i915_gem.c 142.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49

50 51
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
52
	if (obj->cache_dirty)
53 54
		return false;

55
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 57 58 59 60
		return true;

	return obj->pin_display;
}

61
static int
62
insert_mappable_node(struct i915_ggtt *ggtt,
63 64 65
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
66 67 68 69
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
70 71 72 73 74 75 76 77
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

78 79
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80
				  u64 size)
81
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89
				     u64 size)
90
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
	might_sleep();

104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
109
	ret = wait_event_interruptible_timeout(error->reset_queue,
110
					       !i915_reset_backoff(error),
111
					       I915_RESET_TIMEOUT);
112 113 114 115
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
116
		return ret;
117 118
	} else {
		return 0;
119
	}
120 121
}

122
int i915_mutex_lock_interruptible(struct drm_device *dev)
123
{
124
	struct drm_i915_private *dev_priv = to_i915(dev);
125 126
	int ret;

127
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 129 130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
137

138 139
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140
			    struct drm_file *file)
141
{
142
	struct drm_i915_private *dev_priv = to_i915(dev);
143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144
	struct drm_i915_gem_get_aperture *args = data;
145
	struct i915_vma *vma;
146
	u64 pinned;
147

148
	pinned = ggtt->base.reserved;
149
	mutex_lock(&dev->struct_mutex);
150
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151
		if (i915_vma_is_pinned(vma))
152
			pinned += vma->node.size;
153
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154
		if (i915_vma_is_pinned(vma))
155
			pinned += vma->node.size;
156
	mutex_unlock(&dev->struct_mutex);
157

158
	args->aper_size = ggtt->base.total;
159
	args->aper_available_size = args->aper_size - pinned;
160

161 162 163
	return 0;
}

164
static struct sg_table *
165
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173

174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175
		return ERR_PTR(-EINVAL);
176

177 178 179 180 181 182 183 184 185 186 187
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
188 189 190 191 192
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
193 194 195 196
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
197 198 199 200 201 202

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

203
		put_page(page);
204 205 206
		vaddr += PAGE_SIZE;
	}

207
	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 209

	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 211 212 213
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
214 215 216

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
217 218
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
219 220 221 222 223
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
224

225
	sg_dma_address(sg) = phys->busaddr;
226 227
	sg_dma_len(sg) = obj->base.size;

228 229 230 231 232
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
233
	return st;
234 235
}

236 237 238 239 240 241 242 243
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

244
static void
245
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 247
				struct sg_table *pages,
				bool needs_clflush)
248
{
C
Chris Wilson 已提交
249
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250

C
Chris Wilson 已提交
251 252
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
253

254 255
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257
		drm_clflush_sg(pages);
258

259
	__start_cpu_write(obj);
260 261 262 263 264 265
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
266
	__i915_gem_object_release_shmem(obj, pages, false);
267

C
Chris Wilson 已提交
268
	if (obj->mm.dirty) {
269
		struct address_space *mapping = obj->base.filp->f_mapping;
270
		char *vaddr = obj->phys_handle->vaddr;
271 272 273
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 275 276 277 278 279 280 281 282 283 284 285 286
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
287
			if (obj->mm.madv == I915_MADV_WILLNEED)
288
				mark_page_accessed(page);
289
			put_page(page);
290 291
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
292
		obj->mm.dirty = false;
293 294
	}

295 296
	sg_free_table(pages);
	kfree(pages);
297 298

	drm_pci_free(obj->base.dev, obj->phys_handle);
299 300 301 302 303
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
304
	i915_gem_object_unpin_pages(obj);
305 306 307 308 309 310 311 312
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

313 314
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
391
			gen6_rps_boost(rq, rps);
392 393
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
411
	unsigned int seq = __read_seqcount_begin(&resv->seq);
412
	struct dma_fence *excl;
413
	bool prune_fences = false;
414 415 416 417

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
418 419
		int ret;

420 421
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
422 423 424
		if (ret)
			return ret;

425 426 427 428
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
429
			if (timeout < 0)
430
				break;
431

432 433 434 435 436 437
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
438 439

		prune_fences = count && timeout >= 0;
440 441
	} else {
		excl = reservation_object_get_excl_rcu(resv);
442 443
	}

444
	if (excl && timeout >= 0) {
445
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 447
		prune_fences = timeout >= 0;
	}
448 449 450

	dma_fence_put(excl);

451 452 453 454
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
455
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 457 458 459 460
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
461 462
	}

463
	return timeout;
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

530 531 532 533 534 535
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
536
 */
537 538 539 540 541
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
542
{
543 544 545 546 547 548 549
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
550

551 552 553
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
554
	return timeout < 0 ? timeout : 0;
555 556 557 558 559 560 561 562 563
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

564 565 566
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
567
		     struct drm_file *file)
568 569
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
570
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
571 572 573 574

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
575
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 577
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
578

579
	drm_clflush_virt_range(vaddr, args->size);
580
	i915_gem_chipset_flush(to_i915(obj->base.dev));
581

582
	intel_fb_obj_flush(obj, ORIGIN_CPU);
583
	return 0;
584 585
}

586
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587
{
588
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 590 591 592
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
593
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594
	kmem_cache_free(dev_priv->objects, obj);
595 596
}

597 598
static int
i915_gem_create(struct drm_file *file,
599
		struct drm_i915_private *dev_priv,
600 601
		uint64_t size,
		uint32_t *handle_p)
602
{
603
	struct drm_i915_gem_object *obj;
604 605
	int ret;
	u32 handle;
606

607
	size = roundup(size, PAGE_SIZE);
608 609
	if (size == 0)
		return -EINVAL;
610 611

	/* Allocate the new object */
612
	obj = i915_gem_object_create(dev_priv, size);
613 614
	if (IS_ERR(obj))
		return PTR_ERR(obj);
615

616
	ret = drm_gem_handle_create(file, &obj->base, &handle);
617
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
618
	i915_gem_object_put(obj);
619 620
	if (ret)
		return ret;
621

622
	*handle_p = handle;
623 624 625
	return 0;
}

626 627 628 629 630 631
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
632
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633
	args->size = args->pitch * args->height;
634
	return i915_gem_create(file, to_i915(dev),
635
			       args->size, &args->handle);
636 637
}

638 639 640 641 642 643
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

644 645
/**
 * Creates a new mm object and returns a handle to it.
646 647 648
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
649 650 651 652 653
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
654
	struct drm_i915_private *dev_priv = to_i915(dev);
655
	struct drm_i915_gem_create *args = data;
656

657
	i915_gem_flush_free_objects(dev_priv);
658

659
	return i915_gem_create(file, dev_priv,
660
			       args->size, &args->handle);
661 662
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
			if (intel_runtime_pm_get_if_in_use(dev_priv)) {
				spin_lock_irq(&dev_priv->uncore.lock);
				POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
				spin_unlock_irq(&dev_priv->uncore.lock);
				intel_runtime_pm_put(dev_priv);
			}
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
713 714 715 716 717

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
718 719 720 721 722
	}

	obj->base.write_domain = 0;
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

749
static inline int
750 751
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

775 776 777 778 779 780
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
781
				    unsigned int *needs_clflush)
782 783 784
{
	int ret;

785
	lockdep_assert_held(&obj->base.dev->struct_mutex);
786

787
	*needs_clflush = 0;
788 789
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
790

791 792 793 794 795
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
796 797 798
	if (ret)
		return ret;

C
Chris Wilson 已提交
799
	ret = i915_gem_object_pin_pages(obj);
800 801 802
	if (ret)
		return ret;

803 804
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
805 806 807 808 809 810 811
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

812
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
813

814 815 816 817 818
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
819 820
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
821
		*needs_clflush = CLFLUSH_BEFORE;
822

823
out:
824
	/* return with the pages pinned */
825
	return 0;
826 827 828 829

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
830 831 832 833 834 835 836
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

837 838
	lockdep_assert_held(&obj->base.dev->struct_mutex);

839 840 841 842
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

843 844 845 846 847 848
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
849 850 851
	if (ret)
		return ret;

C
Chris Wilson 已提交
852
	ret = i915_gem_object_pin_pages(obj);
853 854 855
	if (ret)
		return ret;

856 857
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
858 859 860 861 862 863 864
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

865
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
866

867 868 869 870 871
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
872
	if (!obj->cache_dirty) {
873
		*needs_clflush |= CLFLUSH_AFTER;
874

875 876 877 878 879 880 881
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
882

883
out:
884
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
885
	obj->mm.dirty = true;
886
	/* return with the pages pinned */
887
	return 0;
888 889 890 891

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
892 893
}

894 895 896 897
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
898
	if (unlikely(swizzled)) {
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

916 917 918
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
919
shmem_pread_slow(struct page *page, int offset, int length,
920 921 922 923 924 925 926 927
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
928
		shmem_clflush_swizzled_range(vaddr + offset, length,
929
					     page_do_bit17_swizzling);
930 931

	if (page_do_bit17_swizzling)
932
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
933
	else
934
		ret = __copy_to_user(user_data, vaddr + offset, length);
935 936
	kunmap(page);

937
	return ret ? - EFAULT : 0;
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1016 1017
{
	void *vaddr;
1018
	unsigned long unwritten;
1019 1020

	/* We can use the cpu mem copy function because this is X86. */
1021 1022 1023 1024 1025 1026 1027 1028 1029
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1030 1031 1032 1033
	return unwritten;
}

static int
1034 1035
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1036
{
1037 1038
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1039
	struct drm_mm_node node;
1040 1041 1042
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1043 1044
	int ret;

1045 1046 1047 1048 1049 1050 1051
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1052 1053 1054
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1055
		ret = i915_vma_put_fence(vma);
1056 1057 1058 1059 1060
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1061
	if (IS_ERR(vma)) {
1062
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1063
		if (ret)
1064 1065
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1066 1067 1068 1069 1070 1071
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1072
	mutex_unlock(&i915->drm.struct_mutex);
1073

1074 1075 1076
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1093
					       node.start, I915_CACHE_NONE, 0);
1094 1095 1096 1097
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1098 1099 1100

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1101 1102 1103 1104 1105 1106 1107 1108 1109
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1110
	mutex_lock(&i915->drm.struct_mutex);
1111 1112 1113 1114
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1115
				       node.start, node.size);
1116 1117
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1118
		i915_vma_unpin(vma);
1119
	}
1120 1121 1122
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1123

1124 1125 1126
	return ret;
}

1127 1128
/**
 * Reads data from the object referenced by handle.
1129 1130 1131
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1132 1133 1134 1135 1136
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1137
		     struct drm_file *file)
1138 1139
{
	struct drm_i915_gem_pread *args = data;
1140
	struct drm_i915_gem_object *obj;
1141
	int ret;
1142

1143 1144 1145 1146
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1147
		       u64_to_user_ptr(args->data_ptr),
1148 1149 1150
		       args->size))
		return -EFAULT;

1151
	obj = i915_gem_object_lookup(file, args->handle);
1152 1153
	if (!obj)
		return -ENOENT;
1154

1155
	/* Bounds check source.  */
1156
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1157
		ret = -EINVAL;
1158
		goto out;
C
Chris Wilson 已提交
1159 1160
	}

C
Chris Wilson 已提交
1161 1162
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1163 1164 1165 1166
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1167
	if (ret)
1168
		goto out;
1169

1170
	ret = i915_gem_object_pin_pages(obj);
1171
	if (ret)
1172
		goto out;
1173

1174
	ret = i915_gem_shmem_pread(obj, args);
1175
	if (ret == -EFAULT || ret == -ENODEV)
1176
		ret = i915_gem_gtt_pread(obj, args);
1177

1178 1179
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1180
	i915_gem_object_put(obj);
1181
	return ret;
1182 1183
}

1184 1185
/* This is the fast write path which cannot handle
 * page faults in the source data
1186
 */
1187

1188 1189 1190 1191
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1192
{
1193
	void *vaddr;
1194
	unsigned long unwritten;
1195

1196
	/* We can use the cpu mem copy function because this is X86. */
1197 1198
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1199
						      user_data, length);
1200 1201 1202 1203 1204 1205 1206
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1207 1208 1209 1210

	return unwritten;
}

1211 1212 1213
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1214
 * @obj: i915 GEM object
1215
 * @args: pwrite arguments structure
1216
 */
1217
static int
1218 1219
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1220
{
1221
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1222 1223
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1224 1225 1226
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1227
	int ret;
1228

1229 1230 1231
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1232

1233
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1234
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1235
				       PIN_MAPPABLE | PIN_NONBLOCK);
1236 1237 1238
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1239
		ret = i915_vma_put_fence(vma);
1240 1241 1242 1243 1244
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1245
	if (IS_ERR(vma)) {
1246
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1247
		if (ret)
1248 1249
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1250
	}
D
Daniel Vetter 已提交
1251 1252 1253 1254 1255

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1256 1257
	mutex_unlock(&i915->drm.struct_mutex);

1258
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1259

1260 1261 1262 1263
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1264 1265
		/* Operation in this page
		 *
1266 1267 1268
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1269
		 */
1270
		u32 page_base = node.start;
1271 1272
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1283
		/* If we get a fault while copying data, then (presumably) our
1284 1285
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1286 1287
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1288
		 */
1289 1290 1291 1292
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1293
		}
1294

1295 1296 1297
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1298
	}
1299
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1300 1301

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1302
out_unpin:
1303 1304 1305
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1306
				       node.start, node.size);
1307 1308
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1309
		i915_vma_unpin(vma);
1310
	}
1311
out_unlock:
1312
	intel_runtime_pm_put(i915);
1313
	mutex_unlock(&i915->drm.struct_mutex);
1314
	return ret;
1315 1316
}

1317
static int
1318
shmem_pwrite_slow(struct page *page, int offset, int length,
1319 1320 1321 1322
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1323
{
1324 1325
	char *vaddr;
	int ret;
1326

1327
	vaddr = kmap(page);
1328
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1329
		shmem_clflush_swizzled_range(vaddr + offset, length,
1330
					     page_do_bit17_swizzling);
1331
	if (page_do_bit17_swizzling)
1332 1333
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1334
	else
1335
		ret = __copy_from_user(vaddr + offset, user_data, length);
1336
	if (needs_clflush_after)
1337
		shmem_clflush_swizzled_range(vaddr + offset, length,
1338
					     page_do_bit17_swizzling);
1339
	kunmap(page);
1340

1341
	return ret ? -EFAULT : 0;
1342 1343
}

1344 1345 1346 1347 1348
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1349
static int
1350 1351 1352 1353
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1354
{
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1387
	unsigned int needs_clflush;
1388 1389
	unsigned int offset, idx;
	int ret;
1390

1391
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1392 1393 1394
	if (ret)
		return ret;

1395 1396 1397 1398
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1399

1400 1401 1402
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1403

1404 1405 1406 1407 1408 1409 1410
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1411

1412 1413 1414 1415 1416 1417
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1418

1419 1420 1421
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1422

1423 1424 1425 1426
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1427
		if (ret)
1428
			break;
1429

1430 1431 1432
		remain -= length;
		user_data += length;
		offset = 0;
1433
	}
1434

1435
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1436
	i915_gem_obj_finish_shmem_access(obj);
1437
	return ret;
1438 1439 1440 1441
}

/**
 * Writes data to the object referenced by handle.
1442 1443 1444
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1445 1446 1447 1448 1449
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1450
		      struct drm_file *file)
1451 1452
{
	struct drm_i915_gem_pwrite *args = data;
1453
	struct drm_i915_gem_object *obj;
1454 1455 1456 1457 1458 1459
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1460
		       u64_to_user_ptr(args->data_ptr),
1461 1462 1463
		       args->size))
		return -EFAULT;

1464
	obj = i915_gem_object_lookup(file, args->handle);
1465 1466
	if (!obj)
		return -ENOENT;
1467

1468
	/* Bounds check destination. */
1469
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1470
		ret = -EINVAL;
1471
		goto err;
C
Chris Wilson 已提交
1472 1473
	}

C
Chris Wilson 已提交
1474 1475
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1476 1477 1478 1479 1480 1481
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1482 1483 1484 1485 1486
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1487 1488 1489
	if (ret)
		goto err;

1490
	ret = i915_gem_object_pin_pages(obj);
1491
	if (ret)
1492
		goto err;
1493

D
Daniel Vetter 已提交
1494
	ret = -EFAULT;
1495 1496 1497 1498 1499 1500
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1501
	if (!i915_gem_object_has_struct_page(obj) ||
1502
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1503 1504
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1505 1506
		 * textures). Fallback to the shmem path in that case.
		 */
1507
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1508

1509
	if (ret == -EFAULT || ret == -ENOSPC) {
1510 1511
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1512
		else
1513
			ret = i915_gem_shmem_pwrite(obj, args);
1514
	}
1515

1516
	i915_gem_object_unpin_pages(obj);
1517
err:
C
Chris Wilson 已提交
1518
	i915_gem_object_put(obj);
1519
	return ret;
1520 1521
}

1522 1523 1524 1525 1526 1527 1528 1529
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1530
			break;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1543
	list_move_tail(&obj->global_link, list);
1544 1545
}

1546
/**
1547 1548
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1549 1550 1551
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1552 1553 1554
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555
			  struct drm_file *file)
1556 1557
{
	struct drm_i915_gem_set_domain *args = data;
1558
	struct drm_i915_gem_object *obj;
1559 1560
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1561
	int err;
1562

1563
	/* Only handle setting domains to types used by the CPU. */
1564
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1565 1566 1567 1568 1569 1570 1571 1572
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1573
	obj = i915_gem_object_lookup(file, args->handle);
1574 1575
	if (!obj)
		return -ENOENT;
1576

1577 1578 1579 1580
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1581
	err = i915_gem_object_wait(obj,
1582 1583 1584 1585
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1586
	if (err)
C
Chris Wilson 已提交
1587
		goto out;
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1599
		goto out;
1600 1601 1602

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1603
		goto out_unpin;
1604

1605 1606 1607 1608
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1609
	else
1610
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1611

1612 1613
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1614

1615
	mutex_unlock(&dev->struct_mutex);
1616

1617
	if (write_domain != 0)
1618 1619
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1620

C
Chris Wilson 已提交
1621
out_unpin:
1622
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1623 1624
out:
	i915_gem_object_put(obj);
1625
	return err;
1626 1627 1628 1629
}

/**
 * Called when user space has done writes to this buffer
1630 1631 1632
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1633 1634 1635
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1636
			 struct drm_file *file)
1637 1638
{
	struct drm_i915_gem_sw_finish *args = data;
1639
	struct drm_i915_gem_object *obj;
1640

1641
	obj = i915_gem_object_lookup(file, args->handle);
1642 1643
	if (!obj)
		return -ENOENT;
1644 1645

	/* Pinned buffers may be scanout, so flush the cache */
1646
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1647
	i915_gem_object_put(obj);
1648 1649

	return 0;
1650 1651 1652
}

/**
1653 1654 1655 1656 1657
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1658 1659 1660
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1671 1672 1673
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1674
		    struct drm_file *file)
1675 1676
{
	struct drm_i915_gem_mmap *args = data;
1677
	struct drm_i915_gem_object *obj;
1678 1679
	unsigned long addr;

1680 1681 1682
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1683
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1684 1685
		return -ENODEV;

1686 1687
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1688
		return -ENOENT;
1689

1690 1691 1692
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1693
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1694
		i915_gem_object_put(obj);
1695 1696 1697
		return -EINVAL;
	}

1698
	addr = vm_mmap(obj->base.filp, 0, args->size,
1699 1700
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1701 1702 1703 1704
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1705
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1706
			i915_gem_object_put(obj);
1707 1708
			return -EINTR;
		}
1709 1710 1711 1712 1713 1714 1715
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1716 1717

		/* This may race, but that's ok, it only gets set */
1718
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1719
	}
C
Chris Wilson 已提交
1720
	i915_gem_object_put(obj);
1721 1722 1723 1724 1725 1726 1727 1728
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1729 1730
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1731
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1732 1733
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1754 1755 1756
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1784
	return 2;
1785 1786
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1798 1799
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1800
		min_t(unsigned int, chunk,
1801
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1802 1803 1804 1805 1806 1807 1808 1809

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1810 1811
/**
 * i915_gem_fault - fault a page into the GTT
1812
 * @vmf: fault info
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1824 1825 1826
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1827
 */
1828
int i915_gem_fault(struct vm_fault *vmf)
1829
{
1830
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1831
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1832
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1833
	struct drm_device *dev = obj->base.dev;
1834 1835
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1836
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1837
	struct i915_vma *vma;
1838
	pgoff_t page_offset;
1839
	unsigned int flags;
1840
	int ret;
1841

1842
	/* We don't use vmf->pgoff since that has the fake offset */
1843
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1844

C
Chris Wilson 已提交
1845 1846
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1847
	/* Try to flush the object off the GPU first without holding the lock.
1848
	 * Upon acquiring the lock, we will perform our sanity checks and then
1849 1850 1851
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1852 1853 1854 1855
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1856
	if (ret)
1857 1858
		goto err;

1859 1860 1861 1862
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1863 1864 1865 1866 1867
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1868

1869
	/* Access to snoopable pages through the GTT is incoherent. */
1870
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1871
		ret = -EFAULT;
1872
		goto err_unlock;
1873 1874
	}

1875 1876 1877 1878 1879 1880 1881 1882
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1883
	/* Now pin it into the GTT as needed */
1884
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1885 1886
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1887
		struct i915_ggtt_view view =
1888
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1889

1890 1891 1892 1893 1894
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1895 1896
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1897 1898
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1899
		goto err_unlock;
C
Chris Wilson 已提交
1900
	}
1901

1902 1903
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1904
		goto err_unpin;
1905

1906
	ret = i915_vma_get_fence(vma);
1907
	if (ret)
1908
		goto err_unpin;
1909

1910
	/* Mark as being mmapped into userspace for later revocation */
1911
	assert_rpm_wakelock_held(dev_priv);
1912 1913 1914
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1915
	/* Finally, remap it using the new GTT offset */
1916
	ret = remap_io_mapping(area,
1917
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1918 1919 1920
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1921

1922
err_unpin:
C
Chris Wilson 已提交
1923
	__i915_vma_unpin(vma);
1924
err_unlock:
1925
	mutex_unlock(&dev->struct_mutex);
1926 1927
err_rpm:
	intel_runtime_pm_put(dev_priv);
1928
	i915_gem_object_unpin_pages(obj);
1929
err:
1930
	switch (ret) {
1931
	case -EIO:
1932 1933 1934 1935 1936 1937 1938
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1939 1940 1941
			ret = VM_FAULT_SIGBUS;
			break;
		}
1942
	case -EAGAIN:
D
Daniel Vetter 已提交
1943 1944 1945 1946
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1947
		 */
1948 1949
	case 0:
	case -ERESTARTSYS:
1950
	case -EINTR:
1951 1952 1953 1954 1955
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1956 1957
		ret = VM_FAULT_NOPAGE;
		break;
1958
	case -ENOMEM:
1959 1960
		ret = VM_FAULT_OOM;
		break;
1961
	case -ENOSPC:
1962
	case -EFAULT:
1963 1964
		ret = VM_FAULT_SIGBUS;
		break;
1965
	default:
1966
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1967 1968
		ret = VM_FAULT_SIGBUS;
		break;
1969
	}
1970
	return ret;
1971 1972
}

1973 1974 1975 1976
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1977
 * Preserve the reservation of the mmapping with the DRM core code, but
1978 1979 1980 1981 1982 1983 1984 1985 1986
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1987
void
1988
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1989
{
1990 1991
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1992 1993 1994
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1995 1996 1997 1998
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1999
	 */
2000
	lockdep_assert_held(&i915->drm.struct_mutex);
2001
	intel_runtime_pm_get(i915);
2002

2003
	if (list_empty(&obj->userfault_link))
2004
		goto out;
2005

2006
	list_del_init(&obj->userfault_link);
2007 2008
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2009 2010 2011 2012 2013 2014 2015 2016 2017

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2018 2019 2020

out:
	intel_runtime_pm_put(i915);
2021 2022
}

2023
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2024
{
2025
	struct drm_i915_gem_object *obj, *on;
2026
	int i;
2027

2028 2029 2030 2031 2032 2033
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2034

2035 2036 2037
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2038 2039 2040
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2041 2042 2043 2044 2045 2046 2047 2048

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2059 2060 2061 2062 2063 2064 2065

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2066 2067
}

2068 2069
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2070
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2071
	int err;
2072

2073
	err = drm_gem_create_mmap_offset(&obj->base);
2074
	if (likely(!err))
2075
		return 0;
2076

2077 2078 2079 2080 2081
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2082

2083
		i915_gem_drain_freed_objects(dev_priv);
2084
		err = drm_gem_create_mmap_offset(&obj->base);
2085 2086 2087 2088
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2089

2090
	return err;
2091 2092 2093 2094 2095 2096 2097
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2098
int
2099 2100
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2101
		  uint32_t handle,
2102
		  uint64_t *offset)
2103
{
2104
	struct drm_i915_gem_object *obj;
2105 2106
	int ret;

2107
	obj = i915_gem_object_lookup(file, handle);
2108 2109
	if (!obj)
		return -ENOENT;
2110

2111
	ret = i915_gem_object_create_mmap_offset(obj);
2112 2113
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2114

C
Chris Wilson 已提交
2115
	i915_gem_object_put(obj);
2116
	return ret;
2117 2118
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2140
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2141 2142
}

D
Daniel Vetter 已提交
2143 2144 2145
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2146
{
2147
	i915_gem_object_free_mmap_offset(obj);
2148

2149 2150
	if (obj->base.filp == NULL)
		return;
2151

D
Daniel Vetter 已提交
2152 2153 2154 2155 2156
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2157
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2158
	obj->mm.madv = __I915_MADV_PURGED;
2159
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2160
}
2161

2162
/* Try to discard unwanted pages */
2163
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2164
{
2165 2166
	struct address_space *mapping;

2167 2168 2169
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2170
	switch (obj->mm.madv) {
2171 2172 2173 2174 2175 2176 2177 2178 2179
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2180
	mapping = obj->base.filp->f_mapping,
2181
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2182 2183
}

2184
static void
2185 2186
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2187
{
2188 2189
	struct sgt_iter sgt_iter;
	struct page *page;
2190

2191
	__i915_gem_object_release_shmem(obj, pages, true);
2192

2193
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2194

2195
	if (i915_gem_object_needs_bit17_swizzle(obj))
2196
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2197

2198
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2199
		if (obj->mm.dirty)
2200
			set_page_dirty(page);
2201

C
Chris Wilson 已提交
2202
		if (obj->mm.madv == I915_MADV_WILLNEED)
2203
			mark_page_accessed(page);
2204

2205
		put_page(page);
2206
	}
C
Chris Wilson 已提交
2207
	obj->mm.dirty = false;
2208

2209 2210
	sg_free_table(pages);
	kfree(pages);
2211
}
C
Chris Wilson 已提交
2212

2213 2214 2215 2216 2217
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2218 2219
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2220 2221
}

2222 2223
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2224
{
2225
	struct sg_table *pages;
2226

C
Chris Wilson 已提交
2227
	if (i915_gem_object_has_pinned_pages(obj))
2228
		return;
2229

2230
	GEM_BUG_ON(obj->bind_count);
2231 2232 2233 2234
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2235
	mutex_lock_nested(&obj->mm.lock, subclass);
2236 2237
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2238

2239 2240 2241
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2242 2243
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2244

C
Chris Wilson 已提交
2245
	if (obj->mm.mapping) {
2246 2247
		void *ptr;

2248
		ptr = page_mask_bits(obj->mm.mapping);
2249 2250
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2251
		else
2252 2253
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2254
		obj->mm.mapping = NULL;
2255 2256
	}

2257 2258
	__i915_gem_object_reset_page_iter(obj);

2259 2260 2261
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2262 2263
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2264 2265
}

2266
static bool i915_sg_trim(struct sg_table *orig_st)
2267 2268 2269 2270 2271 2272
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2273
		return false;
2274

2275
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2276
		return false;
2277 2278 2279 2280 2281 2282 2283

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2284
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2285 2286 2287 2288

	sg_free_table(orig_st);

	*orig_st = new_st;
2289
	return true;
2290 2291
}

2292
static struct sg_table *
C
Chris Wilson 已提交
2293
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2294
{
2295
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2296 2297
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2298
	struct address_space *mapping;
2299 2300
	struct sg_table *st;
	struct scatterlist *sg;
2301
	struct sgt_iter sgt_iter;
2302
	struct page *page;
2303
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2304
	unsigned int max_segment;
2305
	gfp_t noreclaim;
I
Imre Deak 已提交
2306
	int ret;
2307

C
Chris Wilson 已提交
2308 2309 2310 2311
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2312 2313
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2314

2315
	max_segment = swiotlb_max_segment();
2316
	if (!max_segment)
2317
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2318

2319 2320
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2321
		return ERR_PTR(-ENOMEM);
2322

2323
rebuild_st:
2324 2325
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2326
		return ERR_PTR(-ENOMEM);
2327
	}
2328

2329 2330 2331 2332 2333
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2334
	mapping = obj->base.filp->f_mapping;
2335
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2336 2337
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2338 2339 2340
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
2341 2342 2343 2344 2345 2346 2347
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2348
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
			cond_resched();
2359

C
Chris Wilson 已提交
2360 2361 2362
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2363 2364 2365 2366
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2367
			 */
2368 2369 2370
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2383
				 * this we want __GFP_RETRY_MAYFAIL.
2384
				 */
M
Michal Hocko 已提交
2385
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2386
			}
2387 2388
		} while (1);

2389 2390 2391
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2392 2393 2394 2395 2396 2397 2398 2399
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2400 2401 2402

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2403
	}
2404
	if (sg) /* loop terminated early; short sg table */
2405
		sg_mark_end(sg);
2406

2407 2408 2409
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2410
	ret = i915_gem_gtt_prepare_pages(obj, st);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2430

2431
	if (i915_gem_object_needs_bit17_swizzle(obj))
2432
		i915_gem_object_do_bit_17_swizzle(obj, st);
2433

2434
	return st;
2435

2436
err_sg:
2437
	sg_mark_end(sg);
2438
err_pages:
2439 2440
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2441 2442
	sg_free_table(st);
	kfree(st);
2443 2444 2445 2446 2447 2448 2449 2450 2451

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2452 2453 2454
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2455 2456 2457 2458 2459 2460
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2461
	lockdep_assert_held(&obj->mm.lock);
2462 2463 2464 2465 2466

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2467 2468 2469 2470 2471 2472 2473

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2474 2475 2476 2477 2478 2479
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2480 2481
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2493 2494
}

2495
/* Ensure that the associated pages are gathered from the backing storage
2496
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2497
 * multiple times before they are released by a single call to
2498
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2499 2500 2501
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2502
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2503
{
2504
	int err;
2505

2506 2507 2508
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2509

2510
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2511 2512 2513
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2514

2515 2516 2517
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2518

2519 2520
unlock:
	mutex_unlock(&obj->mm.lock);
2521
	return err;
2522 2523
}

2524
/* The 'mapping' part of i915_gem_object_pin_map() below */
2525 2526
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2527 2528
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2529
	struct sg_table *sgt = obj->mm.pages;
2530 2531
	struct sgt_iter sgt_iter;
	struct page *page;
2532 2533
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2534
	unsigned long i = 0;
2535
	pgprot_t pgprot;
2536 2537 2538
	void *addr;

	/* A single page can always be kmapped */
2539
	if (n_pages == 1 && type == I915_MAP_WB)
2540 2541
		return kmap(sg_page(sgt->sgl));

2542 2543
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
M
Michal Hocko 已提交
2544
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2545 2546 2547
		if (!pages)
			return NULL;
	}
2548

2549 2550
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2551 2552 2553 2554

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2555 2556 2557 2558 2559 2560 2561 2562 2563
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2564

2565
	if (pages != stack_pages)
M
Michal Hocko 已提交
2566
		kvfree(pages);
2567 2568 2569 2570 2571

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2572 2573
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2574
{
2575 2576 2577
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2578 2579
	int ret;

2580
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2581

2582
	ret = mutex_lock_interruptible(&obj->mm.lock);
2583 2584 2585
	if (ret)
		return ERR_PTR(ret);

2586 2587
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2588
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2589 2590 2591
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2592

2593 2594 2595
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2596 2597 2598
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2599

2600
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2601 2602 2603
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2604
			goto err_unpin;
2605
		}
2606 2607 2608 2609 2610 2611

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2612
		ptr = obj->mm.mapping = NULL;
2613 2614
	}

2615 2616 2617 2618
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2619
			goto err_unpin;
2620 2621
		}

2622
		obj->mm.mapping = page_pack_bits(ptr, type);
2623 2624
	}

2625 2626
out_unlock:
	mutex_unlock(&obj->mm.lock);
2627 2628
	return ptr;

2629 2630 2631 2632 2633
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2634 2635
}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2705 2706
static bool ban_context(const struct i915_gem_context *ctx,
			unsigned int score)
2707
{
2708
	return (i915_gem_context_is_bannable(ctx) &&
2709
		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2710 2711
}

2712
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2713
{
2714 2715
	unsigned int score;
	bool banned;
2716

2717
	atomic_inc(&ctx->guilty_count);
2718

2719 2720 2721 2722 2723
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = ban_context(ctx, score);
	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
			 ctx->name, score, yesno(banned));
	if (!banned)
2724 2725
		return;

2726 2727 2728 2729 2730 2731
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2732 2733 2734 2735
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2736
	atomic_inc(&ctx->active_count);
2737 2738
}

2739
struct drm_i915_gem_request *
2740
i915_gem_find_active_request(struct intel_engine_cs *engine)
2741
{
2742 2743
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2744

2745 2746 2747 2748 2749 2750 2751 2752
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2753
	spin_lock_irqsave(&engine->timeline->lock, flags);
2754
	list_for_each_entry(request, &engine->timeline->requests, link) {
2755 2756
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2757
			continue;
2758

2759
		GEM_BUG_ON(request->engine != engine);
2760 2761
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2762 2763 2764

		active = request;
		break;
2765
	}
2766
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2767

2768
	return active;
2769 2770
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

	/* Prevent the signaler thread from updating the request
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

	/* Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its engine->irq_tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the engine->irq_tasklet until the reset is over
	 * prevents the race.
	 */
	tasklet_kill(&engine->irq_tasklet);
	tasklet_disable(&engine->irq_tasklet);

	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2819 2820 2821
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2822 2823 2824 2825

	return request;
}

2826
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2827 2828
{
	struct intel_engine_cs *engine;
2829
	struct drm_i915_gem_request *request;
2830
	enum intel_engine_id id;
2831
	int err = 0;
2832

2833
	for_each_engine(engine, dev_priv, id) {
2834 2835 2836 2837
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2838
		}
2839 2840

		engine->hangcheck.active_request = request;
2841 2842
	}

2843
	i915_gem_revoke_fences(dev_priv);
2844 2845

	return err;
2846 2847
}

2848
static void skip_request(struct drm_i915_gem_request *request)
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2863 2864

	dma_fence_set_error(&request->fence, -EIO);
2865 2866
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2890 2891 2892 2893
/* Returns the request if it was guilty of the hang */
static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs *engine,
		       struct drm_i915_gem_request *request)
2894
{
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2916
	if (engine_stalled(engine)) {
2917 2918
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
2919 2920 2921 2922

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
2923
	} else {
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
2941 2942
	}

2943
	return request;
2944 2945
}

2946 2947
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
2948
{
2949 2950
	engine->irq_posted = 0;

2951 2952 2953 2954
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
2955 2956 2957
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
2958 2959 2960

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2961
}
2962

2963
void i915_gem_reset(struct drm_i915_private *dev_priv)
2964
{
2965
	struct intel_engine_cs *engine;
2966
	enum intel_engine_id id;
2967

2968 2969
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2970 2971
	i915_gem_retire_requests(dev_priv);

2972 2973 2974
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2975
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2976 2977 2978 2979
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2980

2981
	i915_gem_restore_fences(dev_priv);
2982 2983 2984 2985 2986 2987 2988

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2989 2990
}

2991 2992 2993 2994 2995 2996
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
	tasklet_enable(&engine->irq_tasklet);
	kthread_unpark(engine->breadcrumbs.signaler);
}

2997 2998
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2999 3000 3001
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3002
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3003

3004
	for_each_engine(engine, dev_priv, id) {
3005
		engine->hangcheck.active_request = NULL;
3006
		i915_gem_reset_finish_engine(engine);
3007
	}
3008 3009
}

3010 3011
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3012
	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3013
	dma_fence_set_error(&request->fence, -EIO);
3014 3015
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3016 3017
}

3018
static void engine_set_wedged(struct intel_engine_cs *engine)
3019
{
3020 3021 3022
	struct drm_i915_gem_request *request;
	unsigned long flags;

3023 3024 3025 3026 3027 3028
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3029
	engine->submit_request = nop_submit_request;
3030

3031 3032 3033
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
3034 3035
		if (!i915_gem_request_completed(request))
			dma_fence_set_error(&request->fence, -EIO);
3036 3037
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

3038 3039 3040 3041 3042 3043
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3044
	if (i915.enable_execlists) {
3045
		struct execlist_port *port = engine->execlist_port;
3046
		unsigned long flags;
3047
		unsigned int n;
3048 3049 3050

		spin_lock_irqsave(&engine->timeline->lock, flags);

3051 3052
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
3053
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3054 3055
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
3056 3057

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3058 3059 3060 3061 3062 3063 3064

		/* The port is checked prior to scheduling a tasklet, but
		 * just in case we have suspended the tasklet to do the
		 * wedging make sure that when it wakes, it decides there
		 * is no work to do by clearing the irq_posted bit.
		 */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3065
	}
3066 3067 3068 3069 3070 3071 3072

	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_engine_init_global_seqno(engine,
				       intel_engine_last_submit(engine));
3073 3074
}

3075
static int __i915_gem_set_wedged_BKL(void *data)
3076
{
3077
	struct drm_i915_private *i915 = data;
3078
	struct intel_engine_cs *engine;
3079
	enum intel_engine_id id;
3080

3081
	for_each_engine(engine, i915, id)
3082
		engine_set_wedged(engine);
3083

3084 3085 3086
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);

3087 3088 3089 3090 3091 3092
	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3093 3094
}

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3147
	i915_gem_contexts_lost(i915);
3148 3149 3150 3151 3152 3153 3154

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3155
static void
3156 3157
i915_gem_retire_work_handler(struct work_struct *work)
{
3158
	struct drm_i915_private *dev_priv =
3159
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3160
	struct drm_device *dev = &dev_priv->drm;
3161

3162
	/* Come back later if the device is busy... */
3163
	if (mutex_trylock(&dev->struct_mutex)) {
3164
		i915_gem_retire_requests(dev_priv);
3165
		mutex_unlock(&dev->struct_mutex);
3166
	}
3167 3168 3169 3170 3171

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3172 3173
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3174 3175
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3176
				   round_jiffies_up_relative(HZ));
3177
	}
3178
}
3179

3180 3181 3182 3183
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3184
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3185
	struct drm_device *dev = &dev_priv->drm;
3186 3187 3188 3189 3190
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3191 3192 3193 3194
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3195
	wait_for(intel_engines_are_idle(dev_priv), 10);
3196
	if (READ_ONCE(dev_priv->gt.active_requests))
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3210 3211 3212 3213 3214 3215 3216
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3217
	if (dev_priv->gt.active_requests)
3218
		goto out_unlock;
3219

3220
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3221 3222
		DRM_ERROR("Timeout waiting for engines to idle\n");

3223
	intel_engines_mark_idle(dev_priv);
3224
	i915_gem_timelines_mark_idle(dev_priv);
3225

3226 3227 3228
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3229

3230 3231 3232 3233 3234
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3235

3236 3237 3238 3239
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3240
	}
3241 3242
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3253

3254 3255 3256 3257
	vma = obj->vma_hashed;
	if (vma && vma->ctx->file_priv == fpriv)
		i915_vma_unlink_ctx(vma);

3258 3259 3260 3261 3262
	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3263 3264 3265
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3277 3278
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3279 3280 3281
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3306 3307
	ktime_t start;
	long ret;
3308

3309 3310 3311
	if (args->flags != 0)
		return -EINVAL;

3312
	obj = i915_gem_object_lookup(file, args->bo_handle);
3313
	if (!obj)
3314 3315
		return -ENOENT;

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3337 3338
	}

C
Chris Wilson 已提交
3339
	i915_gem_object_put(obj);
3340
	return ret;
3341 3342
}

3343
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3344
{
3345
	int ret, i;
3346

3347 3348 3349 3350 3351
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3352

3353 3354 3355
	return 0;
}

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
{
	return wait_for(intel_engine_is_idle(engine), timeout_ms);
}

static int wait_for_engines(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
			i915_gem_set_wedged(i915);
			return -EIO;
		}

		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
			   intel_engine_last_submit(engine));
	}

	return 0;
}

3379 3380 3381 3382
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3383 3384 3385 3386
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3397 3398 3399

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3400 3401

		ret = wait_for_engines(i915);
3402 3403
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3404
	}
3405

3406
	return ret;
3407 3408
}

3409 3410
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3411 3412 3413 3414 3415 3416 3417
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3494 3495
/**
 * Moves a single object to the GTT read, and possibly write domain.
3496 3497
 * @obj: object to act on
 * @write: ask for write access or read only
3498 3499 3500 3501
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3502
int
3503
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3504
{
3505
	int ret;
3506

3507
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3508

3509 3510 3511 3512 3513 3514
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3515 3516 3517
	if (ret)
		return ret;

3518 3519 3520
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3521 3522 3523 3524 3525 3526 3527 3528
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3529
	ret = i915_gem_object_pin_pages(obj);
3530 3531 3532
	if (ret)
		return ret;

3533
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3534

3535 3536 3537 3538 3539 3540 3541
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3542 3543 3544
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3545
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3546
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3547
	if (write) {
3548 3549
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3550
		obj->mm.dirty = true;
3551 3552
	}

C
Chris Wilson 已提交
3553
	i915_gem_object_unpin_pages(obj);
3554 3555 3556
	return 0;
}

3557 3558
/**
 * Changes the cache-level of an object across all VMA.
3559 3560
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3572 3573 3574
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3575
	struct i915_vma *vma;
3576
	int ret;
3577

3578 3579
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3580
	if (obj->cache_level == cache_level)
3581
		return 0;
3582

3583 3584 3585 3586 3587
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3588 3589
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3590 3591 3592
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3593
		if (i915_vma_is_pinned(vma)) {
3594 3595 3596 3597
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3610 3611
	}

3612 3613 3614 3615 3616 3617 3618
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3619
	if (obj->bind_count) {
3620 3621 3622 3623
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3624 3625 3626 3627 3628 3629
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3630 3631 3632
		if (ret)
			return ret;

3633 3634
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3651 3652 3653 3654 3655
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3656 3657 3658 3659 3660 3661 3662 3663
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3664 3665
		}

3666
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3667 3668 3669 3670 3671 3672 3673
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3674 3675
	}

3676
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3677
		vma->node.color = cache_level;
3678
	i915_gem_object_set_cache_coherency(obj, cache_level);
3679
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3680

3681 3682 3683
	return 0;
}

B
Ben Widawsky 已提交
3684 3685
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3686
{
B
Ben Widawsky 已提交
3687
	struct drm_i915_gem_caching *args = data;
3688
	struct drm_i915_gem_object *obj;
3689
	int err = 0;
3690

3691 3692 3693 3694 3695 3696
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3697

3698 3699 3700 3701 3702 3703
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3704 3705 3706 3707
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3708 3709 3710 3711
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3712 3713 3714
out:
	rcu_read_unlock();
	return err;
3715 3716
}

B
Ben Widawsky 已提交
3717 3718
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3719
{
3720
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3721
	struct drm_i915_gem_caching *args = data;
3722 3723
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3724
	int ret = 0;
3725

B
Ben Widawsky 已提交
3726 3727
	switch (args->caching) {
	case I915_CACHING_NONE:
3728 3729
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3730
	case I915_CACHING_CACHED:
3731 3732 3733 3734 3735 3736
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3737
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3738 3739
			return -ENODEV;

3740 3741
		level = I915_CACHE_LLC;
		break;
3742
	case I915_CACHING_DISPLAY:
3743
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3744
		break;
3745 3746 3747 3748
	default:
		return -EINVAL;
	}

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3760
	if (ret)
3761
		goto out;
B
Ben Widawsky 已提交
3762

3763 3764 3765
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3766 3767 3768

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3769 3770 3771

out:
	i915_gem_object_put(obj);
3772 3773 3774
	return ret;
}

3775
/*
3776 3777 3778
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3779
 */
C
Chris Wilson 已提交
3780
struct i915_vma *
3781 3782
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3783
				     const struct i915_ggtt_view *view)
3784
{
C
Chris Wilson 已提交
3785
	struct i915_vma *vma;
3786 3787
	int ret;

3788 3789
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3790 3791 3792
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3793
	obj->pin_display++;
3794

3795 3796 3797 3798 3799 3800 3801 3802 3803
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3804
	ret = i915_gem_object_set_cache_level(obj,
3805 3806
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3807 3808
	if (ret) {
		vma = ERR_PTR(ret);
3809
		goto err_unpin_display;
C
Chris Wilson 已提交
3810
	}
3811

3812 3813
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3814 3815 3816 3817
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3818
	 */
3819
	vma = ERR_PTR(-ENOSPC);
3820
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3821 3822
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3839
	if (IS_ERR(vma))
3840
		goto err_unpin_display;
3841

3842 3843
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3844
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3845
	__i915_gem_object_flush_for_display(obj);
3846
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3847

3848 3849 3850
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3851
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3852

C
Chris Wilson 已提交
3853
	return vma;
3854 3855

err_unpin_display:
3856
	obj->pin_display--;
C
Chris Wilson 已提交
3857
	return vma;
3858 3859 3860
}

void
C
Chris Wilson 已提交
3861
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3862
{
3863
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3864

C
Chris Wilson 已提交
3865
	if (WARN_ON(vma->obj->pin_display == 0))
3866 3867
		return;

3868
	if (--vma->obj->pin_display == 0)
3869
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3870

3871
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3872
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3873

C
Chris Wilson 已提交
3874
	i915_vma_unpin(vma);
3875 3876
}

3877 3878
/**
 * Moves a single object to the CPU read, and possibly write domain.
3879 3880
 * @obj: object to act on
 * @write: requesting write or read-only access
3881 3882 3883 3884
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3885
int
3886
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3887 3888 3889
{
	int ret;

3890
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3891

3892 3893 3894 3895 3896 3897
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3898 3899 3900
	if (ret)
		return ret;

3901
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3902

3903
	/* Flush the CPU cache if it's still invalid. */
3904
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3905
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3906
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3907 3908 3909 3910 3911
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3912
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3913 3914 3915 3916

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3917 3918
	if (write)
		__start_cpu_write(obj);
3919 3920 3921 3922

	return 0;
}

3923 3924 3925
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3926 3927 3928 3929
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3930 3931 3932
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3933
static int
3934
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3935
{
3936
	struct drm_i915_private *dev_priv = to_i915(dev);
3937
	struct drm_i915_file_private *file_priv = file->driver_priv;
3938
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3939
	struct drm_i915_gem_request *request, *target = NULL;
3940
	long ret;
3941

3942 3943 3944
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3945

3946
	spin_lock(&file_priv->mm.lock);
3947
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3948 3949
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3950

3951 3952 3953 3954
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3955

3956
		target = request;
3957
	}
3958
	if (target)
3959
		i915_gem_request_get(target);
3960
	spin_unlock(&file_priv->mm.lock);
3961

3962
	if (target == NULL)
3963
		return 0;
3964

3965 3966 3967
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3968
	i915_gem_request_put(target);
3969

3970
	return ret < 0 ? ret : 0;
3971 3972
}

C
Chris Wilson 已提交
3973
struct i915_vma *
3974 3975
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3976
			 u64 size,
3977 3978
			 u64 alignment,
			 u64 flags)
3979
{
3980 3981
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3982 3983
	struct i915_vma *vma;
	int ret;
3984

3985 3986
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3987
	vma = i915_vma_instance(obj, vm, view);
3988
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3989
		return vma;
3990 3991 3992 3993

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3994
			return ERR_PTR(-ENOSPC);
3995

3996 3997 3998 3999 4000 4001 4002 4003
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
4004
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
4023
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4024 4025 4026
				return ERR_PTR(-ENOSPC);
		}

4027 4028
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4029 4030 4031
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4032
		     !!(flags & PIN_MAPPABLE),
4033
		     i915_vma_is_map_and_fenceable(vma));
4034 4035
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4036
			return ERR_PTR(ret);
4037 4038
	}

C
Chris Wilson 已提交
4039 4040 4041
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4042

C
Chris Wilson 已提交
4043
	return vma;
4044 4045
}

4046
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4061 4062 4063 4064 4065 4066 4067 4068 4069
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4070 4071
}

4072
static __always_inline unsigned int
4073
__busy_set_if_active(const struct dma_fence *fence,
4074 4075
		     unsigned int (*flag)(unsigned int id))
{
4076
	struct drm_i915_gem_request *rq;
4077

4078 4079 4080 4081
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4082
	 *
4083
	 * Note we only report on the status of native fences.
4084
	 */
4085 4086 4087 4088 4089 4090 4091 4092
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4093
	return flag(rq->engine->uabi_id);
4094 4095
}

4096
static __always_inline unsigned int
4097
busy_check_reader(const struct dma_fence *fence)
4098
{
4099
	return __busy_set_if_active(fence, __busy_read_flag);
4100 4101
}

4102
static __always_inline unsigned int
4103
busy_check_writer(const struct dma_fence *fence)
4104
{
4105 4106 4107 4108
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4109 4110
}

4111 4112
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4113
		    struct drm_file *file)
4114 4115
{
	struct drm_i915_gem_busy *args = data;
4116
	struct drm_i915_gem_object *obj;
4117 4118
	struct reservation_object_list *list;
	unsigned int seq;
4119
	int err;
4120

4121
	err = -ENOENT;
4122 4123
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4124
	if (!obj)
4125
		goto out;
4126

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4145

4146 4147
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4148

4149 4150 4151 4152
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4153

4154 4155 4156 4157 4158 4159
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4160
	}
4161

4162 4163 4164 4165
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4166 4167 4168
out:
	rcu_read_unlock();
	return err;
4169 4170 4171 4172 4173 4174
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4175
	return i915_gem_ring_throttle(dev, file_priv);
4176 4177
}

4178 4179 4180 4181
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4182
	struct drm_i915_private *dev_priv = to_i915(dev);
4183
	struct drm_i915_gem_madvise *args = data;
4184
	struct drm_i915_gem_object *obj;
4185
	int err;
4186 4187 4188 4189 4190 4191 4192 4193 4194

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4195
	obj = i915_gem_object_lookup(file_priv, args->handle);
4196 4197 4198 4199 4200 4201
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4202

C
Chris Wilson 已提交
4203
	if (obj->mm.pages &&
4204
	    i915_gem_object_is_tiled(obj) &&
4205
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4206 4207
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4208
			__i915_gem_object_unpin_pages(obj);
4209 4210 4211
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4212
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4213
			__i915_gem_object_pin_pages(obj);
4214 4215
			obj->mm.quirked = true;
		}
4216 4217
	}

C
Chris Wilson 已提交
4218 4219
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4220

C
Chris Wilson 已提交
4221
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4222
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4223 4224
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4225
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4226
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4227

4228
out:
4229
	i915_gem_object_put(obj);
4230
	return err;
4231 4232
}

4233 4234 4235 4236 4237 4238 4239
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4240
	intel_fb_obj_flush(obj, ORIGIN_CS);
4241 4242
}

4243 4244
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4245
{
4246 4247
	mutex_init(&obj->mm.lock);

4248
	INIT_LIST_HEAD(&obj->global_link);
4249
	INIT_LIST_HEAD(&obj->userfault_link);
B
Ben Widawsky 已提交
4250
	INIT_LIST_HEAD(&obj->vma_list);
4251
	INIT_LIST_HEAD(&obj->batch_pool_link);
4252

4253 4254
	obj->ops = ops;

4255 4256 4257
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4258
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4259
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4260 4261 4262 4263

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4264

4265
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4266 4267
}

4268
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4269 4270
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4271

4272 4273
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4274 4275

	.pwrite = i915_gem_object_pwrite_gtt,
4276 4277
};

4278
struct drm_i915_gem_object *
4279
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4280
{
4281
	struct drm_i915_gem_object *obj;
4282
	struct address_space *mapping;
4283
	unsigned int cache_level;
D
Daniel Vetter 已提交
4284
	gfp_t mask;
4285
	int ret;
4286

4287 4288 4289 4290 4291
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4292
	if (size >> PAGE_SHIFT > INT_MAX)
4293 4294 4295 4296 4297
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4298
	obj = i915_gem_object_alloc(dev_priv);
4299
	if (obj == NULL)
4300
		return ERR_PTR(-ENOMEM);
4301

4302
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4303 4304
	if (ret)
		goto fail;
4305

4306
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4307
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4308 4309 4310 4311 4312
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4313
	mapping = obj->base.filp->f_mapping;
4314
	mapping_set_gfp_mask(mapping, mask);
4315
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4316

4317
	i915_gem_object_init(obj, &i915_gem_object_ops);
4318

4319 4320
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4321

4322
	if (HAS_LLC(dev_priv))
4323
		/* On some devices, we can have the GPU use the LLC (the CPU
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4335 4336 4337
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4338

4339
	i915_gem_object_set_cache_coherency(obj, cache_level);
4340

4341 4342
	trace_i915_gem_object_create(obj);

4343
	return obj;
4344 4345 4346 4347

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4348 4349
}

4350 4351 4352 4353 4354 4355 4356 4357
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4358
	if (obj->mm.madv != I915_MADV_WILLNEED)
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4374 4375
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4376
{
4377
	struct drm_i915_gem_object *obj, *on;
4378

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4393 4394
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4395

4396
		list_del(&obj->global_link);
4397 4398 4399 4400
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4401 4402
	cond_resched();

4403 4404 4405 4406 4407 4408
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4409

4410 4411
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4412
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4413 4414 4415 4416 4417
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4418
		reservation_object_fini(&obj->__builtin_resv);
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4441

4442 4443 4444 4445 4446 4447 4448
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4449

4450
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4451
		__i915_gem_free_objects(i915, freed);
4452 4453 4454
		if (need_resched())
			break;
	}
4455
}
4456

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4471

4472 4473 4474
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4475

4476 4477 4478
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4479
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4480
		obj->mm.madv = I915_MADV_DONTNEED;
4481

4482 4483 4484 4485 4486 4487
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4488 4489
}

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4501 4502 4503 4504 4505 4506
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4507 4508
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4509 4510
}

4511 4512 4513 4514 4515 4516 4517 4518
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4519
	 * of the reset, so this could be applied to even earlier gen.
4520
	 */
4521
	if (INTEL_GEN(i915) >= 5) {
4522 4523 4524 4525 4526
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4527
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4528
{
4529
	struct drm_device *dev = &dev_priv->drm;
4530
	int ret;
4531

4532
	intel_runtime_pm_get(dev_priv);
4533 4534
	intel_suspend_gt_powersave(dev_priv);

4535
	mutex_lock(&dev->struct_mutex);
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4547
		goto err_unlock;
4548

4549 4550 4551
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4552
	if (ret)
4553
		goto err_unlock;
4554

4555
	assert_kernel_context_is_current(dev_priv);
4556
	i915_gem_contexts_lost(dev_priv);
4557 4558
	mutex_unlock(&dev->struct_mutex);

4559 4560
	intel_guc_suspend(dev_priv);

4561
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4562
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4563 4564 4565 4566 4567 4568 4569

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

4570 4571 4572
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4573
	WARN_ON(dev_priv->gt.awake);
4574
	WARN_ON(!intel_engines_are_idle(dev_priv));
4575

4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4595
	i915_gem_sanitize(dev_priv);
4596
	goto out_rpm_put;
4597

4598
err_unlock:
4599
	mutex_unlock(&dev->struct_mutex);
4600 4601
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4602
	return ret;
4603 4604
}

4605
void i915_gem_resume(struct drm_i915_private *dev_priv)
4606
{
4607
	struct drm_device *dev = &dev_priv->drm;
4608

4609 4610
	WARN_ON(dev_priv->gt.awake);

4611
	mutex_lock(&dev->struct_mutex);
4612
	i915_gem_restore_gtt_mappings(dev_priv);
4613 4614 4615 4616 4617

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4618
	dev_priv->gt.resume(dev_priv);
4619 4620 4621 4622

	mutex_unlock(&dev->struct_mutex);
}

4623
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4624
{
4625
	if (INTEL_GEN(dev_priv) < 5 ||
4626 4627 4628 4629 4630 4631
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4632
	if (IS_GEN5(dev_priv))
4633 4634
		return;

4635
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4636
	if (IS_GEN6(dev_priv))
4637
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4638
	else if (IS_GEN7(dev_priv))
4639
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4640
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4641
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4642 4643
	else
		BUG();
4644
}
D
Daniel Vetter 已提交
4645

4646
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4647 4648 4649 4650 4651 4652 4653
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4654
static void init_unused_rings(struct drm_i915_private *dev_priv)
4655
{
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4668 4669 4670
	}
}

4671
static int __i915_gem_restart_engines(void *data)
4672
{
4673
	struct drm_i915_private *i915 = data;
4674
	struct intel_engine_cs *engine;
4675
	enum intel_engine_id id;
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4689
	int ret;
4690

4691 4692
	dev_priv->gt.last_init_time = ktime_get();

4693 4694 4695
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4696
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4697
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4698

4699
	if (IS_HASWELL(dev_priv))
4700
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4701
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4702

4703
	if (HAS_PCH_NOP(dev_priv)) {
4704
		if (IS_IVYBRIDGE(dev_priv)) {
4705 4706 4707
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4708
		} else if (INTEL_GEN(dev_priv) >= 7) {
4709 4710 4711 4712
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4713 4714
	}

4715
	i915_gem_init_swizzling(dev_priv);
4716

4717 4718 4719 4720 4721 4722
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4723
	init_unused_rings(dev_priv);
4724

4725
	BUG_ON(!dev_priv->kernel_context);
4726

4727
	ret = i915_ppgtt_init_hw(dev_priv);
4728 4729 4730 4731 4732 4733
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4734 4735 4736
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4737

4738
	intel_mocs_init_l3cc_table(dev_priv);
4739

4740 4741 4742 4743
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4744

4745 4746
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4747
	return ret;
4748 4749
}

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4763
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4764 4765 4766 4767 4768
		return false;

	return true;
}

4769
int i915_gem_init(struct drm_i915_private *dev_priv)
4770 4771 4772
{
	int ret;

4773
	mutex_lock(&dev_priv->drm.struct_mutex);
4774

4775
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4776

4777
	if (!i915.enable_execlists) {
4778
		dev_priv->gt.resume = intel_legacy_submission_resume;
4779
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4780
	} else {
4781
		dev_priv->gt.resume = intel_lr_context_resume;
4782
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4783 4784
	}

4785 4786 4787 4788 4789 4790 4791 4792
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4793 4794 4795
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
4796 4797 4798 4799

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4800

4801
	ret = i915_gem_contexts_init(dev_priv);
4802 4803
	if (ret)
		goto out_unlock;
4804

4805
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4806
	if (ret)
4807
		goto out_unlock;
4808

4809
	ret = i915_gem_init_hw(dev_priv);
4810
	if (ret == -EIO) {
4811
		/* Allow engine initialisation to fail by marking the GPU as
4812 4813 4814 4815
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4816
		i915_gem_set_wedged(dev_priv);
4817
		ret = 0;
4818
	}
4819 4820

out_unlock:
4821
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4822
	mutex_unlock(&dev_priv->drm.struct_mutex);
4823

4824
	return ret;
4825 4826
}

4827 4828 4829 4830 4831
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4832
void
4833
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4834
{
4835
	struct intel_engine_cs *engine;
4836
	enum intel_engine_id id;
4837

4838
	for_each_engine(engine, dev_priv, id)
4839
		dev_priv->gt.cleanup_engine(engine);
4840 4841
}

4842 4843 4844
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4845
	int i;
4846 4847 4848 4849

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4850 4851 4852
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4853 4854 4855 4856
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4857
	if (intel_vgpu_active(dev_priv))
4858 4859 4860 4861
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4862 4863 4864 4865 4866 4867 4868
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4869
	i915_gem_restore_fences(dev_priv);
4870

4871
	i915_gem_detect_bit_6_swizzle(dev_priv);
4872 4873
}

4874
int
4875
i915_gem_load_init(struct drm_i915_private *dev_priv)
4876
{
4877
	int err = -ENOMEM;
4878

4879 4880
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4881 4882
		goto err_out;

4883 4884
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4885 4886
		goto err_objects;

4887 4888 4889
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4890
					SLAB_TYPESAFE_BY_RCU);
4891
	if (!dev_priv->requests)
4892 4893
		goto err_vmas;

4894 4895 4896 4897 4898 4899
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4900 4901 4902 4903
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4904 4905
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4906
	err = i915_gem_timeline_init__global(dev_priv);
4907 4908
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4909
		goto err_priorities;
4910

4911 4912
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4913 4914
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4915
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4916
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4917
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4918
			  i915_gem_retire_work_handler);
4919
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4920
			  i915_gem_idle_work_handler);
4921
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4922
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4923

4924 4925
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4926
	spin_lock_init(&dev_priv->fb_tracking.lock);
4927 4928 4929

	return 0;

4930 4931
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
4932 4933
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4934 4935 4936 4937 4938 4939 4940 4941
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4942
}
4943

4944
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4945
{
4946
	i915_gem_drain_freed_objects(dev_priv);
4947
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4948
	WARN_ON(dev_priv->mm.object_count);
4949

4950 4951 4952 4953 4954
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4955
	kmem_cache_destroy(dev_priv->priorities);
4956
	kmem_cache_destroy(dev_priv->dependencies);
4957 4958 4959
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4960 4961 4962

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4963 4964
}

4965 4966
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4967 4968 4969
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
4970 4971 4972 4973 4974
	i915_gem_shrink_all(dev_priv);

	return 0;
}

4975 4976 4977
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4978 4979 4980 4981 4982
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4993 4994
	 *
	 * To try and reduce the hibernation image, we manually shrink
4995
	 * the objects as well, see i915_gem_freeze()
4996 4997
	 */

4998
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4999
	i915_gem_drain_freed_objects(dev_priv);
5000

5001
	mutex_lock(&dev_priv->drm.struct_mutex);
5002
	for (p = phases; *p; p++) {
5003 5004
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
5005
	}
5006
	mutex_unlock(&dev_priv->drm.struct_mutex);
5007 5008 5009 5010

	return 0;
}

5011
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5012
{
5013
	struct drm_i915_file_private *file_priv = file->driver_priv;
5014
	struct drm_i915_gem_request *request;
5015 5016 5017 5018 5019

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5020
	spin_lock(&file_priv->mm.lock);
5021
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5022
		request->file_priv = NULL;
5023
	spin_unlock(&file_priv->mm.lock);
5024 5025
}

5026
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5027 5028
{
	struct drm_i915_file_private *file_priv;
5029
	int ret;
5030

5031
	DRM_DEBUG("\n");
5032 5033 5034 5035 5036 5037

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5038
	file_priv->dev_priv = i915;
5039
	file_priv->file = file;
5040 5041 5042 5043

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5044
	file_priv->bsd_engine = -1;
5045

5046
	ret = i915_gem_context_open(i915, file);
5047 5048
	if (ret)
		kfree(file_priv);
5049

5050
	return ret;
5051 5052
}

5053 5054
/**
 * i915_gem_track_fb - update frontbuffer tracking
5055 5056 5057
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5058 5059 5060 5061
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5062 5063 5064 5065
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5066 5067 5068 5069 5070 5071 5072 5073 5074
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5075
	if (old) {
5076 5077
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5078 5079 5080
	}

	if (new) {
5081 5082
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5083 5084 5085
	}
}

5086 5087
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5088
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5089 5090 5091
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5092 5093 5094
	struct file *file;
	size_t offset;
	int err;
5095

5096
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5097
	if (IS_ERR(obj))
5098 5099
		return obj;

5100
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5101

5102 5103 5104 5105 5106 5107
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5108

5109 5110 5111 5112 5113
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5114

5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5129 5130 5131 5132

	return obj;

fail:
5133
	i915_gem_object_put(obj);
5134
	return ERR_PTR(err);
5135
}
5136 5137 5138 5139 5140 5141

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5142
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5143 5144 5145 5146 5147
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5148
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5273
	if (!obj->mm.dirty)
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5289

5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

	pages = obj->mm.pages;
	obj->ops = &i915_gem_phys_ops;

5328
	err = ____i915_gem_object_get_pages(obj);
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5348 5349
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5350
#include "selftests/mock_gem_device.c"
5351
#include "selftests/huge_gem_object.c"
5352
#include "selftests/i915_gem_object.c"
5353
#include "selftests/i915_gem_coherency.c"
5354
#endif