i915_gem.c 109.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
44 45
						    bool map_and_fenceable,
						    bool nonblocking);
46 47
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
48
				struct drm_i915_gem_pwrite *args,
49
				struct drm_file *file);
50

51 52 53 54 55 56
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
C
Chris Wilson 已提交
59 60
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62

63 64 65 66 67 68 69 70
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
71
	obj->fence_dirty = false;
72 73 74
	obj->fence_reg = I915_FENCE_REG_NONE;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

90 91
static int
i915_gem_wait_for_error(struct drm_device *dev)
92 93 94 95 96 97 98 99 100
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

101 102 103 104 105 106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
111
		return ret;
112
	}
113

114 115 116 117 118 119 120 121 122 123 124
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128 129 130
{
	int ret;

131
	ret = i915_gem_wait_for_error(dev);
132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

139
	WARN_ON(i915_verify_lists(dev));
140 141
	return 0;
}
142

143
static inline bool
144
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145
{
C
Chris Wilson 已提交
146
	return obj->gtt_space && !obj->active;
147 148
}

J
Jesse Barnes 已提交
149 150
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
151
		    struct drm_file *file)
J
Jesse Barnes 已提交
152 153
{
	struct drm_i915_gem_init *args = data;
154

155 156 157
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

158 159 160
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
161

162 163 164 165
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
166
	mutex_lock(&dev->struct_mutex);
167 168
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
169 170
	mutex_unlock(&dev->struct_mutex);

171
	return 0;
172 173
}

174 175
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176
			    struct drm_file *file)
177
{
178
	struct drm_i915_private *dev_priv = dev->dev_private;
179
	struct drm_i915_gem_get_aperture *args = data;
180 181
	struct drm_i915_gem_object *obj;
	size_t pinned;
182

183
	pinned = 0;
184
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
185
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186 187
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
188
	mutex_unlock(&dev->struct_mutex);
189

190
	args->aper_size = dev_priv->mm.gtt_total;
191
	args->aper_available_size = args->aper_size - pinned;
192

193 194 195
	return 0;
}

196 197 198 199 200
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
201
{
202
	struct drm_i915_gem_object *obj;
203 204
	int ret;
	u32 handle;
205

206
	size = roundup(size, PAGE_SIZE);
207 208
	if (size == 0)
		return -EINVAL;
209 210

	/* Allocate the new object */
211
	obj = i915_gem_alloc_object(dev, size);
212 213 214
	if (obj == NULL)
		return -ENOMEM;

215
	ret = drm_gem_handle_create(file, &obj->base, &handle);
216
	if (ret) {
217 218
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219
		kfree(obj);
220
		return ret;
221
	}
222

223
	/* drop reference from allocate - handle holds it now */
224
	drm_gem_object_unreference(&obj->base);
225 226
	trace_i915_gem_object_create(obj);

227
	*handle_p = handle;
228 229 230
	return 0;
}

231 232 233 234 235 236
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
237
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
258

259 260 261 262
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

263
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264
{
265
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266 267

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268
		obj->tiling_mode != I915_TILING_NONE;
269 270
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

297
static inline int
298 299
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

323 324 325
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
326
static int
327 328 329 330 331 332 333
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

334
	if (unlikely(page_do_bit17_swizzling))
335 336 337 338 339 340 341 342 343 344 345 346 347 348
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

349 350 351 352
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
353
	if (unlikely(swizzled)) {
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

371 372 373 374 375 376 377 378 379 380 381 382
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
383 384 385
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
386 387 388 389 390 391 392 393 394 395 396 397 398 399

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

400
static int
401 402 403 404
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
405
{
406
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
407
	char __user *user_data;
408
	ssize_t remain;
409
	loff_t offset;
410
	int shmem_page_offset, page_length, ret = 0;
411
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412
	int hit_slowpath = 0;
413
	int prefaulted = 0;
414
	int needs_clflush = 0;
415
	int release_page;
416

417
	user_data = (char __user *) (uintptr_t) args->data_ptr;
418 419
	remain = args->size;

420
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421

422 423 424 425 426 427 428
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
C
Chris Wilson 已提交
429 430 431 432 433
		if (obj->gtt_space) {
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
			if (ret)
				return ret;
		}
434
	}
435

436
	offset = args->offset;
437 438

	while (remain > 0) {
439 440
		struct page *page;

441 442 443 444 445
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
446
		shmem_page_offset = offset_in_page(offset);
447 448 449 450
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

451 452 453 454 455 456 457 458 459 460
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
461
		}
462

463 464 465
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

466 467 468 469 470
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
471 472

		hit_slowpath = 1;
473
		page_cache_get(page);
474 475
		mutex_unlock(&dev->struct_mutex);

476
		if (!prefaulted) {
477
			ret = fault_in_multipages_writeable(user_data, remain);
478 479 480 481 482 483 484
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
485

486 487 488
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
489

490
		mutex_lock(&dev->struct_mutex);
491
		page_cache_release(page);
492
next_page:
493
		mark_page_accessed(page);
494 495
		if (release_page)
			page_cache_release(page);
496

497 498 499 500 501
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

502
		remain -= page_length;
503
		user_data += page_length;
504 505 506
		offset += page_length;
	}

507
out:
508 509 510 511 512
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
513 514 515 516

	return ret;
}

517 518 519 520 521 522 523
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
524
		     struct drm_file *file)
525 526
{
	struct drm_i915_gem_pread *args = data;
527
	struct drm_i915_gem_object *obj;
528
	int ret = 0;
529

530 531 532 533 534 535 536 537
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

538
	ret = i915_mutex_lock_interruptible(dev);
539
	if (ret)
540
		return ret;
541

542
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
543
	if (&obj->base == NULL) {
544 545
		ret = -ENOENT;
		goto unlock;
546
	}
547

548
	/* Bounds check source.  */
549 550
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
551
		ret = -EINVAL;
552
		goto out;
C
Chris Wilson 已提交
553 554
	}

555 556 557 558 559 560 561 562
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
563 564
	trace_i915_gem_object_pread(obj, args->offset, args->size);

565
	ret = i915_gem_shmem_pread(dev, obj, args, file);
566

567
out:
568
	drm_gem_object_unreference(&obj->base);
569
unlock:
570
	mutex_unlock(&dev->struct_mutex);
571
	return ret;
572 573
}

574 575
/* This is the fast write path which cannot handle
 * page faults in the source data
576
 */
577 578 579 580 581 582

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
583
{
584 585
	void __iomem *vaddr_atomic;
	void *vaddr;
586
	unsigned long unwritten;
587

P
Peter Zijlstra 已提交
588
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
589 590 591
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
592
						      user_data, length);
P
Peter Zijlstra 已提交
593
	io_mapping_unmap_atomic(vaddr_atomic);
594
	return unwritten;
595 596
}

597 598 599 600
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
601
static int
602 603
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
604
			 struct drm_i915_gem_pwrite *args,
605
			 struct drm_file *file)
606
{
607
	drm_i915_private_t *dev_priv = dev->dev_private;
608
	ssize_t remain;
609
	loff_t offset, page_base;
610
	char __user *user_data;
D
Daniel Vetter 已提交
611 612
	int page_offset, page_length, ret;

613
	ret = i915_gem_object_pin(obj, 0, true, true);
D
Daniel Vetter 已提交
614 615 616 617 618 619 620 621 622 623
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
624 625 626 627

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

628
	offset = obj->gtt_offset + args->offset;
629 630 631 632

	while (remain > 0) {
		/* Operation in this page
		 *
633 634 635
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
636
		 */
637 638
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
639 640 641 642 643
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
644 645
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
646
		 */
647
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
648 649 650 651
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
652

653 654 655
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
656 657
	}

D
Daniel Vetter 已提交
658 659 660
out_unpin:
	i915_gem_object_unpin(obj);
out:
661
	return ret;
662 663
}

664 665 666 667
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
668
static int
669 670 671 672 673
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
674
{
675
	char *vaddr;
676
	int ret;
677

678
	if (unlikely(page_do_bit17_swizzling))
679
		return -EINVAL;
680

681 682 683 684 685 686 687 688 689 690 691
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
692 693 694 695

	return ret;
}

696 697
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
698
static int
699 700 701 702 703
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
704
{
705 706
	char *vaddr;
	int ret;
707

708
	vaddr = kmap(page);
709
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
710 711 712
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
713 714
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
715 716
						user_data,
						page_length);
717 718 719 720 721
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
722 723 724
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
725
	kunmap(page);
726

727
	return ret;
728 729 730
}

static int
731 732 733 734
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
735
{
736
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
737
	ssize_t remain;
738 739
	loff_t offset;
	char __user *user_data;
740
	int shmem_page_offset, page_length, ret = 0;
741
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
742
	int hit_slowpath = 0;
743 744
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
745
	int release_page;
746

747
	user_data = (char __user *) (uintptr_t) args->data_ptr;
748 749
	remain = args->size;

750
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
751

752 753 754 755 756 757 758
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
C
Chris Wilson 已提交
759 760 761 762 763
		if (obj->gtt_space) {
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
			if (ret)
				return ret;
		}
764 765 766 767 768 769 770
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

771
	offset = args->offset;
772
	obj->dirty = 1;
773

774
	while (remain > 0) {
775
		struct page *page;
776
		int partial_cacheline_write;
777

778 779 780 781 782
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
783
		shmem_page_offset = offset_in_page(offset);
784 785 786 787 788

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

789 790 791 792 793 794 795
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

796 797 798 799 800 801 802 803 804 805
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
806 807
		}

808 809 810
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

811 812 813 814 815 816
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
817 818

		hit_slowpath = 1;
819
		page_cache_get(page);
820 821
		mutex_unlock(&dev->struct_mutex);

822 823 824 825
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
826

827
		mutex_lock(&dev->struct_mutex);
828
		page_cache_release(page);
829
next_page:
830 831
		set_page_dirty(page);
		mark_page_accessed(page);
832 833
		if (release_page)
			page_cache_release(page);
834

835 836 837 838 839
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

840
		remain -= page_length;
841
		user_data += page_length;
842
		offset += page_length;
843 844
	}

845
out:
846 847 848 849 850 851 852 853 854 855
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
856
	}
857

858 859 860
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

861
	return ret;
862 863 864 865 866 867 868 869 870
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
871
		      struct drm_file *file)
872 873
{
	struct drm_i915_gem_pwrite *args = data;
874
	struct drm_i915_gem_object *obj;
875 876 877 878 879 880 881 882 883 884
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

885 886
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
887 888
	if (ret)
		return -EFAULT;
889

890
	ret = i915_mutex_lock_interruptible(dev);
891
	if (ret)
892
		return ret;
893

894
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
895
	if (&obj->base == NULL) {
896 897
		ret = -ENOENT;
		goto unlock;
898
	}
899

900
	/* Bounds check destination. */
901 902
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
903
		ret = -EINVAL;
904
		goto out;
C
Chris Wilson 已提交
905 906
	}

907 908 909 910 911 912 913 914
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
915 916
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
917
	ret = -EFAULT;
918 919 920 921 922 923
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
924
	if (obj->phys_obj) {
925
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
926 927 928
		goto out;
	}

929
	if (obj->cache_level == I915_CACHE_NONE &&
930
	    obj->tiling_mode == I915_TILING_NONE &&
931
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
933 934 935
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
936
	}
937

938
	if (ret == -EFAULT || ret == -ENOSPC)
D
Daniel Vetter 已提交
939
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
940

941
out:
942
	drm_gem_object_unreference(&obj->base);
943
unlock:
944
	mutex_unlock(&dev->struct_mutex);
945 946 947
	return ret;
}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
int
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
		     bool interruptible)
{
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

		/* Recovery complete, but still wedged means reset failure. */
		if (recovery_complete)
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
	if (seqno == ring->outstanding_lazy_request)
		ret = i915_add_request(ring, NULL, NULL);

	return ret;
}

/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
			bool interruptible, struct timespec *timeout)
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
	int ret;

	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);

		ret = i915_gem_check_wedge(dev_priv, interruptible);
		if (ret)
			end = ret;
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
	case -EIO:
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

	ret = i915_gem_check_wedge(dev_priv, interruptible);
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

	return __wait_seqno(ring, seqno, interruptible, NULL);
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct intel_ring_buffer *ring = obj->ring;
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

	i915_gem_retire_requests_ring(ring);

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
	}

	return 0;
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring = obj->ring;
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_gem_check_wedge(dev_priv, true);
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

	mutex_unlock(&dev->struct_mutex);
	ret = __wait_seqno(ring, seqno, true, NULL);
	mutex_lock(&dev->struct_mutex);

	i915_gem_retire_requests_ring(ring);

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
	}

	return ret;
}

1182
/**
1183 1184
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1185 1186 1187
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1188
			  struct drm_file *file)
1189 1190
{
	struct drm_i915_gem_set_domain *args = data;
1191
	struct drm_i915_gem_object *obj;
1192 1193
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1194 1195
	int ret;

1196
	/* Only handle setting domains to types used by the CPU. */
1197
	if (write_domain & I915_GEM_GPU_DOMAINS)
1198 1199
		return -EINVAL;

1200
	if (read_domains & I915_GEM_GPU_DOMAINS)
1201 1202 1203 1204 1205 1206 1207 1208
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1209
	ret = i915_mutex_lock_interruptible(dev);
1210
	if (ret)
1211
		return ret;
1212

1213
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1214
	if (&obj->base == NULL) {
1215 1216
		ret = -ENOENT;
		goto unlock;
1217
	}
1218

1219 1220 1221 1222 1223 1224 1225 1226
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
	if (ret)
		goto unref;

1227 1228
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1229 1230 1231 1232 1233 1234 1235

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1236
	} else {
1237
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1238 1239
	}

1240
unref:
1241
	drm_gem_object_unreference(&obj->base);
1242
unlock:
1243 1244 1245 1246 1247 1248 1249 1250 1251
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1252
			 struct drm_file *file)
1253 1254
{
	struct drm_i915_gem_sw_finish *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257
	int ret = 0;

1258
	ret = i915_mutex_lock_interruptible(dev);
1259
	if (ret)
1260
		return ret;
1261

1262
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1263
	if (&obj->base == NULL) {
1264 1265
		ret = -ENOENT;
		goto unlock;
1266 1267 1268
	}

	/* Pinned buffers may be scanout, so flush the cache */
1269
	if (obj->pin_count)
1270 1271
		i915_gem_object_flush_cpu_write_domain(obj);

1272
	drm_gem_object_unreference(&obj->base);
1273
unlock:
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1287
		    struct drm_file *file)
1288 1289 1290 1291 1292
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1293
	obj = drm_gem_object_lookup(dev, file, args->handle);
1294
	if (obj == NULL)
1295
		return -ENOENT;
1296

1297 1298 1299 1300 1301 1302 1303 1304
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1305
	addr = vm_mmap(obj->filp, 0, args->size,
1306 1307
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1308
	drm_gem_object_unreference_unlocked(obj);
1309 1310 1311 1312 1313 1314 1315 1316
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1335 1336
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1337
	drm_i915_private_t *dev_priv = dev->dev_private;
1338 1339 1340
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1341
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1342 1343 1344 1345 1346

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1347 1348 1349
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1350

C
Chris Wilson 已提交
1351 1352
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1353
	/* Now bind it into the GTT if needed */
1354 1355 1356 1357
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1358
	}
1359
	if (!obj->gtt_space) {
1360
		ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1361 1362
		if (ret)
			goto unlock;
1363

1364 1365 1366 1367
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1368

1369 1370 1371
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1372
	ret = i915_gem_object_get_fence(obj);
1373 1374
	if (ret)
		goto unlock;
1375

1376 1377
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1378

1379 1380
	obj->fault_mappable = true;

1381
	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1382 1383 1384 1385
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1386
unlock:
1387
	mutex_unlock(&dev->struct_mutex);
1388
out:
1389
	switch (ret) {
1390
	case -EIO:
1391 1392 1393 1394 1395
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
		if (!atomic_read(&dev_priv->mm.wedged))
			return VM_FAULT_SIGBUS;
1396
	case -EAGAIN:
1397 1398 1399 1400 1401 1402 1403
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1404
		set_need_resched();
1405 1406
	case 0:
	case -ERESTARTSYS:
1407
	case -EINTR:
1408
		return VM_FAULT_NOPAGE;
1409 1410 1411
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1412
		return VM_FAULT_SIGBUS;
1413 1414 1415
	}
}

1416 1417 1418 1419
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1420
 * Preserve the reservation of the mmapping with the DRM core code, but
1421 1422 1423 1424 1425 1426 1427 1428 1429
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1430
void
1431
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1432
{
1433 1434
	if (!obj->fault_mappable)
		return;
1435

1436 1437 1438 1439
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1440

1441
	obj->fault_mappable = false;
1442 1443
}

1444
static uint32_t
1445
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446
{
1447
	uint32_t gtt_size;
1448 1449

	if (INTEL_INFO(dev)->gen >= 4 ||
1450 1451
	    tiling_mode == I915_TILING_NONE)
		return size;
1452 1453 1454

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1455
		gtt_size = 1024*1024;
1456
	else
1457
		gtt_size = 512*1024;
1458

1459 1460
	while (gtt_size < size)
		gtt_size <<= 1;
1461

1462
	return gtt_size;
1463 1464
}

1465 1466 1467 1468 1469
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1470
 * potential fence register mapping.
1471 1472
 */
static uint32_t
1473 1474 1475
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1476 1477 1478 1479 1480
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1481
	if (INTEL_INFO(dev)->gen >= 4 ||
1482
	    tiling_mode == I915_TILING_NONE)
1483 1484
		return 4096;

1485 1486 1487 1488
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1489
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1490 1491
}

1492 1493 1494
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1495 1496 1497
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1498 1499 1500 1501
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1502
uint32_t
1503 1504 1505
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1506 1507 1508 1509 1510
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1511
	    tiling_mode == I915_TILING_NONE)
1512 1513
		return 4096;

1514 1515 1516
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1517
	 */
1518
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1519 1520
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

	if (obj->base.map_list.map)
		return 0;

	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
		return ret;

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
		return ret;

	i915_gem_shrink_all(dev_priv);
	return drm_gem_create_mmap_offset(&obj->base);
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	if (!obj->base.map_list.map)
		return;

	drm_gem_free_mmap_offset(&obj->base);
}

1557
int
1558 1559 1560 1561
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1562
{
1563
	struct drm_i915_private *dev_priv = dev->dev_private;
1564
	struct drm_i915_gem_object *obj;
1565 1566
	int ret;

1567
	ret = i915_mutex_lock_interruptible(dev);
1568
	if (ret)
1569
		return ret;
1570

1571
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1572
	if (&obj->base == NULL) {
1573 1574 1575
		ret = -ENOENT;
		goto unlock;
	}
1576

1577
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1578
		ret = -E2BIG;
1579
		goto out;
1580 1581
	}

1582
	if (obj->madv != I915_MADV_WILLNEED) {
1583
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1584 1585
		ret = -EINVAL;
		goto out;
1586 1587
	}

1588 1589 1590
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1591

1592
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1593

1594
out:
1595
	drm_gem_object_unreference(&obj->base);
1596
unlock:
1597
	mutex_unlock(&dev->struct_mutex);
1598
	return ret;
1599 1600
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

D
Daniel Vetter 已提交
1625 1626 1627
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1628 1629 1630
{
	struct inode *inode;

1631
	i915_gem_object_free_mmap_offset(obj);
1632

1633 1634
	if (obj->base.filp == NULL)
		return;
1635

D
Daniel Vetter 已提交
1636 1637 1638 1639 1640
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1641
	inode = obj->base.filp->f_path.dentry->d_inode;
D
Daniel Vetter 已提交
1642
	shmem_truncate_range(inode, 0, (loff_t)-1);
1643

D
Daniel Vetter 已提交
1644 1645
	obj->madv = __I915_MADV_PURGED;
}
1646

D
Daniel Vetter 已提交
1647 1648 1649 1650
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
1651 1652
}

1653
static void
1654
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1655
{
1656
	int page_count = obj->base.size / PAGE_SIZE;
C
Chris Wilson 已提交
1657
	int ret, i;
1658

1659
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1660

C
Chris Wilson 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		i915_gem_clflush_object(obj);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1671
	if (i915_gem_object_needs_bit17_swizzle(obj))
1672 1673
		i915_gem_object_save_bit_17_swizzle(obj);

1674 1675
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1676 1677

	for (i = 0; i < page_count; i++) {
1678 1679
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1680

1681 1682
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1683

1684
		page_cache_release(obj->pages[i]);
1685
	}
1686
	obj->dirty = 0;
1687

1688 1689
	drm_free_large(obj->pages);
	obj->pages = NULL;
1690
}
C
Chris Wilson 已提交
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700
static int
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

	if (obj->sg_table || obj->pages == NULL)
		return 0;

	BUG_ON(obj->gtt_space);
C
Chris Wilson 已提交
1701

1702 1703 1704
	ops->put_pages(obj);

	list_del(&obj->gtt_list);
C
Chris Wilson 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (i915_gem_object_is_purgeable(obj))
		i915_gem_object_truncate(obj);

	return 0;
}

static long
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
	struct drm_i915_gem_object *obj, *next;
	long count = 0;

	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.unbound_list,
				 gtt_list) {
		if (i915_gem_object_is_purgeable(obj) &&
1721
		    i915_gem_object_put_pages(obj) == 0) {
C
Chris Wilson 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
			count += obj->base.size >> PAGE_SHIFT;
			if (count >= target)
				return count;
		}
	}

	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj) &&
		    i915_gem_object_unbind(obj) == 0 &&
1733
		    i915_gem_object_put_pages(obj) == 0) {
C
Chris Wilson 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
			count += obj->base.size >> PAGE_SHIFT;
			if (count >= target)
				return count;
		}
	}

	return count;
}

static void
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj, *next;

	i915_gem_evict_everything(dev_priv->dev);

	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1751
		i915_gem_object_put_pages(obj);
D
Daniel Vetter 已提交
1752 1753
}

1754
static int
C
Chris Wilson 已提交
1755
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1756
{
C
Chris Wilson 已提交
1757
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1758 1759 1760
	int page_count, i;
	struct address_space *mapping;
	struct page *page;
C
Chris Wilson 已提交
1761
	gfp_t gfp;
1762

C
Chris Wilson 已提交
1763 1764 1765 1766 1767 1768 1769
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

1770 1771 1772
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1773 1774 1775
	page_count = obj->base.size / PAGE_SIZE;
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1776 1777
		return -ENOMEM;

C
Chris Wilson 已提交
1778 1779 1780
	/* Fail silently without starting the shrinker */
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	gfp = mapping_gfp_mask(mapping);
S
Sedat Dilek 已提交
1781
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
C
Chris Wilson 已提交
1782
	gfp &= ~(__GFP_IO | __GFP_WAIT);
1783
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
			i915_gem_purge(dev_priv, page_count);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
S
Sedat Dilek 已提交
1794
			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
C
Chris Wilson 已提交
1795 1796 1797 1798 1799 1800 1801
			gfp |= __GFP_IO | __GFP_WAIT;

			i915_gem_shrink_all(dev_priv);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
			if (IS_ERR(page))
				goto err_pages;

S
Sedat Dilek 已提交
1802
			gfp |= __GFP_NORETRY | __GFP_NOWARN;
C
Chris Wilson 已提交
1803 1804
			gfp &= ~(__GFP_IO | __GFP_WAIT);
		}
1805

1806
		obj->pages[i] = page;
1807 1808
	}

1809
	if (i915_gem_object_needs_bit17_swizzle(obj))
1810 1811 1812 1813 1814 1815
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1816
		page_cache_release(obj->pages[i]);
1817

1818 1819
	drm_free_large(obj->pages);
	obj->pages = NULL;
1820
	return PTR_ERR(page);
1821 1822
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

	if (obj->sg_table || obj->pages)
		return 0;

	ret = ops->get_pages(obj);
	if (ret)
		return ret;

	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
	return 0;
}

1848
void
1849
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1850 1851
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1852
{
1853
	struct drm_device *dev = obj->base.dev;
1854
	struct drm_i915_private *dev_priv = dev->dev_private;
1855

1856
	BUG_ON(ring == NULL);
1857
	obj->ring = ring;
1858 1859

	/* Add a reference if we're newly entering the active list. */
1860 1861 1862
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1863
	}
1864

1865
	/* Move from whatever list we were on to the tail of execution. */
1866 1867
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1868

1869
	obj->last_read_seqno = seqno;
1870

1871
	if (obj->fenced_gpu_access) {
1872 1873
		obj->last_fenced_seqno = seqno;

1874 1875 1876 1877 1878 1879 1880 1881
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1882 1883 1884 1885 1886 1887 1888 1889 1890
	}
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1891
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1892
	BUG_ON(!obj->active);
1893

1894 1895 1896 1897 1898
	if (obj->pin_count) /* are we a framebuffer? */
		intel_mark_fb_idle(obj);

	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

1899
	list_del_init(&obj->ring_list);
1900 1901
	obj->ring = NULL;

1902 1903 1904 1905 1906
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
1907 1908 1909 1910 1911 1912
	obj->fenced_gpu_access = false;

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1913
}
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1937
int
C
Chris Wilson 已提交
1938
i915_add_request(struct intel_ring_buffer *ring,
1939
		 struct drm_file *file,
C
Chris Wilson 已提交
1940
		 struct drm_i915_gem_request *request)
1941
{
C
Chris Wilson 已提交
1942
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1943
	uint32_t seqno;
1944
	u32 request_ring_position;
1945
	int was_empty;
1946 1947
	int ret;

1948 1949 1950 1951 1952 1953 1954
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
1955 1956 1957
	ret = intel_ring_flush_all_caches(ring);
	if (ret)
		return ret;
1958

1959 1960 1961 1962 1963 1964
	if (request == NULL) {
		request = kmalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;
	}

1965
	seqno = i915_gem_next_request_seqno(ring);
1966

1967 1968 1969 1970 1971 1972 1973
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1974
	ret = ring->add_request(ring, &seqno);
1975 1976 1977 1978
	if (ret) {
		kfree(request);
		return ret;
	}
1979

C
Chris Wilson 已提交
1980
	trace_i915_gem_request_add(ring, seqno);
1981 1982

	request->seqno = seqno;
1983
	request->ring = ring;
1984
	request->tail = request_ring_position;
1985
	request->emitted_jiffies = jiffies;
1986 1987
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);
1988
	request->file_priv = NULL;
1989

C
Chris Wilson 已提交
1990 1991 1992
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1993
		spin_lock(&file_priv->mm.lock);
1994
		request->file_priv = file_priv;
1995
		list_add_tail(&request->client_list,
1996
			      &file_priv->mm.request_list);
1997
		spin_unlock(&file_priv->mm.lock);
1998
	}
1999

2000
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
2001

B
Ben Gamari 已提交
2002
	if (!dev_priv->mm.suspended) {
2003 2004 2005 2006 2007
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
2008
		if (was_empty) {
2009 2010
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
2011 2012
			intel_mark_busy(dev_priv->dev);
		}
B
Ben Gamari 已提交
2013
	}
2014

2015
	return 0;
2016 2017
}

2018 2019
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2020
{
2021
	struct drm_i915_file_private *file_priv = request->file_priv;
2022

2023 2024
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2025

2026
	spin_lock(&file_priv->mm.lock);
2027 2028 2029 2030
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
2031
	spin_unlock(&file_priv->mm.lock);
2032 2033
}

2034 2035
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
2036
{
2037 2038
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
2039

2040 2041 2042
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
2043

2044
		list_del(&request->list);
2045
		i915_gem_request_remove_from_client(request);
2046 2047
		kfree(request);
	}
2048

2049
	while (!list_empty(&ring->active_list)) {
2050
		struct drm_i915_gem_object *obj;
2051

2052 2053 2054
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2055

2056
		i915_gem_object_move_to_inactive(obj);
2057 2058 2059
	}
}

2060 2061 2062 2063 2064
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2065
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2066
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2067

2068
		i915_gem_write_fence(dev, i, NULL);
2069

2070 2071
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
2072

2073 2074 2075
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
2076
	}
2077 2078

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2079 2080
}

2081
void i915_gem_reset(struct drm_device *dev)
2082
{
2083
	struct drm_i915_private *dev_priv = dev->dev_private;
2084
	struct drm_i915_gem_object *obj;
2085
	struct intel_ring_buffer *ring;
2086
	int i;
2087

2088 2089
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
2090 2091 2092 2093

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
2094
	list_for_each_entry(obj,
2095
			    &dev_priv->mm.inactive_list,
2096
			    mm_list)
2097
	{
2098
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2099
	}
2100 2101

	/* The fence registers are invalidated so clear them out */
2102
	i915_gem_reset_fences(dev);
2103 2104 2105 2106 2107
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2108
void
C
Chris Wilson 已提交
2109
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2110 2111
{
	uint32_t seqno;
2112
	int i;
2113

C
Chris Wilson 已提交
2114
	if (list_empty(&ring->request_list))
2115 2116
		return;

C
Chris Wilson 已提交
2117
	WARN_ON(i915_verify_lists(ring->dev));
2118

2119
	seqno = ring->get_seqno(ring, true);
2120

2121
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2122 2123
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;
2124

2125
	while (!list_empty(&ring->request_list)) {
2126
		struct drm_i915_gem_request *request;
2127

2128
		request = list_first_entry(&ring->request_list,
2129 2130
					   struct drm_i915_gem_request,
					   list);
2131

2132
		if (!i915_seqno_passed(seqno, request->seqno))
2133
			break;
2134

C
Chris Wilson 已提交
2135
		trace_i915_gem_request_retire(ring, request->seqno);
2136 2137 2138 2139 2140 2141
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
2142

2143
		list_del(&request->list);
2144
		i915_gem_request_remove_from_client(request);
2145
		kfree(request);
2146 2147
	}

2148 2149 2150 2151
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
2152
		struct drm_i915_gem_object *obj;
2153

2154
		obj = list_first_entry(&ring->active_list,
2155 2156
				      struct drm_i915_gem_object,
				      ring_list);
2157

2158
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2159 2160
			break;

2161
		i915_gem_object_move_to_inactive(obj);
2162
	}
2163

C
Chris Wilson 已提交
2164 2165
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2166
		ring->irq_put(ring);
C
Chris Wilson 已提交
2167
		ring->trace_irq_seqno = 0;
2168
	}
2169

C
Chris Wilson 已提交
2170
	WARN_ON(i915_verify_lists(ring->dev));
2171
}
2172

2173 2174 2175 2176
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2177
	struct intel_ring_buffer *ring;
2178
	int i;
2179

2180 2181
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
2182 2183
}

2184
static void
2185 2186 2187 2188
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
2189
	struct intel_ring_buffer *ring;
2190 2191
	bool idle;
	int i;
2192 2193 2194 2195

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;
2196

2197 2198 2199 2200 2201 2202
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2203
	i915_gem_retire_requests(dev);
2204

2205 2206
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
2207
	 */
2208
	idle = true;
2209
	for_each_ring(ring, dev_priv, i) {
2210 2211
		if (ring->gpu_caches_dirty)
			i915_add_request(ring, NULL, NULL);
2212 2213

		idle &= list_empty(&ring->request_list);
2214 2215
	}

2216
	if (!dev_priv->mm.suspended && !idle)
2217
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2218 2219
	if (idle)
		intel_mark_idle(dev);
2220

2221 2222 2223
	mutex_unlock(&dev->struct_mutex);
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2235
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2236 2237
		if (ret)
			return ret;
2238

2239 2240 2241 2242 2243 2244
		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
	struct intel_ring_buffer *ring = NULL;
2273
	struct timespec timeout_stack, *timeout = NULL;
2274 2275 2276
	u32 seqno = 0;
	int ret = 0;

2277 2278 2279 2280
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2292 2293
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2294 2295 2296 2297
	if (ret)
		goto out;

	if (obj->active) {
2298
		seqno = obj->last_read_seqno;
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

2316 2317 2318 2319 2320
	ret = __wait_seqno(ring, seqno, true, timeout);
	if (timeout) {
		WARN_ON(!timespec_valid(timeout));
		args->timeout_ns = timespec_to_ns(timeout);
	}
2321 2322 2323 2324 2325 2326 2327 2328
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2352
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2353
		return i915_gem_object_wait_rendering(obj, false);
2354 2355 2356

	idx = intel_ring_sync_index(from, to);

2357
	seqno = obj->last_read_seqno;
2358 2359 2360
	if (seqno <= from->sync_seqno[idx])
		return 0;

2361 2362 2363
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2364

2365
	ret = to->sync_to(to, from, seqno);
2366 2367
	if (!ret)
		from->sync_seqno[idx] = seqno;
2368

2369
	return ret;
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2382 2383 2384
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2396 2397 2398
/**
 * Unbinds an object from the GTT aperture.
 */
2399
int
2400
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2401
{
2402
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2403 2404
	int ret = 0;

2405
	if (obj->gtt_space == NULL)
2406 2407
		return 0;

2408 2409
	if (obj->pin_count)
		return -EBUSY;
2410

2411 2412
	BUG_ON(obj->pages == NULL);

2413
	ret = i915_gem_object_finish_gpu(obj);
2414
	if (ret)
2415 2416 2417 2418 2419 2420
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2421
	i915_gem_object_finish_gtt(obj);
2422

2423
	/* release the fence reg _after_ flushing */
2424
	ret = i915_gem_object_put_fence(obj);
2425
	if (ret)
2426
		return ret;
2427

C
Chris Wilson 已提交
2428 2429
	trace_i915_gem_object_unbind(obj);

2430 2431
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2432 2433 2434 2435
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2436
	i915_gem_gtt_finish_object(obj);
2437

C
Chris Wilson 已提交
2438 2439
	list_del(&obj->mm_list);
	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2440
	/* Avoid an unnecessary call to unbind on rebind. */
2441
	obj->map_and_fenceable = true;
2442

2443 2444 2445
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2446

C
Chris Wilson 已提交
2447
	return 0;
2448 2449
}

2450
static int i915_ring_idle(struct intel_ring_buffer *ring)
2451
{
2452
	if (list_empty(&ring->active_list))
2453 2454
		return 0;

2455
	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2456 2457
}

2458
int i915_gpu_idle(struct drm_device *dev)
2459 2460
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2461
	struct intel_ring_buffer *ring;
2462
	int ret, i;
2463 2464

	/* Flush everything onto the inactive list. */
2465
	for_each_ring(ring, dev_priv, i) {
2466
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2467 2468
		if (ret)
			return ret;
2469 2470

		ret = i915_ring_idle(ring);
2471 2472
		if (ret)
			return ret;
2473
	}
2474

2475
	return 0;
2476 2477
}

2478 2479
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2480 2481 2482 2483
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2484 2485
	if (obj) {
		u32 size = obj->gtt_space->size;
2486

2487 2488 2489 2490 2491
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2492

2493 2494 2495 2496 2497
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2498

2499 2500
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2501 2502
}

2503 2504
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2505 2506 2507 2508
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2509 2510
	if (obj) {
		u32 size = obj->gtt_space->size;
2511

2512 2513 2514 2515 2516 2517 2518 2519 2520
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2521

2522 2523
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2524 2525
}

2526 2527
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2528 2529
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2530
	u32 val;
2531

2532 2533 2534 2535
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2536

2537 2538 2539 2540 2541
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2542

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2568 2569
}

2570 2571
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2572 2573 2574 2575
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2576 2577 2578
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2579

2580 2581 2582 2583 2584
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2585

2586 2587
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2588

2589 2590 2591 2592 2593 2594 2595 2596
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2597

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2614 2615
}

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2642
static int
C
Chris Wilson 已提交
2643
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2644
{
2645
	if (obj->last_fenced_seqno) {
2646
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2647 2648
		if (ret)
			return ret;
2649 2650 2651 2652

		obj->last_fenced_seqno = 0;
	}

2653 2654 2655 2656 2657 2658
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2659
	obj->fenced_gpu_access = false;
2660 2661 2662 2663 2664 2665
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2666
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2667 2668
	int ret;

C
Chris Wilson 已提交
2669
	ret = i915_gem_object_flush_fence(obj);
2670 2671 2672
	if (ret)
		return ret;

2673 2674
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2675

2676 2677 2678 2679
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2680 2681 2682 2683 2684

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2685
i915_find_fence_reg(struct drm_device *dev)
2686 2687
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2688
	struct drm_i915_fence_reg *reg, *avail;
2689
	int i;
2690 2691

	/* First try to find a free reg */
2692
	avail = NULL;
2693 2694 2695
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2696
			return reg;
2697

2698
		if (!reg->pin_count)
2699
			avail = reg;
2700 2701
	}

2702 2703
	if (avail == NULL)
		return NULL;
2704 2705

	/* None available, try to steal one or wait for a user to finish */
2706
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2707
		if (reg->pin_count)
2708 2709
			continue;

C
Chris Wilson 已提交
2710
		return reg;
2711 2712
	}

C
Chris Wilson 已提交
2713
	return NULL;
2714 2715
}

2716
/**
2717
 * i915_gem_object_get_fence - set up fencing for an object
2718 2719 2720 2721 2722 2723 2724 2725 2726
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2727 2728
 *
 * For an untiled surface, this removes any existing fence.
2729
 */
2730
int
2731
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2732
{
2733
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2734
	struct drm_i915_private *dev_priv = dev->dev_private;
2735
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2736
	struct drm_i915_fence_reg *reg;
2737
	int ret;
2738

2739 2740 2741
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2742
	if (obj->fence_dirty) {
2743 2744 2745 2746
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2747

2748
	/* Just update our place in the LRU if our fence is getting reused. */
2749 2750
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2751
		if (!obj->fence_dirty) {
2752 2753 2754 2755 2756 2757 2758 2759
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2760

2761 2762 2763 2764
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2765 2766 2767
			if (ret)
				return ret;

2768
			i915_gem_object_fence_lost(old);
2769
		}
2770
	} else
2771 2772
		return 0;

2773
	i915_gem_object_update_fence(obj, reg, enable);
2774
	obj->fence_dirty = false;
2775

2776
	return 0;
2777 2778
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
				     struct drm_mm_node *gtt_space,
				     unsigned long cache_level)
{
	struct drm_mm_node *other;

	/* On non-LLC machines we have to be careful when putting differing
	 * types of snoopable memory together to avoid the prefetcher
	 * crossing memory domains and dieing.
	 */
	if (HAS_LLC(dev))
		return true;

	if (gtt_space == NULL)
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	int err = 0;

	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
		if (obj->gtt_space == NULL) {
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
			err++;
			continue;
		}

		if (obj->cache_level != obj->gtt_space->color) {
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
			       obj->gtt_space->start,
			       obj->gtt_space->start + obj->gtt_space->size,
			       obj->cache_level,
			       obj->gtt_space->color);
			err++;
			continue;
		}

		if (!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level)) {
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
			       obj->gtt_space->start,
			       obj->gtt_space->start + obj->gtt_space->size,
			       obj->cache_level);
			err++;
			continue;
		}
	}

	WARN_ON(err);
#endif
}

2849 2850 2851 2852
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2853
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2854
			    unsigned alignment,
2855 2856
			    bool map_and_fenceable,
			    bool nonblocking)
2857
{
2858
	struct drm_device *dev = obj->base.dev;
2859 2860
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2861
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2862
	bool mappable, fenceable;
2863
	int ret;
2864

2865
	if (obj->madv != I915_MADV_WILLNEED) {
2866 2867 2868 2869
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2880

2881
	if (alignment == 0)
2882 2883
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2884
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2885 2886 2887 2888
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2889
	size = map_and_fenceable ? fence_size : obj->base.size;
2890

2891 2892 2893
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2894
	if (obj->base.size >
2895
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2896 2897 2898 2899
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2900
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
2901 2902 2903
	if (ret)
		return ret;

2904
 search_free:
2905
	if (map_and_fenceable)
2906
		free_space =
2907 2908 2909 2910
			drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
							  size, alignment, obj->cache_level,
							  0, dev_priv->mm.gtt_mappable_end,
							  false);
2911
	else
2912 2913 2914
		free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
						      size, alignment, obj->cache_level,
						      false);
2915 2916

	if (free_space != NULL) {
2917
		if (map_and_fenceable)
2918
			obj->gtt_space =
2919
				drm_mm_get_block_range_generic(free_space,
2920
							       size, alignment, obj->cache_level,
2921
							       0, dev_priv->mm.gtt_mappable_end,
2922
							       false);
2923
		else
2924
			obj->gtt_space =
2925 2926 2927
				drm_mm_get_block_generic(free_space,
							 size, alignment, obj->cache_level,
							 false);
2928
	}
2929
	if (obj->gtt_space == NULL) {
2930
		ret = i915_gem_evict_something(dev, size, alignment,
2931
					       obj->cache_level,
2932 2933
					       map_and_fenceable,
					       nonblocking);
2934
		if (ret)
2935
			return ret;
2936

2937 2938
		goto search_free;
	}
2939 2940 2941 2942 2943 2944 2945
	if (WARN_ON(!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level))) {
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
		return -EINVAL;
	}
2946 2947


2948
	ret = i915_gem_gtt_prepare_object(obj);
2949
	if (ret) {
2950 2951
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
C
Chris Wilson 已提交
2952
		return ret;
2953 2954
	}

2955 2956
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2957

C
Chris Wilson 已提交
2958
	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2959
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2960

2961
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2962

2963
	fenceable =
2964
		obj->gtt_space->size == fence_size &&
2965
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2966

2967
	mappable =
2968
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2969

2970
	obj->map_and_fenceable = mappable && fenceable;
2971

C
Chris Wilson 已提交
2972
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2973
	i915_gem_verify_gtt(dev);
2974 2975 2976 2977
	return 0;
}

void
2978
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2979 2980 2981 2982 2983
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2984
	if (obj->pages == NULL)
2985 2986
		return;

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2998
	trace_i915_gem_object_clflush(obj);
2999

3000
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
3001 3002
}

3003 3004
/** Flushes the GTT write domain for the object if it's dirty. */
static void
3005
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3006
{
C
Chris Wilson 已提交
3007 3008
	uint32_t old_write_domain;

3009
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3010 3011
		return;

3012
	/* No actual flushing is required for the GTT write domain.  Writes
3013 3014
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3015 3016 3017 3018
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3019
	 */
3020 3021
	wmb();

3022 3023
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3024 3025

	trace_i915_gem_object_change_domain(obj,
3026
					    obj->base.read_domains,
C
Chris Wilson 已提交
3027
					    old_write_domain);
3028 3029 3030 3031
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3032
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3033
{
C
Chris Wilson 已提交
3034
	uint32_t old_write_domain;
3035

3036
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3037 3038 3039
		return;

	i915_gem_clflush_object(obj);
3040
	intel_gtt_chipset_flush();
3041 3042
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3043 3044

	trace_i915_gem_object_change_domain(obj,
3045
					    obj->base.read_domains,
C
Chris Wilson 已提交
3046
					    old_write_domain);
3047 3048
}

3049 3050 3051 3052 3053 3054
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3055
int
3056
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3057
{
3058
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
3059
	uint32_t old_write_domain, old_read_domains;
3060
	int ret;
3061

3062
	/* Not valid to be called on unbound objects. */
3063
	if (obj->gtt_space == NULL)
3064 3065
		return -EINVAL;

3066 3067 3068
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3069 3070 3071
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
3072

3073
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3074

3075 3076
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3077

3078 3079 3080
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3081 3082
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3083
	if (write) {
3084 3085 3086
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3087 3088
	}

C
Chris Wilson 已提交
3089 3090 3091 3092
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3093 3094 3095 3096
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

3097 3098 3099
	return 0;
}

3100 3101 3102
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3103 3104
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3115 3116 3117 3118 3119 3120
	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3132
		if (INTEL_INFO(dev)->gen < 6) {
3133 3134 3135 3136 3137
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3138 3139
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
3140 3141 3142
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
3143 3144

		obj->gtt_space->color = cache_level;
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
3171
	i915_gem_verify_gtt(dev);
3172 3173 3174
	return 0;
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
				struct drm_file *file)
{
	struct drm_i915_gem_cacheing *args = data;
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	args->cacheing = obj->cache_level != I915_CACHE_NONE;

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
				struct drm_file *file)
{
	struct drm_i915_gem_cacheing *args = data;
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	switch (args->cacheing) {
	case I915_CACHEING_NONE:
		level = I915_CACHE_NONE;
		break;
	case I915_CACHEING_CACHED:
		level = I915_CACHE_LLC;
		break;
	default:
		return -EINVAL;
	}

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3237
/*
3238 3239 3240
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3241 3242
 */
int
3243 3244
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3245
				     struct intel_ring_buffer *pipelined)
3246
{
3247
	u32 old_read_domains, old_write_domain;
3248 3249
	int ret;

3250
	if (pipelined != obj->ring) {
3251 3252
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3253 3254 3255
			return ret;
	}

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3269 3270 3271 3272
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3273
	ret = i915_gem_object_pin(obj, alignment, true, false);
3274 3275 3276
	if (ret)
		return ret;

3277 3278
	i915_gem_object_flush_cpu_write_domain(obj);

3279
	old_write_domain = obj->base.write_domain;
3280
	old_read_domains = obj->base.read_domains;
3281 3282 3283 3284

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3285
	obj->base.write_domain = 0;
3286
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3287 3288 3289

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3290
					    old_write_domain);
3291 3292 3293 3294

	return 0;
}

3295
int
3296
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3297
{
3298 3299
	int ret;

3300
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3301 3302
		return 0;

3303
	ret = i915_gem_object_wait_rendering(obj, false);
3304 3305 3306
	if (ret)
		return ret;

3307 3308
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3309
	return 0;
3310 3311
}

3312 3313 3314 3315 3316 3317
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3318
int
3319
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3320
{
C
Chris Wilson 已提交
3321
	uint32_t old_write_domain, old_read_domains;
3322 3323
	int ret;

3324 3325 3326
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3327 3328 3329
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
3330

3331
	i915_gem_object_flush_gtt_write_domain(obj);
3332

3333 3334
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3335

3336
	/* Flush the CPU cache if it's still invalid. */
3337
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3338 3339
		i915_gem_clflush_object(obj);

3340
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3341 3342 3343 3344 3345
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3346
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3347 3348 3349 3350 3351

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3352 3353
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3354
	}
3355

C
Chris Wilson 已提交
3356 3357 3358 3359
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3360 3361 3362
	return 0;
}

3363 3364 3365
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3366 3367 3368 3369
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3370 3371 3372
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3373
static int
3374
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3375
{
3376 3377
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3378
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3379 3380 3381 3382
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3383

3384 3385 3386
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3387
	spin_lock(&file_priv->mm.lock);
3388
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3389 3390
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3391

3392 3393
		ring = request->ring;
		seqno = request->seqno;
3394
	}
3395
	spin_unlock(&file_priv->mm.lock);
3396

3397 3398
	if (seqno == 0)
		return 0;
3399

3400
	ret = __wait_seqno(ring, seqno, true, NULL);
3401 3402
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3403 3404 3405 3406

	return ret;
}

3407
int
3408 3409
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3410 3411
		    bool map_and_fenceable,
		    bool nonblocking)
3412 3413 3414
{
	int ret;

3415
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3416

3417 3418 3419 3420
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3421
			     "bo is already pinned with incorrect alignment:"
3422 3423
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3424
			     obj->gtt_offset, alignment,
3425
			     map_and_fenceable,
3426
			     obj->map_and_fenceable);
3427 3428 3429 3430 3431 3432
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3433
	if (obj->gtt_space == NULL) {
3434
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3435 3436
						  map_and_fenceable,
						  nonblocking);
3437
		if (ret)
3438
			return ret;
3439
	}
J
Jesse Barnes 已提交
3440

3441 3442 3443
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3444
	obj->pin_count++;
3445
	obj->pin_mappable |= map_and_fenceable;
3446 3447 3448 3449 3450

	return 0;
}

void
3451
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3452
{
3453 3454
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3455

3456
	if (--obj->pin_count == 0)
3457
		obj->pin_mappable = false;
3458 3459 3460 3461
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3462
		   struct drm_file *file)
3463 3464
{
	struct drm_i915_gem_pin *args = data;
3465
	struct drm_i915_gem_object *obj;
3466 3467
	int ret;

3468 3469 3470
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3471

3472
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3473
	if (&obj->base == NULL) {
3474 3475
		ret = -ENOENT;
		goto unlock;
3476 3477
	}

3478
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3479
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3480 3481
		ret = -EINVAL;
		goto out;
3482 3483
	}

3484
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3485 3486
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3487 3488
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3489 3490
	}

3491 3492 3493
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3494
		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3495 3496
		if (ret)
			goto out;
3497 3498 3499 3500 3501
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3502
	i915_gem_object_flush_cpu_write_domain(obj);
3503
	args->offset = obj->gtt_offset;
3504
out:
3505
	drm_gem_object_unreference(&obj->base);
3506
unlock:
3507
	mutex_unlock(&dev->struct_mutex);
3508
	return ret;
3509 3510 3511 3512
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3513
		     struct drm_file *file)
3514 3515
{
	struct drm_i915_gem_pin *args = data;
3516
	struct drm_i915_gem_object *obj;
3517
	int ret;
3518

3519 3520 3521
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3522

3523
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3524
	if (&obj->base == NULL) {
3525 3526
		ret = -ENOENT;
		goto unlock;
3527
	}
3528

3529
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3530 3531
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3532 3533
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3534
	}
3535 3536 3537
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3538 3539
		i915_gem_object_unpin(obj);
	}
3540

3541
out:
3542
	drm_gem_object_unreference(&obj->base);
3543
unlock:
3544
	mutex_unlock(&dev->struct_mutex);
3545
	return ret;
3546 3547 3548 3549
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3550
		    struct drm_file *file)
3551 3552
{
	struct drm_i915_gem_busy *args = data;
3553
	struct drm_i915_gem_object *obj;
3554 3555
	int ret;

3556
	ret = i915_mutex_lock_interruptible(dev);
3557
	if (ret)
3558
		return ret;
3559

3560
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3561
	if (&obj->base == NULL) {
3562 3563
		ret = -ENOENT;
		goto unlock;
3564
	}
3565

3566 3567 3568 3569
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3570
	 */
3571
	ret = i915_gem_object_flush_active(obj);
3572

3573
	args->busy = obj->active;
3574 3575 3576 3577
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
3578

3579
	drm_gem_object_unreference(&obj->base);
3580
unlock:
3581
	mutex_unlock(&dev->struct_mutex);
3582
	return ret;
3583 3584 3585 3586 3587 3588
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3589
	return i915_gem_ring_throttle(dev, file_priv);
3590 3591
}

3592 3593 3594 3595 3596
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3597
	struct drm_i915_gem_object *obj;
3598
	int ret;
3599 3600 3601 3602 3603 3604 3605 3606 3607

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3608 3609 3610 3611
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3612
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3613
	if (&obj->base == NULL) {
3614 3615
		ret = -ENOENT;
		goto unlock;
3616 3617
	}

3618
	if (obj->pin_count) {
3619 3620
		ret = -EINVAL;
		goto out;
3621 3622
	}

3623 3624
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3625

C
Chris Wilson 已提交
3626 3627
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3628 3629
		i915_gem_object_truncate(obj);

3630
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3631

3632
out:
3633
	drm_gem_object_unreference(&obj->base);
3634
unlock:
3635
	mutex_unlock(&dev->struct_mutex);
3636
	return ret;
3637 3638
}

3639 3640
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3641 3642 3643 3644 3645 3646
{
	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->gtt_list);
	INIT_LIST_HEAD(&obj->ring_list);
	INIT_LIST_HEAD(&obj->exec_list);

3647 3648
	obj->ops = ops;

3649 3650 3651 3652 3653 3654 3655 3656
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

3657 3658 3659 3660 3661
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3662 3663
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3664
{
3665
	struct drm_i915_gem_object *obj;
3666
	struct address_space *mapping;
3667
	u32 mask;
3668

3669 3670 3671
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3672

3673 3674 3675 3676
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3677

3678 3679 3680 3681 3682 3683 3684
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3685
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3686
	mapping_set_gfp_mask(mapping, mask);
3687

3688
	i915_gem_object_init(obj, &i915_gem_object_ops);
3689

3690 3691
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3692

3693 3694
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3710
	return obj;
3711 3712 3713 3714 3715
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3716

3717 3718 3719
	return 0;
}

3720
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3721
{
3722
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3723
	struct drm_device *dev = obj->base.dev;
3724
	drm_i915_private_t *dev_priv = dev->dev_private;
3725

3726 3727
	trace_i915_gem_object_destroy(obj);

3728 3729 3730
	if (gem_obj->import_attach)
		drm_prime_gem_destroy(gem_obj, obj->sg_table);

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3746
	i915_gem_object_put_pages(obj);
3747
	i915_gem_object_free_mmap_offset(obj);
3748

3749 3750
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3751

3752 3753
	kfree(obj->bit_17);
	kfree(obj);
3754 3755
}

3756 3757 3758 3759 3760
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3761

3762
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3763

3764
	if (dev_priv->mm.suspended) {
3765 3766
		mutex_unlock(&dev->struct_mutex);
		return 0;
3767 3768
	}

3769
	ret = i915_gpu_idle(dev);
3770 3771
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3772
		return ret;
3773
	}
3774
	i915_gem_retire_requests(dev);
3775

3776
	/* Under UMS, be paranoid and evict. */
3777
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
3778
		i915_gem_evict_everything(dev);
3779

3780 3781
	i915_gem_reset_fences(dev);

3782 3783 3784 3785 3786
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3787
	del_timer_sync(&dev_priv->hangcheck_timer);
3788 3789

	i915_kernel_lost_context(dev);
3790
	i915_gem_cleanup_ringbuffer(dev);
3791

3792 3793
	mutex_unlock(&dev->struct_mutex);

3794 3795 3796
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3797 3798 3799
	return 0;
}

B
Ben Widawsky 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
void i915_gem_l3_remap(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 misccpctl;
	int i;

	if (!IS_IVYBRIDGE(dev))
		return;

	if (!dev_priv->mm.l3_remap_info)
		return;

	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	POSTING_READ(GEN7_MISCCPCTL);

	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG("0x%x was already programmed to %x\n",
				  GEN7_L3LOG_BASE + i, remap);
		if (remap && !dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
	}

	/* Make sure all the writes land before disabling dop clock gating */
	POSTING_READ(GEN7_L3LOG_BASE);

	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

3832 3833 3834 3835
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3836
	if (INTEL_INFO(dev)->gen < 5 ||
3837 3838 3839 3840 3841 3842
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3843 3844 3845
	if (IS_GEN5(dev))
		return;

3846 3847
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3848
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3849
	else
3850
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3851
}
D
Daniel Vetter 已提交
3852 3853 3854 3855 3856 3857

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3858 3859 3860
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3861 3862 3863 3864 3865
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3884 3885 3886 3887
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3888 3889 3890 3891
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3892 3893 3894 3895 3896

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3897 3898
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3899
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3900 3901 3902 3903 3904
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3905
	for_each_ring(ring, dev_priv, i) {
D
Daniel Vetter 已提交
3906 3907
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3908
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3909 3910 3911 3912 3913 3914

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

3931
int
3932
i915_gem_init_hw(struct drm_device *dev)
3933 3934 3935
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3936

D
Daniel Vetter 已提交
3937 3938 3939
	if (!intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
3940 3941
	i915_gem_l3_remap(dev);

3942 3943
	i915_gem_init_swizzling(dev);

3944
	ret = intel_init_render_ring_buffer(dev);
3945
	if (ret)
3946
		return ret;
3947 3948

	if (HAS_BSD(dev)) {
3949
		ret = intel_init_bsd_ring_buffer(dev);
3950 3951
		if (ret)
			goto cleanup_render_ring;
3952
	}
3953

3954
	if (intel_enable_blt(dev)) {
3955 3956 3957 3958 3959
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3960 3961
	dev_priv->next_seqno = 1;

3962 3963 3964 3965 3966
	/*
	 * XXX: There was some w/a described somewhere suggesting loading
	 * contexts before PPGTT.
	 */
	i915_gem_context_init(dev);
D
Daniel Vetter 已提交
3967 3968
	i915_gem_init_ppgtt(dev);

3969 3970
	return 0;

3971
cleanup_bsd_ring:
3972
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3973
cleanup_render_ring:
3974
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3975 3976 3977
	return ret;
}

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

4037 4038 4039
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
4040 4041 4042
	return 0;
}

4043 4044 4045 4046
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4047
	struct intel_ring_buffer *ring;
4048
	int i;
4049

4050 4051
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
4052 4053
}

4054 4055 4056 4057 4058
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4059
	int ret;
4060

J
Jesse Barnes 已提交
4061 4062 4063
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4064
	if (atomic_read(&dev_priv->mm.wedged)) {
4065
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4066
		atomic_set(&dev_priv->mm.wedged, 0);
4067 4068 4069
	}

	mutex_lock(&dev->struct_mutex);
4070 4071
	dev_priv->mm.suspended = 0;

4072
	ret = i915_gem_init_hw(dev);
4073 4074
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4075
		return ret;
4076
	}
4077

4078
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4079 4080
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	mutex_unlock(&dev->struct_mutex);
4081

4082 4083 4084
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4085

4086
	return 0;
4087 4088 4089 4090 4091 4092 4093 4094

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4095 4096 4097 4098 4099 4100
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4101 4102 4103
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4104
	drm_irq_uninstall(dev);
4105
	return i915_gem_idle(dev);
4106 4107 4108 4109 4110 4111 4112
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4113 4114 4115
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4116 4117 4118
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4119 4120
}

4121 4122 4123 4124 4125 4126 4127
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4128 4129 4130
void
i915_gem_load(struct drm_device *dev)
{
4131
	int i;
4132 4133
	drm_i915_private_t *dev_priv = dev->dev_private;

4134
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4135
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4136 4137
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4138
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4139 4140
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4141
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4142
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4143 4144
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4145
	init_completion(&dev_priv->error_completion);
4146

4147 4148
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
4149 4150
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4151 4152
	}

4153 4154
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4155
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4156 4157
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4158

4159
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4160 4161 4162 4163
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4164
	/* Initialize fence registers to zero */
4165
	i915_gem_reset_fences(dev);
4166

4167
	i915_gem_detect_bit_6_swizzle(dev);
4168
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4169

4170 4171
	dev_priv->mm.interruptible = true;

4172 4173 4174
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
4175
}
4176 4177 4178 4179 4180

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4181 4182
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4183 4184 4185 4186 4187 4188 4189 4190
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4191
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4192 4193 4194 4195 4196
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4197
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4210
	kfree(phys_obj);
4211 4212 4213
	return ret;
}

4214
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4239
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4240 4241 4242 4243
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4244
				 struct drm_i915_gem_object *obj)
4245
{
4246
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4247
	char *vaddr;
4248 4249 4250
	int i;
	int page_count;

4251
	if (!obj->phys_obj)
4252
		return;
4253
	vaddr = obj->phys_obj->handle->vaddr;
4254

4255
	page_count = obj->base.size / PAGE_SIZE;
4256
	for (i = 0; i < page_count; i++) {
4257
		struct page *page = shmem_read_mapping_page(mapping, i);
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4269
	}
4270
	intel_gtt_chipset_flush();
4271

4272 4273
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4274 4275 4276 4277
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4278
			    struct drm_i915_gem_object *obj,
4279 4280
			    int id,
			    int align)
4281
{
4282
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4283 4284 4285 4286 4287 4288 4289 4290
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4291 4292
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4293 4294 4295 4296 4297 4298 4299
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4300
						obj->base.size, align);
4301
		if (ret) {
4302 4303
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4304
			return ret;
4305 4306 4307 4308
		}
	}

	/* bind to the object */
4309 4310
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4311

4312
	page_count = obj->base.size / PAGE_SIZE;
4313 4314

	for (i = 0; i < page_count; i++) {
4315 4316 4317
		struct page *page;
		char *dst, *src;

4318
		page = shmem_read_mapping_page(mapping, i);
4319 4320
		if (IS_ERR(page))
			return PTR_ERR(page);
4321

4322
		src = kmap_atomic(page);
4323
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4324
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4325
		kunmap_atomic(src);
4326

4327 4328 4329
		mark_page_accessed(page);
		page_cache_release(page);
	}
4330

4331 4332 4333 4334
	return 0;
}

static int
4335 4336
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4337 4338 4339
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4340
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4341
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4342

4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4356

4357
	intel_gtt_chipset_flush();
4358 4359
	return 0;
}
4360

4361
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4362
{
4363
	struct drm_i915_file_private *file_priv = file->driver_priv;
4364 4365 4366 4367 4368

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4369
	spin_lock(&file_priv->mm.lock);
4370 4371 4372 4373 4374 4375 4376 4377 4378
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4379
	spin_unlock(&file_priv->mm.lock);
4380
}
4381 4382

static int
4383
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4384
{
4385 4386 4387 4388 4389
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
4390
	struct drm_i915_gem_object *obj;
4391
	int nr_to_scan = sc->nr_to_scan;
4392 4393 4394
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4395
		return 0;
4396

C
Chris Wilson 已提交
4397 4398 4399 4400
	if (nr_to_scan) {
		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
		if (nr_to_scan > 0)
			i915_gem_shrink_all(dev_priv);
4401 4402
	}

4403
	cnt = 0;
C
Chris Wilson 已提交
4404 4405 4406 4407 4408
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
		cnt += obj->base.size >> PAGE_SHIFT;
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
		if (obj->pin_count == 0)
			cnt += obj->base.size >> PAGE_SHIFT;
4409 4410

	mutex_unlock(&dev->struct_mutex);
C
Chris Wilson 已提交
4411
	return cnt;
4412
}