i915_gem.c 132.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64 65 66 67
static int
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask);

static void
i915_gem_object_put_pages(struct drm_gem_object *obj);

68 69 70
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

119
	WARN_ON(i915_verify_lists(dev));
120 121
	return 0;
}
122

123 124 125 126 127 128 129 130
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

J
Jesse Barnes 已提交
131 132
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
133 134 135
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
136 137 138
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
139 140 141
		return -EINVAL;
	}

J
Jesse Barnes 已提交
142 143
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
144

J
Jesse Barnes 已提交
145 146 147 148
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
149

J
Jesse Barnes 已提交
150 151 152 153 154 155 156 157 158
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
159 160
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
161
	return ret;
162 163
}

164 165 166 167 168 169 170 171 172 173
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
174 175
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
176 177 178 179

	return 0;
}

180 181 182 183 184 185 186 187 188 189

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
190 191
	int ret;
	u32 handle;
192 193 194 195

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
196
	obj = i915_gem_alloc_object(dev, args->size);
197 198 199 200
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
201 202
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
203
		return ret;
204
	}
205

206 207
	/* Sink the floating reference from kref_init(handlecount) */
	drm_gem_object_handle_unreference_unlocked(obj);
208

209
	args->handle = handle;
210 211 212
	return 0;
}

213 214 215 216 217 218 219
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
220
	int unwritten;
221 222 223 224

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
225
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
226 227
	kunmap_atomic(vaddr, KM_USER0);

228 229 230 231
	if (unwritten)
		return -EFAULT;

	return 0;
232 233
}

234 235 236
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
237
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
238 239 240 241 242

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

243
static inline void
244 245 246 247 248 249 250 251
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

252 253
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
254 255 256

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

257 258
	kunmap(src_page);
	kunmap(dst_page);
259 260
}

261
static inline void
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

281 282
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

306 307
	kunmap(cpu_page);
	kunmap(gpu_page);
308 309
}

310 311 312 313 314 315 316 317 318 319
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
320
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
321 322 323 324 325 326 327 328 329
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

330 331 332
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
333

334
	ret = i915_gem_object_get_pages(obj, 0);
335 336 337 338 339 340 341 342
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

343
	obj_priv = to_intel_bo(obj);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

378 379 380 381 382
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

383
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
384 385 386 387 388 389 390

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

391 392
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
393 394 395
		if (ret)
			return ret;

396
		ret = i915_gem_object_get_pages(obj, 0);
397 398 399 400 401
	}

	return ret;
}

402 403 404 405 406 407 408 409 410 411 412
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
413
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
414 415 416 417 418 419 420 421 422 423
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
424
	int do_bit17_swizzling;
425 426 427 428 429 430 431 432 433 434 435

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

436
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
437 438 439 440 441
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
442
				      num_pages, 1, 0, user_pages, NULL);
443 444 445 446 447 448
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

449 450
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

451 452 453
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
454

455 456
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
457 458 459 460 461 462 463
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

464
	obj_priv = to_intel_bo(obj);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

487
		if (do_bit17_swizzling) {
488
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
489
					      shmem_page_offset,
490 491 492 493 494 495 496 497 498 499
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
500
		}
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
516
	drm_free_large(user_pages);
517 518 519 520

	return ret;
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
537
		return -ENOENT;
538
	obj_priv = to_intel_bo(obj);
539 540 541 542 543 544 545

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
546
		drm_gem_object_unreference_unlocked(obj);
547 548 549
		return -EINVAL;
	}

550
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
551
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
552 553 554 555 556 557
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
558

559
	drm_gem_object_unreference_unlocked(obj);
560

561
	return ret;
562 563
}

564 565
/* This is the fast write path which cannot handle
 * page faults in the source data
566
 */
567 568 569 570 571 572

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
573 574
{
	char *vaddr_atomic;
575
	unsigned long unwritten;
576

577
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
578 579
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
580
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
581 582 583 584 585 586 587 588 589
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

590
static inline void
591 592 593 594
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
595
{
596 597
	char __iomem *dst_vaddr;
	char *src_vaddr;
598

599 600 601 602 603 604 605 606 607
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
608 609
}

610 611 612 613 614 615 616
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
617
	unsigned long unwritten;
618 619 620 621

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
622
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
623 624
	kunmap_atomic(vaddr, KM_USER0);

625 626
	if (unwritten)
		return -EFAULT;
627 628 629
	return 0;
}

630 631 632 633
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
634
static int
635 636 637
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
638
{
639
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
640
	drm_i915_private_t *dev_priv = dev->dev_private;
641
	ssize_t remain;
642
	loff_t offset, page_base;
643
	char __user *user_data;
644 645
	int page_offset, page_length;
	int ret;
646 647 648 649 650 651

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;

652 653 654
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
655 656 657 658 659 660

	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
661
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
662 663 664
	if (ret)
		goto fail;

665
	obj_priv = to_intel_bo(obj);
666 667 668 669 670
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
671 672 673
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
674
		 */
675 676 677 678 679 680 681 682 683 684
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
685 686
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
687
		 */
688 689
		if (ret)
			goto fail;
690

691 692 693
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
694 695 696 697 698 699 700 701 702
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

703 704 705 706 707 708 709
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
710
static int
711 712 713
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
714
{
715
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
716 717 718 719 720 721 722 723
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
724
	int ret;
725 726 727 728 729 730 731 732 733 734 735 736
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

737
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
738 739 740 741 742 743 744 745 746 747 748
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
749

750 751 752 753
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out_unpin_pages;

754 755 756 757 758 759 760 761
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

762
	obj_priv = to_intel_bo(obj);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

785 786 787 788 789
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
790 791 792 793 794 795 796 797 798 799 800 801 802

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
803
	drm_free_large(user_pages);
804 805 806 807

	return ret;
}

808 809 810 811
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
812
static int
813 814 815
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
816
{
817
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
818 819 820 821
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
822
	int ret;
823 824 825

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
826

827 828 829
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
830

831
	ret = i915_gem_object_get_pages(obj, 0);
832 833
	if (ret != 0)
		goto fail_unlock;
834

835
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
836 837 838
	if (ret != 0)
		goto fail_put_pages;

839
	obj_priv = to_intel_bo(obj);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
887
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
888 889 890 891 892 893 894 895 896 897
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
898
	int do_bit17_swizzling;
899 900 901 902 903 904 905 906 907 908 909

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

910
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
911 912 913 914 915 916 917 918 919 920
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
921 922
	}

923 924
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

925 926 927
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
928

929 930
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
931 932 933 934 935 936
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

937
	obj_priv = to_intel_bo(obj);
938
	offset = args->offset;
939
	obj_priv->dirty = 1;
940

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

961
		if (do_bit17_swizzling) {
962
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
963 964 965
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
966 967 968 969 970 971 972 973
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
974
		}
975 976 977 978

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
979 980
	}

981 982 983
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
984
	mutex_unlock(&dev->struct_mutex);
985 986 987
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
988
	drm_free_large(user_pages);
989

990
	return ret;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1009
		return -ENOENT;
1010
	obj_priv = to_intel_bo(obj);
1011 1012 1013 1014 1015 1016 1017

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
1018
		drm_gem_object_unreference_unlocked(obj);
1019 1020 1021 1022 1023 1024 1025 1026 1027
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1028 1029 1030
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1031
		 obj_priv->gtt_space &&
1032
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1033 1034 1035 1036 1037
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
1038 1039
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1040 1041 1042 1043 1044 1045 1046
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
1047 1048 1049 1050 1051 1052

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

1053
	drm_gem_object_unreference_unlocked(obj);
1054 1055 1056 1057 1058

	return ret;
}

/**
1059 1060
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1061 1062 1063 1064 1065
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1066
	struct drm_i915_private *dev_priv = dev->dev_private;
1067 1068
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1069
	struct drm_i915_gem_object *obj_priv;
1070 1071
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1072 1073 1074 1075 1076
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1077
	/* Only handle setting domains to types used by the CPU. */
1078
	if (write_domain & I915_GEM_GPU_DOMAINS)
1079 1080
		return -EINVAL;

1081
	if (read_domains & I915_GEM_GPU_DOMAINS)
1082 1083 1084 1085 1086 1087 1088 1089
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1090 1091
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1092
		return -ENOENT;
1093
	obj_priv = to_intel_bo(obj);
1094

1095 1096 1097 1098 1099
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1100 1101 1102

	intel_mark_busy(dev, obj);

1103 1104
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1105

1106 1107 1108 1109
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1110 1111 1112
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1113 1114 1115
				       &dev_priv->mm.fence_list);
		}

1116 1117 1118 1119 1120 1121
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1122
	} else {
1123
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1124 1125
	}

1126 1127 1128 1129
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1150
	if (obj == NULL)
1151
		return -ENOENT;
1152 1153 1154 1155 1156

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
1157 1158 1159
	}

	/* Pinned buffers may be scanout, so flush the cache */
1160
	if (to_intel_bo(obj)->pin_count)
1161 1162
		i915_gem_object_flush_cpu_write_domain(obj);

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1189
		return -ENOENT;
1190 1191 1192 1193 1194 1195 1196 1197

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1198
	drm_gem_object_unreference_unlocked(obj);
1199 1200 1201 1202 1203 1204 1205 1206
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1227
	drm_i915_private_t *dev_priv = dev->dev_private;
1228
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1229 1230 1231
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1232
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1233 1234 1235 1236 1237 1238 1239 1240

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1241
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1242 1243
		if (ret)
			goto unlock;
1244 1245

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1246 1247
		if (ret)
			goto unlock;
1248 1249 1250
	}

	/* Need a new fence register? */
1251
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1252
		ret = i915_gem_object_get_fence_reg(obj, true);
1253 1254
		if (ret)
			goto unlock;
1255
	}
1256

1257 1258 1259
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1260 1261 1262 1263 1264
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1265
unlock:
1266 1267 1268
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1269 1270 1271
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1272 1273 1274 1275
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1276
		return VM_FAULT_SIGBUS;
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1296
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1297
	struct drm_map_list *list;
1298
	struct drm_local_map *map;
1299 1300 1301 1302
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1303
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1317
		ret = -ENOSPC;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1329 1330
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1344
	kfree(list->map);
1345 1346 1347 1348

	return ret;
}

1349 1350 1351 1352
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1353
 * Preserve the reservation of the mmapping with the DRM core code, but
1354 1355 1356 1357 1358 1359 1360 1361 1362
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1363
void
1364 1365 1366
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1367
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1368 1369 1370 1371 1372 1373

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1374 1375 1376 1377
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1378
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1391
		kfree(list->map);
1392 1393 1394 1395 1396 1397
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1409
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1410 1411 1412 1413 1414 1415
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1416
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1417 1418 1419 1420 1421 1422
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1423
	if (INTEL_INFO(dev)->gen == 3)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1463
		return -ENOENT;
1464

1465 1466 1467 1468 1469
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1470

1471
	obj_priv = to_intel_bo(obj);
1472

1473 1474 1475 1476 1477 1478 1479 1480
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1481 1482
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1483 1484 1485
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1486
			return ret;
1487
		}
1488 1489 1490 1491 1492 1493 1494 1495 1496
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1497
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1511
static void
1512
i915_gem_object_put_pages(struct drm_gem_object *obj)
1513
{
1514
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1515 1516 1517
	int page_count = obj->size / PAGE_SIZE;
	int i;

1518
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1519
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1520

1521 1522
	if (--obj_priv->pages_refcount != 0)
		return;
1523

1524 1525 1526
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1527
	if (obj_priv->madv == I915_MADV_DONTNEED)
1528
		obj_priv->dirty = 0;
1529 1530 1531 1532 1533 1534

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1535
			mark_page_accessed(obj_priv->pages[i]);
1536 1537 1538

		page_cache_release(obj_priv->pages[i]);
	}
1539 1540
	obj_priv->dirty = 0;

1541
	drm_free_large(obj_priv->pages);
1542
	obj_priv->pages = NULL;
1543 1544
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1555
static void
1556
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1557
			       struct intel_ring_buffer *ring)
1558
{
1559
	struct drm_device *dev = obj->dev;
1560
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1561
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1562

1563 1564
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1565 1566 1567 1568 1569 1570

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1571

1572
	/* Move from whatever list we were on to the tail of execution. */
1573
	list_move_tail(&obj_priv->list, &ring->active_list);
1574
	obj_priv->last_rendering_seqno = seqno;
1575 1576
}

1577 1578 1579 1580 1581
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1582
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1583 1584 1585 1586 1587

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1588

1589 1590 1591 1592
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1593
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1594
	struct inode *inode;
1595

1596 1597 1598 1599 1600 1601
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1602
	inode = obj->filp->f_path.dentry->d_inode;
1603 1604 1605
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1606 1607

	obj_priv->madv = __I915_MADV_PURGED;
1608 1609 1610 1611 1612 1613 1614 1615
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1616 1617 1618 1619 1620
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1621
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1622 1623

	if (obj_priv->pin_count != 0)
C
Chris Wilson 已提交
1624
		list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1625 1626 1627
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1628 1629
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1630
	obj_priv->last_rendering_seqno = 0;
1631
	obj_priv->ring = NULL;
1632 1633 1634 1635
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1636
	WARN_ON(i915_verify_lists(dev));
1637 1638
}

1639
static void
1640
i915_gem_process_flushing_list(struct drm_device *dev,
1641
			       uint32_t flush_domains,
1642
			       struct intel_ring_buffer *ring)
1643 1644 1645 1646 1647 1648 1649
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1650
		struct drm_gem_object *obj = &obj_priv->base;
1651

1652 1653
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1654 1655 1656 1657
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1658
			i915_gem_object_move_to_active(obj, ring);
1659 1660

			/* update the fence lru list */
1661 1662 1663 1664
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1665
						&dev_priv->mm.fence_list);
1666
			}
1667 1668 1669 1670 1671 1672 1673

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1674

1675
uint32_t
1676
i915_add_request(struct drm_device *dev,
1677
		 struct drm_file *file,
C
Chris Wilson 已提交
1678
		 struct drm_i915_gem_request *request,
1679
		 struct intel_ring_buffer *ring)
1680 1681
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1682
	struct drm_i915_file_private *file_priv = NULL;
1683 1684 1685
	uint32_t seqno;
	int was_empty;

1686 1687
	if (file != NULL)
		file_priv = file->driver_priv;
1688

C
Chris Wilson 已提交
1689 1690 1691 1692 1693
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1694

1695
	seqno = ring->add_request(dev, ring, 0);
1696
	ring->outstanding_lazy_request = false;
1697 1698

	request->seqno = seqno;
1699
	request->ring = ring;
1700
	request->emitted_jiffies = jiffies;
1701 1702 1703
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1704
	if (file_priv) {
1705
		spin_lock(&file_priv->mm.lock);
1706
		request->file_priv = file_priv;
1707
		list_add_tail(&request->client_list,
1708
			      &file_priv->mm.request_list);
1709
		spin_unlock(&file_priv->mm.lock);
1710
	}
1711

B
Ben Gamari 已提交
1712
	if (!dev_priv->mm.suspended) {
1713 1714
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1715
		if (was_empty)
1716 1717
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1718
	}
1719 1720 1721 1722 1723 1724 1725 1726 1727
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1728
static void
1729
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1730 1731 1732 1733
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1734
	if (INTEL_INFO(dev)->gen >= 4)
1735
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1736 1737 1738

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1739 1740
}

1741 1742
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1743
{
1744 1745 1746 1747 1748 1749 1750 1751 1752
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1753 1754
}

1755 1756
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1757
{
1758 1759
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1760

1761 1762 1763 1764 1765
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		list_del(&request->list);
1766
		i915_gem_request_remove_from_client(request);
1767 1768 1769 1770
		kfree(request);
	}

	while (!list_empty(&ring->active_list)) {
1771 1772
		struct drm_i915_gem_object *obj_priv;

1773
		obj_priv = list_first_entry(&ring->active_list,
1774 1775 1776 1777
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
1778
		list_del_init(&obj_priv->gpu_write_list);
1779 1780 1781 1782
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1783
void i915_gem_reset_lists(struct drm_device *dev)
1784 1785 1786 1787
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1809 1810 1811 1812 1813 1814 1815 1816
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
			    list)
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
}

1817 1818 1819
/**
 * This function clears the request list as sequence numbers are passed.
 */
1820 1821 1822
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1823 1824 1825 1826
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1827 1828
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1829 1830
		return;

1831 1832
	WARN_ON(i915_verify_lists(dev));

1833
	seqno = ring->get_seqno(dev, ring);
1834
	while (!list_empty(&ring->request_list)) {
1835 1836
		struct drm_i915_gem_request *request;

1837
		request = list_first_entry(&ring->request_list,
1838 1839 1840
					   struct drm_i915_gem_request,
					   list);

1841
		if (!i915_seqno_passed(seqno, request->seqno))
1842 1843 1844 1845 1846
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1847
		i915_gem_request_remove_from_client(request);
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1861

1862
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1863
			break;
1864 1865 1866 1867 1868 1869

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1870
	}
1871 1872 1873

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1874
		ring->user_irq_put(dev, ring);
1875 1876
		dev_priv->trace_irq_seqno = 0;
	}
1877 1878

	WARN_ON(i915_verify_lists(dev));
1879 1880
}

1881 1882 1883 1884 1885
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1900 1901 1902 1903 1904
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1905
static void
1906 1907 1908 1909 1910 1911 1912 1913 1914
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1915 1916 1917 1918 1919 1920
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1921
	i915_gem_retire_requests(dev);
1922

1923
	if (!dev_priv->mm.suspended &&
1924 1925 1926
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1927
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1928 1929 1930
	mutex_unlock(&dev->struct_mutex);
}

1931
int
1932
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1933
		     bool interruptible, struct intel_ring_buffer *ring)
1934 1935
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1936
	u32 ier;
1937 1938 1939 1940
	int ret = 0;

	BUG_ON(seqno == 0);

1941 1942 1943
	if (atomic_read(&dev_priv->mm.wedged))
		return -EAGAIN;

1944
	if (ring->outstanding_lazy_request) {
C
Chris Wilson 已提交
1945
		seqno = i915_add_request(dev, NULL, NULL, ring);
1946 1947 1948
		if (seqno == 0)
			return -ENOMEM;
	}
1949
	BUG_ON(seqno == dev_priv->next_seqno);
1950

1951
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1952
		if (HAS_PCH_SPLIT(dev))
1953 1954 1955
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1956 1957 1958 1959 1960 1961 1962
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1963 1964
		trace_i915_gem_request_wait_begin(dev, seqno);

1965
		ring->waiting_gem_seqno = seqno;
1966
		ring->user_irq_get(dev, ring);
1967
		if (interruptible)
1968 1969
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
1970
					ring->get_seqno(dev, ring), seqno)
1971
				|| atomic_read(&dev_priv->mm.wedged));
1972
		else
1973 1974
			wait_event(ring->irq_queue,
				i915_seqno_passed(
1975
					ring->get_seqno(dev, ring), seqno)
1976
				|| atomic_read(&dev_priv->mm.wedged));
1977

1978
		ring->user_irq_put(dev, ring);
1979
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1980 1981

		trace_i915_gem_request_wait_end(dev, seqno);
1982
	}
1983
	if (atomic_read(&dev_priv->mm.wedged))
1984
		ret = -EAGAIN;
1985 1986

	if (ret && ret != -ERESTARTSYS)
1987
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1988
			  __func__, ret, seqno, ring->get_seqno(dev, ring),
1989
			  dev_priv->next_seqno);
1990 1991 1992 1993 1994 1995 1996

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1997
		i915_gem_retire_requests_ring(dev, ring);
1998 1999 2000 2001

	return ret;
}

2002 2003 2004 2005 2006
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2007
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2008
		  struct intel_ring_buffer *ring)
2009
{
2010
	return i915_do_wait_request(dev, seqno, 1, ring);
2011 2012
}

2013
static void
2014
i915_gem_flush_ring(struct drm_device *dev,
2015
		    struct drm_file *file_priv,
2016 2017 2018 2019 2020 2021 2022 2023
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2024 2025
static void
i915_gem_flush(struct drm_device *dev,
2026
	       struct drm_file *file_priv,
2027
	       uint32_t invalidate_domains,
2028 2029
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2030 2031
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2032

2033 2034
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2035

2036 2037
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2038
			i915_gem_flush_ring(dev, file_priv,
2039 2040 2041
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2042
			i915_gem_flush_ring(dev, file_priv,
2043 2044 2045
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
2046 2047
}

2048 2049 2050 2051 2052
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2053 2054
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2055 2056
{
	struct drm_device *dev = obj->dev;
2057
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2058 2059
	int ret;

2060 2061
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2062
	 */
2063
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2064 2065 2066 2067 2068

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2069 2070 2071 2072 2073
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2074 2075 2076 2077 2078 2079 2080 2081 2082
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2083
int
2084 2085 2086
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2087
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2098 2099 2100
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2101 2102 2103 2104 2105 2106
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2107
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2108
	if (ret == -ERESTARTSYS)
2109
		return ret;
2110 2111 2112 2113
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2114

2115 2116 2117 2118
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2119 2120 2121 2122 2123 2124
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

2125
	i915_gem_object_put_pages(obj);
2126
	BUG_ON(obj_priv->pages_refcount);
2127 2128 2129 2130 2131 2132 2133 2134 2135

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

C
Chris Wilson 已提交
2136
	list_del_init(&obj_priv->list);
2137

2138 2139 2140
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2141 2142
	trace_i915_gem_object_unbind(obj);

2143
	return ret;
2144 2145
}

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2156
int
2157 2158 2159 2160
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2161
	int ret;
2162

2163 2164 2165 2166
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2167 2168 2169 2170
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2171
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2172 2173
	if (ret)
		return ret;
2174 2175

	if (HAS_BSD(dev)) {
2176
		ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2177 2178 2179 2180
		if (ret)
			return ret;
	}

2181
	return 0;
2182 2183
}

2184
static int
2185 2186
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2187
{
2188
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2189 2190 2191 2192 2193
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2194 2195 2196
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2197
	if (obj_priv->pages_refcount++ != 0)
2198 2199 2200 2201 2202 2203
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2204
	BUG_ON(obj_priv->pages != NULL);
2205
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2206 2207
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2208 2209 2210 2211 2212 2213
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2214
		page = read_cache_page_gfp(mapping, i,
2215
					   GFP_HIGHUSER |
2216
					   __GFP_COLD |
2217
					   __GFP_RECLAIMABLE |
2218
					   gfpmask);
2219 2220 2221
		if (IS_ERR(page))
			goto err_pages;

2222
		obj_priv->pages[i] = page;
2223
	}
2224 2225 2226 2227

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2228
	return 0;
2229 2230 2231 2232 2233 2234 2235 2236 2237

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2238 2239
}

2240 2241 2242 2243 2244
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2245
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2262 2263 2264 2265 2266
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2267
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2287
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2288
	int regnum = obj_priv->fence_reg;
2289
	int tile_width;
2290
	uint32_t fence_reg, val;
2291 2292 2293 2294
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2295
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2296
		     __func__, obj_priv->gtt_offset, obj->size);
2297 2298 2299
		return;
	}

2300 2301 2302
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2303
	else
2304 2305 2306 2307 2308
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2309

2310 2311 2312 2313 2314 2315
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2316 2317 2318 2319 2320 2321 2322
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2323 2324 2325 2326 2327
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2328 2329 2330 2331 2332 2333 2334
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2335
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2336 2337 2338
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2339
	uint32_t fence_size_bits;
2340

2341
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2342
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2343
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2344
		     __func__, obj_priv->gtt_offset);
2345 2346 2347
		return;
	}

2348 2349 2350 2351
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2352 2353 2354
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2355 2356 2357
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2358 2359 2360 2361 2362 2363
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2364 2365
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2380
		obj_priv = to_intel_bo(reg->obj);
2381 2382 2383 2384 2385 2386 2387 2388 2389
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2390 2391 2392 2393
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2410
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2411 2412 2413 2414 2415 2416 2417
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2431
int
2432 2433
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2434 2435
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2436
	struct drm_i915_private *dev_priv = dev->dev_private;
2437
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2438
	struct drm_i915_fence_reg *reg = NULL;
2439
	int ret;
2440

2441 2442
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2443 2444
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2445 2446 2447
		return 0;
	}

2448 2449 2450 2451 2452
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2453 2454 2455 2456 2457
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2458 2459
		break;
	case I915_TILING_Y:
2460 2461 2462 2463 2464
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2465 2466 2467
		break;
	}

2468
	ret = i915_find_fence_reg(dev, interruptible);
2469 2470
	if (ret < 0)
		return ret;
2471

2472 2473
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2474
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2475

2476 2477
	reg->obj = obj;

2478 2479
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2480
		sandybridge_write_fence_reg(reg);
2481 2482 2483
		break;
	case 5:
	case 4:
2484
		i965_write_fence_reg(reg);
2485 2486
		break;
	case 3:
2487
		i915_write_fence_reg(reg);
2488 2489
		break;
	case 2:
2490
		i830_write_fence_reg(reg);
2491 2492
		break;
	}
2493

2494 2495
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2496

2497
	return 0;
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2511
	drm_i915_private_t *dev_priv = dev->dev_private;
2512
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2513 2514
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2515
	uint32_t fence_reg;
2516

2517 2518
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2519 2520
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2521 2522 2523
		break;
	case 5:
	case 4:
2524
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2525 2526
		break;
	case 3:
2527
		if (obj_priv->fence_reg >= 8)
2528
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2529
		else
2530 2531
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2532 2533

		I915_WRITE(fence_reg, 0);
2534
		break;
2535
	}
2536

2537
	reg->obj = NULL;
2538
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2539
	list_del_init(&reg->lru_list);
2540 2541
}

2542 2543 2544 2545
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2546
 * @bool: whether the wait upon the fence is interruptible
2547 2548 2549 2550 2551
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2552 2553
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2554 2555
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2556
	struct drm_i915_private *dev_priv = dev->dev_private;
2557
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2558
	struct drm_i915_fence_reg *reg;
2559 2560 2561 2562

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2563 2564 2565 2566 2567 2568
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2569 2570 2571 2572
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2573 2574
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2575 2576
		int ret;

2577
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2578 2579 2580
		if (ret)
			return ret;

2581
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2582
		if (ret)
2583
			return ret;
C
Chris Wilson 已提交
2584 2585

		reg->gpu = false;
2586 2587
	}

2588
	i915_gem_object_flush_gtt_write_domain(obj);
2589
	i915_gem_clear_fence_reg(obj);
2590 2591 2592 2593

	return 0;
}

2594 2595 2596 2597 2598 2599 2600 2601
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2602
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2603
	struct drm_mm_node *free_space;
2604
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2605
	int ret;
2606

C
Chris Wilson 已提交
2607
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2608 2609 2610 2611
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2612
	if (alignment == 0)
2613
		alignment = i915_gem_get_gtt_alignment(obj);
2614
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2615 2616 2617 2618
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2619 2620 2621 2622 2623 2624 2625 2626
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2627 2628 2629 2630 2631 2632
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2633
		if (obj_priv->gtt_space != NULL)
2634 2635 2636 2637 2638 2639
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2640
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2641
		if (ret)
2642
			return ret;
2643

2644 2645 2646
		goto search_free;
	}

2647
	ret = i915_gem_object_get_pages(obj, gfpmask);
2648 2649 2650
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2651 2652 2653

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2654 2655
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2656 2657
			if (ret) {
				/* now try to shrink everyone else */
2658 2659 2660
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2661 2662 2663 2664 2665 2666 2667 2668
				}

				return ret;
			}

			goto search_free;
		}

2669 2670 2671 2672 2673 2674 2675
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2676
					       obj_priv->pages,
2677
					       obj->size >> PAGE_SHIFT,
2678 2679
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2680
	if (obj_priv->agp_mem == NULL) {
2681
		i915_gem_object_put_pages(obj);
2682 2683
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2684

2685
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2686
		if (ret)
2687 2688 2689
			return ret;

		goto search_free;
2690 2691 2692 2693
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

2694 2695 2696
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

2697 2698 2699 2700
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2701 2702
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2703

C
Chris Wilson 已提交
2704 2705
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2706 2707 2708 2709 2710 2711
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2712
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2713 2714 2715 2716 2717

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2718
	if (obj_priv->pages == NULL)
2719 2720
		return;

C
Chris Wilson 已提交
2721
	trace_i915_gem_object_clflush(obj);
2722

2723
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2724 2725
}

2726
/** Flushes any GPU write domain for the object if it's dirty. */
2727
static int
2728 2729
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2730 2731
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2732
	uint32_t old_write_domain;
2733 2734

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2735
		return 0;
2736 2737

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2738
	old_write_domain = obj->write_domain;
2739
	i915_gem_flush_ring(dev, NULL,
2740 2741
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2742
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2743 2744 2745 2746

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2747 2748 2749 2750

	if (pipelined)
		return 0;

2751
	return i915_gem_object_wait_rendering(obj, true);
2752 2753 2754 2755 2756 2757
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2758 2759
	uint32_t old_write_domain;

2760 2761 2762 2763 2764 2765 2766
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2767
	old_write_domain = obj->write_domain;
2768
	obj->write_domain = 0;
C
Chris Wilson 已提交
2769 2770 2771 2772

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2773 2774 2775 2776 2777 2778 2779
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2780
	uint32_t old_write_domain;
2781 2782 2783 2784 2785 2786

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2787
	old_write_domain = obj->write_domain;
2788
	obj->write_domain = 0;
C
Chris Wilson 已提交
2789 2790 2791 2792

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2793 2794
}

2795 2796 2797 2798 2799 2800
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2801
int
2802 2803
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2804
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2805
	uint32_t old_write_domain, old_read_domains;
2806
	int ret;
2807

2808 2809 2810 2811
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2812
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2813 2814 2815
	if (ret != 0)
		return ret;

2816
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2817

2818
	if (write) {
2819
		ret = i915_gem_object_wait_rendering(obj, true);
2820 2821 2822
		if (ret)
			return ret;
	}
2823

2824 2825
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2826

2827 2828 2829 2830 2831 2832
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2833
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2834 2835
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2836 2837
	}

C
Chris Wilson 已提交
2838 2839 2840 2841
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2842 2843 2844
	return 0;
}

2845 2846 2847 2848 2849
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2850 2851
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2852
{
2853
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2854
	uint32_t old_read_domains;
2855 2856 2857 2858 2859 2860
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2861
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2862
	if (ret)
2863
		return ret;
2864

2865 2866 2867 2868 2869 2870 2871
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}

2872 2873
	i915_gem_object_flush_cpu_write_domain(obj);

2874
	old_read_domains = obj->read_domains;
2875
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2876 2877 2878

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2879
					    obj->write_domain);
2880 2881 2882 2883

	return 0;
}

2884 2885 2886 2887 2888 2889 2890 2891 2892
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2893
	uint32_t old_write_domain, old_read_domains;
2894 2895
	int ret;

2896
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2897 2898
	if (ret != 0)
		return ret;
2899

2900
	i915_gem_object_flush_gtt_write_domain(obj);
2901

2902 2903
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2904
	 */
2905
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2906

2907
	if (write) {
2908
		ret = i915_gem_object_wait_rendering(obj, true);
2909 2910 2911 2912
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2913 2914 2915
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2916 2917
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2918 2919
		i915_gem_clflush_object(obj);

2920
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2921 2922 2923 2924 2925
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2926 2927 2928 2929 2930 2931
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2932
		obj->read_domains = I915_GEM_DOMAIN_CPU;
2933 2934
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2935

C
Chris Wilson 已提交
2936 2937 2938 2939
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2940 2941 2942
	return 0;
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3054
static void
3055
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3056 3057
{
	struct drm_device		*dev = obj->dev;
3058
	struct drm_i915_private		*dev_priv = dev->dev_private;
3059
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3060 3061
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3062
	uint32_t			old_read_domains;
3063

3064 3065
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3066

3067 3068
	intel_mark_busy(dev, obj);

3069 3070 3071 3072
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3073 3074
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3075 3076 3077 3078 3079 3080 3081 3082 3083
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3084 3085
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3086
		flush_domains |= obj->write_domain;
3087 3088
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3089 3090 3091 3092 3093
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3094
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3095
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3096 3097
		i915_gem_clflush_object(obj);

C
Chris Wilson 已提交
3098 3099
	old_read_domains = obj->read_domains;

3100 3101 3102 3103 3104 3105 3106 3107
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3108
	obj->read_domains = obj->pending_read_domains;
3109 3110 3111

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3112 3113
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
C
Chris Wilson 已提交
3114 3115 3116 3117

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3118 3119 3120
}

/**
3121
 * Moves the object from a partially CPU read to a full one.
3122
 *
3123 3124
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3125
 */
3126 3127
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3128
{
3129
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3142
			drm_clflush_pages(obj_priv->pages + i, 1);
3143 3144 3145 3146 3147 3148
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3149
	kfree(obj_priv->page_cpu_valid);
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3169
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3170
	uint32_t old_read_domains;
3171
	int i, ret;
3172

3173 3174
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3175

3176
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3177
	if (ret != 0)
3178
		return ret;
3179 3180 3181 3182 3183 3184
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3185

3186 3187 3188
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3189
	if (obj_priv->page_cpu_valid == NULL) {
3190 3191
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3192 3193 3194 3195
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3196 3197 3198 3199

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3200 3201
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3202 3203 3204
		if (obj_priv->page_cpu_valid[i])
			continue;

3205
		drm_clflush_pages(obj_priv->pages + i, 1);
3206 3207 3208 3209

		obj_priv->page_cpu_valid[i] = 1;
	}

3210 3211 3212 3213 3214
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3215
	old_read_domains = obj->read_domains;
3216 3217
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3218 3219 3220 3221
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3222 3223 3224 3225 3226 3227 3228 3229 3230
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3231
				 struct drm_i915_gem_exec_object2 *entry,
3232
				 struct drm_i915_gem_relocation_entry *relocs)
3233 3234
{
	struct drm_device *dev = obj->dev;
3235
	drm_i915_private_t *dev_priv = dev->dev_private;
3236
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3237
	int i, ret;
3238
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3239 3240 3241 3242 3243 3244
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3245 3246 3247 3248 3249 3250 3251
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3252 3253 3254 3255 3256 3257

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3258 3259 3260 3261 3262
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
C
Chris Wilson 已提交
3263
		ret = i915_gem_object_get_fence_reg(obj, true);
J
Jesse Barnes 已提交
3264 3265 3266 3267
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
C
Chris Wilson 已提交
3268 3269

		dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
J
Jesse Barnes 已提交
3270 3271
	}

3272 3273 3274 3275 3276 3277
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3278
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3279 3280
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3281 3282
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3283 3284

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3285
						   reloc->target_handle);
3286 3287
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3288
			return -ENOENT;
3289
		}
3290
		target_obj_priv = to_intel_bo(target_obj);
3291

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3307 3308 3309 3310 3311
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3312
				  reloc->target_handle);
3313 3314 3315 3316 3317
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3318
		/* Validate that the target is in a valid r/w GPU domain */
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3329 3330
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3331 3332 3333
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3334 3335 3336 3337
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3338 3339
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3340 3341
			return -EINVAL;
		}
3342 3343
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3344 3345 3346
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3347 3348 3349
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3350 3351 3352 3353 3354 3355
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3356 3357
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3358 3359 3360 3361

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3362
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3363 3364 3365 3366
			drm_gem_object_unreference(target_obj);
			continue;
		}

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3398 3399 3400 3401 3402
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3403 3404 3405 3406 3407
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3408
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3409 3410
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3411 3412
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3413
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3414
						   (reloc_offset & (PAGE_SIZE - 1)));
3415
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3416 3417

		writel(reloc_val, reloc_entry);
3418
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3419

3420 3421
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3422
		 */
3423
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433

		drm_gem_object_unreference(target_obj);
	}

	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3434 3435 3436 3437
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3438 3439 3440 3441
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
3442
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3443
{
3444 3445
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3446
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3447 3448 3449 3450
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3451

3452
	spin_lock(&file_priv->mm.lock);
3453
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3454 3455 3456
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3457 3458
		ring = request->ring;
		seqno = request->seqno;
3459
	}
3460
	spin_unlock(&file_priv->mm.lock);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483

	if (seqno == 0)
		return 0;

	ret = 0;
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
		ring->user_irq_get(dev, ring);
		ret = wait_event_interruptible(ring->irq_queue,
					       i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
					       || atomic_read(&dev_priv->mm.wedged));
		ring->user_irq_put(dev, ring);

		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
	}

	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3484

3485 3486 3487
	return ret;
}

3488
static int
J
Jesse Barnes 已提交
3489
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3503
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3504 3505
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3506
		return -ENOMEM;
J
Jesse Barnes 已提交
3507
	}
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3519
			drm_free_large(*relocs);
3520
			*relocs = NULL;
3521
			return -EFAULT;
3522 3523 3524 3525 3526
		}

		reloc_index += exec_list[i].relocation_count;
	}

3527
	return 0;
3528 3529 3530
}

static int
J
Jesse Barnes 已提交
3531
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3532 3533 3534 3535
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3536
	int ret = 0;
3537

3538 3539 3540
	if (relocs == NULL)
	    return 0;

3541 3542
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3543
		int unwritten;
3544 3545 3546

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3547 3548 3549 3550 3551 3552 3553 3554
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3555 3556 3557 3558 3559
		}

		reloc_count += exec_list[i].relocation_count;
	}

3560
err:
3561
	drm_free_large(relocs);
3562 3563 3564 3565

	return ret;
}

3566
static int
J
Jesse Barnes 已提交
3567
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3584
static int
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3598
			obj_priv = to_intel_bo(object_list[i]);
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

C
Chris Wilson 已提交
3619
static int
J
Jesse Barnes 已提交
3620 3621 3622 3623
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3624 3625 3626 3627
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3628
	struct drm_i915_gem_object *obj_priv;
3629
	struct drm_clip_rect *cliprects = NULL;
3630
	struct drm_i915_gem_relocation_entry *relocs = NULL;
C
Chris Wilson 已提交
3631
	struct drm_i915_gem_request *request = NULL;
3632
	int ret, ret2, i, pinned = 0;
3633
	uint64_t exec_offset;
C
Chris Wilson 已提交
3634
	uint32_t reloc_index;
3635
	int pin_tries, flips;
3636

3637 3638
	struct intel_ring_buffer *ring = NULL;

3639 3640 3641 3642
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3643 3644 3645 3646
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3657 3658 3659 3660
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3661
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3662 3663
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3664 3665 3666 3667 3668
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3669
	if (args->num_cliprects != 0) {
3670 3671
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3672 3673
		if (cliprects == NULL) {
			ret = -ENOMEM;
3674
			goto pre_mutex_err;
3675
		}
3676 3677 3678 3679 3680 3681 3682 3683

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3684
			ret = -EFAULT;
3685 3686 3687 3688
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3689 3690 3691 3692 3693 3694
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3695 3696 3697 3698 3699
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3700 3701 3702
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;
3703 3704 3705

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3706 3707
		ret = -EBUSY;
		goto pre_mutex_err;
3708 3709
	}

3710
	/* Look up object handles */
3711
	flips = 0;
3712 3713 3714 3715 3716 3717
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3718 3719
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3720
			ret = -ENOENT;
3721 3722
			goto err;
		}
3723

3724
		obj_priv = to_intel_bo(object_list[i]);
3725 3726 3727
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3728 3729
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3730
			ret = -EINVAL;
3731 3732 3733
			goto err;
		}
		obj_priv->in_execbuffer = true;
3734 3735 3736 3737 3738 3739 3740 3741
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3742
	}
3743

3744 3745 3746
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3747 3748
		reloc_index = 0;

3749 3750 3751 3752 3753
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3754 3755
							       &exec_list[i],
							       &relocs[reloc_index]);
3756 3757 3758
			if (ret)
				break;
			pinned = i + 1;
3759
			reloc_index += exec_list[i].relocation_count;
3760 3761 3762 3763 3764 3765
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3766
		if (ret != -ENOSPC || pin_tries >= 1) {
3767 3768
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3769 3770
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3771
					obj_priv = to_intel_bo(object_list[i]);
3772

3773
					total_size += object_list[i]->size;
3774 3775 3776 3777 3778
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3779
					  pinned+1, args->buffer_count,
3780 3781
					  total_size, num_fences,
					  ret);
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3792 3793
			goto err;
		}
3794 3795 3796 3797

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3798
		pinned = 0;
3799 3800 3801

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3802
		if (ret && ret != -ENOSPC)
3803
			goto err;
3804 3805 3806 3807
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3808 3809 3810 3811 3812 3813
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3814

3815 3816 3817 3818 3819 3820 3821 3822
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3823 3824 3825 3826 3827 3828
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3829
	dev_priv->mm.flush_rings = 0;
3830

3831 3832 3833
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3834
		/* Compute new gpu domains and update invalidate/flush */
3835
		i915_gem_object_set_to_gpu_domain(obj);
3836 3837
	}

3838 3839 3840 3841 3842 3843 3844
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3845
		i915_gem_flush(dev, file_priv,
3846
			       dev->invalidate_domains,
3847 3848
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3849 3850
	}

3851 3852
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3853
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3854
		uint32_t old_write_domain = obj->write_domain;
3855 3856

		obj->write_domain = obj->pending_write_domain;
3857 3858 3859 3860
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);

C
Chris Wilson 已提交
3861 3862 3863
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3864 3865
	}

3866 3867 3868 3869 3870 3871 3872 3873
#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3874
	i915_gem_dump_object(batch_obj,
3875 3876 3877 3878 3879 3880
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3881 3882
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3883 3884 3885 3886 3887 3888 3889 3890 3891
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3892
	i915_retire_commands(dev, ring);
3893

3894 3895 3896 3897 3898 3899
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
	}
3900

C
Chris Wilson 已提交
3901
	i915_add_request(dev, file_priv, request, ring);
C
Chris Wilson 已提交
3902
	request = NULL;
3903 3904

err:
3905 3906 3907
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3908 3909
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3910
			obj_priv = to_intel_bo(object_list[i]);
3911 3912
			obj_priv->in_execbuffer = false;
		}
3913
		drm_gem_object_unreference(object_list[i]);
3914
	}
3915 3916 3917

	mutex_unlock(&dev->struct_mutex);

3918
pre_mutex_err:
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3933
	drm_free_large(object_list);
3934
	kfree(cliprects);
C
Chris Wilson 已提交
3935
	kfree(request);
3936 3937 3938 3939

	return ret;
}

J
Jesse Barnes 已提交
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3992
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4006
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4085 4086 4087 4088
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4089
	struct drm_i915_private *dev_priv = dev->dev_private;
4090
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4091 4092
	int ret;

4093
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4094
	WARN_ON(i915_verify_lists(dev));
4095 4096 4097 4098 4099

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4100 4101 4102 4103
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4104 4105 4106 4107 4108 4109
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4110 4111
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4112
		if (ret)
4113
			return ret;
4114
	}
J
Jesse Barnes 已提交
4115

4116 4117 4118 4119 4120 4121 4122 4123
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
C
Chris Wilson 已提交
4124 4125 4126
		if (!obj_priv->active)
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.pinned_list);
4127 4128
	}

4129
	WARN_ON(i915_verify_lists(dev));
4130 4131 4132 4133 4134 4135 4136 4137
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4138
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4139

4140
	WARN_ON(i915_verify_lists(dev));
4141 4142 4143 4144 4145 4146 4147 4148 4149
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4150
		if (!obj_priv->active)
4151 4152 4153 4154 4155
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
4156
	WARN_ON(i915_verify_lists(dev));
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4172
		return -ENOENT;
4173
	}
4174
	obj_priv = to_intel_bo(obj);
4175

4176 4177 4178 4179 4180 4181
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

C
Chris Wilson 已提交
4182 4183
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4184 4185 4186 4187 4188
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4189 4190 4191
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4192
		drm_gem_object_unreference(obj);
4193
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4206 4207 4208 4209 4210
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4211
	i915_gem_object_flush_cpu_write_domain(obj);
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4225
	struct drm_i915_gem_object *obj_priv;
4226
	int ret;
4227 4228 4229 4230 4231

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
4232
		return -ENOENT;
4233 4234
	}

4235
	obj_priv = to_intel_bo(obj);
4236 4237 4238 4239 4240 4241 4242

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

J
Jesse Barnes 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4268 4269
	int ret;

4270 4271 4272 4273
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4274
		return -ENOENT;
4275 4276
	}

4277 4278 4279 4280
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
4281 4282
	}

4283 4284 4285 4286
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4287
	 */
4288 4289 4290 4291 4292 4293 4294 4295
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4296 4297
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4298 4299
					    obj_priv->ring,
					    0, obj->write_domain);
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4310 4311 4312

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
4313
	return 0;
4314 4315 4316 4317 4318 4319 4320 4321 4322
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4323 4324 4325 4326 4327 4328 4329
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4330
	int ret;
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4344
		return -ENOENT;
4345
	}
4346
	obj_priv = to_intel_bo(obj);
4347

4348 4349 4350 4351 4352 4353
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

4354 4355 4356 4357 4358 4359 4360 4361
	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4362 4363
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4364

4365 4366 4367 4368 4369
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4370 4371
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4372 4373 4374 4375 4376 4377
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4378 4379 4380
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4381
	struct drm_i915_gem_object *obj;
4382

4383 4384 4385
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4386

4387 4388 4389 4390
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4391

4392 4393
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4394

4395
	obj->agp_type = AGP_USER_MEMORY;
4396
	obj->base.driver_private = NULL;
4397 4398 4399 4400
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4401

4402 4403 4404 4405 4406 4407 4408 4409
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4410

4411 4412 4413
	return 0;
}

4414
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4415
{
4416
	struct drm_device *dev = obj->dev;
4417
	drm_i915_private_t *dev_priv = dev->dev_private;
4418
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4419
	int ret;
4420

4421 4422 4423 4424 4425 4426
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4427

4428 4429
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4430

4431 4432
	drm_gem_object_release(obj);

4433
	kfree(obj_priv->page_cpu_valid);
4434
	kfree(obj_priv->bit_17);
4435
	kfree(obj_priv);
4436 4437
}

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4454 4455 4456 4457 4458
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4459

4460
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4461

4462
	if (dev_priv->mm.suspended ||
4463 4464 4465
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4466 4467
		mutex_unlock(&dev->struct_mutex);
		return 0;
4468 4469
	}

4470
	ret = i915_gpu_idle(dev);
4471 4472
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4473
		return ret;
4474
	}
4475

4476 4477
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4478
		ret = i915_gem_evict_inactive(dev);
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4490
	del_timer_sync(&dev_priv->hangcheck_timer);
4491 4492

	i915_kernel_lost_context(dev);
4493
	i915_gem_cleanup_ringbuffer(dev);
4494

4495 4496
	mutex_unlock(&dev->struct_mutex);

4497 4498 4499
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4500 4501 4502
	return 0;
}

4503 4504 4505 4506
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4507
static int
4508 4509 4510 4511 4512 4513 4514
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4515
	obj = i915_gem_alloc_object(dev, 4096);
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4546 4547

static void
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4562 4563
}

4564 4565 4566 4567 4568
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4569

4570 4571 4572 4573 4574
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4575

4576
	ret = intel_init_render_ring_buffer(dev);
4577 4578 4579 4580
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4581
		ret = intel_init_bsd_ring_buffer(dev);
4582 4583
		if (ret)
			goto cleanup_render_ring;
4584
	}
4585

4586 4587
	dev_priv->next_seqno = 1;

4588 4589 4590 4591 4592 4593 4594
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4595 4596 4597 4598 4599 4600 4601 4602 4603
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4604 4605
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4606 4607 4608 4609
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4610 4611 4612 4613 4614 4615 4616
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4617 4618 4619
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4620
	if (atomic_read(&dev_priv->mm.wedged)) {
4621
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4622
		atomic_set(&dev_priv->mm.wedged, 0);
4623 4624 4625
	}

	mutex_lock(&dev->struct_mutex);
4626 4627 4628
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4629 4630
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4631
		return ret;
4632
	}
4633

4634
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4635
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4636 4637
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4638
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4639
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4640
	mutex_unlock(&dev->struct_mutex);
4641

4642 4643 4644
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4645

4646
	return 0;
4647 4648 4649 4650 4651 4652 4653 4654

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4655 4656 4657 4658 4659 4660
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4661 4662 4663
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4664
	drm_irq_uninstall(dev);
4665
	return i915_gem_idle(dev);
4666 4667 4668 4669 4670 4671 4672
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4673 4674 4675
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4676 4677 4678
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4679 4680 4681 4682 4683
}

void
i915_gem_load(struct drm_device *dev)
{
4684
	int i;
4685 4686 4687
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4688
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4689
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4690
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4691
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4692
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4693 4694
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4695 4696 4697 4698
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4699 4700
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4701 4702
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4703
	init_completion(&dev_priv->error_completion);
4704 4705 4706 4707
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4718
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4719 4720
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4721

4722
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4723 4724 4725 4726
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4727
	/* Initialize fence registers to zero */
4728 4729 4730 4731 4732 4733 4734
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4735 4736
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4737 4738
		break;
	case 3:
4739 4740 4741
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4742 4743 4744 4745
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4746
	}
4747
	i915_gem_detect_bit_6_swizzle(dev);
4748
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4749
}
4750 4751 4752 4753 4754

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4755 4756
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4757 4758 4759 4760 4761 4762 4763 4764
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4765
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4766 4767 4768 4769 4770
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4771
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4784
	kfree(phys_obj);
4785 4786 4787
	return ret;
}

4788
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4813
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4825
	obj_priv = to_intel_bo(obj);
4826 4827 4828
	if (!obj_priv->phys_obj)
		return;

4829
	ret = i915_gem_object_get_pages(obj, 0);
4830 4831 4832 4833 4834 4835
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4836
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4837 4838 4839 4840 4841
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4842
	drm_clflush_pages(obj_priv->pages, page_count);
4843
	drm_agp_chipset_flush(dev);
4844 4845

	i915_gem_object_put_pages(obj);
4846 4847 4848 4849 4850 4851 4852
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4853 4854 4855
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4866
	obj_priv = to_intel_bo(obj);
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4877
						obj->size, align);
4878
		if (ret) {
4879
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4880 4881 4882 4883 4884 4885 4886 4887
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4888
	ret = i915_gem_object_get_pages(obj, 0);
4889 4890 4891 4892 4893 4894 4895 4896
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4897
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4898 4899 4900 4901 4902 4903
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4904 4905
	i915_gem_object_put_pages(obj);

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4916
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4917 4918 4919 4920 4921 4922 4923
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4924
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4925 4926 4927 4928 4929 4930 4931
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4932

4933
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4934
{
4935
	struct drm_i915_file_private *file_priv = file->driver_priv;
4936 4937 4938 4939 4940

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4941
	spin_lock(&file_priv->mm.lock);
4942 4943 4944 4945 4946 4947 4948 4949 4950
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4951
	spin_unlock(&file_priv->mm.lock);
4952
}
4953

4954 4955 4956 4957 4958 4959 4960
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4961
		      list_empty(&dev_priv->render_ring.active_list);
4962 4963
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4964 4965 4966 4967

	return !lists_empty;
}

4968
static int
4969
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4997
rescan:
4998 4999 5000 5001 5002 5003 5004 5005 5006
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
5007
		i915_gem_retire_requests(dev);
5008 5009 5010 5011 5012

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
5013
				i915_gem_object_unbind(&obj_priv->base);
5014 5015 5016 5017 5018 5019 5020 5021
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

5022 5023
		would_deadlock = 0;

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
5042
				i915_gem_object_unbind(&obj_priv->base);
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}