i915_gem.c 138.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

532 533 534
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
535
static int
536 537 538 539 540 541 542
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

543
	if (unlikely(page_do_bit17_swizzling))
544 545 546 547 548 549 550 551 552 553 554
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

555
	return ret ? -EFAULT : 0;
556 557
}

558 559 560 561
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
562
	if (unlikely(swizzled)) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

580 581 582 583 584 585 586 587 588 589 590 591
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
592 593 594
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
595 596 597 598 599 600 601 602 603 604 605

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

606
	return ret ? - EFAULT : 0;
607 608
}

609
static int
610 611 612 613
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
614
{
615
	char __user *user_data;
616
	ssize_t remain;
617
	loff_t offset;
618
	int shmem_page_offset, page_length, ret = 0;
619
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620
	int prefaulted = 0;
621
	int needs_clflush = 0;
622
	struct sg_page_iter sg_iter;
623

V
Ville Syrjälä 已提交
624
	user_data = to_user_ptr(args->data_ptr);
625 626
	remain = args->size;

627
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628

629
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 631 632
	if (ret)
		return ret;

633
	offset = args->offset;
634

635 636
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
637
		struct page *page = sg_page_iter_page(&sg_iter);
638 639 640 641

		if (remain <= 0)
			break;

642 643 644 645 646
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
647
		shmem_page_offset = offset_in_page(offset);
648 649 650 651
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

652 653 654
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

655 656 657 658 659
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
660 661 662

		mutex_unlock(&dev->struct_mutex);

663
		if (likely(!i915.prefault_disable) && !prefaulted) {
664
			ret = fault_in_multipages_writeable(user_data, remain);
665 666 667 668 669 670 671
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
672

673 674 675
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
676

677
		mutex_lock(&dev->struct_mutex);
678 679

		if (ret)
680 681
			goto out;

682
next_page:
683
		remain -= page_length;
684
		user_data += page_length;
685 686 687
		offset += page_length;
	}

688
out:
689 690
	i915_gem_object_unpin_pages(obj);

691 692 693
	return ret;
}

694 695 696 697 698 699 700
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701
		     struct drm_file *file)
702 703
{
	struct drm_i915_gem_pread *args = data;
704
	struct drm_i915_gem_object *obj;
705
	int ret = 0;
706

707 708 709 710
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
711
		       to_user_ptr(args->data_ptr),
712 713 714
		       args->size))
		return -EFAULT;

715
	ret = i915_mutex_lock_interruptible(dev);
716
	if (ret)
717
		return ret;
718

719
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720
	if (&obj->base == NULL) {
721 722
		ret = -ENOENT;
		goto unlock;
723
	}
724

725
	/* Bounds check source.  */
726 727
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
728
		ret = -EINVAL;
729
		goto out;
C
Chris Wilson 已提交
730 731
	}

732 733 734 735 736 737 738 739
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
740 741
	trace_i915_gem_object_pread(obj, args->offset, args->size);

742
	ret = i915_gem_shmem_pread(dev, obj, args, file);
743

744
out:
745
	drm_gem_object_unreference(&obj->base);
746
unlock:
747
	mutex_unlock(&dev->struct_mutex);
748
	return ret;
749 750
}

751 752
/* This is the fast write path which cannot handle
 * page faults in the source data
753
 */
754 755 756 757 758 759

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
760
{
761 762
	void __iomem *vaddr_atomic;
	void *vaddr;
763
	unsigned long unwritten;
764

P
Peter Zijlstra 已提交
765
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 767 768
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
769
						      user_data, length);
P
Peter Zijlstra 已提交
770
	io_mapping_unmap_atomic(vaddr_atomic);
771
	return unwritten;
772 773
}

774 775 776 777
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
778
static int
779 780
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
781
			 struct drm_i915_gem_pwrite *args,
782
			 struct drm_file *file)
783
{
784
	struct drm_i915_private *dev_priv = dev->dev_private;
785
	ssize_t remain;
786
	loff_t offset, page_base;
787
	char __user *user_data;
D
Daniel Vetter 已提交
788 789
	int page_offset, page_length, ret;

790
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
791 792 793 794 795 796 797 798 799 800
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
801

V
Ville Syrjälä 已提交
802
	user_data = to_user_ptr(args->data_ptr);
803 804
	remain = args->size;

805
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806

807
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808

809 810 811
	while (remain > 0) {
		/* Operation in this page
		 *
812 813 814
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
815
		 */
816 817
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
818 819 820 821 822
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
823 824
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
825
		 */
B
Ben Widawsky 已提交
826
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
827 828
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
829
			goto out_flush;
D
Daniel Vetter 已提交
830
		}
831

832 833 834
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
835 836
	}

837 838
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
839
out_unpin:
B
Ben Widawsky 已提交
840
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
841
out:
842
	return ret;
843 844
}

845 846 847 848
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
849
static int
850 851 852 853 854
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
855
{
856
	char *vaddr;
857
	int ret;
858

859
	if (unlikely(page_do_bit17_swizzling))
860
		return -EINVAL;
861

862 863 864 865
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
866 867
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
868 869 870 871
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
872

873
	return ret ? -EFAULT : 0;
874 875
}

876 877
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
878
static int
879 880 881 882 883
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
884
{
885 886
	char *vaddr;
	int ret;
887

888
	vaddr = kmap(page);
889
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 891 892
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
893 894
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 896
						user_data,
						page_length);
897 898 899 900 901
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
902 903 904
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
905
	kunmap(page);
906

907
	return ret ? -EFAULT : 0;
908 909 910
}

static int
911 912 913 914
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
915 916
{
	ssize_t remain;
917 918
	loff_t offset;
	char __user *user_data;
919
	int shmem_page_offset, page_length, ret = 0;
920
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921
	int hit_slowpath = 0;
922 923
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
924
	struct sg_page_iter sg_iter;
925

V
Ville Syrjälä 已提交
926
	user_data = to_user_ptr(args->data_ptr);
927 928
	remain = args->size;

929
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930

931 932 933 934 935
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
936
		needs_clflush_after = cpu_write_needs_clflush(obj);
937 938 939
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
940
	}
941 942 943 944 945
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
946

947 948 949 950
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

951
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952

953 954
	i915_gem_object_pin_pages(obj);

955
	offset = args->offset;
956
	obj->dirty = 1;
957

958 959
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
960
		struct page *page = sg_page_iter_page(&sg_iter);
961
		int partial_cacheline_write;
962

963 964 965
		if (remain <= 0)
			break;

966 967 968 969 970
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
971
		shmem_page_offset = offset_in_page(offset);
972 973 974 975 976

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

977 978 979 980 981 982 983
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

984 985 986
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

987 988 989 990 991 992
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
993 994 995

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
996 997 998 999
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1000

1001
		mutex_lock(&dev->struct_mutex);
1002 1003

		if (ret)
1004 1005
			goto out;

1006
next_page:
1007
		remain -= page_length;
1008
		user_data += page_length;
1009
		offset += page_length;
1010 1011
	}

1012
out:
1013 1014
	i915_gem_object_unpin_pages(obj);

1015
	if (hit_slowpath) {
1016 1017 1018 1019 1020 1021 1022
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 1024
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1025
		}
1026
	}
1027

1028
	if (needs_clflush_after)
1029
		i915_gem_chipset_flush(dev);
1030

1031
	intel_fb_obj_flush(obj, false);
1032
	return ret;
1033 1034 1035 1036 1037 1038 1039 1040 1041
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042
		      struct drm_file *file)
1043
{
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	struct drm_i915_gem_pwrite *args = data;
1046
	struct drm_i915_gem_object *obj;
1047 1048 1049 1050 1051 1052
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1053
		       to_user_ptr(args->data_ptr),
1054 1055 1056
		       args->size))
		return -EFAULT;

1057
	if (likely(!i915.prefault_disable)) {
1058 1059 1060 1061 1062
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1063

1064 1065
	intel_runtime_pm_get(dev_priv);

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		goto put_rpm;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
put_rpm:
	intel_runtime_pm_put(dev_priv);

1123 1124 1125
	return ret;
}

1126
int
1127
i915_gem_check_wedge(struct i915_gpu_error *error,
1128 1129
		     bool interruptible)
{
1130
	if (i915_reset_in_progress(error)) {
1131 1132 1133 1134 1135
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1136 1137
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1138 1139
			return -EIO;

1140 1141 1142 1143 1144 1145 1146
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1147 1148 1149 1150 1151
	}

	return 0;
}

1152 1153 1154 1155 1156 1157
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1158
		       struct intel_engine_cs *ring)
1159 1160 1161 1162
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1163
static int __i915_spin_request(struct drm_i915_gem_request *req)
1164
{
1165 1166
	unsigned long timeout;

D
Daniel Vetter 已提交
1167
	if (i915_gem_request_get_ring(req)->irq_refcount)
1168 1169 1170 1171
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1172
		if (i915_gem_request_completed(req, true))
1173 1174 1175 1176
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1177

1178 1179
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1180
	if (i915_gem_request_completed(req, false))
1181 1182 1183
		return 0;

	return -EAGAIN;
1184 1185
}

1186
/**
1187 1188 1189
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1190 1191 1192
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1193 1194 1195 1196 1197 1198 1199
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1200
 * Returns 0 if the request was found within the alloted time. Else returns the
1201 1202
 * errno with remaining time filled in timeout argument.
 */
1203
int __i915_wait_request(struct drm_i915_gem_request *req,
1204
			unsigned reset_counter,
1205
			bool interruptible,
1206
			s64 *timeout,
1207
			struct intel_rps_client *rps)
1208
{
1209
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1210
	struct drm_device *dev = ring->dev;
1211
	struct drm_i915_private *dev_priv = dev->dev_private;
1212 1213
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1214
	DEFINE_WAIT(wait);
1215
	unsigned long timeout_expire;
1216
	s64 before, now;
1217 1218
	int ret;

1219
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1220

1221 1222 1223
	if (list_empty(&req->list))
		return 0;

1224
	if (i915_gem_request_completed(req, true))
1225 1226
		return 0;

1227 1228
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1229

1230
	if (INTEL_INFO(dev_priv)->gen >= 6)
1231
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1232

1233
	/* Record current time in case interrupted by signal, or wedged */
1234
	trace_i915_gem_request_wait_begin(req);
1235
	before = ktime_get_raw_ns();
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1247 1248
	for (;;) {
		struct timer_list timer;
1249

1250 1251
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252

1253 1254
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1255 1256 1257 1258 1259 1260 1261 1262
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1263

1264
		if (i915_gem_request_completed(req, false)) {
1265 1266 1267
			ret = 0;
			break;
		}
1268

1269 1270 1271 1272 1273
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1274
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 1276 1277 1278 1279 1280
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1281 1282
			unsigned long expire;

1283
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 1286 1287
			mod_timer(&timer, expire);
		}

1288
		io_schedule();
1289 1290 1291 1292 1293 1294

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1295 1296
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1297 1298

	finish_wait(&ring->irq_queue, &wait);
1299

1300 1301 1302 1303
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1304
	if (timeout) {
1305 1306 1307
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1318 1319
	}

1320
	return ret;
1321 1322
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->ring->dev->dev_private;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1362 1363 1364

	put_pid(request->pid);
	request->pid = NULL;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1408
/**
1409
 * Waits for a request to be signaled, and cleans up the
1410 1411 1412
 * request and object lists appropriately for that event.
 */
int
1413
i915_wait_request(struct drm_i915_gem_request *req)
1414
{
1415 1416 1417
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1418 1419
	int ret;

1420 1421 1422 1423 1424 1425
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1426 1427
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1428
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1429 1430 1431
	if (ret)
		return ret;

1432 1433
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1434
				  interruptible, NULL, NULL);
1435 1436
	if (ret)
		return ret;
1437

1438
	__i915_gem_request_retire__upto(req);
1439 1440 1441
	return 0;
}

1442 1443 1444 1445
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1446
int
1447 1448 1449
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1450
	int ret, i;
1451

1452
	if (!obj->active)
1453 1454
		return 0;

1455 1456 1457 1458 1459
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1460

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1496 1497
}

1498 1499 1500 1501 1502
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1503
					    struct intel_rps_client *rps,
1504 1505 1506 1507
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1508
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1509
	unsigned reset_counter;
1510
	int ret, i, n = 0;
1511 1512 1513 1514

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1515
	if (!obj->active)
1516 1517
		return 0;

1518
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1519 1520 1521
	if (ret)
		return ret;

1522
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1544
	mutex_unlock(&dev->struct_mutex);
1545 1546
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1547
					  NULL, rps);
1548 1549
	mutex_lock(&dev->struct_mutex);

1550 1551 1552 1553 1554 1555 1556
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1557 1558
}

1559 1560 1561 1562 1563 1564
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1565
/**
1566 1567
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1568 1569 1570
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1571
			  struct drm_file *file)
1572 1573
{
	struct drm_i915_gem_set_domain *args = data;
1574
	struct drm_i915_gem_object *obj;
1575 1576
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1577 1578
	int ret;

1579
	/* Only handle setting domains to types used by the CPU. */
1580
	if (write_domain & I915_GEM_GPU_DOMAINS)
1581 1582
		return -EINVAL;

1583
	if (read_domains & I915_GEM_GPU_DOMAINS)
1584 1585 1586 1587 1588 1589 1590 1591
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1592
	ret = i915_mutex_lock_interruptible(dev);
1593
	if (ret)
1594
		return ret;
1595

1596
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1597
	if (&obj->base == NULL) {
1598 1599
		ret = -ENOENT;
		goto unlock;
1600
	}
1601

1602 1603 1604 1605
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1606
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1607
							  to_rps_client(file),
1608
							  !write_domain);
1609 1610 1611
	if (ret)
		goto unref;

1612
	if (read_domains & I915_GEM_DOMAIN_GTT)
1613
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1614
	else
1615
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1616

1617 1618 1619 1620 1621
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1622
unref:
1623
	drm_gem_object_unreference(&obj->base);
1624
unlock:
1625 1626 1627 1628 1629 1630 1631 1632 1633
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1634
			 struct drm_file *file)
1635 1636
{
	struct drm_i915_gem_sw_finish *args = data;
1637
	struct drm_i915_gem_object *obj;
1638 1639
	int ret = 0;

1640
	ret = i915_mutex_lock_interruptible(dev);
1641
	if (ret)
1642
		return ret;
1643

1644
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1645
	if (&obj->base == NULL) {
1646 1647
		ret = -ENOENT;
		goto unlock;
1648 1649 1650
	}

	/* Pinned buffers may be scanout, so flush the cache */
1651
	if (obj->pin_display)
1652
		i915_gem_object_flush_cpu_write_domain(obj);
1653

1654
	drm_gem_object_unreference(&obj->base);
1655
unlock:
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1676 1677 1678
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1679
		    struct drm_file *file)
1680 1681 1682 1683 1684
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1685 1686 1687 1688 1689 1690
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1691
	obj = drm_gem_object_lookup(dev, file, args->handle);
1692
	if (obj == NULL)
1693
		return -ENOENT;
1694

1695 1696 1697 1698 1699 1700 1701 1702
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1703
	addr = vm_mmap(obj->filp, 0, args->size,
1704 1705
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1719
	drm_gem_object_unreference_unlocked(obj);
1720 1721 1722 1723 1724 1725 1726 1727
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1746 1747
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1748
	struct drm_i915_private *dev_priv = dev->dev_private;
1749
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1750 1751 1752
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1753
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1754

1755 1756
	intel_runtime_pm_get(dev_priv);

1757 1758 1759 1760
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1761 1762 1763
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1764

C
Chris Wilson 已提交
1765 1766
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1767 1768 1769 1770 1771 1772 1773 1774 1775
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1776 1777
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1778
		ret = -EFAULT;
1779 1780 1781
		goto unlock;
	}

1782
	/* Use a partial view if the object is bigger than the aperture. */
1783 1784
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1785
		static const unsigned int chunk_size = 256; // 1 MiB
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1799 1800
	if (ret)
		goto unlock;
1801

1802 1803 1804
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1805

1806
	ret = i915_gem_object_get_fence(obj);
1807
	if (ret)
1808
		goto unpin;
1809

1810
	/* Finally, remap it using the new GTT offset */
1811 1812
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1813
	pfn >>= PAGE_SHIFT;
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1824

1825 1826
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1827 1828 1829 1830 1831
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1853
unpin:
1854
	i915_gem_object_ggtt_unpin_view(obj, &view);
1855
unlock:
1856
	mutex_unlock(&dev->struct_mutex);
1857
out:
1858
	switch (ret) {
1859
	case -EIO:
1860 1861 1862 1863 1864 1865 1866
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1867 1868 1869
			ret = VM_FAULT_SIGBUS;
			break;
		}
1870
	case -EAGAIN:
D
Daniel Vetter 已提交
1871 1872 1873 1874
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1875
		 */
1876 1877
	case 0:
	case -ERESTARTSYS:
1878
	case -EINTR:
1879 1880 1881 1882 1883
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1884 1885
		ret = VM_FAULT_NOPAGE;
		break;
1886
	case -ENOMEM:
1887 1888
		ret = VM_FAULT_OOM;
		break;
1889
	case -ENOSPC:
1890
	case -EFAULT:
1891 1892
		ret = VM_FAULT_SIGBUS;
		break;
1893
	default:
1894
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1895 1896
		ret = VM_FAULT_SIGBUS;
		break;
1897
	}
1898 1899 1900

	intel_runtime_pm_put(dev_priv);
	return ret;
1901 1902
}

1903 1904 1905 1906
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1907
 * Preserve the reservation of the mmapping with the DRM core code, but
1908 1909 1910 1911 1912 1913 1914 1915 1916
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1917
void
1918
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1919
{
1920 1921
	if (!obj->fault_mappable)
		return;
1922

1923 1924
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1925
	obj->fault_mappable = false;
1926 1927
}

1928 1929 1930 1931 1932 1933 1934 1935 1936
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1937
uint32_t
1938
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1939
{
1940
	uint32_t gtt_size;
1941 1942

	if (INTEL_INFO(dev)->gen >= 4 ||
1943 1944
	    tiling_mode == I915_TILING_NONE)
		return size;
1945 1946 1947

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1948
		gtt_size = 1024*1024;
1949
	else
1950
		gtt_size = 512*1024;
1951

1952 1953
	while (gtt_size < size)
		gtt_size <<= 1;
1954

1955
	return gtt_size;
1956 1957
}

1958 1959 1960 1961 1962
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1963
 * potential fence register mapping.
1964
 */
1965 1966 1967
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1968 1969 1970 1971 1972
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1973
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1974
	    tiling_mode == I915_TILING_NONE)
1975 1976
		return 4096;

1977 1978 1979 1980
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1981
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1982 1983
}

1984 1985 1986 1987 1988
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1989
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1990 1991
		return 0;

1992 1993
	dev_priv->mm.shrinker_no_lock_stealing = true;

1994 1995
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1996
		goto out;
1997 1998 1999 2000 2001 2002 2003 2004

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2005 2006 2007 2008 2009
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2010 2011
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2012
		goto out;
2013 2014

	i915_gem_shrink_all(dev_priv);
2015 2016 2017 2018 2019
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2020 2021 2022 2023 2024 2025 2026
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2027
int
2028 2029
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2030
		  uint32_t handle,
2031
		  uint64_t *offset)
2032
{
2033
	struct drm_i915_gem_object *obj;
2034 2035
	int ret;

2036
	ret = i915_mutex_lock_interruptible(dev);
2037
	if (ret)
2038
		return ret;
2039

2040
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2041
	if (&obj->base == NULL) {
2042 2043 2044
		ret = -ENOENT;
		goto unlock;
	}
2045

2046
	if (obj->madv != I915_MADV_WILLNEED) {
2047
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2048
		ret = -EFAULT;
2049
		goto out;
2050 2051
	}

2052 2053 2054
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2055

2056
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2057

2058
out:
2059
	drm_gem_object_unreference(&obj->base);
2060
unlock:
2061
	mutex_unlock(&dev->struct_mutex);
2062
	return ret;
2063 2064
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2086
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2087 2088
}

D
Daniel Vetter 已提交
2089 2090 2091
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2092
{
2093
	i915_gem_object_free_mmap_offset(obj);
2094

2095 2096
	if (obj->base.filp == NULL)
		return;
2097

D
Daniel Vetter 已提交
2098 2099 2100 2101 2102
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2103
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2104 2105
	obj->madv = __I915_MADV_PURGED;
}
2106

2107 2108 2109
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2110
{
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2125 2126
}

2127
static void
2128
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2129
{
2130 2131
	struct sg_page_iter sg_iter;
	int ret;
2132

2133
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2134

C
Chris Wilson 已提交
2135 2136 2137 2138 2139 2140
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2141
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2142 2143 2144
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2145
	if (i915_gem_object_needs_bit17_swizzle(obj))
2146 2147
		i915_gem_object_save_bit_17_swizzle(obj);

2148 2149
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2150

2151
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2152
		struct page *page = sg_page_iter_page(&sg_iter);
2153

2154
		if (obj->dirty)
2155
			set_page_dirty(page);
2156

2157
		if (obj->madv == I915_MADV_WILLNEED)
2158
			mark_page_accessed(page);
2159

2160
		page_cache_release(page);
2161
	}
2162
	obj->dirty = 0;
2163

2164 2165
	sg_free_table(obj->pages);
	kfree(obj->pages);
2166
}
C
Chris Wilson 已提交
2167

2168
int
2169 2170 2171 2172
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2173
	if (obj->pages == NULL)
2174 2175
		return 0;

2176 2177 2178
	if (obj->pages_pin_count)
		return -EBUSY;

2179
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2180

2181 2182 2183
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2184
	list_del(&obj->global_list);
2185

2186
	ops->put_pages(obj);
2187
	obj->pages = NULL;
2188

2189
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2190 2191 2192 2193

	return 0;
}

2194
static int
C
Chris Wilson 已提交
2195
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2196
{
C
Chris Wilson 已提交
2197
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2198 2199
	int page_count, i;
	struct address_space *mapping;
2200 2201
	struct sg_table *st;
	struct scatterlist *sg;
2202
	struct sg_page_iter sg_iter;
2203
	struct page *page;
2204
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2205
	gfp_t gfp;
2206

C
Chris Wilson 已提交
2207 2208 2209 2210 2211 2212 2213
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2214 2215 2216 2217
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2218
	page_count = obj->base.size / PAGE_SIZE;
2219 2220
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2221
		return -ENOMEM;
2222
	}
2223

2224 2225 2226 2227 2228
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2229
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2230
	gfp = mapping_gfp_mask(mapping);
2231
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2232
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2233 2234 2235
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2236 2237
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2238 2239 2240 2241 2242
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2243 2244 2245 2246 2247 2248 2249 2250
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2251
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2252 2253 2254
			if (IS_ERR(page))
				goto err_pages;
		}
2255 2256 2257 2258 2259 2260 2261 2262
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2263 2264 2265 2266 2267 2268 2269 2270 2271
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2272 2273 2274

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2275
	}
2276 2277 2278 2279
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2280 2281
	obj->pages = st;

2282
	if (i915_gem_object_needs_bit17_swizzle(obj))
2283 2284
		i915_gem_object_do_bit_17_swizzle(obj);

2285 2286 2287 2288
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2289 2290 2291
	return 0;

err_pages:
2292 2293
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2294
		page_cache_release(sg_page_iter_page(&sg_iter));
2295 2296
	sg_free_table(st);
	kfree(st);
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2310 2311
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2326
	if (obj->pages)
2327 2328
		return 0;

2329
	if (obj->madv != I915_MADV_WILLNEED) {
2330
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2331
		return -EFAULT;
2332 2333
	}

2334 2335
	BUG_ON(obj->pages_pin_count);

2336 2337 2338 2339
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2340
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2341 2342 2343 2344

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2345
	return 0;
2346 2347
}

2348
void i915_vma_move_to_active(struct i915_vma *vma,
2349
			     struct drm_i915_gem_request *req)
2350
{
2351
	struct drm_i915_gem_object *obj = vma->obj;
2352 2353 2354
	struct intel_engine_cs *ring;

	ring = i915_gem_request_get_ring(req);
2355 2356

	/* Add a reference if we're newly entering the active list. */
2357
	if (obj->active == 0)
2358
		drm_gem_object_reference(&obj->base);
2359
	obj->active |= intel_ring_flag(ring);
2360

2361
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2362
	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2363

2364
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2365 2366
}

2367 2368
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2369
{
2370 2371 2372 2373 2374
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
	intel_fb_obj_flush(obj, true);
B
Ben Widawsky 已提交
2375 2376
}

2377
static void
2378
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2379
{
2380
	struct i915_vma *vma;
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2394

2395 2396 2397
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2398
	}
2399

2400
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2401
	drm_gem_object_unreference(&obj->base);
2402 2403
}

2404
static int
2405
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2406
{
2407
	struct drm_i915_private *dev_priv = dev->dev_private;
2408
	struct intel_engine_cs *ring;
2409
	int ret, i, j;
2410

2411
	/* Carefully retire all requests without writing to the rings */
2412
	for_each_ring(ring, dev_priv, i) {
2413 2414 2415
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2416 2417
	}
	i915_gem_retire_requests(dev);
2418 2419

	/* Finally reset hw state */
2420
	for_each_ring(ring, dev_priv, i) {
2421
		intel_ring_init_seqno(ring, seqno);
2422

2423 2424
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2425
	}
2426

2427
	return 0;
2428 2429
}

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2456 2457
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2458
{
2459 2460 2461 2462
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2463
		int ret = i915_gem_init_seqno(dev, 0);
2464 2465
		if (ret)
			return ret;
2466

2467 2468
		dev_priv->next_seqno = 1;
	}
2469

2470
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2471
	return 0;
2472 2473
}

2474 2475 2476 2477 2478
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2479
void __i915_add_request(struct drm_i915_gem_request *request,
2480 2481
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2482
{
2483 2484
	struct intel_engine_cs *ring;
	struct drm_i915_private *dev_priv;
2485
	struct intel_ringbuffer *ringbuf;
2486
	u32 request_start;
2487 2488
	int ret;

2489
	if (WARN_ON(request == NULL))
2490
		return;
2491

2492 2493 2494 2495
	ring = request->ring;
	dev_priv = ring->dev->dev_private;
	ringbuf = request->ringbuf;

2496 2497 2498 2499 2500 2501 2502
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2503
	request_start = intel_ring_get_tail(ringbuf);
2504 2505 2506 2507 2508 2509 2510
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2511 2512
	if (flush_caches) {
		if (i915.enable_execlists)
2513
			ret = logical_ring_flush_all_caches(request);
2514
		else
2515
			ret = intel_ring_flush_all_caches(request);
2516 2517 2518
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2519

2520 2521 2522 2523 2524
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2525
	request->postfix = intel_ring_get_tail(ringbuf);
2526

2527
	if (i915.enable_execlists)
2528
		ret = ring->emit_request(request);
2529
	else {
2530
		ret = ring->add_request(request);
2531 2532

		request->tail = intel_ring_get_tail(ringbuf);
2533
	}
2534 2535
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2536

2537 2538 2539 2540 2541 2542 2543 2544
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2545
	request->batch_obj = obj;
2546

2547
	request->emitted_jiffies = jiffies;
2548
	list_add_tail(&request->list, &ring->request_list);
2549

2550
	trace_i915_gem_request_add(request);
C
Chris Wilson 已提交
2551

2552
	i915_queue_hangcheck(ring->dev);
2553

2554 2555 2556 2557
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2558

2559 2560
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2561 2562
}

2563
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2564
				   const struct intel_context *ctx)
2565
{
2566
	unsigned long elapsed;
2567

2568 2569 2570
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2571 2572
		return true;

2573 2574
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2575
		if (!i915_gem_context_is_default(ctx)) {
2576
			DRM_DEBUG("context hanging too fast, banning!\n");
2577
			return true;
2578 2579 2580
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2581
			return true;
2582
		}
2583 2584 2585 2586 2587
	}

	return false;
}

2588
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2589
				  struct intel_context *ctx,
2590
				  const bool guilty)
2591
{
2592 2593 2594 2595
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2596

2597 2598 2599
	hs = &ctx->hang_stats;

	if (guilty) {
2600
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2601 2602 2603 2604
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2605 2606 2607
	}
}

2608 2609 2610 2611 2612 2613
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2614 2615 2616
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2617 2618
	if (ctx) {
		if (i915.enable_execlists) {
2619
			struct intel_engine_cs *ring = req->ring;
2620

2621 2622 2623
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2624

2625 2626
		i915_gem_context_unreference(ctx);
	}
2627

2628
	kmem_cache_free(req->i915->requests, req);
2629 2630
}

2631
int i915_gem_request_alloc(struct intel_engine_cs *ring,
2632 2633
			   struct intel_context *ctx,
			   struct drm_i915_gem_request **req_out)
2634
{
2635
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2636
	struct drm_i915_gem_request *req;
2637 2638
	int ret;

2639 2640 2641
	if (!req_out)
		return -EINVAL;

2642
	*req_out = NULL;
2643

D
Daniel Vetter 已提交
2644 2645
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2646 2647
		return -ENOMEM;

D
Daniel Vetter 已提交
2648
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2649 2650
	if (ret)
		goto err;
2651

2652 2653
	kref_init(&req->ref);
	req->i915 = dev_priv;
D
Daniel Vetter 已提交
2654
	req->ring = ring;
2655 2656
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2657 2658

	if (i915.enable_execlists)
2659
		ret = intel_logical_ring_alloc_request_extras(req);
2660
	else
D
Daniel Vetter 已提交
2661
		ret = intel_ring_alloc_request_extras(req);
2662 2663
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2664
		goto err;
2665
	}
2666

2667 2668 2669 2670 2671 2672 2673
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2687

2688
	*req_out = req;
2689
	return 0;
2690 2691 2692 2693

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2694 2695
}

2696 2697 2698 2699 2700 2701 2702
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2703
struct drm_i915_gem_request *
2704
i915_gem_find_active_request(struct intel_engine_cs *ring)
2705
{
2706 2707 2708
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2709
		if (i915_gem_request_completed(request, false))
2710
			continue;
2711

2712
		return request;
2713
	}
2714 2715 2716 2717 2718

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2719
				       struct intel_engine_cs *ring)
2720 2721 2722 2723
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2724
	request = i915_gem_find_active_request(ring);
2725 2726 2727 2728 2729 2730

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2731
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2732 2733

	list_for_each_entry_continue(request, &ring->request_list, list)
2734
		i915_set_reset_status(dev_priv, request->ctx, false);
2735
}
2736

2737
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2738
					struct intel_engine_cs *ring)
2739
{
2740
	while (!list_empty(&ring->active_list)) {
2741
		struct drm_i915_gem_object *obj;
2742

2743 2744
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2745
				       ring_list[ring->id]);
2746

2747
		i915_gem_object_retire__read(obj, ring->id);
2748
	}
2749

2750 2751 2752 2753 2754 2755
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2756
		struct drm_i915_gem_request *submit_req;
2757 2758

		submit_req = list_first_entry(&ring->execlist_queue,
2759
				struct drm_i915_gem_request,
2760 2761
				execlist_link);
		list_del(&submit_req->execlist_link);
2762 2763 2764 2765

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2766
		i915_gem_request_unreference(submit_req);
2767 2768
	}

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2783
		i915_gem_request_retire(request);
2784
	}
2785 2786
}

2787
void i915_gem_restore_fences(struct drm_device *dev)
2788 2789 2790 2791
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2792
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2793
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2794

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2805 2806 2807
	}
}

2808
void i915_gem_reset(struct drm_device *dev)
2809
{
2810
	struct drm_i915_private *dev_priv = dev->dev_private;
2811
	struct intel_engine_cs *ring;
2812
	int i;
2813

2814 2815 2816 2817 2818 2819 2820 2821
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2822
	for_each_ring(ring, dev_priv, i)
2823
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2824

2825 2826
	i915_gem_context_reset(dev);

2827
	i915_gem_restore_fences(dev);
2828 2829

	WARN_ON(i915_verify_lists(dev));
2830 2831 2832 2833 2834
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2835
void
2836
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2837
{
C
Chris Wilson 已提交
2838
	WARN_ON(i915_verify_lists(ring->dev));
2839

2840 2841 2842 2843
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2844
	 */
2845
	while (!list_empty(&ring->request_list)) {
2846 2847
		struct drm_i915_gem_request *request;

2848
		request = list_first_entry(&ring->request_list,
2849 2850 2851
					   struct drm_i915_gem_request,
					   list);

2852
		if (!i915_gem_request_completed(request, true))
2853 2854
			break;

2855
		i915_gem_request_retire(request);
2856
	}
2857

2858 2859 2860 2861 2862 2863 2864 2865 2866
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2867
				      ring_list[ring->id]);
2868

2869
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2870 2871
			break;

2872
		i915_gem_object_retire__read(obj, ring->id);
2873 2874
	}

2875 2876
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2877
		ring->irq_put(ring);
2878
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2879
	}
2880

C
Chris Wilson 已提交
2881
	WARN_ON(i915_verify_lists(ring->dev));
2882 2883
}

2884
bool
2885 2886
i915_gem_retire_requests(struct drm_device *dev)
{
2887
	struct drm_i915_private *dev_priv = dev->dev_private;
2888
	struct intel_engine_cs *ring;
2889
	bool idle = true;
2890
	int i;
2891

2892
	for_each_ring(ring, dev_priv, i) {
2893
		i915_gem_retire_requests_ring(ring);
2894
		idle &= list_empty(&ring->request_list);
2895 2896 2897 2898 2899 2900 2901 2902 2903
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2904 2905 2906 2907 2908 2909 2910 2911
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2912 2913
}

2914
static void
2915 2916
i915_gem_retire_work_handler(struct work_struct *work)
{
2917 2918 2919
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2920
	bool idle;
2921

2922
	/* Come back later if the device is busy... */
2923 2924 2925 2926
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2927
	}
2928
	if (!idle)
2929 2930
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2931
}
2932

2933 2934 2935 2936 2937
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2938
	struct drm_device *dev = dev_priv->dev;
2939 2940
	struct intel_engine_cs *ring;
	int i;
2941

2942 2943 2944
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2945 2946 2947 2948 2949 2950 2951 2952 2953

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2954

2955 2956
		mutex_unlock(&dev->struct_mutex);
	}
2957 2958
}

2959 2960 2961 2962 2963 2964 2965 2966
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2967
	int i;
2968 2969 2970

	if (!obj->active)
		return 0;
2971

2972 2973
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2974

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
2987 2988 2989 2990 2991
	}

	return 0;
}

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3017
	struct drm_i915_private *dev_priv = dev->dev_private;
3018 3019
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3020
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3021
	unsigned reset_counter;
3022 3023
	int i, n = 0;
	int ret;
3024

3025 3026 3027
	if (args->flags != 0)
		return -EINVAL;

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3038 3039
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3040 3041 3042
	if (ret)
		goto out;

3043
	if (!obj->active)
3044
		goto out;
3045 3046

	/* Do this after OLR check to make sure we make forward progress polling
3047
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3048
	 */
3049
	if (args->timeout_ns == 0) {
3050 3051 3052 3053 3054
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3055
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3056 3057 3058 3059 3060 3061 3062 3063

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3064 3065
	mutex_unlock(&dev->struct_mutex);

3066 3067 3068 3069 3070 3071 3072
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3073
	return ret;
3074 3075 3076 3077 3078 3079 3080

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3081 3082 3083
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3084 3085
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3086 3087 3088 3089
{
	struct intel_engine_cs *from;
	int ret;

3090
	from = i915_gem_request_get_ring(from_req);
3091 3092 3093
	if (to == from)
		return 0;

3094
	if (i915_gem_request_completed(from_req, true))
3095 3096 3097
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3098
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3099
		ret = __i915_wait_request(from_req,
3100 3101 3102 3103
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3104 3105 3106
		if (ret)
			return ret;

3107
		i915_gem_object_retire_request(obj, from_req);
3108 3109
	} else {
		int idx = intel_ring_sync_index(from, to);
3110 3111 3112
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3113 3114 3115 3116

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3117 3118 3119 3120 3121 3122
		if (*to_req == NULL) {
			ret = i915_gem_request_alloc(to, to->default_context, to_req);
			if (ret)
				return ret;
		}

3123 3124
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3139 3140 3141 3142 3143
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3144 3145 3146
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3147 3148 3149
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3150
 * rather than a particular GPU ring. Conceptually we serialise writes
3151
 * between engines inside the GPU. We only allow one engine to write
3152 3153 3154 3155 3156 3157 3158 3159 3160
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3161
 *
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3172 3173
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3174 3175
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3176 3177
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3178
{
3179 3180 3181
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3182

3183
	if (!obj->active)
3184 3185
		return 0;

3186 3187
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3188

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3199
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3200 3201 3202
		if (ret)
			return ret;
	}
3203

3204
	return 0;
3205 3206
}

3207 3208 3209 3210 3211 3212 3213
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3214 3215 3216
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3217 3218 3219
	/* Wait for any direct GTT access to complete */
	mb();

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3231
int i915_vma_unbind(struct i915_vma *vma)
3232
{
3233
	struct drm_i915_gem_object *obj = vma->obj;
3234
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3235
	int ret;
3236

3237
	if (list_empty(&vma->vma_link))
3238 3239
		return 0;

3240 3241 3242 3243
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3244

B
Ben Widawsky 已提交
3245
	if (vma->pin_count)
3246
		return -EBUSY;
3247

3248 3249
	BUG_ON(obj->pages == NULL);

3250
	ret = i915_gem_object_wait_rendering(obj, false);
3251
	if (ret)
3252 3253 3254 3255 3256 3257
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3258 3259
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3260
		i915_gem_object_finish_gtt(obj);
3261

3262 3263 3264 3265 3266
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3267

3268
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3269

3270
	vma->vm->unbind_vma(vma);
3271
	vma->bound = 0;
3272

3273
	list_del_init(&vma->mm_list);
3274 3275 3276 3277 3278 3279 3280 3281 3282
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3283

B
Ben Widawsky 已提交
3284 3285 3286 3287
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3288
	 * no more VMAs exist. */
3289 3290
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3291
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3292
	}
3293

3294 3295 3296 3297 3298 3299
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3300
	return 0;
3301 3302
}

3303
int i915_gpu_idle(struct drm_device *dev)
3304
{
3305
	struct drm_i915_private *dev_priv = dev->dev_private;
3306
	struct intel_engine_cs *ring;
3307
	int ret, i;
3308 3309

	/* Flush everything onto the inactive list. */
3310
	for_each_ring(ring, dev_priv, i) {
3311
		if (!i915.enable_execlists) {
3312 3313 3314
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3315 3316
			if (ret)
				return ret;
3317

3318
			ret = i915_switch_context(req);
3319 3320 3321 3322 3323
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3324
			i915_add_request_no_flush(req);
3325
		}
3326

3327
		ret = intel_ring_idle(ring);
3328 3329 3330
		if (ret)
			return ret;
	}
3331

3332
	WARN_ON(i915_verify_lists(dev));
3333
	return 0;
3334 3335
}

3336 3337
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3338
{
3339
	struct drm_i915_private *dev_priv = dev->dev_private;
3340 3341
	int fence_reg;
	int fence_pitch_shift;
3342

3343 3344 3345 3346 3347 3348 3349 3350
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3365
	if (obj) {
3366
		u32 size = i915_gem_obj_ggtt_size(obj);
3367
		uint64_t val;
3368

3369 3370 3371 3372 3373 3374 3375
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3376
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3377
				 0xfffff000) << 32;
3378
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3379
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3380 3381 3382
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3383

3384 3385 3386 3387 3388 3389 3390 3391 3392
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3393 3394
}

3395 3396
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3397
{
3398
	struct drm_i915_private *dev_priv = dev->dev_private;
3399
	u32 val;
3400

3401
	if (obj) {
3402
		u32 size = i915_gem_obj_ggtt_size(obj);
3403 3404
		int pitch_val;
		int tile_width;
3405

3406
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3407
		     (size & -size) != size ||
3408 3409 3410
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3411

3412 3413 3414 3415 3416 3417 3418 3419 3420
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3421
		val = i915_gem_obj_ggtt_offset(obj);
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3437 3438
}

3439 3440
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3441
{
3442
	struct drm_i915_private *dev_priv = dev->dev_private;
3443 3444
	uint32_t val;

3445
	if (obj) {
3446
		u32 size = i915_gem_obj_ggtt_size(obj);
3447
		uint32_t pitch_val;
3448

3449
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3450
		     (size & -size) != size ||
3451 3452 3453
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3454

3455 3456
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3457

3458
		val = i915_gem_obj_ggtt_offset(obj);
3459 3460 3461 3462 3463 3464 3465
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3466

3467 3468 3469 3470
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3471 3472 3473 3474 3475
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3476 3477 3478
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3479 3480 3481 3482 3483 3484 3485 3486
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3487 3488 3489 3490
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3491 3492 3493 3494 3495 3496
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3497 3498 3499 3500 3501 3502

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3503 3504
}

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3515
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3516 3517 3518
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3519 3520

	if (enable) {
3521
		obj->fence_reg = reg;
3522 3523 3524 3525 3526 3527 3528
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3529
	obj->fence_dirty = false;
3530 3531
}

3532
static int
3533
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3534
{
3535
	if (obj->last_fenced_req) {
3536
		int ret = i915_wait_request(obj->last_fenced_req);
3537 3538
		if (ret)
			return ret;
3539

3540
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3541 3542 3543 3544 3545 3546 3547 3548
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3549
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3550
	struct drm_i915_fence_reg *fence;
3551 3552
	int ret;

3553
	ret = i915_gem_object_wait_fence(obj);
3554 3555 3556
	if (ret)
		return ret;

3557 3558
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3559

3560 3561
	fence = &dev_priv->fence_regs[obj->fence_reg];

3562 3563 3564
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3565
	i915_gem_object_fence_lost(obj);
3566
	i915_gem_object_update_fence(obj, fence, false);
3567 3568 3569 3570 3571

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3572
i915_find_fence_reg(struct drm_device *dev)
3573 3574
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3575
	struct drm_i915_fence_reg *reg, *avail;
3576
	int i;
3577 3578

	/* First try to find a free reg */
3579
	avail = NULL;
3580 3581 3582
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3583
			return reg;
3584

3585
		if (!reg->pin_count)
3586
			avail = reg;
3587 3588
	}

3589
	if (avail == NULL)
3590
		goto deadlock;
3591 3592

	/* None available, try to steal one or wait for a user to finish */
3593
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3594
		if (reg->pin_count)
3595 3596
			continue;

C
Chris Wilson 已提交
3597
		return reg;
3598 3599
	}

3600 3601 3602 3603 3604 3605
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3606 3607
}

3608
/**
3609
 * i915_gem_object_get_fence - set up fencing for an object
3610 3611 3612 3613 3614 3615 3616 3617 3618
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3619 3620
 *
 * For an untiled surface, this removes any existing fence.
3621
 */
3622
int
3623
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3624
{
3625
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3626
	struct drm_i915_private *dev_priv = dev->dev_private;
3627
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3628
	struct drm_i915_fence_reg *reg;
3629
	int ret;
3630

3631 3632 3633
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3634
	if (obj->fence_dirty) {
3635
		ret = i915_gem_object_wait_fence(obj);
3636 3637 3638
		if (ret)
			return ret;
	}
3639

3640
	/* Just update our place in the LRU if our fence is getting reused. */
3641 3642
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3643
		if (!obj->fence_dirty) {
3644 3645 3646 3647 3648
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3649 3650 3651
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3652
		reg = i915_find_fence_reg(dev);
3653 3654
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3655

3656 3657 3658
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3659
			ret = i915_gem_object_wait_fence(old);
3660 3661 3662
			if (ret)
				return ret;

3663
			i915_gem_object_fence_lost(old);
3664
		}
3665
	} else
3666 3667
		return 0;

3668 3669
	i915_gem_object_update_fence(obj, reg, enable);

3670
	return 0;
3671 3672
}

3673
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3674 3675
				     unsigned long cache_level)
{
3676
	struct drm_mm_node *gtt_space = &vma->node;
3677 3678
	struct drm_mm_node *other;

3679 3680 3681 3682 3683 3684
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3685
	 */
3686
	if (vma->vm->mm.color_adjust == NULL)
3687 3688
		return true;

3689
	if (!drm_mm_node_allocated(gtt_space))
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3706
/**
3707 3708
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3709
 */
3710
static struct i915_vma *
3711 3712
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3713
			   const struct i915_ggtt_view *ggtt_view,
3714
			   unsigned alignment,
3715
			   uint64_t flags)
3716
{
3717
	struct drm_device *dev = obj->base.dev;
3718
	struct drm_i915_private *dev_priv = dev->dev_private;
3719
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3720
	u64 start =
3721
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3722
	u64 end =
3723
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3724
	struct i915_vma *vma;
3725
	int ret;
3726

3727 3728 3729 3730 3731
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3732

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3762

3763
	if (alignment == 0)
3764
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3765
						unfenced_alignment;
3766
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3767 3768 3769
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3770
		return ERR_PTR(-EINVAL);
3771 3772
	}

3773 3774 3775
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3776
	 */
3777
	if (size > end) {
3778
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
3779 3780
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3781
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3782
			  end);
3783
		return ERR_PTR(-E2BIG);
3784 3785
	}

3786
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3787
	if (ret)
3788
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3789

3790 3791
	i915_gem_object_pin_pages(obj);

3792 3793 3794
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3795
	if (IS_ERR(vma))
3796
		goto err_unpin;
B
Ben Widawsky 已提交
3797

3798
search_free:
3799
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3800
						  size, alignment,
3801 3802
						  obj->cache_level,
						  start, end,
3803 3804
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3805
	if (ret) {
3806
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3807 3808 3809
					       obj->cache_level,
					       start, end,
					       flags);
3810 3811
		if (ret == 0)
			goto search_free;
3812

3813
		goto err_free_vma;
3814
	}
3815
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3816
		ret = -EINVAL;
3817
		goto err_remove_node;
3818 3819
	}

3820
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3821
	if (ret)
3822
		goto err_remove_node;
3823

3824
	trace_i915_vma_bind(vma, flags);
3825
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3826 3827 3828
	if (ret)
		goto err_finish_gtt;

3829
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3830
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3831

3832
	return vma;
B
Ben Widawsky 已提交
3833

3834 3835
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3836
err_remove_node:
3837
	drm_mm_remove_node(&vma->node);
3838
err_free_vma:
B
Ben Widawsky 已提交
3839
	i915_gem_vma_destroy(vma);
3840
	vma = ERR_PTR(ret);
3841
err_unpin:
B
Ben Widawsky 已提交
3842
	i915_gem_object_unpin_pages(obj);
3843
	return vma;
3844 3845
}

3846
bool
3847 3848
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3849 3850 3851 3852 3853
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3854
	if (obj->pages == NULL)
3855
		return false;
3856

3857 3858 3859 3860
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3861
	if (obj->stolen || obj->phys_handle)
3862
		return false;
3863

3864 3865 3866 3867 3868 3869 3870 3871
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3872 3873
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3874
		return false;
3875
	}
3876

C
Chris Wilson 已提交
3877
	trace_i915_gem_object_clflush(obj);
3878
	drm_clflush_sg(obj->pages);
3879
	obj->cache_dirty = false;
3880 3881

	return true;
3882 3883 3884 3885
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3886
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3887
{
C
Chris Wilson 已提交
3888 3889
	uint32_t old_write_domain;

3890
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3891 3892
		return;

3893
	/* No actual flushing is required for the GTT write domain.  Writes
3894 3895
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3896 3897 3898 3899
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3900
	 */
3901 3902
	wmb();

3903 3904
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3905

3906 3907
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3908
	trace_i915_gem_object_change_domain(obj,
3909
					    obj->base.read_domains,
C
Chris Wilson 已提交
3910
					    old_write_domain);
3911 3912 3913 3914
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3915
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3916
{
C
Chris Wilson 已提交
3917
	uint32_t old_write_domain;
3918

3919
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3920 3921
		return;

3922
	if (i915_gem_clflush_object(obj, obj->pin_display))
3923 3924
		i915_gem_chipset_flush(obj->base.dev);

3925 3926
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3927

3928 3929
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3930
	trace_i915_gem_object_change_domain(obj,
3931
					    obj->base.read_domains,
C
Chris Wilson 已提交
3932
					    old_write_domain);
3933 3934
}

3935 3936 3937 3938 3939 3940
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3941
int
3942
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3943
{
C
Chris Wilson 已提交
3944
	uint32_t old_write_domain, old_read_domains;
3945
	struct i915_vma *vma;
3946
	int ret;
3947

3948 3949 3950
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3951
	ret = i915_gem_object_wait_rendering(obj, !write);
3952 3953 3954
	if (ret)
		return ret;

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3967
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3968

3969 3970 3971 3972 3973 3974 3975
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3976 3977
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3978

3979 3980 3981
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3982 3983
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3984
	if (write) {
3985 3986 3987
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3988 3989
	}

C
Chris Wilson 已提交
3990 3991 3992 3993
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3994
	/* And bump the LRU for this access */
3995 3996
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3997
		list_move_tail(&vma->mm_list,
3998
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3999

4000 4001 4002
	return 0;
}

4003 4004 4005
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4006
	struct drm_device *dev = obj->base.dev;
4007
	struct i915_vma *vma, *next;
4008 4009 4010 4011 4012
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
4013
	if (i915_gem_obj_is_pinned(obj)) {
4014 4015 4016 4017
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

4018
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4019
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4020
			ret = i915_vma_unbind(vma);
4021 4022 4023
			if (ret)
				return ret;
		}
4024 4025
	}

4026
	if (i915_gem_obj_bound_any(obj)) {
4027
		ret = i915_gem_object_wait_rendering(obj, false);
4028 4029 4030 4031 4032 4033 4034 4035 4036
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
4037
		if (INTEL_INFO(dev)->gen < 6) {
4038 4039 4040 4041 4042
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

4043
		list_for_each_entry(vma, &obj->vma_list, vma_link)
4044 4045
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
4046
						    PIN_UPDATE);
4047 4048 4049
				if (ret)
					return ret;
			}
4050 4051
	}

4052 4053 4054 4055
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4056 4057 4058 4059 4060
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
4061 4062 4063 4064 4065
	}

	return 0;
}

B
Ben Widawsky 已提交
4066 4067
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4068
{
B
Ben Widawsky 已提交
4069
	struct drm_i915_gem_caching *args = data;
4070 4071 4072
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4073 4074
	if (&obj->base == NULL)
		return -ENOENT;
4075

4076 4077 4078 4079 4080 4081
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4082 4083 4084 4085
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4086 4087 4088 4089
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4090

4091 4092
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4093 4094
}

B
Ben Widawsky 已提交
4095 4096
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4097
{
B
Ben Widawsky 已提交
4098
	struct drm_i915_gem_caching *args = data;
4099 4100 4101 4102
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4103 4104
	switch (args->caching) {
	case I915_CACHING_NONE:
4105 4106
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4107
	case I915_CACHING_CACHED:
4108 4109
		level = I915_CACHE_LLC;
		break;
4110 4111 4112
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4113 4114 4115 4116
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
4117 4118 4119 4120
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

4135
/*
4136 4137 4138
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4139 4140
 */
int
4141 4142
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4143
				     struct intel_engine_cs *pipelined,
4144
				     struct drm_i915_gem_request **pipelined_request,
4145
				     const struct i915_ggtt_view *view)
4146
{
4147
	u32 old_read_domains, old_write_domain;
4148 4149
	int ret;

4150
	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4151 4152
	if (ret)
		return ret;
4153

4154 4155 4156
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4157
	obj->pin_display++;
4158

4159 4160 4161 4162 4163 4164 4165 4166 4167
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4168 4169
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4170
	if (ret)
4171
		goto err_unpin_display;
4172

4173 4174 4175 4176
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4177 4178 4179
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4180
	if (ret)
4181
		goto err_unpin_display;
4182

4183
	i915_gem_object_flush_cpu_write_domain(obj);
4184

4185
	old_write_domain = obj->base.write_domain;
4186
	old_read_domains = obj->base.read_domains;
4187 4188 4189 4190

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4191
	obj->base.write_domain = 0;
4192
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4193 4194 4195

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4196
					    old_write_domain);
4197 4198

	return 0;
4199 4200

err_unpin_display:
4201
	obj->pin_display--;
4202 4203 4204 4205
	return ret;
}

void
4206 4207
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4208
{
4209 4210 4211
	if (WARN_ON(obj->pin_display == 0))
		return;

4212 4213
	i915_gem_object_ggtt_unpin_view(obj, view);

4214
	obj->pin_display--;
4215 4216
}

4217 4218 4219 4220 4221 4222
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4223
int
4224
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4225
{
C
Chris Wilson 已提交
4226
	uint32_t old_write_domain, old_read_domains;
4227 4228
	int ret;

4229 4230 4231
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4232
	ret = i915_gem_object_wait_rendering(obj, !write);
4233 4234 4235
	if (ret)
		return ret;

4236
	i915_gem_object_flush_gtt_write_domain(obj);
4237

4238 4239
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4240

4241
	/* Flush the CPU cache if it's still invalid. */
4242
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4243
		i915_gem_clflush_object(obj, false);
4244

4245
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4246 4247 4248 4249 4250
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4251
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4252 4253 4254 4255 4256

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4257 4258
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4259
	}
4260

C
Chris Wilson 已提交
4261 4262 4263 4264
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4265 4266 4267
	return 0;
}

4268 4269 4270
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4271 4272 4273 4274
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4275 4276 4277
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4278
static int
4279
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4280
{
4281 4282
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4283
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4284
	struct drm_i915_gem_request *request, *target = NULL;
4285
	unsigned reset_counter;
4286
	int ret;
4287

4288 4289 4290 4291 4292 4293 4294
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4295

4296
	spin_lock(&file_priv->mm.lock);
4297
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4298 4299
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4300

4301 4302 4303 4304 4305 4306 4307
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4308
		target = request;
4309
	}
4310
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4311 4312
	if (target)
		i915_gem_request_reference(target);
4313
	spin_unlock(&file_priv->mm.lock);
4314

4315
	if (target == NULL)
4316
		return 0;
4317

4318
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4319 4320
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4321

4322
	i915_gem_request_unreference__unlocked(target);
4323

4324 4325 4326
	return ret;
}

4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4346 4347 4348 4349 4350 4351
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4352
{
4353
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4354
	struct i915_vma *vma;
4355
	unsigned bound;
4356 4357
	int ret;

4358 4359 4360
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4361
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4362
		return -EINVAL;
4363

4364 4365 4366
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4367 4368 4369 4370 4371 4372 4373 4374 4375
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4376
	if (vma) {
B
Ben Widawsky 已提交
4377 4378 4379
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4380
		if (i915_vma_misplaced(vma, alignment, flags)) {
4381
			unsigned long offset;
4382
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4383
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4384
			WARN(vma->pin_count,
4385
			     "bo is already pinned in %s with incorrect alignment:"
4386
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4387
			     " obj->map_and_fenceable=%d\n",
4388 4389
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4390
			     alignment,
4391
			     !!(flags & PIN_MAPPABLE),
4392
			     obj->map_and_fenceable);
4393
			ret = i915_vma_unbind(vma);
4394 4395
			if (ret)
				return ret;
4396 4397

			vma = NULL;
4398 4399 4400
		}
	}

4401
	bound = vma ? vma->bound : 0;
4402
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4403 4404
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4405 4406
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4407 4408
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4409 4410 4411
		if (ret)
			return ret;
	}
4412

4413 4414
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4429
		mappable = (vma->node.start + fence_size <=
4430 4431 4432 4433
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4434 4435
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4436

4437
	vma->pin_count++;
4438 4439 4440
	return 0;
}

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4462
				      alignment, flags | PIN_GLOBAL);
4463 4464
}

4465
void
4466 4467
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4468
{
4469
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4470

B
Ben Widawsky 已提交
4471
	BUG_ON(!vma);
4472
	WARN_ON(vma->pin_count == 0);
4473
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4474

4475
	--vma->pin_count;
4476 4477
}

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4504 4505
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4506
		    struct drm_file *file)
4507 4508
{
	struct drm_i915_gem_busy *args = data;
4509
	struct drm_i915_gem_object *obj;
4510 4511
	int ret;

4512
	ret = i915_mutex_lock_interruptible(dev);
4513
	if (ret)
4514
		return ret;
4515

4516
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4517
	if (&obj->base == NULL) {
4518 4519
		ret = -ENOENT;
		goto unlock;
4520
	}
4521

4522 4523 4524 4525
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4526
	 */
4527
	ret = i915_gem_object_flush_active(obj);
4528 4529
	if (ret)
		goto unref;
4530

4531 4532 4533 4534
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4535

4536
unref:
4537
	drm_gem_object_unreference(&obj->base);
4538
unlock:
4539
	mutex_unlock(&dev->struct_mutex);
4540
	return ret;
4541 4542 4543 4544 4545 4546
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4547
	return i915_gem_ring_throttle(dev, file_priv);
4548 4549
}

4550 4551 4552 4553
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4554
	struct drm_i915_private *dev_priv = dev->dev_private;
4555
	struct drm_i915_gem_madvise *args = data;
4556
	struct drm_i915_gem_object *obj;
4557
	int ret;
4558 4559 4560 4561 4562 4563 4564 4565 4566

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4567 4568 4569 4570
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4571
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4572
	if (&obj->base == NULL) {
4573 4574
		ret = -ENOENT;
		goto unlock;
4575 4576
	}

B
Ben Widawsky 已提交
4577
	if (i915_gem_obj_is_pinned(obj)) {
4578 4579
		ret = -EINVAL;
		goto out;
4580 4581
	}

4582 4583 4584 4585 4586 4587 4588 4589 4590
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4591 4592
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4593

C
Chris Wilson 已提交
4594
	/* if the object is no longer attached, discard its backing storage */
4595
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4596 4597
		i915_gem_object_truncate(obj);

4598
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4599

4600
out:
4601
	drm_gem_object_unreference(&obj->base);
4602
unlock:
4603
	mutex_unlock(&dev->struct_mutex);
4604
	return ret;
4605 4606
}

4607 4608
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4609
{
4610 4611
	int i;

4612
	INIT_LIST_HEAD(&obj->global_list);
4613 4614
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4615
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4616
	INIT_LIST_HEAD(&obj->vma_list);
4617
	INIT_LIST_HEAD(&obj->batch_pool_link);
4618

4619 4620
	obj->ops = ops;

4621 4622 4623 4624 4625 4626
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4627 4628 4629 4630 4631
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4632 4633
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4634
{
4635
	struct drm_i915_gem_object *obj;
4636
	struct address_space *mapping;
D
Daniel Vetter 已提交
4637
	gfp_t mask;
4638

4639
	obj = i915_gem_object_alloc(dev);
4640 4641
	if (obj == NULL)
		return NULL;
4642

4643
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4644
		i915_gem_object_free(obj);
4645 4646
		return NULL;
	}
4647

4648 4649 4650 4651 4652 4653 4654
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4655
	mapping = file_inode(obj->base.filp)->i_mapping;
4656
	mapping_set_gfp_mask(mapping, mask);
4657

4658
	i915_gem_object_init(obj, &i915_gem_object_ops);
4659

4660 4661
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4662

4663 4664
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4680 4681
	trace_i915_gem_object_create(obj);

4682
	return obj;
4683 4684
}

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4709
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4710
{
4711
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4712
	struct drm_device *dev = obj->base.dev;
4713
	struct drm_i915_private *dev_priv = dev->dev_private;
4714
	struct i915_vma *vma, *next;
4715

4716 4717
	intel_runtime_pm_get(dev_priv);

4718 4719
	trace_i915_gem_object_destroy(obj);

4720
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4721 4722 4723 4724
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4725 4726
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4727

4728 4729
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4730

4731
			WARN_ON(i915_vma_unbind(vma));
4732

4733 4734
			dev_priv->mm.interruptible = was_interruptible;
		}
4735 4736
	}

B
Ben Widawsky 已提交
4737 4738 4739 4740 4741
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4742 4743
	WARN_ON(obj->frontbuffer_bits);

4744 4745 4746 4747 4748
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4749 4750
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4751
	if (discard_backing_storage(obj))
4752
		obj->madv = I915_MADV_DONTNEED;
4753
	i915_gem_object_put_pages(obj);
4754
	i915_gem_object_free_mmap_offset(obj);
4755

4756 4757
	BUG_ON(obj->pages);

4758 4759
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4760

4761 4762 4763
	if (obj->ops->release)
		obj->ops->release(obj);

4764 4765
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4766

4767
	kfree(obj->bit_17);
4768
	i915_gem_object_free(obj);
4769 4770

	intel_runtime_pm_put(dev_priv);
4771 4772
}

4773 4774
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4775 4776
{
	struct i915_vma *vma;
4777 4778 4779 4780 4781
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4782
			return vma;
4783 4784 4785 4786 4787 4788 4789 4790 4791
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4792

4793 4794 4795 4796
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4797 4798
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4799
			return vma;
4800 4801 4802
	return NULL;
}

B
Ben Widawsky 已提交
4803 4804
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4805
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4806
	WARN_ON(vma->node.allocated);
4807 4808 4809 4810 4811

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4812 4813
	vm = vma->vm;

4814 4815
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4816

4817
	list_del(&vma->vma_link);
4818

4819
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4820 4821
}

4822 4823 4824 4825
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4826
	struct intel_engine_cs *ring;
4827 4828 4829
	int i;

	for_each_ring(ring, dev_priv, i)
4830
		dev_priv->gt.stop_ring(ring);
4831 4832
}

4833
int
4834
i915_gem_suspend(struct drm_device *dev)
4835
{
4836
	struct drm_i915_private *dev_priv = dev->dev_private;
4837
	int ret = 0;
4838

4839
	mutex_lock(&dev->struct_mutex);
4840
	ret = i915_gpu_idle(dev);
4841
	if (ret)
4842
		goto err;
4843

4844
	i915_gem_retire_requests(dev);
4845

4846
	i915_gem_stop_ringbuffers(dev);
4847 4848
	mutex_unlock(&dev->struct_mutex);

4849
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4850
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4851
	flush_delayed_work(&dev_priv->mm.idle_work);
4852

4853 4854 4855 4856 4857
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4858
	return 0;
4859 4860 4861 4862

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4863 4864
}

4865
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4866
{
4867
	struct intel_engine_cs *ring = req->ring;
4868
	struct drm_device *dev = ring->dev;
4869
	struct drm_i915_private *dev_priv = dev->dev_private;
4870 4871
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4872
	int i, ret;
B
Ben Widawsky 已提交
4873

4874
	if (!HAS_L3_DPF(dev) || !remap_info)
4875
		return 0;
B
Ben Widawsky 已提交
4876

4877
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4878 4879
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4880

4881 4882 4883 4884 4885
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4886
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4887 4888 4889
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4890 4891
	}

4892
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4893

4894
	return ret;
B
Ben Widawsky 已提交
4895 4896
}

4897 4898
void i915_gem_init_swizzling(struct drm_device *dev)
{
4899
	struct drm_i915_private *dev_priv = dev->dev_private;
4900

4901
	if (INTEL_INFO(dev)->gen < 5 ||
4902 4903 4904 4905 4906 4907
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4908 4909 4910
	if (IS_GEN5(dev))
		return;

4911 4912
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4913
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4914
	else if (IS_GEN7(dev))
4915
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4916 4917
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4918 4919
	else
		BUG();
4920
}
D
Daniel Vetter 已提交
4921

4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4965
int i915_gem_init_rings(struct drm_device *dev)
4966
{
4967
	struct drm_i915_private *dev_priv = dev->dev_private;
4968
	int ret;
4969

4970
	ret = intel_init_render_ring_buffer(dev);
4971
	if (ret)
4972
		return ret;
4973 4974

	if (HAS_BSD(dev)) {
4975
		ret = intel_init_bsd_ring_buffer(dev);
4976 4977
		if (ret)
			goto cleanup_render_ring;
4978
	}
4979

4980
	if (intel_enable_blt(dev)) {
4981 4982 4983 4984 4985
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4986 4987 4988 4989 4990 4991
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4992 4993 4994 4995 4996
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4997

4998
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4999
	if (ret)
5000
		goto cleanup_bsd2_ring;
5001 5002 5003

	return 0;

5004 5005
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
5006 5007
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5021
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
5022
	struct intel_engine_cs *ring;
5023
	int ret, i, j;
5024 5025 5026 5027

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

5028 5029 5030
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
5031
	if (dev_priv->ellc_size)
5032
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5033

5034 5035 5036
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5037

5038
	if (HAS_PCH_NOP(dev)) {
5039 5040 5041 5042 5043 5044 5045 5046 5047
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5048 5049
	}

5050 5051
	i915_gem_init_swizzling(dev);

5052 5053 5054 5055 5056 5057 5058 5059
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5060 5061
	BUG_ON(!dev_priv->ring[RCS].default_context);

5062 5063 5064 5065 5066 5067 5068
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
D
Daniel Vetter 已提交
5069 5070 5071
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
5072
			goto out;
D
Daniel Vetter 已提交
5073
	}
5074

5075 5076
	/* Now it is safe to go back round and do everything else: */
	for_each_ring(ring, dev_priv, i) {
5077 5078
		struct drm_i915_gem_request *req;

5079 5080
		WARN_ON(!ring->default_context);

5081 5082 5083 5084 5085 5086
		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
		if (ret) {
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}

5087 5088
		if (ring->id == RCS) {
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
5089
				i915_gem_l3_remap(req, j);
5090
		}
5091

5092
		ret = i915_ppgtt_init_ring(req);
5093 5094
		if (ret && ret != -EIO) {
			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5095
			i915_gem_request_cancel(req);
5096 5097 5098
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
5099

5100
		ret = i915_gem_context_enable(req);
5101 5102
		if (ret && ret != -EIO) {
			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5103
			i915_gem_request_cancel(req);
5104 5105 5106
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
5107

5108
		i915_add_request_no_flush(req);
5109
	}
D
Daniel Vetter 已提交
5110

5111 5112
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5113
	return ret;
5114 5115
}

5116 5117 5118 5119 5120
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5121 5122 5123
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5124
	mutex_lock(&dev->struct_mutex);
5125 5126 5127

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5128 5129 5130
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
5131 5132 5133
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

5134
	if (!i915.enable_execlists) {
5135
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5136 5137 5138
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5139
	} else {
5140
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5141 5142 5143
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5144 5145
	}

5146 5147 5148 5149 5150 5151 5152 5153
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5154
	ret = i915_gem_init_userptr(dev);
5155 5156
	if (ret)
		goto out_unlock;
5157

5158
	i915_gem_init_global_gtt(dev);
5159

5160
	ret = i915_gem_context_init(dev);
5161 5162
	if (ret)
		goto out_unlock;
5163

D
Daniel Vetter 已提交
5164 5165
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
5166
		goto out_unlock;
5167

5168
	ret = i915_gem_init_hw(dev);
5169 5170 5171 5172 5173 5174 5175 5176
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
5177
	}
5178 5179

out_unlock:
5180
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5181
	mutex_unlock(&dev->struct_mutex);
5182

5183
	return ret;
5184 5185
}

5186 5187 5188
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
5189
	struct drm_i915_private *dev_priv = dev->dev_private;
5190
	struct intel_engine_cs *ring;
5191
	int i;
5192

5193
	for_each_ring(ring, dev_priv, i)
5194
		dev_priv->gt.cleanup_ring(ring);
5195 5196
}

5197
static void
5198
init_ring_lists(struct intel_engine_cs *ring)
5199 5200 5201 5202 5203
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5204 5205
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5206
{
5207 5208
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5209 5210 5211 5212
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5213
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5214 5215
}

5216 5217 5218
void
i915_gem_load(struct drm_device *dev)
{
5219
	struct drm_i915_private *dev_priv = dev->dev_private;
5220 5221
	int i;

5222
	dev_priv->objects =
5223 5224 5225 5226
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5227 5228 5229 5230 5231
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5232 5233 5234 5235 5236
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5237

B
Ben Widawsky 已提交
5238 5239 5240
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5241
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5242 5243
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5244
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5245 5246
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5247
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5248
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5249 5250
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5251 5252
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5253
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5254

5255 5256
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5257 5258 5259
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5260 5261 5262 5263
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5264 5265 5266 5267
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5268
	/* Initialize fence registers to zero */
5269 5270
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5271

5272
	i915_gem_detect_bit_6_swizzle(dev);
5273
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5274

5275 5276
	dev_priv->mm.interruptible = true;

5277
	i915_gem_shrinker_init(dev_priv);
5278 5279

	mutex_init(&dev_priv->fb_tracking.lock);
5280
}
5281

5282
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5283
{
5284
	struct drm_i915_file_private *file_priv = file->driver_priv;
5285 5286 5287 5288 5289

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5290
	spin_lock(&file_priv->mm.lock);
5291 5292 5293 5294 5295 5296 5297 5298 5299
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5300
	spin_unlock(&file_priv->mm.lock);
5301

5302
	if (!list_empty(&file_priv->rps.link)) {
5303
		spin_lock(&to_i915(dev)->rps.client_lock);
5304
		list_del(&file_priv->rps.link);
5305
		spin_unlock(&to_i915(dev)->rps.client_lock);
5306
	}
5307 5308 5309 5310 5311
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5312
	int ret;
5313 5314 5315 5316 5317 5318 5319 5320 5321

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5322
	file_priv->file = file;
5323
	INIT_LIST_HEAD(&file_priv->rps.link);
5324 5325 5326 5327

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5328 5329 5330
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5331

5332
	return ret;
5333 5334
}

5335 5336 5337 5338 5339 5340 5341 5342 5343
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5361
/* All the new VM stuff */
5362 5363 5364
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5365 5366 5367 5368
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5369
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5370 5371

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5372 5373 5374 5375
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5376 5377
			return vma->node.start;
	}
5378

5379 5380
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5381 5382 5383
	return -1;
}

5384 5385
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5386
			      const struct i915_ggtt_view *view)
5387
{
5388
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5389 5390 5391
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5392 5393
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5394 5395
			return vma->node.start;

5396
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5417
				  const struct i915_ggtt_view *view)
5418 5419 5420 5421 5422 5423
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5424
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5425
		    drm_mm_node_allocated(&vma->node))
5426 5427 5428 5429 5430 5431 5432
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5433
	struct i915_vma *vma;
5434

5435 5436
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5448
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5449 5450 5451

	BUG_ON(list_empty(&o->vma_list));

5452 5453 5454 5455
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5456 5457
		if (vma->vm == vm)
			return vma->node.size;
5458
	}
5459 5460 5461
	return 0;
}

5462
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5463 5464
{
	struct i915_vma *vma;
5465
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5466 5467
		if (vma->pin_count > 0)
			return true;
5468

5469
	return false;
5470
}
5471