_init(&req->ref);
	req->i915 = dev_priv;
2854
	req->engine = engine;
2855
	req->reset_counter = reset_counter;
2856 2857
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2858

2859 2860 2861 2862 2863 2864 2865
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2866
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2867 2868 2869 2870 2871 2872 2873

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
2874

2875
	*req_out = req;
2876
	return 0;
2877

2878 2879
err_ctx:
	i915_gem_context_unreference(ctx);
2880 2881 2882
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2883 2884
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
2899
		       struct i915_gem_context *ctx)
2900 2901 2902 2903 2904
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2905
		ctx = engine->i915->kernel_context;
2906 2907 2908 2909
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2910
struct drm_i915_gem_request *
2911
i915_gem_find_active_request(struct intel_engine_cs *engine)
2912
{
2913 2914
	struct drm_i915_gem_request *request;

2915
	list_for_each_entry(request, &engine->request_list, list) {
2916
		if (i915_gem_request_completed(request, false))
2917
			continue;
2918

2919
		return request;
2920
	}
2921 2922 2923 2924

	return NULL;
}

2925
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2926
				       struct intel_engine_cs *engine)
2927 2928 2929 2930
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2931
	request = i915_gem_find_active_request(engine);
2932 2933 2934 2935

	if (request == NULL)
		return;

2936
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2937

2938
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2939

2940
	list_for_each_entry_continue(request, &engine->request_list, list)
2941
		i915_set_reset_status(dev_priv, request->ctx, false);
2942
}
2943

2944
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2945
					struct intel_engine_cs *engine)
2946
{
2947 2948
	struct intel_ringbuffer *buffer;

2949
	while (!list_empty(&engine->active_list)) {
2950
		struct drm_i915_gem_object *obj;
2951

2952
		obj = list_first_entry(&engine->active_list,
2953
				       struct drm_i915_gem_object,
2954
				       engine_list[engine->id]);
2955

2956
		i915_gem_object_retire__read(obj, engine->id);
2957
	}
2958

2959 2960 2961 2962 2963 2964
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2965
	if (i915.enable_execlists) {
2966 2967
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2968

2969
		intel_execlists_cancel_requests(engine);
2970 2971
	}

2972 2973 2974 2975 2976 2977 2978
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2979
	while (!list_empty(&engine->request_list)) {
2980 2981
		struct drm_i915_gem_request *request;

2982
		request = list_first_entry(&engine->request_list,
2983 2984 2985
					   struct drm_i915_gem_request,
					   list);

2986
		i915_gem_request_retire(request);
2987
	}
2988 2989 2990 2991 2992 2993 2994 2995

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2996
	list_for_each_entry(buffer, &engine->buffers, link) {
2997 2998 2999
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
3000 3001

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3002 3003
}

3004
void i915_gem_reset(struct drm_device *dev)
3005
{
3006
	struct drm_i915_private *dev_priv = dev->dev_private;
3007
	struct intel_engine_cs *engine;
3008

3009 3010 3011 3012 3013
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
3014
	for_each_engine(engine, dev_priv)
3015
		i915_gem_reset_engine_status(dev_priv, engine);
3016

3017
	for_each_engine(engine, dev_priv)
3018
		i915_gem_reset_engine_cleanup(dev_priv, engine);
3019

3020 3021
	i915_gem_context_reset(dev);

3022
	i915_gem_restore_fences(dev);
3023 3024

	WARN_ON(i915_verify_lists(dev));
3025 3026 3027 3028
}

/**
 * This function clears the request list as sequence numbers are passed.
3029
 * @engine: engine to retire requests on
3030
 */
3031
void
3032
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3033
{
3034
	WARN_ON(i915_verify_lists(engine->dev));
3035

3036 3037 3038 3039
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
3040
	 */
3041
	while (!list_empty(&engine->request_list)) {
3042 3043
		struct drm_i915_gem_request *request;

3044
		request = list_first_entry(&engine->request_list,
3045 3046 3047
					   struct drm_i915_gem_request,
					   list);

3048
		if (!i915_gem_request_completed(request, true))
3049 3050
			break;

3051
		i915_gem_request_retire(request);
3052
	}
3053

3054 3055 3056 3057
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
3058
	while (!list_empty(&engine->active_list)) {
3059 3060
		struct drm_i915_gem_object *obj;

3061 3062
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
3063
				       engine_list[engine->id]);
3064

3065
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3066 3067
			break;

3068
		i915_gem_object_retire__read(obj, engine->id);
3069 3070
	}

3071 3072 3073 3074
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
3075
	}
3076

3077
	WARN_ON(i915_verify_lists(engine->dev));
3078 3079
}

3080
bool
3081
i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3082
{
3083
	struct intel_engine_cs *engine;
3084
	bool idle = true;
3085

3086
	for_each_engine(engine, dev_priv) {
3087 3088
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3089
		if (i915.enable_execlists) {
3090
			spin_lock_bh(&engine->execlist_lock);
3091
			idle &= list_empty(&engine->execlist_queue);
3092
			spin_unlock_bh(&engine->execlist_lock);
3093
		}
3094 3095 3096 3097 3098 3099 3100 3101
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3102 3103
}

3104
static void
3105 3106
i915_gem_retire_work_handler(struct work_struct *work)
{
3107 3108 3109
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3110
	bool idle;
3111

3112
	/* Come back later if the device is busy... */
3113 3114
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
3115
		idle = i915_gem_retire_requests(dev_priv);
3116
		mutex_unlock(&dev->struct_mutex);
3117
	}
3118
	if (!idle)
3119 3120
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3121
}
3122

3123 3124 3125 3126 3127
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3128
	struct drm_device *dev = dev_priv->dev;
3129
	struct intel_engine_cs *engine;
3130

3131 3132
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3133
			return;
3134

3135
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3136
	 * Also locking seems to be fubar here, engine->request_list is protected
3137 3138
	 * by dev->struct_mutex. */

3139
	intel_mark_idle(dev_priv);
3140 3141

	if (mutex_trylock(&dev->struct_mutex)) {
3142
		for_each_engine(engine, dev_priv)
3143
			i915_gem_batch_pool_fini(&engine->batch_pool);
3144

3145 3146
		mutex_unlock(&dev->struct_mutex);
	}
3147 3148
}

3149 3150 3151 3152
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
3153
 * @obj: object to flush
3154 3155 3156 3157
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3158
	int i;
3159 3160 3161

	if (!obj->active)
		return 0;
3162

3163
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3164
		struct drm_i915_gem_request *req;
3165

3166 3167 3168 3169
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3170
		if (i915_gem_request_completed(req, true))
3171
			i915_gem_object_retire__read(obj, i);
3172 3173 3174 3175 3176
	}

	return 0;
}

3177 3178
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3179 3180 3181
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3206
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3207 3208
	int i, n = 0;
	int ret;
3209

3210 3211 3212
	if (args->flags != 0)
		return -EINVAL;

3213 3214 3215 3216
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3217
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3218 3219 3220 3221 3222
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3223 3224
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3225 3226 3227
	if (ret)
		goto out;

3228
	if (!obj->active)
3229
		goto out;
3230 3231

	/* Do this after OLR check to make sure we make forward progress polling
3232
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3233
	 */
3234
	if (args->timeout_ns == 0) {
3235 3236 3237 3238 3239
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3240

3241
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3242 3243 3244 3245 3246 3247
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3248 3249
	mutex_unlock(&dev->struct_mutex);

3250 3251
	for (i = 0; i < n; i++) {
		if (ret == 0)
3252
			ret = __i915_wait_request(req[i], true,
3253
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3254
						  to_rps_client(file));
3255
		i915_gem_request_unreference(req[i]);
3256
	}
3257
	return ret;
3258 3259 3260 3261 3262 3263 3264

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3265 3266 3267
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3268 3269
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3270 3271 3272 3273
{
	struct intel_engine_cs *from;
	int ret;

3274
	from = i915_gem_request_get_engine(from_req);
3275 3276 3277
	if (to == from)
		return 0;

3278
	if (i915_gem_request_completed(from_req, true))
3279 3280
		return 0;

3281
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3282
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3283
		ret = __i915_wait_request(from_req,
3284 3285 3286
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3287 3288 3289
		if (ret)
			return ret;

3290
		i915_gem_object_retire_request(obj, from_req);
3291 3292
	} else {
		int idx = intel_ring_sync_index(from, to);
3293 3294 3295
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3296 3297 3298 3299

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3300
		if (*to_req == NULL) {
3301 3302 3303 3304 3305 3306 3307
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3308 3309
		}

3310 3311
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3326 3327 3328 3329 3330
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3331 3332 3333
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3334 3335 3336
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3337
 * rather than a particular GPU ring. Conceptually we serialise writes
3338
 * between engines inside the GPU. We only allow one engine to write
3339 3340 3341 3342 3343 3344 3345 3346 3347
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3348
 *
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3359 3360
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3361 3362
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3363 3364
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3365
{
3366
	const bool readonly = obj->base.pending_write_domain == 0;
3367
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3368
	int ret, i, n;
3369

3370
	if (!obj->active)
3371 3372
		return 0;

3373 3374
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3375

3376 3377 3378 3379 3380
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3381
		for (i = 0; i < I915_NUM_ENGINES; i++)
3382 3383 3384 3385
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3386
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3387 3388 3389
		if (ret)
			return ret;
	}
3390

3391
	return 0;
3392 3393
}

3394 3395 3396 3397 3398 3399 3400
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3401 3402 3403
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3426
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3427
{
3428
	struct drm_i915_gem_object *obj = vma->obj;
3429
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3430
	int ret;
3431

3432
	if (list_empty(&vma->obj_link))
3433 3434
		return 0;

3435 3436 3437 3438
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3439

B
Ben Widawsky 已提交
3440
	if (vma->pin_count)
3441
		return -EBUSY;
3442

3443 3444
	BUG_ON(obj->pages == NULL);

3445 3446 3447 3448 3449
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3450

3451
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3452
		i915_gem_object_finish_gtt(obj);
3453

3454 3455 3456 3457
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3458 3459

		__i915_vma_iounmap(vma);
3460
	}
3461

3462
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3463

3464
	vma->vm->unbind_vma(vma);
3465
	vma->bound = 0;
3466

3467
	list_del_init(&vma->vm_link);
3468
	if (vma->is_ggtt) {
3469 3470 3471 3472 3473 3474
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3475
		vma->ggtt_view.pages = NULL;
3476
	}
3477

B
Ben Widawsky 已提交
3478 3479 3480 3481
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3482
	 * no more VMAs exist. */
I
Imre Deak 已提交
3483
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3484
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3485

3486 3487 3488 3489 3490 3491
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3492
	return 0;
3493 3494
}

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3505
int i915_gpu_idle(struct drm_device *dev)
3506
{
3507
	struct drm_i915_private *dev_priv = dev->dev_private;
3508
	struct intel_engine_cs *engine;
3509
	int ret;
3510 3511

	/* Flush everything onto the inactive list. */
3512
	for_each_engine(engine, dev_priv) {
3513
		if (!i915.enable_execlists) {
3514 3515
			struct drm_i915_gem_request *req;

3516
			req = i915_gem_request_alloc(engine, NULL);
3517 3518
			if (IS_ERR(req))
				return PTR_ERR(req);
3519

3520
			ret = i915_switch_context(req);
3521
			i915_add_request_no_flush(req);
3522 3523
			if (ret)
				return ret;
3524
		}
3525

3526
		ret = intel_engine_idle(engine);
3527 3528 3529
		if (ret)
			return ret;
	}
3530

3531
	WARN_ON(i915_verify_lists(dev));
3532
	return 0;
3533 3534
}

3535
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3536 3537
				     unsigned long cache_level)
{
3538
	struct drm_mm_node *gtt_space = &vma->node;
3539 3540
	struct drm_mm_node *other;

3541 3542 3543 3544 3545 3546
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3547
	 */
3548
	if (vma->vm->mm.color_adjust == NULL)
3549 3550
		return true;

3551
	if (!drm_mm_node_allocated(gtt_space))
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3568
/**
3569 3570
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3571 3572 3573 3574 3575
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3576
 */
3577
static struct i915_vma *
3578 3579
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3580
			   const struct i915_ggtt_view *ggtt_view,
3581
			   unsigned alignment,
3582
			   uint64_t flags)
3583
{
3584
	struct drm_device *dev = obj->base.dev;
3585 3586
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3587
	u32 fence_alignment, unfenced_alignment;
3588 3589
	u32 search_flag, alloc_flag;
	u64 start, end;
3590
	u64 size, fence_size;
B
Ben Widawsky 已提交
3591
	struct i915_vma *vma;
3592
	int ret;
3593

3594 3595 3596 3597 3598
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3599

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3629

3630 3631 3632
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3633
		end = min_t(u64, end, ggtt->mappable_end);
3634
	if (flags & PIN_ZONE_4G)
3635
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3636

3637
	if (alignment == 0)
3638
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3639
						unfenced_alignment;
3640
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3641 3642 3643
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3644
		return ERR_PTR(-EINVAL);
3645 3646
	}

3647 3648 3649
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3650
	 */
3651
	if (size > end) {
3652
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3653 3654
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3655
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3656
			  end);
3657
		return ERR_PTR(-E2BIG);
3658 3659
	}

3660
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3661
	if (ret)
3662
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3663

3664 3665
	i915_gem_object_pin_pages(obj);

3666 3667 3668
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3669
	if (IS_ERR(vma))
3670
		goto err_unpin;
B
Ben Widawsky 已提交
3671

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3690
	} else {
3691 3692 3693 3694 3695 3696 3697
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3698

3699
search_free:
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3713

3714 3715
			goto err_free_vma;
		}
3716
	}
3717
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3718
		ret = -EINVAL;
3719
		goto err_remove_node;
3720 3721
	}

3722
	trace_i915_vma_bind(vma, flags);
3723
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3724
	if (ret)
I
Imre Deak 已提交
3725
		goto err_remove_node;
3726

3727
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3728
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3729

3730
	return vma;
B
Ben Widawsky 已提交
3731

3732
err_remove_node:
3733
	drm_mm_remove_node(&vma->node);
3734
err_free_vma:
B
Ben Widawsky 已提交
3735
	i915_gem_vma_destroy(vma);
3736
	vma = ERR_PTR(ret);
3737
err_unpin:
B
Ben Widawsky 已提交
3738
	i915_gem_object_unpin_pages(obj);
3739
	return vma;
3740 3741
}

3742
bool
3743 3744
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3745 3746 3747 3748 3749
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3750
	if (obj->pages == NULL)
3751
		return false;
3752

3753 3754 3755 3756
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3757
	if (obj->stolen || obj->phys_handle)
3758
		return false;
3759

3760 3761 3762 3763 3764 3765 3766 3767
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3768 3769
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3770
		return false;
3771
	}
3772

C
Chris Wilson 已提交
3773
	trace_i915_gem_object_clflush(obj);
3774
	drm_clflush_sg(obj->pages);
3775
	obj->cache_dirty = false;
3776 3777

	return true;
3778 3779 3780 3781
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3782
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3783
{
C
Chris Wilson 已提交
3784 3785
	uint32_t old_write_domain;

3786
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3787 3788
		return;

3789
	/* No actual flushing is required for the GTT write domain.  Writes
3790 3791
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3792 3793 3794 3795
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3796
	 */
3797 3798
	wmb();

3799 3800
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3801

3802
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3803

C
Chris Wilson 已提交
3804
	trace_i915_gem_object_change_domain(obj,
3805
					    obj->base.read_domains,
C
Chris Wilson 已提交
3806
					    old_write_domain);
3807 3808 3809 3810
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3811
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3812
{
C
Chris Wilson 已提交
3813
	uint32_t old_write_domain;
3814

3815
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3816 3817
		return;

3818
	if (i915_gem_clflush_object(obj, obj->pin_display))
3819
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3820

3821 3822
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3823

3824
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3825

C
Chris Wilson 已提交
3826
	trace_i915_gem_object_change_domain(obj,
3827
					    obj->base.read_domains,
C
Chris Wilson 已提交
3828
					    old_write_domain);
3829 3830
}

3831 3832
/**
 * Moves a single object to the GTT read, and possibly write domain.
3833 3834
 * @obj: object to act on
 * @write: ask for write access or read only
3835 3836 3837 3838
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3839
int
3840
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3841
{
3842 3843 3844
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3845
	uint32_t old_write_domain, old_read_domains;
3846
	struct i915_vma *vma;
3847
	int ret;
3848

3849 3850 3851
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3852
	ret = i915_gem_object_wait_rendering(obj, !write);
3853 3854 3855
	if (ret)
		return ret;

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3868
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3869

3870 3871 3872 3873 3874 3875 3876
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3877 3878
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3879

3880 3881 3882
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3883 3884
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3885
	if (write) {
3886 3887 3888
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3889 3890
	}

C
Chris Wilson 已提交
3891 3892 3893 3894
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3895
	/* And bump the LRU for this access */
3896 3897
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3898
		list_move_tail(&vma->vm_link,
3899
			       &ggtt->base.inactive_list);
3900

3901 3902 3903
	return 0;
}

3904 3905
/**
 * Changes the cache-level of an object across all VMA.
3906 3907
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3919 3920 3921
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3922
	struct drm_device *dev = obj->base.dev;
3923
	struct i915_vma *vma, *next;
3924
	bool bound = false;
3925
	int ret = 0;
3926 3927

	if (obj->cache_level == cache_level)
3928
		goto out;
3929

3930 3931 3932 3933 3934
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3935
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3936 3937 3938 3939 3940 3941 3942 3943
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3944
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3945
			ret = i915_vma_unbind(vma);
3946 3947
			if (ret)
				return ret;
3948 3949
		} else
			bound = true;
3950 3951
	}

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3964
		ret = i915_gem_object_wait_rendering(obj, false);
3965 3966 3967
		if (ret)
			return ret;

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3985 3986 3987
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3988 3989 3990 3991 3992 3993 3994 3995
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3996 3997
		}

3998
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3999 4000 4001 4002 4003 4004 4005
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4006 4007
	}

4008
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4009 4010 4011
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4012
out:
4013 4014 4015 4016
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
4017 4018 4019 4020
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
4021
			i915_gem_chipset_flush(to_i915(obj->base.dev));
4022 4023 4024 4025 4026
	}

	return 0;
}

B
Ben Widawsky 已提交
4027 4028
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4029
{
B
Ben Widawsky 已提交
4030
	struct drm_i915_gem_caching *args = data;
4031 4032
	struct drm_i915_gem_object *obj;

4033
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4034 4035
	if (&obj->base == NULL)
		return -ENOENT;
4036

4037 4038 4039 4040 4041 4042
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4043 4044 4045 4046
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4047 4048 4049 4050
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4051

4052 4053
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4054 4055
}

B
Ben Widawsky 已提交
4056 4057
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4058
{
4059
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
4060
	struct drm_i915_gem_caching *args = data;
4061 4062 4063 4064
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4065 4066
	switch (args->caching) {
	case I915_CACHING_NONE:
4067 4068
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4069
	case I915_CACHING_CACHED:
4070 4071 4072 4073 4074 4075
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4076
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4077 4078
			return -ENODEV;

4079 4080
		level = I915_CACHE_LLC;
		break;
4081 4082 4083
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4084 4085 4086 4087
	default:
		return -EINVAL;
	}

4088 4089
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4090 4091
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4092
		goto rpm_put;
B
Ben Widawsky 已提交
4093

4094
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4105 4106 4107
rpm_put:
	intel_runtime_pm_put(dev_priv);

4108 4109 4110
	return ret;
}

4111
/*
4112 4113 4114
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4115 4116
 */
int
4117 4118
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4119
				     const struct i915_ggtt_view *view)
4120
{
4121
	u32 old_read_domains, old_write_domain;
4122 4123
	int ret;

4124 4125 4126
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4127
	obj->pin_display++;
4128

4129 4130 4131 4132 4133 4134 4135 4136 4137
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4138 4139
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4140
	if (ret)
4141
		goto err_unpin_display;
4142

4143 4144 4145 4146
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4147 4148 4149
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4150
	if (ret)
4151
		goto err_unpin_display;
4152

4153
	i915_gem_object_flush_cpu_write_domain(obj);
4154

4155
	old_write_domain = obj->base.write_domain;
4156
	old_read_domains = obj->base.read_domains;
4157 4158 4159 4160

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4161
	obj->base.write_domain = 0;
4162
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4163 4164 4165

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4166
					    old_write_domain);
4167 4168

	return 0;
4169 4170

err_unpin_display:
4171
	obj->pin_display--;
4172 4173 4174 4175
	return ret;
}

void
4176 4177
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4178
{
4179 4180 4181
	if (WARN_ON(obj->pin_display == 0))
		return;

4182 4183
	i915_gem_object_ggtt_unpin_view(obj, view);

4184
	obj->pin_display--;
4185 4186
}

4187 4188
/**
 * Moves a single object to the CPU read, and possibly write domain.
4189 4190
 * @obj: object to act on
 * @write: requesting write or read-only access
4191 4192 4193 4194
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4195
int
4196
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4197
{
C
Chris Wilson 已提交
4198
	uint32_t old_write_domain, old_read_domains;
4199 4200
	int ret;

4201 4202 4203
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4204
	ret = i915_gem_object_wait_rendering(obj, !write);
4205 4206 4207
	if (ret)
		return ret;

4208
	i915_gem_object_flush_gtt_write_domain(obj);
4209

4210 4211
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4212

4213
	/* Flush the CPU cache if it's still invalid. */
4214
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4215
		i915_gem_clflush_object(obj, false);
4216

4217
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4218 4219 4220 4221 4222
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4223
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4224 4225 4226 4227 4228

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4229 4230
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4231
	}
4232

C
Chris Wilson 已提交
4233 4234 4235 4236
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4237 4238 4239
	return 0;
}

4240 4241 4242
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4243 4244 4245 4246
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4247 4248 4249
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4250
static int
4251
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4252
{
4253 4254
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4255
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4256
	struct drm_i915_gem_request *request, *target = NULL;
4257
	int ret;
4258

4259 4260 4261 4262
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4263 4264 4265
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4266

4267
	spin_lock(&file_priv->mm.lock);
4268
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4269 4270
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4271

4272 4273 4274 4275 4276 4277 4278
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4279
		target = request;
4280
	}
4281 4282
	if (target)
		i915_gem_request_reference(target);
4283
	spin_unlock(&file_priv->mm.lock);
4284

4285
	if (target == NULL)
4286
		return 0;
4287

4288
	ret = __i915_wait_request(target, true, NULL, NULL);
4289 4290
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4291

4292
	i915_gem_request_unreference(target);
4293

4294 4295 4296
	return ret;
}

4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4313 4314 4315 4316
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4317 4318 4319
	return false;
}

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4338
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4339 4340 4341 4342

	obj->map_and_fenceable = mappable && fenceable;
}

4343 4344 4345 4346 4347 4348
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4349
{
4350
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4351
	struct i915_vma *vma;
4352
	unsigned bound;
4353 4354
	int ret;

4355 4356 4357
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4358
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4359
		return -EINVAL;
4360

4361 4362 4363
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4364 4365 4366 4367 4368 4369
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4370
	if (vma) {
B
Ben Widawsky 已提交
4371 4372 4373
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4374
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4375
			WARN(vma->pin_count,
4376
			     "bo is already pinned in %s with incorrect alignment:"
4377
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4378
			     " obj->map_and_fenceable=%d\n",
4379
			     ggtt_view ? "ggtt" : "ppgtt",
4380 4381
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4382
			     alignment,
4383
			     !!(flags & PIN_MAPPABLE),
4384
			     obj->map_and_fenceable);
4385
			ret = i915_vma_unbind(vma);
4386 4387
			if (ret)
				return ret;
4388 4389

			vma = NULL;
4390 4391 4392
		}
	}

4393
	bound = vma ? vma->bound : 0;
4394
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4395 4396
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4397 4398
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4399 4400
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4401 4402 4403
		if (ret)
			return ret;
	}
4404

4405 4406
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4407
		__i915_vma_set_map_and_fenceable(vma);
4408 4409
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4410

4411
	vma->pin_count++;
4412 4413 4414
	return 0;
}

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4432 4433 4434 4435
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4436
	BUG_ON(!view);
4437

4438
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4439
				      alignment, flags | PIN_GLOBAL);
4440 4441
}

4442
void
4443 4444
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4445
{
4446
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4447

4448
	WARN_ON(vma->pin_count == 0);
4449
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4450

4451
	--vma->pin_count;
4452 4453 4454 4455
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4456
		    struct drm_file *file)
4457 4458
{
	struct drm_i915_gem_busy *args = data;
4459
	struct drm_i915_gem_object *obj;
4460 4461
	int ret;

4462
	ret = i915_mutex_lock_interruptible(dev);
4463
	if (ret)
4464
		return ret;
4465

4466
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4467
	if (&obj->base == NULL) {
4468 4469
		ret = -ENOENT;
		goto unlock;
4470
	}
4471

4472 4473 4474 4475
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4476
	 */
4477
	ret = i915_gem_object_flush_active(obj);
4478 4479
	if (ret)
		goto unref;
4480

4481 4482 4483 4484
	args->busy = 0;
	if (obj->active) {
		int i;

4485
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4486 4487 4488 4489
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4490
				args->busy |= 1 << (16 + req->engine->exec_id);
4491 4492
		}
		if (obj->last_write_req)
4493
			args->busy |= obj->last_write_req->engine->exec_id;
4494
	}
4495

4496
unref:
4497
	drm_gem_object_unreference(&obj->base);
4498
unlock:
4499
	mutex_unlock(&dev->struct_mutex);
4500
	return ret;
4501 4502 4503 4504 4505 4506
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4507
	return i915_gem_ring_throttle(dev, file_priv);
4508 4509
}

4510 4511 4512 4513
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4514
	struct drm_i915_private *dev_priv = dev->dev_private;
4515
	struct drm_i915_gem_madvise *args = data;
4516
	struct drm_i915_gem_object *obj;
4517
	int ret;
4518 4519 4520 4521 4522 4523 4524 4525 4526

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4527 4528 4529 4530
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4531
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4532
	if (&obj->base == NULL) {
4533 4534
		ret = -ENOENT;
		goto unlock;
4535 4536
	}

B
Ben Widawsky 已提交
4537
	if (i915_gem_obj_is_pinned(obj)) {
4538 4539
		ret = -EINVAL;
		goto out;
4540 4541
	}

4542 4543 4544 4545 4546 4547 4548 4549 4550
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4551 4552
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4553

C
Chris Wilson 已提交
4554
	/* if the object is no longer attached, discard its backing storage */
4555
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4556 4557
		i915_gem_object_truncate(obj);

4558
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4559

4560
out:
4561
	drm_gem_object_unreference(&obj->base);
4562
unlock:
4563
	mutex_unlock(&dev->struct_mutex);
4564
	return ret;
4565 4566
}

4567 4568
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4569
{
4570 4571
	int i;

4572
	INIT_LIST_HEAD(&obj->global_list);
4573
	for (i = 0; i < I915_NUM_ENGINES; i++)
4574
		INIT_LIST_HEAD(&obj->engine_list[i]);
4575
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4576
	INIT_LIST_HEAD(&obj->vma_list);
4577
	INIT_LIST_HEAD(&obj->batch_pool_link);
4578

4579 4580
	obj->ops = ops;

4581 4582 4583 4584 4585 4586
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4587
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4588
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4589 4590 4591 4592
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4593
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4594
						  size_t size)
4595
{
4596
	struct drm_i915_gem_object *obj;
4597
	struct address_space *mapping;
D
Daniel Vetter 已提交
4598
	gfp_t mask;
4599
	int ret;
4600

4601
	obj = i915_gem_object_alloc(dev);
4602
	if (obj == NULL)
4603
		return ERR_PTR(-ENOMEM);
4604

4605 4606 4607
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4608

4609 4610 4611 4612 4613 4614 4615
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4616
	mapping = file_inode(obj->base.filp)->i_mapping;
4617
	mapping_set_gfp_mask(mapping, mask);
4618

4619
	i915_gem_object_init(obj, &i915_gem_object_ops);
4620

4621 4622
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4623

4624 4625
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4641 4642
	trace_i915_gem_object_create(obj);

4643
	return obj;
4644 4645 4646 4647 4648

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4649 4650
}

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4675
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4676
{
4677
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4678
	struct drm_device *dev = obj->base.dev;
4679
	struct drm_i915_private *dev_priv = dev->dev_private;
4680
	struct i915_vma *vma, *next;
4681

4682 4683
	intel_runtime_pm_get(dev_priv);

4684 4685
	trace_i915_gem_object_destroy(obj);

4686
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4687 4688 4689 4690
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4691 4692
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4693

4694 4695
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4696

4697
			WARN_ON(i915_vma_unbind(vma));
4698

4699 4700
			dev_priv->mm.interruptible = was_interruptible;
		}
4701 4702
	}

B
Ben Widawsky 已提交
4703 4704 4705 4706 4707
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4708 4709
	WARN_ON(obj->frontbuffer_bits);

4710 4711 4712 4713 4714
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4715 4716
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4717
	if (discard_backing_storage(obj))
4718
		obj->madv = I915_MADV_DONTNEED;
4719
	i915_gem_object_put_pages(obj);
4720
	i915_gem_object_free_mmap_offset(obj);
4721

4722 4723
	BUG_ON(obj->pages);

4724 4725
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4726

4727 4728 4729
	if (obj->ops->release)
		obj->ops->release(obj);

4730 4731
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4732

4733
	kfree(obj->bit_17);
4734
	i915_gem_object_free(obj);
4735 4736

	intel_runtime_pm_put(dev_priv);
4737 4738
}

4739 4740
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4741 4742
{
	struct i915_vma *vma;
4743
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4744 4745
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4746
			return vma;
4747 4748 4749 4750 4751 4752 4753 4754
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4755

4756
	GEM_BUG_ON(!view);
4757

4758
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4759
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4760
			return vma;
4761 4762 4763
	return NULL;
}

B
Ben Widawsky 已提交
4764 4765 4766
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4767 4768 4769 4770 4771

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4772 4773
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4774

4775
	list_del(&vma->obj_link);
4776

4777
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4778 4779
}

4780
static void
4781
i915_gem_stop_engines(struct drm_device *dev)
4782 4783
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4784
	struct intel_engine_cs *engine;
4785

4786
	for_each_engine(engine, dev_priv)
4787
		dev_priv->gt.stop_engine(engine);
4788 4789
}

4790
int
4791
i915_gem_suspend(struct drm_device *dev)
4792
{
4793
	struct drm_i915_private *dev_priv = dev->dev_private;
4794
	int ret = 0;
4795

4796
	mutex_lock(&dev->struct_mutex);
4797
	ret = i915_gpu_idle(dev);
4798
	if (ret)
4799
		goto err;
4800

4801
	i915_gem_retire_requests(dev_priv);
4802

4803
	i915_gem_stop_engines(dev);
4804
	i915_gem_context_lost(dev_priv);
4805 4806
	mutex_unlock(&dev->struct_mutex);

4807
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4808
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4809
	flush_delayed_work(&dev_priv->mm.idle_work);
4810

4811 4812 4813 4814 4815
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4816
	return 0;
4817 4818 4819 4820

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4821 4822
}

4823 4824
void i915_gem_init_swizzling(struct drm_device *dev)
{
4825
	struct drm_i915_private *dev_priv = dev->dev_private;
4826

4827
	if (INTEL_INFO(dev)->gen < 5 ||
4828 4829 4830 4831 4832 4833
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4834 4835 4836
	if (IS_GEN5(dev))
		return;

4837 4838
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4839
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4840
	else if (IS_GEN7(dev))
4841
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4842 4843
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4844 4845
	else
		BUG();
4846
}
D
Daniel Vetter 已提交
4847

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4875
int i915_gem_init_engines(struct drm_device *dev)
4876
{
4877
	struct drm_i915_private *dev_priv = dev->dev_private;
4878
	int ret;
4879

4880
	ret = intel_init_render_ring_buffer(dev);
4881
	if (ret)
4882
		return ret;
4883 4884

	if (HAS_BSD(dev)) {
4885
		ret = intel_init_bsd_ring_buffer(dev);
4886 4887
		if (ret)
			goto cleanup_render_ring;
4888
	}
4889

4890
	if (HAS_BLT(dev)) {
4891 4892 4893 4894 4895
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4896 4897 4898 4899 4900 4901
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4902 4903 4904 4905 4906
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4907

4908 4909
	return 0;

B
Ben Widawsky 已提交
4910
cleanup_vebox_ring:
4911
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4912
cleanup_blt_ring:
4913
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4914
cleanup_bsd_ring:
4915
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4916
cleanup_render_ring:
4917
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4918 4919 4920 4921 4922 4923 4924

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4925
	struct drm_i915_private *dev_priv = dev->dev_private;
4926
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4927
	int ret;
4928

4929 4930 4931
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4932
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4933
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4934

4935 4936 4937
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4938

4939
	if (HAS_PCH_NOP(dev)) {
4940 4941 4942 4943 4944 4945 4946 4947 4948
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4949 4950
	}

4951 4952
	i915_gem_init_swizzling(dev);

4953 4954 4955 4956 4957 4958 4959 4960
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4961
	BUG_ON(!dev_priv->kernel_context);
4962

4963 4964 4965 4966 4967 4968 4969
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4970
	for_each_engine(engine, dev_priv) {
4971
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4972
		if (ret)
4973
			goto out;
D
Daniel Vetter 已提交
4974
	}
4975

4976 4977
	intel_mocs_init_l3cc_table(dev);

4978
	/* We can't enable contexts until all firmware is loaded */
4979 4980 4981
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4982

4983 4984 4985 4986 4987
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
D
Daniel Vetter 已提交
4988

4989 4990
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4991
	return ret;
4992 4993
}

4994 4995 4996 4997 4998 4999
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
5000

5001
	if (!i915.enable_execlists) {
5002
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5003 5004 5005
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5006
	} else {
5007
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5008 5009 5010
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5011 5012
	}

5013 5014 5015 5016 5017 5018 5019 5020
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5021
	i915_gem_init_userptr(dev_priv);
5022
	i915_gem_init_ggtt(dev);
5023

5024
	ret = i915_gem_context_init(dev);
5025 5026
	if (ret)
		goto out_unlock;
5027

5028
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5029
	if (ret)
5030
		goto out_unlock;
5031

5032
	ret = i915_gem_init_hw(dev);
5033 5034 5035 5036 5037 5038
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5039
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5040
		ret = 0;
5041
	}
5042 5043

out_unlock:
5044
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5045
	mutex_unlock(&dev->struct_mutex);
5046

5047
	return ret;
5048 5049
}

5050
void
5051
i915_gem_cleanup_engines(struct drm_device *dev)
5052
{
5053
	struct drm_i915_private *dev_priv = dev->dev_private;
5054
	struct intel_engine_cs *engine;
5055

5056
	for_each_engine(engine, dev_priv)
5057
		dev_priv->gt.cleanup_engine(engine);
5058 5059
}

5060
static void
5061
init_engine_lists(struct intel_engine_cs *engine)
5062
{
5063 5064
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5065 5066
}

5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5081
	if (intel_vgpu_active(dev_priv))
5082 5083 5084 5085 5086 5087 5088 5089 5090
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5091
void
5092
i915_gem_load_init(struct drm_device *dev)
5093
{
5094
	struct drm_i915_private *dev_priv = dev->dev_private;
5095 5096
	int i;

5097
	dev_priv->objects =
5098 5099 5100 5101
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5102 5103 5104 5105 5106
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5107 5108 5109 5110 5111
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5112

B
Ben Widawsky 已提交
5113
	INIT_LIST_HEAD(&dev_priv->vm_list);
5114
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5115 5116
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5117
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5118 5119
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5120
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5121
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5122 5123
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5124 5125
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5126
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5127

5128 5129
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5130 5131 5132 5133 5134 5135 5136 5137
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5138
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5139

5140
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5141

5142 5143
	dev_priv->mm.interruptible = true;

5144
	mutex_init(&dev_priv->fb_tracking.lock);
5145
}
5146

5147 5148 5149 5150 5151 5152 5153 5154 5155
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5184
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5185
{
5186
	struct drm_i915_file_private *file_priv = file->driver_priv;
5187 5188 5189 5190 5191

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5192
	spin_lock(&file_priv->mm.lock);
5193 5194 5195 5196 5197 5198 5199 5200 5201
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5202
	spin_unlock(&file_priv->mm.lock);
5203

5204
	if (!list_empty(&file_priv->rps.link)) {
5205
		spin_lock(&to_i915(dev)->rps.client_lock);
5206
		list_del(&file_priv->rps.link);
5207
		spin_unlock(&to_i915(dev)->rps.client_lock);
5208
	}
5209 5210 5211 5212 5213
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5214
	int ret;
5215 5216 5217 5218 5219 5220 5221 5222 5223

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5224
	file_priv->file = file;
5225
	INIT_LIST_HEAD(&file_priv->rps.link);
5226 5227 5228 5229

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5230 5231
	file_priv->bsd_ring = -1;

5232 5233 5234
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5235

5236
	return ret;
5237 5238
}

5239 5240
/**
 * i915_gem_track_fb - update frontbuffer tracking
5241 5242 5243
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5244 5245 5246 5247
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5265
/* All the new VM stuff */
5266 5267
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5268 5269 5270 5271
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5272
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5273

5274
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5275
		if (vma->is_ggtt &&
5276 5277 5278
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5279 5280
			return vma->node.start;
	}
5281

5282 5283
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5284 5285 5286
	return -1;
}

5287 5288
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5289 5290 5291
{
	struct i915_vma *vma;

5292
	list_for_each_entry(vma, &o->vma_list, obj_link)
5293
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5294 5295
			return vma->node.start;

5296
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5297 5298 5299 5300 5301 5302 5303 5304
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5305
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5306
		if (vma->is_ggtt &&
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5317
				  const struct i915_ggtt_view *view)
5318 5319 5320
{
	struct i915_vma *vma;

5321
	list_for_each_entry(vma, &o->vma_list, obj_link)
5322
		if (vma->is_ggtt &&
5323
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5324
		    drm_mm_node_allocated(&vma->node))
5325 5326 5327 5328 5329 5330 5331
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5332
	struct i915_vma *vma;
5333

5334
	list_for_each_entry(vma, &o->vma_list, obj_link)
5335
		if (drm_mm_node_allocated(&vma->node))
5336 5337 5338 5339 5340
			return true;

	return false;
}

5341
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5342 5343 5344
{
	struct i915_vma *vma;

5345
	GEM_BUG_ON(list_empty(&o->vma_list));
5346

5347
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5348
		if (vma->is_ggtt &&
5349
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5350
			return vma->node.size;
5351
	}
5352

5353 5354 5355
	return 0;
}

5356
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5357 5358
{
	struct i915_vma *vma;
5359
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5360 5361
		if (vma->pin_count > 0)
			return true;
5362

5363
	return false;
5364
}
5365

5366 5367 5368 5369 5370 5371 5372
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5373
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5374 5375 5376 5377 5378 5379 5380
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5391
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5392
	if (IS_ERR(obj))
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5406
	obj->dirty = 1;		/* Backing store is now out of date */
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}