i915_gem.c 124.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

301 302 303 304 305 306 307 308 309 310 311 312 313
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

361 362 363
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
364 365
 */
static __must_check int
366 367 368
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
369 370 371
{
	struct i915_gem_active *active;
	unsigned long active_mask;
372
	int idx;
373

374
	active_mask = __I915_BO_ACTIVE(obj);
375 376 377 378 379 380 381 382 383 384
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

385 386
	for_each_active(active_mask, idx) {
		int ret;
387

388 389 390 391
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
392 393
	}

394
	return 0;
395 396 397 398 399 400 401 402 403
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

404 405 406 407 408
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
409
	int ret;
410 411 412 413 414 415 416 417 418 419 420 421 422 423

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
424 425 426 427 428
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
429 430 431
	if (ret)
		return ret;

432 433 434 435 436 437
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
438 439 440
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
441 442 443 444 445 446 447 448 449
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
450
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
451
	int ret = 0;
452 453 454 455 456 457 458

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
459

460
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
461 462 463 464 465 466 467 468 469 470
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
471 472 473 474
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
475 476
	}

477
	drm_clflush_virt_range(vaddr, args->size);
478
	i915_gem_chipset_flush(to_i915(dev));
479 480

out:
481
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
482
	return ret;
483 484
}

485 486
void *i915_gem_object_alloc(struct drm_device *dev)
{
487
	struct drm_i915_private *dev_priv = to_i915(dev);
488
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
489 490 491 492
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
493
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
494
	kmem_cache_free(dev_priv->objects, obj);
495 496
}

497 498 499 500 501
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
502
{
503
	struct drm_i915_gem_object *obj;
504 505
	int ret;
	u32 handle;
506

507
	size = roundup(size, PAGE_SIZE);
508 509
	if (size == 0)
		return -EINVAL;
510 511

	/* Allocate the new object */
512
	obj = i915_gem_object_create(dev, size);
513 514
	if (IS_ERR(obj))
		return PTR_ERR(obj);
515

516
	ret = drm_gem_handle_create(file, &obj->base, &handle);
517
	/* drop reference from allocate - handle holds it now */
518
	i915_gem_object_put_unlocked(obj);
519 520
	if (ret)
		return ret;
521

522
	*handle_p = handle;
523 524 525
	return 0;
}

526 527 528 529 530 531
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
532
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
533 534
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
535
			       args->size, &args->handle);
536 537 538 539
}

/**
 * Creates a new mm object and returns a handle to it.
540 541 542
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
543 544 545 546 547 548
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
549

550
	return i915_gem_create(file, dev,
551
			       args->size, &args->handle);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

580
static inline int
581 582
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

606 607 608 609 610 611 612 613 614 615 616 617
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

618
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
619 620
		return -EINVAL;

621 622 623 624
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

643 644 645
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
646
static int
647 648 649 650 651 652 653
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

654
	if (unlikely(page_do_bit17_swizzling))
655 656 657 658 659 660 661 662 663 664 665
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

666
	return ret ? -EFAULT : 0;
667 668
}

669 670 671 672
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
673
	if (unlikely(swizzled)) {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

691 692 693 694 695 696 697 698 699 700 701 702
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
703 704 705
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
706 707 708 709 710 711 712 713 714 715 716

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

717
	return ret ? - EFAULT : 0;
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
747
	struct drm_i915_private *dev_priv = to_i915(dev);
748 749 750 751 752 753 754
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

755
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

856
static int
857 858 859 860
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
861
{
862
	char __user *user_data;
863
	ssize_t remain;
864
	loff_t offset;
865
	int shmem_page_offset, page_length, ret = 0;
866
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
867
	int prefaulted = 0;
868
	int needs_clflush = 0;
869
	struct sg_page_iter sg_iter;
870

871
	if (!i915_gem_object_has_struct_page(obj))
872 873
		return -ENODEV;

874
	user_data = u64_to_user_ptr(args->data_ptr);
875 876
	remain = args->size;

877
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
878

879
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
880 881 882
	if (ret)
		return ret;

883
	offset = args->offset;
884

885 886
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
887
		struct page *page = sg_page_iter_page(&sg_iter);
888 889 890 891

		if (remain <= 0)
			break;

892 893 894 895 896
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
897
		shmem_page_offset = offset_in_page(offset);
898 899 900 901
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

902 903 904
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

905 906 907 908 909
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
910 911 912

		mutex_unlock(&dev->struct_mutex);

913
		if (likely(!i915.prefault_disable) && !prefaulted) {
914
			ret = fault_in_multipages_writeable(user_data, remain);
915 916 917 918 919 920 921
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
922

923 924 925
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
926

927
		mutex_lock(&dev->struct_mutex);
928 929

		if (ret)
930 931
			goto out;

932
next_page:
933
		remain -= page_length;
934
		user_data += page_length;
935 936 937
		offset += page_length;
	}

938
out:
939 940
	i915_gem_object_unpin_pages(obj);

941 942 943
	return ret;
}

944 945
/**
 * Reads data from the object referenced by handle.
946 947 948
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
949 950 951 952 953
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
954
		     struct drm_file *file)
955 956
{
	struct drm_i915_gem_pread *args = data;
957
	struct drm_i915_gem_object *obj;
958
	int ret = 0;
959

960 961 962 963
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
964
		       u64_to_user_ptr(args->data_ptr),
965 966 967
		       args->size))
		return -EFAULT;

968
	obj = i915_gem_object_lookup(file, args->handle);
969 970
	if (!obj)
		return -ENOENT;
971

972
	/* Bounds check source.  */
973 974
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
975
		ret = -EINVAL;
976
		goto err;
C
Chris Wilson 已提交
977 978
	}

C
Chris Wilson 已提交
979 980
	trace_i915_gem_object_pread(obj, args->offset, args->size);

981 982 983 984 985 986 987 988
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

989
	ret = i915_gem_shmem_pread(dev, obj, args, file);
990

991
	/* pread for non shmem backed objects */
992 993
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
994 995
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
996 997
		intel_runtime_pm_put(to_i915(dev));
	}
998

999
	i915_gem_object_put(obj);
1000
	mutex_unlock(&dev->struct_mutex);
1001 1002 1003 1004 1005

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1006
	return ret;
1007 1008
}

1009 1010
/* This is the fast write path which cannot handle
 * page faults in the source data
1011
 */
1012 1013 1014 1015 1016 1017

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1018
{
1019 1020
	void __iomem *vaddr_atomic;
	void *vaddr;
1021
	unsigned long unwritten;
1022

P
Peter Zijlstra 已提交
1023
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1024 1025 1026
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1027
						      user_data, length);
P
Peter Zijlstra 已提交
1028
	io_mapping_unmap_atomic(vaddr_atomic);
1029
	return unwritten;
1030 1031
}

1032 1033 1034
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1035
 * @i915: i915 device private data
1036 1037 1038
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1039
 */
1040
static int
1041
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1042
			 struct drm_i915_gem_object *obj,
1043
			 struct drm_i915_gem_pwrite *args,
1044
			 struct drm_file *file)
1045
{
1046
	struct i915_ggtt *ggtt = &i915->ggtt;
1047
	struct drm_device *dev = obj->base.dev;
1048 1049
	struct drm_mm_node node;
	uint64_t remain, offset;
1050
	char __user *user_data;
1051
	int ret;
1052 1053
	bool hit_slow_path = false;

1054
	if (i915_gem_object_is_tiled(obj))
1055
		return -EFAULT;
D
Daniel Vetter 已提交
1056

1057 1058
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
1074 1075 1076
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
1077
	}
D
Daniel Vetter 已提交
1078 1079 1080 1081 1082

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1083
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
1084
	obj->dirty = true;
1085

1086 1087 1088 1089
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1090 1091
		/* Operation in this page
		 *
1092 1093 1094
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1095
		 */
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1109
		/* If we get a fault while copying data, then (presumably) our
1110 1111
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1112 1113
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1114
		 */
1115
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1116
				    page_offset, user_data, page_length)) {
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1129
		}
1130

1131 1132 1133
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1134 1135
	}

1136
out_flush:
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1150
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1151
out_unpin:
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1162
out:
1163
	return ret;
1164 1165
}

1166 1167 1168 1169
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1170
static int
1171 1172 1173 1174 1175
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1176
{
1177
	char *vaddr;
1178
	int ret;
1179

1180
	if (unlikely(page_do_bit17_swizzling))
1181
		return -EINVAL;
1182

1183 1184 1185 1186
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1187 1188
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1189 1190 1191 1192
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1193

1194
	return ret ? -EFAULT : 0;
1195 1196
}

1197 1198
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1199
static int
1200 1201 1202 1203 1204
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1205
{
1206 1207
	char *vaddr;
	int ret;
1208

1209
	vaddr = kmap(page);
1210
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1211 1212 1213
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1214 1215
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1216 1217
						user_data,
						page_length);
1218 1219 1220 1221 1222
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1223 1224 1225
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1226
	kunmap(page);
1227

1228
	return ret ? -EFAULT : 0;
1229 1230 1231
}

static int
1232 1233 1234 1235
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1236 1237
{
	ssize_t remain;
1238 1239
	loff_t offset;
	char __user *user_data;
1240
	int shmem_page_offset, page_length, ret = 0;
1241
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1242
	int hit_slowpath = 0;
1243 1244
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1245
	struct sg_page_iter sg_iter;
1246

1247
	user_data = u64_to_user_ptr(args->data_ptr);
1248 1249
	remain = args->size;

1250
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1251

1252 1253 1254 1255
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1256 1257 1258 1259 1260
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1261
		needs_clflush_after = cpu_write_needs_clflush(obj);
1262
	}
1263 1264 1265 1266 1267
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1268

1269 1270 1271 1272
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1273
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1274

1275 1276
	i915_gem_object_pin_pages(obj);

1277
	offset = args->offset;
1278
	obj->dirty = 1;
1279

1280 1281
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1282
		struct page *page = sg_page_iter_page(&sg_iter);
1283
		int partial_cacheline_write;
1284

1285 1286 1287
		if (remain <= 0)
			break;

1288 1289 1290 1291 1292
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1293
		shmem_page_offset = offset_in_page(offset);
1294 1295 1296 1297 1298

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1299 1300 1301 1302 1303 1304 1305
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1306 1307 1308
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1309 1310 1311 1312 1313 1314
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1315 1316 1317

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1318 1319 1320 1321
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1322

1323
		mutex_lock(&dev->struct_mutex);
1324 1325

		if (ret)
1326 1327
			goto out;

1328
next_page:
1329
		remain -= page_length;
1330
		user_data += page_length;
1331
		offset += page_length;
1332 1333
	}

1334
out:
1335 1336
	i915_gem_object_unpin_pages(obj);

1337
	if (hit_slowpath) {
1338 1339 1340 1341 1342 1343 1344
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1345
			if (i915_gem_clflush_object(obj, obj->pin_display))
1346
				needs_clflush_after = true;
1347
		}
1348
	}
1349

1350
	if (needs_clflush_after)
1351
		i915_gem_chipset_flush(to_i915(dev));
1352 1353
	else
		obj->cache_dirty = true;
1354

1355
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1356
	return ret;
1357 1358 1359 1360
}

/**
 * Writes data to the object referenced by handle.
1361 1362 1363
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1364 1365 1366 1367 1368
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1369
		      struct drm_file *file)
1370
{
1371
	struct drm_i915_private *dev_priv = to_i915(dev);
1372
	struct drm_i915_gem_pwrite *args = data;
1373
	struct drm_i915_gem_object *obj;
1374 1375 1376 1377 1378 1379
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1380
		       u64_to_user_ptr(args->data_ptr),
1381 1382 1383
		       args->size))
		return -EFAULT;

1384
	if (likely(!i915.prefault_disable)) {
1385
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1386 1387 1388 1389
						   args->size);
		if (ret)
			return -EFAULT;
	}
1390

1391
	obj = i915_gem_object_lookup(file, args->handle);
1392 1393
	if (!obj)
		return -ENOENT;
1394

1395
	/* Bounds check destination. */
1396 1397
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1398
		ret = -EINVAL;
1399
		goto err;
C
Chris Wilson 已提交
1400 1401
	}

C
Chris Wilson 已提交
1402 1403
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1414
	ret = -EFAULT;
1415 1416 1417 1418 1419 1420
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1421 1422
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1423
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1424 1425 1426
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1427
	}
1428

1429
	if (ret == -EFAULT || ret == -ENOSPC) {
1430 1431
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1432
		else if (i915_gem_object_has_struct_page(obj))
1433
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1434 1435
		else
			ret = -ENODEV;
1436
	}
1437

1438
	i915_gem_object_put(obj);
1439
	mutex_unlock(&dev->struct_mutex);
1440 1441
	intel_runtime_pm_put(dev_priv);

1442
	return ret;
1443 1444 1445 1446 1447 1448

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1449 1450
}

1451 1452 1453 1454 1455 1456 1457
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1458
/**
1459 1460
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1461 1462 1463
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1464 1465 1466
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1467
			  struct drm_file *file)
1468 1469
{
	struct drm_i915_gem_set_domain *args = data;
1470
	struct drm_i915_gem_object *obj;
1471 1472
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1473 1474
	int ret;

1475
	/* Only handle setting domains to types used by the CPU. */
1476
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1477 1478 1479 1480 1481 1482 1483 1484
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1485
	obj = i915_gem_object_lookup(file, args->handle);
1486 1487
	if (!obj)
		return -ENOENT;
1488

1489 1490 1491 1492
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1493 1494 1495 1496 1497
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1498
	if (ret)
1499
		goto err;
1500

1501
	if (read_domains & I915_GEM_DOMAIN_GTT)
1502
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1503
	else
1504
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1505

1506
	if (write_domain != 0)
1507
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1508

1509
	i915_gem_object_put(obj);
1510 1511
	mutex_unlock(&dev->struct_mutex);
	return ret;
1512 1513 1514 1515

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1516 1517 1518 1519
}

/**
 * Called when user space has done writes to this buffer
1520 1521 1522
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1523 1524 1525
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1526
			 struct drm_file *file)
1527 1528
{
	struct drm_i915_gem_sw_finish *args = data;
1529
	struct drm_i915_gem_object *obj;
1530
	int err = 0;
1531

1532
	obj = i915_gem_object_lookup(file, args->handle);
1533 1534
	if (!obj)
		return -ENOENT;
1535 1536

	/* Pinned buffers may be scanout, so flush the cache */
1537 1538 1539 1540 1541 1542 1543
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1544

1545 1546
	i915_gem_object_put_unlocked(obj);
	return err;
1547 1548 1549
}

/**
1550 1551 1552 1553 1554
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1555 1556 1557
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1568 1569 1570
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1571
		    struct drm_file *file)
1572 1573
{
	struct drm_i915_gem_mmap *args = data;
1574
	struct drm_i915_gem_object *obj;
1575 1576
	unsigned long addr;

1577 1578 1579
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1580
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1581 1582
		return -ENODEV;

1583 1584
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1585
		return -ENOENT;
1586

1587 1588 1589
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1590
	if (!obj->base.filp) {
1591
		i915_gem_object_put_unlocked(obj);
1592 1593 1594
		return -EINVAL;
	}

1595
	addr = vm_mmap(obj->base.filp, 0, args->size,
1596 1597
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1598 1599 1600 1601
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1602
		if (down_write_killable(&mm->mmap_sem)) {
1603
			i915_gem_object_put_unlocked(obj);
1604 1605
			return -EINTR;
		}
1606 1607 1608 1609 1610 1611 1612
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1613 1614

		/* This may race, but that's ok, it only gets set */
1615
		WRITE_ONCE(obj->has_wc_mmap, true);
1616
	}
1617
	i915_gem_object_put_unlocked(obj);
1618 1619 1620 1621 1622 1623 1624 1625
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1626 1627
/**
 * i915_gem_fault - fault a page into the GTT
1628 1629
 * @vma: VMA in question
 * @vmf: fault info
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1644 1645
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1646 1647
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1648
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1649
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1650 1651
	pgoff_t page_offset;
	unsigned long pfn;
1652
	int ret;
1653

1654 1655 1656 1657
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

C
Chris Wilson 已提交
1658 1659
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1660
	/* Try to flush the object off the GPU first without holding the lock.
1661
	 * Upon acquiring the lock, we will perform our sanity checks and then
1662 1663 1664
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1665
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1666
	if (ret)
1667 1668 1669 1670 1671 1672 1673
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1674

1675 1676
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1677
		ret = -EFAULT;
1678
		goto err_unlock;
1679 1680
	}

1681
	/* Use a partial view if the object is bigger than the aperture. */
1682
	if (obj->base.size >= ggtt->mappable_end &&
1683
	    !i915_gem_object_is_tiled(obj)) {
1684
		static const unsigned int chunk_size = 256; // 1 MiB
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
1697
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1698
	if (ret)
1699
		goto err_unlock;
1700

1701 1702
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1703
		goto err_unpin;
1704

1705
	ret = i915_gem_object_get_fence(obj);
1706
	if (ret)
1707
		goto err_unpin;
1708

1709
	/* Finally, remap it using the new GTT offset */
1710
	pfn = ggtt->mappable_base +
1711
		i915_gem_obj_ggtt_offset_view(obj, &view);
1712
	pfn >>= PAGE_SHIFT;
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1723

1724 1725
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1726 1727 1728 1729 1730
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1752
err_unpin:
1753
	i915_gem_object_ggtt_unpin_view(obj, &view);
1754
err_unlock:
1755
	mutex_unlock(&dev->struct_mutex);
1756 1757 1758
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1759
	switch (ret) {
1760
	case -EIO:
1761 1762 1763 1764 1765 1766 1767
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1768 1769 1770
			ret = VM_FAULT_SIGBUS;
			break;
		}
1771
	case -EAGAIN:
D
Daniel Vetter 已提交
1772 1773 1774 1775
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1776
		 */
1777 1778
	case 0:
	case -ERESTARTSYS:
1779
	case -EINTR:
1780 1781 1782 1783 1784
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1785 1786
		ret = VM_FAULT_NOPAGE;
		break;
1787
	case -ENOMEM:
1788 1789
		ret = VM_FAULT_OOM;
		break;
1790
	case -ENOSPC:
1791
	case -EFAULT:
1792 1793
		ret = VM_FAULT_SIGBUS;
		break;
1794
	default:
1795
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1796 1797
		ret = VM_FAULT_SIGBUS;
		break;
1798
	}
1799
	return ret;
1800 1801
}

1802 1803 1804 1805
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1806
 * Preserve the reservation of the mmapping with the DRM core code, but
1807 1808 1809 1810 1811 1812 1813 1814 1815
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1816
void
1817
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1818
{
1819 1820 1821 1822 1823 1824
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1825 1826
	if (!obj->fault_mappable)
		return;
1827

1828 1829
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1840
	obj->fault_mappable = false;
1841 1842
}

1843 1844 1845 1846 1847 1848 1849 1850 1851
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1852 1853
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1854
 * @dev_priv: i915 device
1855 1856 1857 1858 1859 1860
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1861 1862
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1863
{
1864
	u64 ggtt_size;
1865

1866 1867
	GEM_BUG_ON(size == 0);

1868
	if (INTEL_GEN(dev_priv) >= 4 ||
1869 1870
	    tiling_mode == I915_TILING_NONE)
		return size;
1871 1872

	/* Previous chips need a power-of-two fence region when tiling */
1873
	if (IS_GEN3(dev_priv))
1874
		ggtt_size = 1024*1024;
1875
	else
1876
		ggtt_size = 512*1024;
1877

1878 1879
	while (ggtt_size < size)
		ggtt_size <<= 1;
1880

1881
	return ggtt_size;
1882 1883
}

1884
/**
1885
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1886
 * @dev_priv: i915 device
1887 1888
 * @size: object size
 * @tiling_mode: tiling mode
1889
 * @fenced: is fenced alignment required or not
1890
 *
1891
 * Return the required global GTT alignment for an object, taking into account
1892
 * potential fence register mapping.
1893
 */
1894
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1895
				int tiling_mode, bool fenced)
1896
{
1897 1898
	GEM_BUG_ON(size == 0);

1899 1900 1901 1902
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1903
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1904
	    tiling_mode == I915_TILING_NONE)
1905 1906
		return 4096;

1907 1908 1909 1910
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1911
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1912 1913
}

1914 1915
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1916
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1917
	int err;
1918

1919 1920 1921
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1922

1923 1924 1925
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1926
	 */
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
1937

1938
	return err;
1939 1940 1941 1942 1943 1944 1945
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1946
int
1947 1948
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1949
		  uint32_t handle,
1950
		  uint64_t *offset)
1951
{
1952
	struct drm_i915_gem_object *obj;
1953 1954
	int ret;

1955
	obj = i915_gem_object_lookup(file, handle);
1956 1957
	if (!obj)
		return -ENOENT;
1958

1959
	ret = i915_gem_object_create_mmap_offset(obj);
1960 1961
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1962

1963
	i915_gem_object_put_unlocked(obj);
1964
	return ret;
1965 1966
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1988
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1989 1990
}

D
Daniel Vetter 已提交
1991 1992 1993
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1994
{
1995
	i915_gem_object_free_mmap_offset(obj);
1996

1997 1998
	if (obj->base.filp == NULL)
		return;
1999

D
Daniel Vetter 已提交
2000 2001 2002 2003 2004
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2005
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2006 2007
	obj->madv = __I915_MADV_PURGED;
}
2008

2009 2010 2011
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2012
{
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2025
	mapping = obj->base.filp->f_mapping,
2026
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2027 2028
}

2029
static void
2030
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2031
{
2032 2033
	struct sgt_iter sgt_iter;
	struct page *page;
2034
	int ret;
2035

2036
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2037

C
Chris Wilson 已提交
2038
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2039
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2040 2041 2042
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2043
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2044 2045 2046
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2047 2048
	i915_gem_gtt_finish_object(obj);

2049
	if (i915_gem_object_needs_bit17_swizzle(obj))
2050 2051
		i915_gem_object_save_bit_17_swizzle(obj);

2052 2053
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2054

2055
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2056
		if (obj->dirty)
2057
			set_page_dirty(page);
2058

2059
		if (obj->madv == I915_MADV_WILLNEED)
2060
			mark_page_accessed(page);
2061

2062
		put_page(page);
2063
	}
2064
	obj->dirty = 0;
2065

2066 2067
	sg_free_table(obj->pages);
	kfree(obj->pages);
2068
}
C
Chris Wilson 已提交
2069

2070
int
2071 2072 2073 2074
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2075
	if (obj->pages == NULL)
2076 2077
		return 0;

2078 2079 2080
	if (obj->pages_pin_count)
		return -EBUSY;

2081
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2082

2083 2084 2085
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2086
	list_del(&obj->global_list);
2087

2088
	if (obj->mapping) {
2089
		/* low bits are ignored by is_vmalloc_addr and kmap_to_page */
2090 2091 2092 2093
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2094 2095 2096
		obj->mapping = NULL;
	}

2097
	ops->put_pages(obj);
2098
	obj->pages = NULL;
2099

2100
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2101 2102 2103 2104

	return 0;
}

2105
static int
C
Chris Wilson 已提交
2106
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2107
{
2108
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2109 2110
	int page_count, i;
	struct address_space *mapping;
2111 2112
	struct sg_table *st;
	struct scatterlist *sg;
2113
	struct sgt_iter sgt_iter;
2114
	struct page *page;
2115
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2116
	int ret;
C
Chris Wilson 已提交
2117
	gfp_t gfp;
2118

C
Chris Wilson 已提交
2119 2120 2121 2122 2123 2124 2125
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2126 2127 2128 2129
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2130
	page_count = obj->base.size / PAGE_SIZE;
2131 2132
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2133
		return -ENOMEM;
2134
	}
2135

2136 2137 2138 2139 2140
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2141
	mapping = obj->base.filp->f_mapping;
2142
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2143
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2144 2145 2146
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2147 2148
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2149 2150 2151 2152 2153
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2154 2155 2156 2157 2158 2159 2160 2161
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2162
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2163 2164
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2165
				goto err_pages;
I
Imre Deak 已提交
2166
			}
C
Chris Wilson 已提交
2167
		}
2168 2169 2170 2171 2172 2173 2174 2175
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2176 2177 2178 2179 2180 2181 2182 2183 2184
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2185 2186 2187

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2188
	}
2189 2190 2191 2192
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2193 2194
	obj->pages = st;

I
Imre Deak 已提交
2195 2196 2197 2198
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2199
	if (i915_gem_object_needs_bit17_swizzle(obj))
2200 2201
		i915_gem_object_do_bit_17_swizzle(obj);

2202
	if (i915_gem_object_is_tiled(obj) &&
2203 2204 2205
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2206 2207 2208
	return 0;

err_pages:
2209
	sg_mark_end(sg);
2210 2211
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2212 2213
	sg_free_table(st);
	kfree(st);
2214 2215 2216 2217 2218 2219 2220 2221 2222

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2223 2224 2225 2226
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2227 2228
}

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2239
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2240 2241 2242
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2243
	if (obj->pages)
2244 2245
		return 0;

2246
	if (obj->madv != I915_MADV_WILLNEED) {
2247
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2248
		return -EFAULT;
2249 2250
	}

2251 2252
	BUG_ON(obj->pages_pin_count);

2253 2254 2255 2256
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2257
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2258 2259 2260 2261

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2262
	return 0;
2263 2264
}

2265
/* The 'mapping' part of i915_gem_object_pin_map() below */
2266 2267
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2268 2269 2270
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2271 2272
	struct sgt_iter sgt_iter;
	struct page *page;
2273 2274
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2275
	unsigned long i = 0;
2276
	pgprot_t pgprot;
2277 2278 2279
	void *addr;

	/* A single page can always be kmapped */
2280
	if (n_pages == 1 && type == I915_MAP_WB)
2281 2282
		return kmap(sg_page(sgt->sgl));

2283 2284 2285 2286 2287 2288
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2289

2290 2291
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2292 2293 2294 2295

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2296 2297 2298 2299 2300 2301 2302 2303 2304
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2305

2306 2307
	if (pages != stack_pages)
		drm_free_large(pages);
2308 2309 2310 2311 2312

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2313 2314
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2315
{
2316 2317 2318
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2319 2320 2321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2322
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2323 2324 2325 2326 2327 2328

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2329
	pinned = obj->pages_pin_count > 1;
2330

2331 2332 2333 2334 2335
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2336
		}
2337 2338 2339 2340 2341 2342 2343

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2344 2345
	}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2361 2362
}

2363
static void
2364 2365
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2366
{
2367 2368
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2369

2370
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2371 2372
}

2373
static void
2374 2375
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2376
{
2377 2378 2379
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2380

2381
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2382

2383 2384
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2385
		return;
2386

2387 2388 2389 2390
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2391 2392 2393
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2394

2395
	i915_gem_object_put(obj);
2396 2397
}

2398
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2399
{
2400
	unsigned long elapsed;
2401

2402
	if (ctx->hang_stats.banned)
2403 2404
		return true;

2405
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2406 2407
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2408 2409
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2410 2411 2412 2413 2414
	}

	return false;
}

2415
static void i915_set_reset_status(struct i915_gem_context *ctx,
2416
				  const bool guilty)
2417
{
2418
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2419 2420

	if (guilty) {
2421
		hs->banned = i915_context_is_banned(ctx);
2422 2423 2424 2425
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2426 2427 2428
	}
}

2429
struct drm_i915_gem_request *
2430
i915_gem_find_active_request(struct intel_engine_cs *engine)
2431
{
2432 2433
	struct drm_i915_gem_request *request;

2434 2435 2436 2437 2438 2439 2440 2441
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2442
	list_for_each_entry(request, &engine->request_list, link) {
2443
		if (i915_gem_request_completed(request))
2444
			continue;
2445

2446
		return request;
2447
	}
2448 2449 2450 2451

	return NULL;
}

2452
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2453 2454 2455 2456
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2457
	request = i915_gem_find_active_request(engine);
2458 2459 2460
	if (request == NULL)
		return;

2461
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2462

2463
	i915_set_reset_status(request->ctx, ring_hung);
2464
	list_for_each_entry_continue(request, &engine->request_list, link)
2465
		i915_set_reset_status(request->ctx, false);
2466
}
2467

2468
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2469
{
2470
	struct drm_i915_gem_request *request;
2471
	struct intel_ring *ring;
2472

2473 2474 2475 2476
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2477
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2478

2479 2480 2481 2482 2483 2484
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2485
	if (i915.enable_execlists) {
2486 2487
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2488

2489
		intel_execlists_cancel_requests(engine);
2490 2491
	}

2492 2493 2494 2495 2496 2497 2498
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2499 2500
	request = i915_gem_active_raw(&engine->last_request,
				      &engine->i915->drm.struct_mutex);
2501
	if (request)
2502
		i915_gem_request_retire_upto(request);
2503
	GEM_BUG_ON(intel_engine_is_active(engine));
2504 2505 2506 2507 2508 2509 2510 2511

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2512 2513 2514
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2515
	}
2516

2517
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2518 2519
}

2520
void i915_gem_reset(struct drm_device *dev)
2521
{
2522
	struct drm_i915_private *dev_priv = to_i915(dev);
2523
	struct intel_engine_cs *engine;
2524

2525 2526 2527 2528 2529
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2530
	for_each_engine(engine, dev_priv)
2531
		i915_gem_reset_engine_status(engine);
2532

2533
	for_each_engine(engine, dev_priv)
2534
		i915_gem_reset_engine_cleanup(engine);
2535
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2536

2537 2538
	i915_gem_context_reset(dev);

2539
	i915_gem_restore_fences(dev);
2540 2541
}

2542
static void
2543 2544
i915_gem_retire_work_handler(struct work_struct *work)
{
2545
	struct drm_i915_private *dev_priv =
2546
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2547
	struct drm_device *dev = &dev_priv->drm;
2548

2549
	/* Come back later if the device is busy... */
2550
	if (mutex_trylock(&dev->struct_mutex)) {
2551
		i915_gem_retire_requests(dev_priv);
2552
		mutex_unlock(&dev->struct_mutex);
2553
	}
2554 2555 2556 2557 2558

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2559 2560
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2561 2562
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2563
				   round_jiffies_up_relative(HZ));
2564
	}
2565
}
2566

2567 2568 2569 2570
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2571
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2572
	struct drm_device *dev = &dev_priv->drm;
2573
	struct intel_engine_cs *engine;
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2595

2596
	for_each_engine(engine, dev_priv)
2597
		i915_gem_batch_pool_fini(&engine->batch_pool);
2598

2599 2600 2601
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2602

2603 2604 2605 2606 2607
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2608

2609 2610 2611 2612
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2613
	}
2614 2615
}

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2629 2630
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2631 2632 2633
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2657
	struct intel_rps_client *rps = to_rps_client(file);
2658
	struct drm_i915_gem_object *obj;
2659 2660
	unsigned long active;
	int idx, ret = 0;
2661

2662 2663 2664
	if (args->flags != 0)
		return -EINVAL;

2665
	obj = i915_gem_object_lookup(file, args->bo_handle);
2666
	if (!obj)
2667 2668
		return -ENOENT;

2669 2670 2671 2672 2673 2674 2675
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2676 2677
	}

2678
	i915_gem_object_put_unlocked(obj);
2679
	return ret;
2680 2681
}

2682
static int
2683
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2684
		       struct drm_i915_gem_request *from)
2685 2686 2687
{
	int ret;

2688
	if (to->engine == from->engine)
2689 2690
		return 0;

2691
	if (!i915.semaphores) {
2692 2693 2694 2695
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2696 2697 2698
		if (ret)
			return ret;
	} else {
2699
		int idx = intel_engine_sync_index(from->engine, to->engine);
2700
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2701 2702
			return 0;

2703
		trace_i915_gem_ring_sync_to(to, from);
2704
		ret = to->engine->semaphore.sync_to(to, from);
2705 2706 2707
		if (ret)
			return ret;

2708
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2709 2710 2711 2712 2713
	}

	return 0;
}

2714 2715 2716 2717
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2718
 * @to: request we are wishing to use
2719 2720
 *
 * This code is meant to abstract object synchronization with the GPU.
2721 2722 2723
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2724 2725 2726 2727 2728 2729 2730
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2731 2732 2733
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2734 2735
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2736
		     struct drm_i915_gem_request *to)
2737
{
C
Chris Wilson 已提交
2738 2739 2740
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2741

C
Chris Wilson 已提交
2742
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2743

2744
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2745 2746
	if (!active_mask)
		return 0;
2747

C
Chris Wilson 已提交
2748 2749
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2750
	} else {
C
Chris Wilson 已提交
2751 2752
		active_mask = 1;
		active = &obj->last_write;
2753
	}
C
Chris Wilson 已提交
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2764
		ret = __i915_gem_object_sync(to, request);
2765 2766 2767
		if (ret)
			return ret;
	}
2768

2769
	return 0;
2770 2771
}

2772 2773 2774 2775 2776 2777 2778
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2779 2780 2781
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2793 2794
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2795
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2796 2797 2798 2799 2800 2801 2802 2803

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2804
int i915_vma_unbind(struct i915_vma *vma)
2805
{
2806
	struct drm_i915_gem_object *obj = vma->obj;
2807
	unsigned long active;
2808
	int ret;
2809

2810 2811 2812 2813
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2814
	if (active) {
2815 2816
		int idx;

2817 2818 2819 2820 2821
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2822
		__i915_vma_pin(vma);
2823

2824 2825 2826 2827
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2828
				break;
2829 2830
		}

2831
		__i915_vma_unpin(vma);
2832 2833 2834
		if (ret)
			return ret;

2835 2836 2837
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2838
	if (i915_vma_is_pinned(vma))
2839 2840
		return -EBUSY;

2841 2842
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2843

2844 2845
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2846

2847 2848
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2849
		i915_gem_object_finish_gtt(obj);
2850

2851 2852 2853 2854
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2855 2856

		__i915_vma_iounmap(vma);
2857
	}
2858

2859 2860 2861 2862
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2863
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2864

2865 2866 2867
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2868
	if (i915_vma_is_ggtt(vma)) {
2869 2870
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
2871 2872 2873
		} else if (vma->pages) {
			sg_free_table(vma->pages);
			kfree(vma->pages);
2874 2875
		}
	}
2876
	vma->pages = NULL;
2877

B
Ben Widawsky 已提交
2878
	/* Since the unbound list is global, only move to that list if
2879
	 * no more VMAs exist. */
2880 2881 2882
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2883

2884 2885 2886 2887 2888 2889
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2890
destroy:
2891
	if (unlikely(i915_vma_is_closed(vma)))
2892 2893
		i915_vma_destroy(vma);

2894
	return 0;
2895 2896
}

2897 2898
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2899
{
2900
	struct intel_engine_cs *engine;
2901
	int ret;
2902

2903
	for_each_engine(engine, dev_priv) {
2904 2905 2906
		if (engine->last_context == NULL)
			continue;

2907
		ret = intel_engine_idle(engine, interruptible);
2908 2909 2910
		if (ret)
			return ret;
	}
2911

2912
	return 0;
2913 2914
}

2915
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2916 2917
				     unsigned long cache_level)
{
2918
	struct drm_mm_node *gtt_space = &vma->node;
2919 2920
	struct drm_mm_node *other;

2921 2922 2923 2924 2925 2926
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2927
	 */
2928
	if (vma->vm->mm.color_adjust == NULL)
2929 2930
		return true;

2931
	if (!drm_mm_node_allocated(gtt_space))
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2948
/**
2949 2950
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2951
 * @size: requested size in bytes (can be larger than the VMA)
2952
 * @alignment: required alignment
2953
 * @flags: mask of PIN_* flags to use
2954 2955 2956 2957 2958 2959 2960
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
2961
 */
2962 2963
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2964
{
2965 2966
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
2967 2968
	u64 start, end;
	u64 min_alignment;
2969
	int ret;
2970

2971
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2972
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2973 2974 2975

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
2976 2977
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
2978 2979

	min_alignment =
2980 2981
		i915_gem_get_ggtt_alignment(dev_priv, size,
					    i915_gem_object_get_tiling(obj),
2982 2983 2984 2985 2986 2987
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
2988
		return -EINVAL;
2989
	}
2990

2991
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
2992 2993

	end = vma->vm->total;
2994
	if (flags & PIN_MAPPABLE)
2995
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
2996
	if (flags & PIN_ZONE_4G)
2997
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
2998

2999 3000 3001
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3002
	 */
3003
	if (size > end) {
3004
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3005
			  size, obj->base.size,
3006
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3007
			  end);
3008
		return -E2BIG;
3009 3010
	}

3011
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3012
	if (ret)
3013
		return ret;
C
Chris Wilson 已提交
3014

3015 3016
	i915_gem_object_pin_pages(obj);

3017
	if (flags & PIN_OFFSET_FIXED) {
3018
		u64 offset = flags & PIN_OFFSET_MASK;
3019
		if (offset & (alignment - 1) || offset > end - size) {
3020
			ret = -EINVAL;
3021
			goto err_unpin;
3022
		}
3023

3024 3025 3026
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3027
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3028 3029 3030
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3031 3032 3033
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3034
		}
3035
	} else {
3036 3037
		u32 search_flag, alloc_flag;

3038 3039 3040 3041 3042 3043 3044
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3045

3046 3047 3048 3049 3050 3051 3052 3053 3054
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3055
search_free:
3056 3057
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3058 3059 3060 3061 3062 3063
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3064
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3065 3066 3067 3068 3069
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3070

3071
			goto err_unpin;
3072
		}
3073
	}
3074
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3075

3076
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3077
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3078
	obj->bind_count++;
3079

3080
	return 0;
B
Ben Widawsky 已提交
3081

3082
err_unpin:
B
Ben Widawsky 已提交
3083
	i915_gem_object_unpin_pages(obj);
3084
	return ret;
3085 3086
}

3087
bool
3088 3089
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3090 3091 3092 3093 3094
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3095
	if (obj->pages == NULL)
3096
		return false;
3097

3098 3099 3100 3101
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3102
	if (obj->stolen || obj->phys_handle)
3103
		return false;
3104

3105 3106 3107 3108 3109 3110 3111 3112
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3113 3114
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3115
		return false;
3116
	}
3117

C
Chris Wilson 已提交
3118
	trace_i915_gem_object_clflush(obj);
3119
	drm_clflush_sg(obj->pages);
3120
	obj->cache_dirty = false;
3121 3122

	return true;
3123 3124 3125 3126
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3127
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3128
{
C
Chris Wilson 已提交
3129 3130
	uint32_t old_write_domain;

3131
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3132 3133
		return;

3134
	/* No actual flushing is required for the GTT write domain.  Writes
3135 3136
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3137 3138 3139 3140
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3141
	 */
3142 3143
	wmb();

3144 3145
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3146

3147
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3148

C
Chris Wilson 已提交
3149
	trace_i915_gem_object_change_domain(obj,
3150
					    obj->base.read_domains,
C
Chris Wilson 已提交
3151
					    old_write_domain);
3152 3153 3154 3155
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3156
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3157
{
C
Chris Wilson 已提交
3158
	uint32_t old_write_domain;
3159

3160
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3161 3162
		return;

3163
	if (i915_gem_clflush_object(obj, obj->pin_display))
3164
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3165

3166 3167
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3168

3169
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3170

C
Chris Wilson 已提交
3171
	trace_i915_gem_object_change_domain(obj,
3172
					    obj->base.read_domains,
C
Chris Wilson 已提交
3173
					    old_write_domain);
3174 3175
}

3176 3177
/**
 * Moves a single object to the GTT read, and possibly write domain.
3178 3179
 * @obj: object to act on
 * @write: ask for write access or read only
3180 3181 3182 3183
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3184
int
3185
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3186
{
C
Chris Wilson 已提交
3187
	uint32_t old_write_domain, old_read_domains;
3188
	struct i915_vma *vma;
3189
	int ret;
3190

3191
	ret = i915_gem_object_wait_rendering(obj, !write);
3192 3193 3194
	if (ret)
		return ret;

3195 3196 3197
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3210
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3211

3212 3213 3214 3215 3216 3217 3218
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3219 3220
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3221

3222 3223 3224
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3225 3226
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3227
	if (write) {
3228 3229 3230
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3231 3232
	}

C
Chris Wilson 已提交
3233 3234 3235 3236
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3237
	/* And bump the LRU for this access */
3238
	vma = i915_gem_obj_to_ggtt(obj);
3239 3240 3241 3242
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3243

3244 3245 3246
	return 0;
}

3247 3248
/**
 * Changes the cache-level of an object across all VMA.
3249 3250
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3262 3263 3264
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3265
	struct i915_vma *vma;
3266
	int ret = 0;
3267 3268

	if (obj->cache_level == cache_level)
3269
		goto out;
3270

3271 3272 3273 3274 3275
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3276 3277
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3278 3279 3280
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3281
		if (i915_vma_is_pinned(vma)) {
3282 3283 3284 3285
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3298 3299
	}

3300 3301 3302 3303 3304 3305 3306
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3307
	if (obj->bind_count) {
3308 3309 3310 3311
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3312
		ret = i915_gem_object_wait_rendering(obj, false);
3313 3314 3315
		if (ret)
			return ret;

3316
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3333 3334 3335
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3336 3337 3338 3339 3340 3341 3342 3343
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3344 3345
		}

3346
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3347 3348 3349 3350 3351 3352 3353
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3354 3355
	}

3356
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3357 3358 3359
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3360
out:
3361 3362 3363 3364
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3365
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3366
		if (i915_gem_clflush_object(obj, true))
3367
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3368 3369 3370 3371 3372
	}

	return 0;
}

B
Ben Widawsky 已提交
3373 3374
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3375
{
B
Ben Widawsky 已提交
3376
	struct drm_i915_gem_caching *args = data;
3377 3378
	struct drm_i915_gem_object *obj;

3379 3380
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3381
		return -ENOENT;
3382

3383 3384 3385 3386 3387 3388
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3389 3390 3391 3392
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3393 3394 3395 3396
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3397

3398
	i915_gem_object_put_unlocked(obj);
3399
	return 0;
3400 3401
}

B
Ben Widawsky 已提交
3402 3403
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3404
{
3405
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3406
	struct drm_i915_gem_caching *args = data;
3407 3408 3409 3410
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3411 3412
	switch (args->caching) {
	case I915_CACHING_NONE:
3413 3414
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3415
	case I915_CACHING_CACHED:
3416 3417 3418 3419 3420 3421
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3422
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3423 3424
			return -ENODEV;

3425 3426
		level = I915_CACHE_LLC;
		break;
3427 3428 3429
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3430 3431 3432 3433
	default:
		return -EINVAL;
	}

3434 3435
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3436 3437
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3438
		goto rpm_put;
B
Ben Widawsky 已提交
3439

3440 3441
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3442 3443 3444 3445 3446 3447
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3448
	i915_gem_object_put(obj);
3449 3450
unlock:
	mutex_unlock(&dev->struct_mutex);
3451 3452 3453
rpm_put:
	intel_runtime_pm_put(dev_priv);

3454 3455 3456
	return ret;
}

3457
/*
3458 3459 3460
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3461 3462
 */
int
3463 3464
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3465
				     const struct i915_ggtt_view *view)
3466
{
3467
	u32 old_read_domains, old_write_domain;
3468 3469
	int ret;

3470 3471 3472
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3473
	obj->pin_display++;
3474

3475 3476 3477 3478 3479 3480 3481 3482 3483
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3484 3485
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3486
	if (ret)
3487
		goto err_unpin_display;
3488

3489 3490 3491 3492
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3493
	ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3494 3495
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3496
	if (ret)
3497
		goto err_unpin_display;
3498

3499
	i915_gem_object_flush_cpu_write_domain(obj);
3500

3501
	old_write_domain = obj->base.write_domain;
3502
	old_read_domains = obj->base.read_domains;
3503 3504 3505 3506

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3507
	obj->base.write_domain = 0;
3508
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3509 3510 3511

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3512
					    old_write_domain);
3513 3514

	return 0;
3515 3516

err_unpin_display:
3517
	obj->pin_display--;
3518 3519 3520 3521
	return ret;
}

void
3522 3523
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3524
{
3525 3526 3527
	if (WARN_ON(obj->pin_display == 0))
		return;

3528 3529
	i915_gem_object_ggtt_unpin_view(obj, view);

3530
	obj->pin_display--;
3531 3532
}

3533 3534
/**
 * Moves a single object to the CPU read, and possibly write domain.
3535 3536
 * @obj: object to act on
 * @write: requesting write or read-only access
3537 3538 3539 3540
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3541
int
3542
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3543
{
C
Chris Wilson 已提交
3544
	uint32_t old_write_domain, old_read_domains;
3545 3546
	int ret;

3547
	ret = i915_gem_object_wait_rendering(obj, !write);
3548 3549 3550
	if (ret)
		return ret;

3551 3552 3553
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3554
	i915_gem_object_flush_gtt_write_domain(obj);
3555

3556 3557
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3558

3559
	/* Flush the CPU cache if it's still invalid. */
3560
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3561
		i915_gem_clflush_object(obj, false);
3562

3563
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3564 3565 3566 3567 3568
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3569
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3570 3571 3572 3573 3574

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3575 3576
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3577
	}
3578

C
Chris Wilson 已提交
3579 3580 3581 3582
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3583 3584 3585
	return 0;
}

3586 3587 3588
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3589 3590 3591 3592
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3593 3594 3595
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3596
static int
3597
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3598
{
3599
	struct drm_i915_private *dev_priv = to_i915(dev);
3600
	struct drm_i915_file_private *file_priv = file->driver_priv;
3601
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3602
	struct drm_i915_gem_request *request, *target = NULL;
3603
	int ret;
3604

3605 3606 3607 3608
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3609 3610 3611
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3612

3613
	spin_lock(&file_priv->mm.lock);
3614
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3615 3616
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3617

3618 3619 3620 3621 3622 3623 3624
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3625
		target = request;
3626
	}
3627
	if (target)
3628
		i915_gem_request_get(target);
3629
	spin_unlock(&file_priv->mm.lock);
3630

3631
	if (target == NULL)
3632
		return 0;
3633

3634
	ret = i915_wait_request(target, true, NULL, NULL);
3635
	i915_gem_request_put(target);
3636

3637 3638 3639
	return ret;
}

3640
static bool
3641
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3642 3643 3644
{
	struct drm_i915_gem_object *obj = vma->obj;

3645 3646 3647
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3648 3649 3650 3651
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3652 3653 3654 3655 3656 3657 3658 3659 3660
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3661 3662 3663 3664
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3665 3666 3667
	return false;
}

3668 3669 3670
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3671
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3672 3673 3674
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3675
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3676
					    obj->base.size,
3677
					    i915_gem_object_get_tiling(obj));
3678
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3679
						      obj->base.size,
3680
						      i915_gem_object_get_tiling(obj),
3681
						      true);
3682 3683 3684 3685 3686

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3687
		    dev_priv->ggtt.mappable_end);
3688 3689 3690 3691

	obj->map_and_fenceable = mappable && fenceable;
}

3692 3693
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3694
{
3695
	unsigned int bound = vma->flags;
3696 3697
	int ret;

3698
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3699
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3700

3701 3702 3703 3704
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3705

3706
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3707 3708 3709
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3710
	}
3711

3712
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3713
	if (ret)
3714
		goto err;
3715

3716
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3717
		__i915_vma_set_map_and_fenceable(vma);
3718

3719
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3720 3721
	return 0;

3722 3723 3724
err:
	__i915_vma_unpin(vma);
	return ret;
3725 3726 3727 3728 3729
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3730
			 u64 size,
3731 3732
			 u64 alignment,
			 u64 flags)
3733
{
3734 3735
	struct i915_vma *vma;
	int ret;
3736

3737 3738
	if (!view)
		view = &i915_ggtt_view_normal;
3739

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
			return -ENOSPC;

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
		     " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
		     " obj->map_and_fenceable=%d\n",
		     upper_32_bits(vma->node.start),
		     lower_32_bits(vma->node.start),
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;
	}

	return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3764 3765
}

3766
void
3767 3768
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3769
{
3770
	i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
3771 3772
}

3773
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3788 3789 3790 3791 3792 3793 3794 3795 3796
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3797 3798
}

3799
static __always_inline unsigned int
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
	/* For more discussion about the barriers and locking concerns,
	 * see __i915_gem_active_get_rcu().
	 */
	do {
		struct drm_i915_gem_request *request;
		unsigned int id;

		request = rcu_dereference(active->request);
		if (!request || i915_gem_request_completed(request))
			return 0;

		id = request->engine->exec_id;

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
		/* Check that the pointer wasn't reassigned and overwritten.
		 *
		 * In __i915_gem_active_get_rcu(), we enforce ordering between
		 * the first rcu pointer dereference (imposing a
		 * read-dependency only on access through the pointer) and
		 * the second lockless access through the memory barrier
		 * following a successful atomic_inc_not_zero(). Here there
		 * is no such barrier, and so we must manually insert an
		 * explicit read barrier to ensure that the following
		 * access occurs after all the loads through the first
		 * pointer.
		 *
		 * It is worth comparing this sequence with
		 * raw_write_seqcount_latch() which operates very similarly.
		 * The challenge here is the visibility of the other CPU
		 * writes to the reallocated request vs the local CPU ordering.
		 * Before the other CPU can overwrite the request, it will
		 * have updated our active->request and gone through a wmb.
		 * During the read here, we want to make sure that the values
		 * we see have not been overwritten as we do so - and we do
		 * that by serialising the second pointer check with the writes
		 * on other other CPUs.
		 *
		 * The corresponding write barrier is part of
		 * rcu_assign_pointer().
		 */
		smp_rmb();
3843 3844 3845 3846 3847
		if (request == rcu_access_pointer(active->request))
			return flag(id);
	} while (1);
}

3848
static __always_inline unsigned int
3849 3850 3851 3852 3853
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3854
static __always_inline unsigned int
3855 3856 3857 3858 3859
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3860 3861
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3862
		    struct drm_file *file)
3863 3864
{
	struct drm_i915_gem_busy *args = data;
3865
	struct drm_i915_gem_object *obj;
3866
	unsigned long active;
3867

3868
	obj = i915_gem_object_lookup(file, args->handle);
3869 3870
	if (!obj)
		return -ENOENT;
3871

3872
	args->busy = 0;
3873 3874 3875
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
3876

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
		 * engine with a fresh and incomplete seqno.
		 *
		 * So after we lookup the engine's id, we double check that
		 * the active request is the same and only then do we add it
		 * into the busy set.
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
3905 3906 3907 3908 3909
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
3910 3911 3912 3913 3914 3915 3916 3917 3918
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
3919
	}
3920

3921 3922
	i915_gem_object_put_unlocked(obj);
	return 0;
3923 3924 3925 3926 3927 3928
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3929
	return i915_gem_ring_throttle(dev, file_priv);
3930 3931
}

3932 3933 3934 3935
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3936
	struct drm_i915_private *dev_priv = to_i915(dev);
3937
	struct drm_i915_gem_madvise *args = data;
3938
	struct drm_i915_gem_object *obj;
3939
	int ret;
3940 3941 3942 3943 3944 3945 3946 3947 3948

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3949 3950 3951 3952
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3953 3954
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3955 3956
		ret = -ENOENT;
		goto unlock;
3957 3958
	}

3959
	if (obj->pages &&
3960
	    i915_gem_object_is_tiled(obj) &&
3961 3962 3963 3964 3965 3966 3967
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3968 3969
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3970

C
Chris Wilson 已提交
3971
	/* if the object is no longer attached, discard its backing storage */
3972
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3973 3974
		i915_gem_object_truncate(obj);

3975
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3976

3977
	i915_gem_object_put(obj);
3978
unlock:
3979
	mutex_unlock(&dev->struct_mutex);
3980
	return ret;
3981 3982
}

3983 3984
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3985
{
3986 3987
	int i;

3988
	INIT_LIST_HEAD(&obj->global_list);
3989
	for (i = 0; i < I915_NUM_ENGINES; i++)
3990 3991 3992 3993 3994
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3995
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3996
	INIT_LIST_HEAD(&obj->vma_list);
3997
	INIT_LIST_HEAD(&obj->batch_pool_link);
3998

3999 4000
	obj->ops = ops;

4001 4002 4003
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4004
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4005 4006
}

4007
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4008
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4009 4010 4011 4012
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4013
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4014
						  size_t size)
4015
{
4016
	struct drm_i915_gem_object *obj;
4017
	struct address_space *mapping;
D
Daniel Vetter 已提交
4018
	gfp_t mask;
4019
	int ret;
4020

4021
	obj = i915_gem_object_alloc(dev);
4022
	if (obj == NULL)
4023
		return ERR_PTR(-ENOMEM);
4024

4025 4026 4027
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4028

4029 4030 4031 4032 4033 4034 4035
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4036
	mapping = obj->base.filp->f_mapping;
4037
	mapping_set_gfp_mask(mapping, mask);
4038

4039
	i915_gem_object_init(obj, &i915_gem_object_ops);
4040

4041 4042
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4043

4044 4045
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4061 4062
	trace_i915_gem_object_create(obj);

4063
	return obj;
4064 4065 4066 4067 4068

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4069 4070
}

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4095
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4096
{
4097
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4098
	struct drm_device *dev = obj->base.dev;
4099
	struct drm_i915_private *dev_priv = to_i915(dev);
4100
	struct i915_vma *vma, *next;
4101

4102 4103
	intel_runtime_pm_get(dev_priv);

4104 4105
	trace_i915_gem_object_destroy(obj);

4106 4107 4108 4109 4110 4111 4112
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4113
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4114
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4115
		GEM_BUG_ON(i915_vma_is_active(vma));
4116
		vma->flags &= ~I915_VMA_PIN_MASK;
4117
		i915_vma_close(vma);
4118
	}
4119
	GEM_BUG_ON(obj->bind_count);
4120

B
Ben Widawsky 已提交
4121 4122 4123 4124 4125
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4126
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4127

4128 4129
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4130
	    i915_gem_object_is_tiled(obj))
4131 4132
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4133 4134
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4135
	if (discard_backing_storage(obj))
4136
		obj->madv = I915_MADV_DONTNEED;
4137
	i915_gem_object_put_pages(obj);
4138

4139 4140
	BUG_ON(obj->pages);

4141 4142
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4143

4144 4145 4146
	if (obj->ops->release)
		obj->ops->release(obj);

4147 4148
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4149

4150
	kfree(obj->bit_17);
4151
	i915_gem_object_free(obj);
4152 4153

	intel_runtime_pm_put(dev_priv);
4154 4155
}

4156 4157
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4158 4159
{
	struct i915_vma *vma;
4160
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4161 4162
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4163
			return vma;
4164 4165 4166 4167 4168 4169 4170 4171
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4172

4173
	GEM_BUG_ON(!view);
4174

4175
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4176 4177
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4178
			return vma;
4179 4180 4181
	return NULL;
}

4182
int i915_gem_suspend(struct drm_device *dev)
4183
{
4184
	struct drm_i915_private *dev_priv = to_i915(dev);
4185
	int ret;
4186

4187 4188
	intel_suspend_gt_powersave(dev_priv);

4189
	mutex_lock(&dev->struct_mutex);
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4203
	ret = i915_gem_wait_for_idle(dev_priv, true);
4204
	if (ret)
4205
		goto err;
4206

4207
	i915_gem_retire_requests(dev_priv);
4208

4209
	i915_gem_context_lost(dev_priv);
4210 4211
	mutex_unlock(&dev->struct_mutex);

4212
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4213 4214
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4215

4216 4217 4218
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4219
	WARN_ON(dev_priv->gt.awake);
4220

4221
	return 0;
4222 4223 4224 4225

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4226 4227
}

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4245 4246
void i915_gem_init_swizzling(struct drm_device *dev)
{
4247
	struct drm_i915_private *dev_priv = to_i915(dev);
4248

4249
	if (INTEL_INFO(dev)->gen < 5 ||
4250 4251 4252 4253 4254 4255
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4256 4257 4258
	if (IS_GEN5(dev))
		return;

4259 4260
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4261
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4262
	else if (IS_GEN7(dev))
4263
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4264 4265
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4266 4267
	else
		BUG();
4268
}
D
Daniel Vetter 已提交
4269

4270 4271
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4272
	struct drm_i915_private *dev_priv = to_i915(dev);
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4297 4298 4299
int
i915_gem_init_hw(struct drm_device *dev)
{
4300
	struct drm_i915_private *dev_priv = to_i915(dev);
4301
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4302
	int ret;
4303

4304 4305 4306
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4307
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4308
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4309

4310 4311 4312
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4313

4314
	if (HAS_PCH_NOP(dev)) {
4315 4316 4317 4318 4319 4320 4321 4322 4323
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4324 4325
	}

4326 4327
	i915_gem_init_swizzling(dev);

4328 4329 4330 4331 4332 4333 4334 4335
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4336
	BUG_ON(!dev_priv->kernel_context);
4337

4338 4339 4340 4341 4342 4343 4344
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4345
	for_each_engine(engine, dev_priv) {
4346
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4347
		if (ret)
4348
			goto out;
D
Daniel Vetter 已提交
4349
	}
4350

4351 4352
	intel_mocs_init_l3cc_table(dev);

4353
	/* We can't enable contexts until all firmware is loaded */
4354 4355 4356
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4357

4358 4359
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4360
	return ret;
4361 4362
}

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4384 4385
int i915_gem_init(struct drm_device *dev)
{
4386
	struct drm_i915_private *dev_priv = to_i915(dev);
4387 4388 4389
	int ret;

	mutex_lock(&dev->struct_mutex);
4390

4391
	if (!i915.enable_execlists) {
4392
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4393
	} else {
4394
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4395 4396
	}

4397 4398 4399 4400 4401 4402 4403 4404
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4405
	i915_gem_init_userptr(dev_priv);
4406 4407 4408 4409

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4410

4411
	ret = i915_gem_context_init(dev);
4412 4413
	if (ret)
		goto out_unlock;
4414

4415
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4416
	if (ret)
4417
		goto out_unlock;
4418

4419
	ret = i915_gem_init_hw(dev);
4420
	if (ret == -EIO) {
4421
		/* Allow engine initialisation to fail by marking the GPU as
4422 4423 4424 4425
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4426
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4427
		ret = 0;
4428
	}
4429 4430

out_unlock:
4431
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4432
	mutex_unlock(&dev->struct_mutex);
4433

4434
	return ret;
4435 4436
}

4437
void
4438
i915_gem_cleanup_engines(struct drm_device *dev)
4439
{
4440
	struct drm_i915_private *dev_priv = to_i915(dev);
4441
	struct intel_engine_cs *engine;
4442

4443
	for_each_engine(engine, dev_priv)
4444
		dev_priv->gt.cleanup_engine(engine);
4445 4446
}

4447
static void
4448
init_engine_lists(struct intel_engine_cs *engine)
4449
{
4450
	INIT_LIST_HEAD(&engine->request_list);
4451 4452
}

4453 4454 4455
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4456
	struct drm_device *dev = &dev_priv->drm;
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4467
	if (intel_vgpu_active(dev_priv))
4468 4469 4470 4471 4472 4473 4474 4475 4476
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4477
void
4478
i915_gem_load_init(struct drm_device *dev)
4479
{
4480
	struct drm_i915_private *dev_priv = to_i915(dev);
4481 4482
	int i;

4483
	dev_priv->objects =
4484 4485 4486 4487
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4488 4489 4490 4491 4492
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4493 4494 4495
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4496 4497 4498
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4499
				  NULL);
4500

4501
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4502 4503
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4504
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4505 4506
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4507
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4508
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4509
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4510
			  i915_gem_retire_work_handler);
4511
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4512
			  i915_gem_idle_work_handler);
4513
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4514
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4515

4516 4517
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4518
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4519

4520
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4521

4522 4523
	dev_priv->mm.interruptible = true;

4524
	spin_lock_init(&dev_priv->fb_tracking.lock);
4525
}
4526

4527 4528 4529 4530 4531 4532 4533
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4534 4535 4536

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4537 4538
}

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4567
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4568
{
4569
	struct drm_i915_file_private *file_priv = file->driver_priv;
4570
	struct drm_i915_gem_request *request;
4571 4572 4573 4574 4575

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4576
	spin_lock(&file_priv->mm.lock);
4577
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4578
		request->file_priv = NULL;
4579
	spin_unlock(&file_priv->mm.lock);
4580

4581
	if (!list_empty(&file_priv->rps.link)) {
4582
		spin_lock(&to_i915(dev)->rps.client_lock);
4583
		list_del(&file_priv->rps.link);
4584
		spin_unlock(&to_i915(dev)->rps.client_lock);
4585
	}
4586 4587 4588 4589 4590
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4591
	int ret;
4592 4593 4594 4595 4596 4597 4598 4599

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4600
	file_priv->dev_priv = to_i915(dev);
4601
	file_priv->file = file;
4602
	INIT_LIST_HEAD(&file_priv->rps.link);
4603 4604 4605 4606

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4607
	file_priv->bsd_engine = -1;
4608

4609 4610 4611
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4612

4613
	return ret;
4614 4615
}

4616 4617
/**
 * i915_gem_track_fb - update frontbuffer tracking
4618 4619 4620
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4621 4622 4623 4624
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4625 4626 4627 4628
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4629 4630 4631 4632 4633 4634 4635 4636 4637
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4638
	if (old) {
4639 4640
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4641 4642 4643
	}

	if (new) {
4644 4645
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4646 4647 4648
	}
}

4649
/* All the new VM stuff */
4650 4651
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4652
{
4653
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4654 4655
	struct i915_vma *vma;

4656
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4657

4658
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4659
		if (i915_vma_is_ggtt(vma) &&
4660 4661 4662
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4663 4664
			return vma->node.start;
	}
4665

4666 4667
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4668 4669 4670
	return -1;
}

4671 4672
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4673 4674 4675
{
	struct i915_vma *vma;

4676
	list_for_each_entry(vma, &o->vma_list, obj_link)
4677 4678
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4679 4680
			return vma->node.start;

4681
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4682 4683 4684 4685 4686 4687 4688 4689
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4690
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4691
		if (i915_vma_is_ggtt(vma) &&
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4702
				  const struct i915_ggtt_view *view)
4703 4704 4705
{
	struct i915_vma *vma;

4706
	list_for_each_entry(vma, &o->vma_list, obj_link)
4707
		if (i915_vma_is_ggtt(vma) &&
4708
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4709
		    drm_mm_node_allocated(&vma->node))
4710 4711 4712 4713 4714
			return true;

	return false;
}

4715
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4716 4717 4718
{
	struct i915_vma *vma;

4719
	GEM_BUG_ON(list_empty(&o->vma_list));
4720

4721
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4722
		if (i915_vma_is_ggtt(vma) &&
4723
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4724
			return vma->node.size;
4725
	}
4726

4727 4728 4729
	return 0;
}

4730
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4731 4732
{
	struct i915_vma *vma;
4733
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4734
		if (i915_vma_is_pinned(vma))
4735
			return true;
4736

4737
	return false;
4738
}
4739

4740 4741 4742 4743 4744 4745 4746
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4747
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4748 4749 4750 4751 4752 4753 4754
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4765
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4766
	if (IS_ERR(obj))
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4780
	obj->dirty = 1;		/* Backing store is now out of date */
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4792
	i915_gem_object_put(obj);
4793 4794
	return ERR_PTR(ret);
}