i915_gem.c 135.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56 57 58 59 60 61 62
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

63 64 65 66
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
67
	spin_lock(&dev_priv->mm.object_stat_lock);
68 69
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
70
	spin_unlock(&dev_priv->mm.object_stat_lock);
71 72 73 74 75
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
76
	spin_lock(&dev_priv->mm.object_stat_lock);
77 78
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
79
	spin_unlock(&dev_priv->mm.object_stat_lock);
80 81
}

82
static int
83
i915_gem_wait_for_error(struct i915_gpu_error *error)
84 85 86
{
	int ret;

87
	if (!i915_reset_in_progress(error))
88 89
		return 0;

90 91 92 93 94
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
95
	ret = wait_event_interruptible_timeout(error->reset_queue,
96
					       !i915_reset_in_progress(error),
97
					       10*HZ);
98 99 100 101
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
102
		return ret;
103 104
	} else {
		return 0;
105
	}
106 107
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109
{
110
	struct drm_i915_private *dev_priv = dev->dev_private;
111 112
	int ret;

113
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 115 116 117 118 119 120
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

121
	WARN_ON(i915_verify_lists(dev));
122 123
	return 0;
}
124

125 126
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127
			    struct drm_file *file)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
131
	struct drm_i915_gem_get_aperture *args = data;
132
	struct i915_vma *vma;
133
	size_t pinned;
134

135
	pinned = 0;
136
	mutex_lock(&dev->struct_mutex);
137
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 139
		if (vma->pin_count)
			pinned += vma->node.size;
140
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 142
		if (vma->pin_count)
			pinned += vma->node.size;
143
	mutex_unlock(&dev->struct_mutex);
144

145
	args->aper_size = ggtt->base.total;
146
	args->aper_available_size = args->aper_size - pinned;
147

148 149 150
	return 0;
}

151 152
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153
{
154 155 156 157 158
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

176
		put_page(page);
177 178 179
		vaddr += PAGE_SIZE;
	}

180
	i915_gem_chipset_flush(to_i915(obj->base.dev));
181 182 183 184 185 186 187 188 189 190 191 192 193

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
194

195 196 197 198 199 200 201 202 203 204 205 206 207
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
208

209
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
210
	if (WARN_ON(ret)) {
211 212 213 214 215 216 217 218 219 220
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
221
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222
		char *vaddr = obj->phys_handle->vaddr;
223 224 225
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
240
				mark_page_accessed(page);
241
			put_page(page);
242 243
			vaddr += PAGE_SIZE;
		}
244
		obj->dirty = 0;
245 246
	}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
270
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 272 273 274 275 276 277
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
278 279 280 281 282 283 284
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
285
	int ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

300 301 302 303
	ret = drop_pages(obj);
	if (ret)
		return ret;

304 305 306 307 308 309
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
310 311 312
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
313 314 315 316 317 318 319 320 321 322
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
323
	int ret = 0;
324 325 326 327 328 329 330

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
331

332
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 334 335 336 337 338 339 340 341 342
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
343 344 345 346
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
347 348
	}

349
	drm_clflush_virt_range(vaddr, args->size);
350
	i915_gem_chipset_flush(to_i915(dev));
351 352

out:
353
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354
	return ret;
355 356
}

357 358 359
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
360
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 362 363 364 365
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366
	kmem_cache_free(dev_priv->objects, obj);
367 368
}

369 370 371 372 373
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
374
{
375
	struct drm_i915_gem_object *obj;
376 377
	int ret;
	u32 handle;
378

379
	size = roundup(size, PAGE_SIZE);
380 381
	if (size == 0)
		return -EINVAL;
382 383

	/* Allocate the new object */
384
	obj = i915_gem_object_create(dev, size);
385 386
	if (IS_ERR(obj))
		return PTR_ERR(obj);
387

388
	ret = drm_gem_handle_create(file, &obj->base, &handle);
389
	/* drop reference from allocate - handle holds it now */
390 391 392
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
393

394
	*handle_p = handle;
395 396 397
	return 0;
}

398 399 400 401 402 403
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
404
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 406
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
407
			       args->size, &args->handle);
408 409 410 411 412 413 414 415 416 417
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
418

419
	return i915_gem_create(file, dev,
420
			       args->size, &args->handle);
421 422
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

449
static inline int
450 451
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

487
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

511 512 513
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
514
static int
515 516 517 518 519 520 521
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

522
	if (unlikely(page_do_bit17_swizzling))
523 524 525 526 527 528 529 530 531 532 533
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

534
	return ret ? -EFAULT : 0;
535 536
}

537 538 539 540
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
541
	if (unlikely(swizzled)) {
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

559 560 561 562 563 564 565 566 567 568 569 570
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
571 572 573
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
574 575 576 577 578 579 580 581 582 583 584

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

585
	return ret ? - EFAULT : 0;
586 587
}

588
static int
589 590 591 592
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
593
{
594
	char __user *user_data;
595
	ssize_t remain;
596
	loff_t offset;
597
	int shmem_page_offset, page_length, ret = 0;
598
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599
	int prefaulted = 0;
600
	int needs_clflush = 0;
601
	struct sg_page_iter sg_iter;
602

V
Ville Syrjälä 已提交
603
	user_data = to_user_ptr(args->data_ptr);
604 605
	remain = args->size;

606
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607

608
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 610 611
	if (ret)
		return ret;

612
	offset = args->offset;
613

614 615
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
616
		struct page *page = sg_page_iter_page(&sg_iter);
617 618 619 620

		if (remain <= 0)
			break;

621 622 623 624 625
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
626
		shmem_page_offset = offset_in_page(offset);
627 628 629 630
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

631 632 633
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

634 635 636 637 638
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
639 640 641

		mutex_unlock(&dev->struct_mutex);

642
		if (likely(!i915.prefault_disable) && !prefaulted) {
643
			ret = fault_in_multipages_writeable(user_data, remain);
644 645 646 647 648 649 650
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
651

652 653 654
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
655

656
		mutex_lock(&dev->struct_mutex);
657 658

		if (ret)
659 660
			goto out;

661
next_page:
662
		remain -= page_length;
663
		user_data += page_length;
664 665 666
		offset += page_length;
	}

667
out:
668 669
	i915_gem_object_unpin_pages(obj);

670 671 672
	return ret;
}

673 674 675 676 677 678 679
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680
		     struct drm_file *file)
681 682
{
	struct drm_i915_gem_pread *args = data;
683
	struct drm_i915_gem_object *obj;
684
	int ret = 0;
685

686 687 688 689
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
690
		       to_user_ptr(args->data_ptr),
691 692 693
		       args->size))
		return -EFAULT;

694
	ret = i915_mutex_lock_interruptible(dev);
695
	if (ret)
696
		return ret;
697

698
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
699
	if (&obj->base == NULL) {
700 701
		ret = -ENOENT;
		goto unlock;
702
	}
703

704
	/* Bounds check source.  */
705 706
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
707
		ret = -EINVAL;
708
		goto out;
C
Chris Wilson 已提交
709 710
	}

711 712 713 714 715 716 717 718
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
719 720
	trace_i915_gem_object_pread(obj, args->offset, args->size);

721
	ret = i915_gem_shmem_pread(dev, obj, args, file);
722

723
out:
724
	drm_gem_object_unreference(&obj->base);
725
unlock:
726
	mutex_unlock(&dev->struct_mutex);
727
	return ret;
728 729
}

730 731
/* This is the fast write path which cannot handle
 * page faults in the source data
732
 */
733 734 735 736 737 738

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
739
{
740 741
	void __iomem *vaddr_atomic;
	void *vaddr;
742
	unsigned long unwritten;
743

P
Peter Zijlstra 已提交
744
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 746 747
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
748
						      user_data, length);
P
Peter Zijlstra 已提交
749
	io_mapping_unmap_atomic(vaddr_atomic);
750
	return unwritten;
751 752
}

753 754 755 756
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
757
static int
758 759
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
760
			 struct drm_i915_gem_pwrite *args,
761
			 struct drm_file *file)
762
{
763 764
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
765
	ssize_t remain;
766
	loff_t offset, page_base;
767
	char __user *user_data;
D
Daniel Vetter 已提交
768 769
	int page_offset, page_length, ret;

770
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
771 772 773 774 775 776 777 778 779 780
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
781

V
Ville Syrjälä 已提交
782
	user_data = to_user_ptr(args->data_ptr);
783 784
	remain = args->size;

785
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786

787
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788

789 790 791
	while (remain > 0) {
		/* Operation in this page
		 *
792 793 794
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
795
		 */
796 797
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
798 799 800 801 802
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
803 804
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
805
		 */
806
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
807 808
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
809
			goto out_flush;
D
Daniel Vetter 已提交
810
		}
811

812 813 814
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
815 816
	}

817
out_flush:
818
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
819
out_unpin:
B
Ben Widawsky 已提交
820
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
821
out:
822
	return ret;
823 824
}

825 826 827 828
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
829
static int
830 831 832 833 834
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
835
{
836
	char *vaddr;
837
	int ret;
838

839
	if (unlikely(page_do_bit17_swizzling))
840
		return -EINVAL;
841

842 843 844 845
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
846 847
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
848 849 850 851
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
852

853
	return ret ? -EFAULT : 0;
854 855
}

856 857
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
858
static int
859 860 861 862 863
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
864
{
865 866
	char *vaddr;
	int ret;
867

868
	vaddr = kmap(page);
869
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 871 872
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
873 874
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 876
						user_data,
						page_length);
877 878 879 880 881
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
882 883 884
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
885
	kunmap(page);
886

887
	return ret ? -EFAULT : 0;
888 889 890
}

static int
891 892 893 894
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
895 896
{
	ssize_t remain;
897 898
	loff_t offset;
	char __user *user_data;
899
	int shmem_page_offset, page_length, ret = 0;
900
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901
	int hit_slowpath = 0;
902 903
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
904
	struct sg_page_iter sg_iter;
905

V
Ville Syrjälä 已提交
906
	user_data = to_user_ptr(args->data_ptr);
907 908
	remain = args->size;

909
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910

911 912 913 914 915
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
916
		needs_clflush_after = cpu_write_needs_clflush(obj);
917 918 919
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
920
	}
921 922 923 924 925
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
926

927 928 929 930
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

931
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932

933 934
	i915_gem_object_pin_pages(obj);

935
	offset = args->offset;
936
	obj->dirty = 1;
937

938 939
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
940
		struct page *page = sg_page_iter_page(&sg_iter);
941
		int partial_cacheline_write;
942

943 944 945
		if (remain <= 0)
			break;

946 947 948 949 950
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
951
		shmem_page_offset = offset_in_page(offset);
952 953 954 955 956

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

957 958 959 960 961 962 963
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

964 965 966
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

967 968 969 970 971 972
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
973 974 975

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
976 977 978 979
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
980

981
		mutex_lock(&dev->struct_mutex);
982 983

		if (ret)
984 985
			goto out;

986
next_page:
987
		remain -= page_length;
988
		user_data += page_length;
989
		offset += page_length;
990 991
	}

992
out:
993 994
	i915_gem_object_unpin_pages(obj);

995
	if (hit_slowpath) {
996 997 998 999 1000 1001 1002
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003
			if (i915_gem_clflush_object(obj, obj->pin_display))
1004
				needs_clflush_after = true;
1005
		}
1006
	}
1007

1008
	if (needs_clflush_after)
1009
		i915_gem_chipset_flush(to_i915(dev));
1010 1011
	else
		obj->cache_dirty = true;
1012

1013
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014
	return ret;
1015 1016 1017 1018 1019 1020 1021 1022 1023
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024
		      struct drm_file *file)
1025
{
1026
	struct drm_i915_private *dev_priv = dev->dev_private;
1027
	struct drm_i915_gem_pwrite *args = data;
1028
	struct drm_i915_gem_object *obj;
1029 1030 1031 1032 1033 1034
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1035
		       to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	if (likely(!i915.prefault_disable)) {
1040 1041 1042 1043 1044
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1045

1046 1047
	intel_runtime_pm_get(dev_priv);

1048
	ret = i915_mutex_lock_interruptible(dev);
1049
	if (ret)
1050
		goto put_rpm;
1051

1052
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053
	if (&obj->base == NULL) {
1054 1055
		ret = -ENOENT;
		goto unlock;
1056
	}
1057

1058
	/* Bounds check destination. */
1059 1060
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1061
		ret = -EINVAL;
1062
		goto out;
C
Chris Wilson 已提交
1063 1064
	}

1065 1066 1067 1068 1069 1070 1071 1072
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1073 1074
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1075
	ret = -EFAULT;
1076 1077 1078 1079 1080 1081
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1082 1083 1084
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1085
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1086 1087 1088
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1089
	}
1090

1091 1092 1093 1094 1095 1096
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1097

1098
out:
1099
	drm_gem_object_unreference(&obj->base);
1100
unlock:
1101
	mutex_unlock(&dev->struct_mutex);
1102 1103 1104
put_rpm:
	intel_runtime_pm_put(dev_priv);

1105 1106 1107
	return ret;
}

1108 1109
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110
{
1111 1112
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1113

1114
	if (__i915_reset_in_progress(reset_counter)) {
1115 1116 1117 1118 1119
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1120
		return -EAGAIN;
1121 1122 1123 1124 1125
	}

	return 0;
}

1126 1127 1128 1129 1130 1131
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1132
		       struct intel_engine_cs *engine)
1133
{
1134
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1169
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170
{
1171
	unsigned long timeout;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1183

1184
	if (req->engine->irq_refcount)
1185 1186
		return -EBUSY;

1187 1188 1189 1190
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1191
	timeout = local_clock_us(&cpu) + 5;
1192
	while (!need_resched()) {
D
Daniel Vetter 已提交
1193
		if (i915_gem_request_completed(req, true))
1194 1195
			return 0;

1196 1197 1198
		if (signal_pending_state(state, current))
			break;

1199
		if (busywait_stop(timeout, cpu))
1200
			break;
1201

1202 1203
		cpu_relax_lowlatency();
	}
1204

D
Daniel Vetter 已提交
1205
	if (i915_gem_request_completed(req, false))
1206 1207 1208
		return 0;

	return -EAGAIN;
1209 1210
}

1211
/**
1212 1213
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1214 1215 1216
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1217 1218 1219 1220 1221 1222 1223
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1224
 * Returns 0 if the request was found within the alloted time. Else returns the
1225 1226
 * errno with remaining time filled in timeout argument.
 */
1227
int __i915_wait_request(struct drm_i915_gem_request *req,
1228
			bool interruptible,
1229
			s64 *timeout,
1230
			struct intel_rps_client *rps)
1231
{
1232
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233
	struct drm_i915_private *dev_priv = req->i915;
1234
	const bool irq_test_in_progress =
1235
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1236
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1237
	DEFINE_WAIT(wait);
1238
	unsigned long timeout_expire;
1239
	s64 before = 0; /* Only to silence a compiler warning. */
1240 1241
	int ret;

1242
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1243

1244 1245 1246
	if (list_empty(&req->list))
		return 0;

1247
	if (i915_gem_request_completed(req, true))
1248 1249
		return 0;

1250 1251 1252 1253 1254 1255 1256 1257 1258
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1259 1260 1261 1262 1263

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1264
	}
1265

1266
	if (INTEL_INFO(dev_priv)->gen >= 6)
1267
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1268

1269
	trace_i915_gem_request_wait_begin(req);
1270 1271

	/* Optimistic spin for the next jiffie before touching IRQs */
1272
	ret = __i915_spin_request(req, state);
1273 1274 1275
	if (ret == 0)
		goto out;

1276
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1277 1278 1279 1280
		ret = -ENODEV;
		goto out;
	}

1281 1282
	for (;;) {
		struct timer_list timer;
1283

1284
		prepare_to_wait(&engine->irq_queue, &wait, state);
1285

1286
		/* We need to check whether any gpu reset happened in between
1287 1288 1289 1290 1291 1292
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1293
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1294
			ret = 0;
1295 1296
			break;
		}
1297

1298
		if (i915_gem_request_completed(req, false)) {
1299 1300 1301
			ret = 0;
			break;
		}
1302

1303
		if (signal_pending_state(state, current)) {
1304 1305 1306 1307
			ret = -ERESTARTSYS;
			break;
		}

1308
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1309 1310 1311 1312 1313
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1314
		if (timeout || missed_irq(dev_priv, engine)) {
1315 1316
			unsigned long expire;

1317
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1318
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1319 1320 1321
			mod_timer(&timer, expire);
		}

1322
		io_schedule();
1323 1324 1325 1326 1327 1328

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1329
	if (!irq_test_in_progress)
1330
		engine->irq_put(engine);
1331

1332
	finish_wait(&engine->irq_queue, &wait);
1333

1334 1335 1336
out:
	trace_i915_gem_request_wait_end(req);

1337
	if (timeout) {
1338
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1339 1340

		*timeout = tres < 0 ? 0 : tres;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1351 1352
	}

1353
	return ret;
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1393 1394 1395

	put_pid(request->pid);
	request->pid = NULL;
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1415
	if (request->previous_context) {
1416
		if (i915.enable_execlists)
1417 1418
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1419 1420
	}

1421
	i915_gem_context_unreference(request->ctx);
1422 1423 1424 1425 1426 1427
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1428
	struct intel_engine_cs *engine = req->engine;
1429 1430
	struct drm_i915_gem_request *tmp;

1431
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1446
/**
1447
 * Waits for a request to be signaled, and cleans up the
1448 1449 1450
 * request and object lists appropriately for that event.
 */
int
1451
i915_wait_request(struct drm_i915_gem_request *req)
1452
{
1453
	struct drm_i915_private *dev_priv = req->i915;
1454
	bool interruptible;
1455 1456
	int ret;

1457 1458
	interruptible = dev_priv->mm.interruptible;

1459
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1460

1461
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1462 1463
	if (ret)
		return ret;
1464

1465 1466 1467 1468
	/* If the GPU hung, we want to keep the requests to find the guilty. */
	if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
		__i915_gem_request_retire__upto(req);

1469 1470 1471
	return 0;
}

1472 1473 1474 1475
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1476
int
1477 1478 1479
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1480
	int ret, i;
1481

1482
	if (!obj->active)
1483 1484
		return 0;

1485 1486 1487 1488 1489
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1490

1491
			i = obj->last_write_req->engine->id;
1492 1493 1494 1495 1496 1497
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1498
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1499 1500 1501 1502 1503 1504 1505 1506 1507
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1508
		GEM_BUG_ON(obj->active);
1509 1510 1511 1512 1513 1514 1515 1516 1517
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1518
	int ring = req->engine->id;
1519 1520 1521 1522 1523 1524

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1525 1526
	if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
		__i915_gem_request_retire__upto(req);
1527 1528
}

1529 1530 1531 1532 1533
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1534
					    struct intel_rps_client *rps,
1535 1536 1537 1538
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1539
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1540
	int ret, i, n = 0;
1541 1542 1543 1544

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1545
	if (!obj->active)
1546 1547
		return 0;

1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1557
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1568
	mutex_unlock(&dev->struct_mutex);
1569
	ret = 0;
1570
	for (i = 0; ret == 0 && i < n; i++)
1571
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1572 1573
	mutex_lock(&dev->struct_mutex);

1574 1575 1576 1577 1578 1579 1580
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1581 1582
}

1583 1584 1585 1586 1587 1588
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1589
/**
1590 1591
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1592 1593 1594
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1595
			  struct drm_file *file)
1596 1597
{
	struct drm_i915_gem_set_domain *args = data;
1598
	struct drm_i915_gem_object *obj;
1599 1600
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1601 1602
	int ret;

1603
	/* Only handle setting domains to types used by the CPU. */
1604
	if (write_domain & I915_GEM_GPU_DOMAINS)
1605 1606
		return -EINVAL;

1607
	if (read_domains & I915_GEM_GPU_DOMAINS)
1608 1609 1610 1611 1612 1613 1614 1615
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1616
	ret = i915_mutex_lock_interruptible(dev);
1617
	if (ret)
1618
		return ret;
1619

1620
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1621
	if (&obj->base == NULL) {
1622 1623
		ret = -ENOENT;
		goto unlock;
1624
	}
1625

1626 1627 1628 1629
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1630
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1631
							  to_rps_client(file),
1632
							  !write_domain);
1633 1634 1635
	if (ret)
		goto unref;

1636
	if (read_domains & I915_GEM_DOMAIN_GTT)
1637
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1638
	else
1639
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1640

1641 1642 1643 1644 1645
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1646
unref:
1647
	drm_gem_object_unreference(&obj->base);
1648
unlock:
1649 1650 1651 1652 1653 1654 1655 1656 1657
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1658
			 struct drm_file *file)
1659 1660
{
	struct drm_i915_gem_sw_finish *args = data;
1661
	struct drm_i915_gem_object *obj;
1662 1663
	int ret = 0;

1664
	ret = i915_mutex_lock_interruptible(dev);
1665
	if (ret)
1666
		return ret;
1667

1668
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1669
	if (&obj->base == NULL) {
1670 1671
		ret = -ENOENT;
		goto unlock;
1672 1673 1674
	}

	/* Pinned buffers may be scanout, so flush the cache */
1675
	if (obj->pin_display)
1676
		i915_gem_object_flush_cpu_write_domain(obj);
1677

1678
	drm_gem_object_unreference(&obj->base);
1679
unlock:
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1700 1701 1702
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1703
		    struct drm_file *file)
1704 1705 1706 1707 1708
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1709 1710 1711 1712 1713 1714
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1715
	obj = drm_gem_object_lookup(dev, file, args->handle);
1716
	if (obj == NULL)
1717
		return -ENOENT;
1718

1719 1720 1721 1722 1723 1724 1725 1726
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1727
	addr = vm_mmap(obj->filp, 0, args->size,
1728 1729
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1743
	drm_gem_object_unreference_unlocked(obj);
1744 1745 1746 1747 1748 1749 1750 1751
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1752 1753
/**
 * i915_gem_fault - fault a page into the GTT
1754 1755
 * @vma: VMA in question
 * @vmf: fault info
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1770 1771
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1772 1773
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1774
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1775 1776 1777
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1778
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1779

1780 1781
	intel_runtime_pm_get(dev_priv);

1782 1783 1784 1785
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1786 1787 1788
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1789

C
Chris Wilson 已提交
1790 1791
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1792 1793 1794 1795 1796 1797 1798 1799 1800
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1801 1802
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1803
		ret = -EFAULT;
1804 1805 1806
		goto unlock;
	}

1807
	/* Use a partial view if the object is bigger than the aperture. */
1808
	if (obj->base.size >= ggtt->mappable_end &&
1809
	    obj->tiling_mode == I915_TILING_NONE) {
1810
		static const unsigned int chunk_size = 256; // 1 MiB
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1824 1825
	if (ret)
		goto unlock;
1826

1827 1828 1829
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1830

1831
	ret = i915_gem_object_get_fence(obj);
1832
	if (ret)
1833
		goto unpin;
1834

1835
	/* Finally, remap it using the new GTT offset */
1836
	pfn = ggtt->mappable_base +
1837
		i915_gem_obj_ggtt_offset_view(obj, &view);
1838
	pfn >>= PAGE_SHIFT;
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1849

1850 1851
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1852 1853 1854 1855 1856
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1878
unpin:
1879
	i915_gem_object_ggtt_unpin_view(obj, &view);
1880
unlock:
1881
	mutex_unlock(&dev->struct_mutex);
1882
out:
1883
	switch (ret) {
1884
	case -EIO:
1885 1886 1887 1888 1889 1890 1891
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1892 1893 1894
			ret = VM_FAULT_SIGBUS;
			break;
		}
1895
	case -EAGAIN:
D
Daniel Vetter 已提交
1896 1897 1898 1899
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1900
		 */
1901 1902
	case 0:
	case -ERESTARTSYS:
1903
	case -EINTR:
1904 1905 1906 1907 1908
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1909 1910
		ret = VM_FAULT_NOPAGE;
		break;
1911
	case -ENOMEM:
1912 1913
		ret = VM_FAULT_OOM;
		break;
1914
	case -ENOSPC:
1915
	case -EFAULT:
1916 1917
		ret = VM_FAULT_SIGBUS;
		break;
1918
	default:
1919
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1920 1921
		ret = VM_FAULT_SIGBUS;
		break;
1922
	}
1923 1924 1925

	intel_runtime_pm_put(dev_priv);
	return ret;
1926 1927
}

1928 1929 1930 1931
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1932
 * Preserve the reservation of the mmapping with the DRM core code, but
1933 1934 1935 1936 1937 1938 1939 1940 1941
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1942
void
1943
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1944
{
1945 1946 1947 1948 1949 1950
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1951 1952
	if (!obj->fault_mappable)
		return;
1953

1954 1955
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1966
	obj->fault_mappable = false;
1967 1968
}

1969 1970 1971 1972 1973 1974 1975 1976 1977
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1978
uint32_t
1979
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1980
{
1981
	uint32_t gtt_size;
1982 1983

	if (INTEL_INFO(dev)->gen >= 4 ||
1984 1985
	    tiling_mode == I915_TILING_NONE)
		return size;
1986 1987

	/* Previous chips need a power-of-two fence region when tiling */
1988
	if (IS_GEN3(dev))
1989
		gtt_size = 1024*1024;
1990
	else
1991
		gtt_size = 512*1024;
1992

1993 1994
	while (gtt_size < size)
		gtt_size <<= 1;
1995

1996
	return gtt_size;
1997 1998
}

1999 2000 2001 2002 2003
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2004
 * potential fence register mapping.
2005
 */
2006 2007 2008
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2009 2010 2011 2012 2013
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2014
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2015
	    tiling_mode == I915_TILING_NONE)
2016 2017
		return 4096;

2018 2019 2020 2021
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2022
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2023 2024
}

2025 2026 2027 2028 2029
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2030
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2031 2032
		return 0;

2033 2034
	dev_priv->mm.shrinker_no_lock_stealing = true;

2035 2036
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2037
		goto out;
2038 2039 2040 2041 2042 2043 2044 2045

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2046 2047 2048 2049 2050
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2051 2052
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2053
		goto out;
2054 2055

	i915_gem_shrink_all(dev_priv);
2056 2057 2058 2059 2060
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2061 2062 2063 2064 2065 2066 2067
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2068
int
2069 2070
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2071
		  uint32_t handle,
2072
		  uint64_t *offset)
2073
{
2074
	struct drm_i915_gem_object *obj;
2075 2076
	int ret;

2077
	ret = i915_mutex_lock_interruptible(dev);
2078
	if (ret)
2079
		return ret;
2080

2081
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2082
	if (&obj->base == NULL) {
2083 2084 2085
		ret = -ENOENT;
		goto unlock;
	}
2086

2087
	if (obj->madv != I915_MADV_WILLNEED) {
2088
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2089
		ret = -EFAULT;
2090
		goto out;
2091 2092
	}

2093 2094 2095
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2096

2097
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2098

2099
out:
2100
	drm_gem_object_unreference(&obj->base);
2101
unlock:
2102
	mutex_unlock(&dev->struct_mutex);
2103
	return ret;
2104 2105
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2127
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2128 2129
}

D
Daniel Vetter 已提交
2130 2131 2132
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2133
{
2134
	i915_gem_object_free_mmap_offset(obj);
2135

2136 2137
	if (obj->base.filp == NULL)
		return;
2138

D
Daniel Vetter 已提交
2139 2140 2141 2142 2143
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2144
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2145 2146
	obj->madv = __I915_MADV_PURGED;
}
2147

2148 2149 2150
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2151
{
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2166 2167
}

2168
static void
2169
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2170
{
2171 2172
	struct sg_page_iter sg_iter;
	int ret;
2173

2174
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2175

C
Chris Wilson 已提交
2176
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2177
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2178 2179 2180
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2181
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2182 2183 2184
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2185 2186
	i915_gem_gtt_finish_object(obj);

2187
	if (i915_gem_object_needs_bit17_swizzle(obj))
2188 2189
		i915_gem_object_save_bit_17_swizzle(obj);

2190 2191
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2192

2193
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2194
		struct page *page = sg_page_iter_page(&sg_iter);
2195

2196
		if (obj->dirty)
2197
			set_page_dirty(page);
2198

2199
		if (obj->madv == I915_MADV_WILLNEED)
2200
			mark_page_accessed(page);
2201

2202
		put_page(page);
2203
	}
2204
	obj->dirty = 0;
2205

2206 2207
	sg_free_table(obj->pages);
	kfree(obj->pages);
2208
}
C
Chris Wilson 已提交
2209

2210
int
2211 2212 2213 2214
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2215
	if (obj->pages == NULL)
2216 2217
		return 0;

2218 2219 2220
	if (obj->pages_pin_count)
		return -EBUSY;

2221
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2222

2223 2224 2225
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2226
	list_del(&obj->global_list);
2227

2228
	if (obj->mapping) {
2229 2230 2231 2232
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2233 2234 2235
		obj->mapping = NULL;
	}

2236
	ops->put_pages(obj);
2237
	obj->pages = NULL;
2238

2239
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2240 2241 2242 2243

	return 0;
}

2244
static int
C
Chris Wilson 已提交
2245
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2246
{
C
Chris Wilson 已提交
2247
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2248 2249
	int page_count, i;
	struct address_space *mapping;
2250 2251
	struct sg_table *st;
	struct scatterlist *sg;
2252
	struct sg_page_iter sg_iter;
2253
	struct page *page;
2254
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2255
	int ret;
C
Chris Wilson 已提交
2256
	gfp_t gfp;
2257

C
Chris Wilson 已提交
2258 2259 2260 2261 2262 2263 2264
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2265 2266 2267 2268
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2269
	page_count = obj->base.size / PAGE_SIZE;
2270 2271
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2272
		return -ENOMEM;
2273
	}
2274

2275 2276 2277 2278 2279
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2280
	mapping = file_inode(obj->base.filp)->i_mapping;
2281
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2282
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2283 2284 2285
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2286 2287
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2288 2289 2290 2291 2292
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2293 2294 2295 2296 2297 2298 2299 2300
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2301
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2302 2303
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2304
				goto err_pages;
I
Imre Deak 已提交
2305
			}
C
Chris Wilson 已提交
2306
		}
2307 2308 2309 2310 2311 2312 2313 2314
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2315 2316 2317 2318 2319 2320 2321 2322 2323
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2324 2325 2326

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2327
	}
2328 2329 2330 2331
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2332 2333
	obj->pages = st;

I
Imre Deak 已提交
2334 2335 2336 2337
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2338
	if (i915_gem_object_needs_bit17_swizzle(obj))
2339 2340
		i915_gem_object_do_bit_17_swizzle(obj);

2341 2342 2343 2344
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2345 2346 2347
	return 0;

err_pages:
2348 2349
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2350
		put_page(sg_page_iter_page(&sg_iter));
2351 2352
	sg_free_table(st);
	kfree(st);
2353 2354 2355 2356 2357 2358 2359 2360 2361

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2362 2363 2364 2365
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2366 2367
}

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2382
	if (obj->pages)
2383 2384
		return 0;

2385
	if (obj->madv != I915_MADV_WILLNEED) {
2386
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2387
		return -EFAULT;
2388 2389
	}

2390 2391
	BUG_ON(obj->pages_pin_count);

2392 2393 2394 2395
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2396
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2397 2398 2399 2400

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2401
	return 0;
2402 2403
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

	if (obj->mapping == NULL) {
		struct page **pages;

2419 2420 2421 2422 2423 2424 2425
		pages = NULL;
		if (obj->base.size == PAGE_SIZE)
			obj->mapping = kmap(sg_page(obj->pages->sgl));
		else
			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
					       sizeof(*pages),
					       GFP_TEMPORARY);
2426
		if (pages != NULL) {
2427 2428 2429
			struct sg_page_iter sg_iter;
			int n;

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
			n = 0;
			for_each_sg_page(obj->pages->sgl, &sg_iter,
					 obj->pages->nents, 0)
				pages[n++] = sg_page_iter_page(&sg_iter);

			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
			drm_free_large(pages);
		}
		if (obj->mapping == NULL) {
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2447
void i915_vma_move_to_active(struct i915_vma *vma,
2448
			     struct drm_i915_gem_request *req)
2449
{
2450
	struct drm_i915_gem_object *obj = vma->obj;
2451
	struct intel_engine_cs *engine;
2452

2453
	engine = i915_gem_request_get_engine(req);
2454 2455

	/* Add a reference if we're newly entering the active list. */
2456
	if (obj->active == 0)
2457
		drm_gem_object_reference(&obj->base);
2458
	obj->active |= intel_engine_flag(engine);
2459

2460
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2461
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2462

2463
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2464 2465
}

2466 2467
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2468
{
2469 2470
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2471 2472

	i915_gem_request_assign(&obj->last_write_req, NULL);
2473
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2474 2475
}

2476
static void
2477
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2478
{
2479
	struct i915_vma *vma;
2480

2481 2482
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2483

2484
	list_del_init(&obj->engine_list[ring]);
2485 2486
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2487
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2488 2489 2490 2491 2492
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2493

2494 2495 2496 2497 2498 2499 2500
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2501 2502 2503
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2504
	}
2505

2506
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2507
	drm_gem_object_unreference(&obj->base);
2508 2509
}

2510
static int
2511
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2512
{
2513
	struct intel_engine_cs *engine;
2514
	int ret;
2515

2516
	/* Carefully retire all requests without writing to the rings */
2517
	for_each_engine(engine, dev_priv) {
2518
		ret = intel_engine_idle(engine);
2519 2520
		if (ret)
			return ret;
2521
	}
2522
	i915_gem_retire_requests(dev_priv);
2523 2524

	/* Finally reset hw state */
2525
	for_each_engine(engine, dev_priv)
2526
		intel_ring_init_seqno(engine, seqno);
2527

2528
	return 0;
2529 2530
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2542
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2557
int
2558
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2559
{
2560 2561
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2562
		int ret = i915_gem_init_seqno(dev_priv, 0);
2563 2564
		if (ret)
			return ret;
2565

2566 2567
		dev_priv->next_seqno = 1;
	}
2568

2569
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2570
	return 0;
2571 2572
}

2573 2574 2575 2576 2577
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2578
void __i915_add_request(struct drm_i915_gem_request *request,
2579 2580
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2581
{
2582
	struct intel_engine_cs *engine;
2583
	struct drm_i915_private *dev_priv;
2584
	struct intel_ringbuffer *ringbuf;
2585
	u32 request_start;
2586
	u32 reserved_tail;
2587 2588
	int ret;

2589
	if (WARN_ON(request == NULL))
2590
		return;
2591

2592
	engine = request->engine;
2593
	dev_priv = request->i915;
2594 2595
	ringbuf = request->ringbuf;

2596 2597 2598 2599 2600
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2601
	request_start = intel_ring_get_tail(ringbuf);
2602 2603 2604
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2605 2606 2607 2608 2609 2610 2611
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2612 2613
	if (flush_caches) {
		if (i915.enable_execlists)
2614
			ret = logical_ring_flush_all_caches(request);
2615
		else
2616
			ret = intel_ring_flush_all_caches(request);
2617 2618 2619
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2620

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2643 2644 2645 2646 2647
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2648
	request->postfix = intel_ring_get_tail(ringbuf);
2649

2650
	if (i915.enable_execlists)
2651
		ret = engine->emit_request(request);
2652
	else {
2653
		ret = engine->add_request(request);
2654 2655

		request->tail = intel_ring_get_tail(ringbuf);
2656
	}
2657 2658
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2659

2660
	i915_queue_hangcheck(engine->i915);
2661

2662 2663 2664
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
2665
	intel_mark_busy(dev_priv);
2666

2667
	/* Sanity check that the reserved size was large enough. */
2668 2669 2670 2671 2672 2673 2674
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2675 2676
}

2677
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2678
				   const struct intel_context *ctx)
2679
{
2680
	unsigned long elapsed;
2681

2682 2683 2684
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2685 2686
		return true;

2687 2688
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2689
		if (!i915_gem_context_is_default(ctx)) {
2690
			DRM_DEBUG("context hanging too fast, banning!\n");
2691
			return true;
2692 2693 2694
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2695
			return true;
2696
		}
2697 2698 2699 2700 2701
	}

	return false;
}

2702
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2703
				  struct intel_context *ctx,
2704
				  const bool guilty)
2705
{
2706 2707 2708 2709
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2710

2711 2712 2713
	hs = &ctx->hang_stats;

	if (guilty) {
2714
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2715 2716 2717 2718
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2719 2720 2721
	}
}

2722 2723 2724 2725
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2726
	kmem_cache_free(req->i915->requests, req);
2727 2728
}

2729
static inline int
2730
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2731 2732
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2733
{
2734
	struct drm_i915_private *dev_priv = engine->i915;
2735
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2736
	struct drm_i915_gem_request *req;
2737 2738
	int ret;

2739 2740 2741
	if (!req_out)
		return -EINVAL;

2742
	*req_out = NULL;
2743

2744 2745 2746 2747 2748
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2749 2750 2751
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2752 2753
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2754 2755
		return -ENOMEM;

2756
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2757 2758
	if (ret)
		goto err;
2759

2760 2761
	kref_init(&req->ref);
	req->i915 = dev_priv;
2762
	req->engine = engine;
2763
	req->reset_counter = reset_counter;
2764 2765
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2766

2767 2768 2769 2770 2771 2772 2773
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2774
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2775 2776 2777 2778 2779 2780 2781

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
2782

2783
	*req_out = req;
2784
	return 0;
2785

2786 2787
err_ctx:
	i915_gem_context_unreference(ctx);
2788 2789 2790
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2791 2792
}

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2813
		ctx = engine->i915->kernel_context;
2814 2815 2816 2817
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2818
struct drm_i915_gem_request *
2819
i915_gem_find_active_request(struct intel_engine_cs *engine)
2820
{
2821 2822
	struct drm_i915_gem_request *request;

2823
	list_for_each_entry(request, &engine->request_list, list) {
2824
		if (i915_gem_request_completed(request, false))
2825
			continue;
2826

2827
		return request;
2828
	}
2829 2830 2831 2832

	return NULL;
}

2833
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2834
				       struct intel_engine_cs *engine)
2835 2836 2837 2838
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2839
	request = i915_gem_find_active_request(engine);
2840 2841 2842 2843

	if (request == NULL)
		return;

2844
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2845

2846
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2847

2848
	list_for_each_entry_continue(request, &engine->request_list, list)
2849
		i915_set_reset_status(dev_priv, request->ctx, false);
2850
}
2851

2852
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2853
					struct intel_engine_cs *engine)
2854
{
2855 2856
	struct intel_ringbuffer *buffer;

2857
	while (!list_empty(&engine->active_list)) {
2858
		struct drm_i915_gem_object *obj;
2859

2860
		obj = list_first_entry(&engine->active_list,
2861
				       struct drm_i915_gem_object,
2862
				       engine_list[engine->id]);
2863

2864
		i915_gem_object_retire__read(obj, engine->id);
2865
	}
2866

2867 2868 2869 2870 2871 2872
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2873
	if (i915.enable_execlists) {
2874 2875
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2876

2877
		intel_execlists_cancel_requests(engine);
2878 2879
	}

2880 2881 2882 2883 2884 2885 2886
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2887
	while (!list_empty(&engine->request_list)) {
2888 2889
		struct drm_i915_gem_request *request;

2890
		request = list_first_entry(&engine->request_list,
2891 2892 2893
					   struct drm_i915_gem_request,
					   list);

2894
		i915_gem_request_retire(request);
2895
	}
2896 2897 2898 2899 2900 2901 2902 2903

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2904
	list_for_each_entry(buffer, &engine->buffers, link) {
2905 2906 2907
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2908 2909

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2910 2911
}

2912
void i915_gem_reset(struct drm_device *dev)
2913
{
2914
	struct drm_i915_private *dev_priv = dev->dev_private;
2915
	struct intel_engine_cs *engine;
2916

2917 2918 2919 2920 2921
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2922
	for_each_engine(engine, dev_priv)
2923
		i915_gem_reset_engine_status(dev_priv, engine);
2924

2925
	for_each_engine(engine, dev_priv)
2926
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2927

2928 2929
	i915_gem_context_reset(dev);

2930
	i915_gem_restore_fences(dev);
2931 2932

	WARN_ON(i915_verify_lists(dev));
2933 2934 2935 2936 2937
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2938
void
2939
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2940
{
2941
	WARN_ON(i915_verify_lists(engine->dev));
2942

2943 2944 2945 2946
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2947
	 */
2948
	while (!list_empty(&engine->request_list)) {
2949 2950
		struct drm_i915_gem_request *request;

2951
		request = list_first_entry(&engine->request_list,
2952 2953 2954
					   struct drm_i915_gem_request,
					   list);

2955
		if (!i915_gem_request_completed(request, true))
2956 2957
			break;

2958
		i915_gem_request_retire(request);
2959
	}
2960

2961 2962 2963 2964
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2965
	while (!list_empty(&engine->active_list)) {
2966 2967
		struct drm_i915_gem_object *obj;

2968 2969
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2970
				       engine_list[engine->id]);
2971

2972
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2973 2974
			break;

2975
		i915_gem_object_retire__read(obj, engine->id);
2976 2977
	}

2978 2979 2980 2981
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
2982
	}
2983

2984
	WARN_ON(i915_verify_lists(engine->dev));
2985 2986
}

2987
bool
2988
i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2989
{
2990
	struct intel_engine_cs *engine;
2991
	bool idle = true;
2992

2993
	for_each_engine(engine, dev_priv) {
2994 2995
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
2996
		if (i915.enable_execlists) {
2997
			spin_lock_bh(&engine->execlist_lock);
2998
			idle &= list_empty(&engine->execlist_queue);
2999
			spin_unlock_bh(&engine->execlist_lock);
3000
		}
3001 3002 3003 3004 3005 3006 3007 3008
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3009 3010
}

3011
static void
3012 3013
i915_gem_retire_work_handler(struct work_struct *work)
{
3014 3015 3016
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3017
	bool idle;
3018

3019
	/* Come back later if the device is busy... */
3020 3021
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
3022
		idle = i915_gem_retire_requests(dev_priv);
3023
		mutex_unlock(&dev->struct_mutex);
3024
	}
3025
	if (!idle)
3026 3027
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3028
}
3029

3030 3031 3032 3033 3034
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3035
	struct drm_device *dev = dev_priv->dev;
3036
	struct intel_engine_cs *engine;
3037

3038 3039
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3040
			return;
3041

3042
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3043
	 * Also locking seems to be fubar here, engine->request_list is protected
3044 3045
	 * by dev->struct_mutex. */

3046
	intel_mark_idle(dev_priv);
3047 3048

	if (mutex_trylock(&dev->struct_mutex)) {
3049
		for_each_engine(engine, dev_priv)
3050
			i915_gem_batch_pool_fini(&engine->batch_pool);
3051

3052 3053
		mutex_unlock(&dev->struct_mutex);
	}
3054 3055
}

3056 3057 3058 3059 3060 3061 3062 3063
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3064
	int i;
3065 3066 3067

	if (!obj->active)
		return 0;
3068

3069
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3070
		struct drm_i915_gem_request *req;
3071

3072 3073 3074 3075
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3076
		if (i915_gem_request_completed(req, true))
3077
			i915_gem_object_retire__read(obj, i);
3078 3079 3080 3081 3082
	}

	return 0;
}

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3110
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3111 3112
	int i, n = 0;
	int ret;
3113

3114 3115 3116
	if (args->flags != 0)
		return -EINVAL;

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3127 3128
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3129 3130 3131
	if (ret)
		goto out;

3132
	if (!obj->active)
3133
		goto out;
3134 3135

	/* Do this after OLR check to make sure we make forward progress polling
3136
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3137
	 */
3138
	if (args->timeout_ns == 0) {
3139 3140 3141 3142 3143
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3144

3145
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3146 3147 3148 3149 3150 3151
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3152 3153
	mutex_unlock(&dev->struct_mutex);

3154 3155
	for (i = 0; i < n; i++) {
		if (ret == 0)
3156
			ret = __i915_wait_request(req[i], true,
3157
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3158
						  to_rps_client(file));
3159
		i915_gem_request_unreference(req[i]);
3160
	}
3161
	return ret;
3162 3163 3164 3165 3166 3167 3168

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3169 3170 3171
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3172 3173
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3174 3175 3176 3177
{
	struct intel_engine_cs *from;
	int ret;

3178
	from = i915_gem_request_get_engine(from_req);
3179 3180 3181
	if (to == from)
		return 0;

3182
	if (i915_gem_request_completed(from_req, true))
3183 3184
		return 0;

3185
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3186
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3187
		ret = __i915_wait_request(from_req,
3188 3189 3190
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3191 3192 3193
		if (ret)
			return ret;

3194
		i915_gem_object_retire_request(obj, from_req);
3195 3196
	} else {
		int idx = intel_ring_sync_index(from, to);
3197 3198 3199
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3200 3201 3202 3203

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3204
		if (*to_req == NULL) {
3205 3206 3207 3208 3209 3210 3211
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3212 3213
		}

3214 3215
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3230 3231 3232 3233 3234
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3235 3236 3237
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3238 3239 3240
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3241
 * rather than a particular GPU ring. Conceptually we serialise writes
3242
 * between engines inside the GPU. We only allow one engine to write
3243 3244 3245 3246 3247 3248 3249 3250 3251
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3252
 *
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3263 3264
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3265 3266
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3267 3268
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3269
{
3270
	const bool readonly = obj->base.pending_write_domain == 0;
3271
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3272
	int ret, i, n;
3273

3274
	if (!obj->active)
3275 3276
		return 0;

3277 3278
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3279

3280 3281 3282 3283 3284
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3285
		for (i = 0; i < I915_NUM_ENGINES; i++)
3286 3287 3288 3289
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3290
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3291 3292 3293
		if (ret)
			return ret;
	}
3294

3295
	return 0;
3296 3297
}

3298 3299 3300 3301 3302 3303 3304
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3305 3306 3307
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3330
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3331
{
3332
	struct drm_i915_gem_object *obj = vma->obj;
3333
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3334
	int ret;
3335

3336
	if (list_empty(&vma->obj_link))
3337 3338
		return 0;

3339 3340 3341 3342
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3343

B
Ben Widawsky 已提交
3344
	if (vma->pin_count)
3345
		return -EBUSY;
3346

3347 3348
	BUG_ON(obj->pages == NULL);

3349 3350 3351 3352 3353
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3354

3355
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3356
		i915_gem_object_finish_gtt(obj);
3357

3358 3359 3360 3361
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3362 3363

		__i915_vma_iounmap(vma);
3364
	}
3365

3366
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3367

3368
	vma->vm->unbind_vma(vma);
3369
	vma->bound = 0;
3370

3371
	list_del_init(&vma->vm_link);
3372
	if (vma->is_ggtt) {
3373 3374 3375 3376 3377 3378
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3379
		vma->ggtt_view.pages = NULL;
3380
	}
3381

B
Ben Widawsky 已提交
3382 3383 3384 3385
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3386
	 * no more VMAs exist. */
I
Imre Deak 已提交
3387
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3388
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3389

3390 3391 3392 3393 3394 3395
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3396
	return 0;
3397 3398
}

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3409
int i915_gpu_idle(struct drm_device *dev)
3410
{
3411
	struct drm_i915_private *dev_priv = dev->dev_private;
3412
	struct intel_engine_cs *engine;
3413
	int ret;
3414 3415

	/* Flush everything onto the inactive list. */
3416
	for_each_engine(engine, dev_priv) {
3417
		if (!i915.enable_execlists) {
3418 3419
			struct drm_i915_gem_request *req;

3420
			req = i915_gem_request_alloc(engine, NULL);
3421 3422
			if (IS_ERR(req))
				return PTR_ERR(req);
3423

3424
			ret = i915_switch_context(req);
3425
			i915_add_request_no_flush(req);
3426 3427
			if (ret)
				return ret;
3428
		}
3429

3430
		ret = intel_engine_idle(engine);
3431 3432 3433
		if (ret)
			return ret;
	}
3434

3435
	WARN_ON(i915_verify_lists(dev));
3436
	return 0;
3437 3438
}

3439
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3440 3441
				     unsigned long cache_level)
{
3442
	struct drm_mm_node *gtt_space = &vma->node;
3443 3444
	struct drm_mm_node *other;

3445 3446 3447 3448 3449 3450
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3451
	 */
3452
	if (vma->vm->mm.color_adjust == NULL)
3453 3454
		return true;

3455
	if (!drm_mm_node_allocated(gtt_space))
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3472
/**
3473 3474
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3475
 */
3476
static struct i915_vma *
3477 3478
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3479
			   const struct i915_ggtt_view *ggtt_view,
3480
			   unsigned alignment,
3481
			   uint64_t flags)
3482
{
3483
	struct drm_device *dev = obj->base.dev;
3484 3485
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3486
	u32 fence_alignment, unfenced_alignment;
3487 3488
	u32 search_flag, alloc_flag;
	u64 start, end;
3489
	u64 size, fence_size;
B
Ben Widawsky 已提交
3490
	struct i915_vma *vma;
3491
	int ret;
3492

3493 3494 3495 3496 3497
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3498

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3528

3529 3530 3531
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3532
		end = min_t(u64, end, ggtt->mappable_end);
3533
	if (flags & PIN_ZONE_4G)
3534
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3535

3536
	if (alignment == 0)
3537
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3538
						unfenced_alignment;
3539
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3540 3541 3542
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3543
		return ERR_PTR(-EINVAL);
3544 3545
	}

3546 3547 3548
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3549
	 */
3550
	if (size > end) {
3551
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3552 3553
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3554
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3555
			  end);
3556
		return ERR_PTR(-E2BIG);
3557 3558
	}

3559
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3560
	if (ret)
3561
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3562

3563 3564
	i915_gem_object_pin_pages(obj);

3565 3566 3567
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3568
	if (IS_ERR(vma))
3569
		goto err_unpin;
B
Ben Widawsky 已提交
3570

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3589
	} else {
3590 3591 3592 3593 3594 3595 3596
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3597

3598
search_free:
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3612

3613 3614
			goto err_free_vma;
		}
3615
	}
3616
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3617
		ret = -EINVAL;
3618
		goto err_remove_node;
3619 3620
	}

3621
	trace_i915_vma_bind(vma, flags);
3622
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3623
	if (ret)
I
Imre Deak 已提交
3624
		goto err_remove_node;
3625

3626
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3627
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3628

3629
	return vma;
B
Ben Widawsky 已提交
3630

3631
err_remove_node:
3632
	drm_mm_remove_node(&vma->node);
3633
err_free_vma:
B
Ben Widawsky 已提交
3634
	i915_gem_vma_destroy(vma);
3635
	vma = ERR_PTR(ret);
3636
err_unpin:
B
Ben Widawsky 已提交
3637
	i915_gem_object_unpin_pages(obj);
3638
	return vma;
3639 3640
}

3641
bool
3642 3643
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3644 3645 3646 3647 3648
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3649
	if (obj->pages == NULL)
3650
		return false;
3651

3652 3653 3654 3655
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3656
	if (obj->stolen || obj->phys_handle)
3657
		return false;
3658

3659 3660 3661 3662 3663 3664 3665 3666
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3667 3668
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3669
		return false;
3670
	}
3671

C
Chris Wilson 已提交
3672
	trace_i915_gem_object_clflush(obj);
3673
	drm_clflush_sg(obj->pages);
3674
	obj->cache_dirty = false;
3675 3676

	return true;
3677 3678 3679 3680
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3681
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3682
{
C
Chris Wilson 已提交
3683 3684
	uint32_t old_write_domain;

3685
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3686 3687
		return;

3688
	/* No actual flushing is required for the GTT write domain.  Writes
3689 3690
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3691 3692 3693 3694
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3695
	 */
3696 3697
	wmb();

3698 3699
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3700

3701
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3702

C
Chris Wilson 已提交
3703
	trace_i915_gem_object_change_domain(obj,
3704
					    obj->base.read_domains,
C
Chris Wilson 已提交
3705
					    old_write_domain);
3706 3707 3708 3709
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3710
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3711
{
C
Chris Wilson 已提交
3712
	uint32_t old_write_domain;
3713

3714
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3715 3716
		return;

3717
	if (i915_gem_clflush_object(obj, obj->pin_display))
3718
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3719

3720 3721
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3722

3723
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3724

C
Chris Wilson 已提交
3725
	trace_i915_gem_object_change_domain(obj,
3726
					    obj->base.read_domains,
C
Chris Wilson 已提交
3727
					    old_write_domain);
3728 3729
}

3730 3731 3732 3733 3734 3735
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3736
int
3737
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3738
{
3739 3740 3741
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3742
	uint32_t old_write_domain, old_read_domains;
3743
	struct i915_vma *vma;
3744
	int ret;
3745

3746 3747 3748
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3749
	ret = i915_gem_object_wait_rendering(obj, !write);
3750 3751 3752
	if (ret)
		return ret;

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3765
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3766

3767 3768 3769 3770 3771 3772 3773
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3774 3775
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3776

3777 3778 3779
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3780 3781
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3782
	if (write) {
3783 3784 3785
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3786 3787
	}

C
Chris Wilson 已提交
3788 3789 3790 3791
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3792
	/* And bump the LRU for this access */
3793 3794
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3795
		list_move_tail(&vma->vm_link,
3796
			       &ggtt->base.inactive_list);
3797

3798 3799 3800
	return 0;
}

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3814 3815 3816
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3817
	struct drm_device *dev = obj->base.dev;
3818
	struct i915_vma *vma, *next;
3819
	bool bound = false;
3820
	int ret = 0;
3821 3822

	if (obj->cache_level == cache_level)
3823
		goto out;
3824

3825 3826 3827 3828 3829
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3830
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3831 3832 3833 3834 3835 3836 3837 3838
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3839
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3840
			ret = i915_vma_unbind(vma);
3841 3842
			if (ret)
				return ret;
3843 3844
		} else
			bound = true;
3845 3846
	}

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3859
		ret = i915_gem_object_wait_rendering(obj, false);
3860 3861 3862
		if (ret)
			return ret;

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3880 3881 3882
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3883 3884 3885 3886 3887 3888 3889 3890
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3891 3892
		}

3893
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3894 3895 3896 3897 3898 3899 3900
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3901 3902
	}

3903
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3904 3905 3906
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3907
out:
3908 3909 3910 3911
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3912 3913 3914 3915
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
3916
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3917 3918 3919 3920 3921
	}

	return 0;
}

B
Ben Widawsky 已提交
3922 3923
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3924
{
B
Ben Widawsky 已提交
3925
	struct drm_i915_gem_caching *args = data;
3926 3927 3928
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3929 3930
	if (&obj->base == NULL)
		return -ENOENT;
3931

3932 3933 3934 3935 3936 3937
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3938 3939 3940 3941
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3942 3943 3944 3945
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3946

3947 3948
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3949 3950
}

B
Ben Widawsky 已提交
3951 3952
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3953
{
3954
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3955
	struct drm_i915_gem_caching *args = data;
3956 3957 3958 3959
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3960 3961
	switch (args->caching) {
	case I915_CACHING_NONE:
3962 3963
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3964
	case I915_CACHING_CACHED:
3965 3966 3967 3968 3969 3970
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3971
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3972 3973
			return -ENODEV;

3974 3975
		level = I915_CACHE_LLC;
		break;
3976 3977 3978
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3979 3980 3981 3982
	default:
		return -EINVAL;
	}

3983 3984
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3985 3986
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3987
		goto rpm_put;
B
Ben Widawsky 已提交
3988

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4000 4001 4002
rpm_put:
	intel_runtime_pm_put(dev_priv);

4003 4004 4005
	return ret;
}

4006
/*
4007 4008 4009
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4010 4011
 */
int
4012 4013
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4014
				     const struct i915_ggtt_view *view)
4015
{
4016
	u32 old_read_domains, old_write_domain;
4017 4018
	int ret;

4019 4020 4021
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4022
	obj->pin_display++;
4023

4024 4025 4026 4027 4028 4029 4030 4031 4032
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4033 4034
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4035
	if (ret)
4036
		goto err_unpin_display;
4037

4038 4039 4040 4041
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4042 4043 4044
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4045
	if (ret)
4046
		goto err_unpin_display;
4047

4048
	i915_gem_object_flush_cpu_write_domain(obj);
4049

4050
	old_write_domain = obj->base.write_domain;
4051
	old_read_domains = obj->base.read_domains;
4052 4053 4054 4055

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4056
	obj->base.write_domain = 0;
4057
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4058 4059 4060

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4061
					    old_write_domain);
4062 4063

	return 0;
4064 4065

err_unpin_display:
4066
	obj->pin_display--;
4067 4068 4069 4070
	return ret;
}

void
4071 4072
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4073
{
4074 4075 4076
	if (WARN_ON(obj->pin_display == 0))
		return;

4077 4078
	i915_gem_object_ggtt_unpin_view(obj, view);

4079
	obj->pin_display--;
4080 4081
}

4082 4083 4084 4085 4086 4087
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4088
int
4089
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4090
{
C
Chris Wilson 已提交
4091
	uint32_t old_write_domain, old_read_domains;
4092 4093
	int ret;

4094 4095 4096
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4097
	ret = i915_gem_object_wait_rendering(obj, !write);
4098 4099 4100
	if (ret)
		return ret;

4101
	i915_gem_object_flush_gtt_write_domain(obj);
4102

4103 4104
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4105

4106
	/* Flush the CPU cache if it's still invalid. */
4107
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4108
		i915_gem_clflush_object(obj, false);
4109

4110
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4111 4112 4113 4114 4115
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4116
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4117 4118 4119 4120 4121

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4122 4123
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4124
	}
4125

C
Chris Wilson 已提交
4126 4127 4128 4129
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4130 4131 4132
	return 0;
}

4133 4134 4135
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4136 4137 4138 4139
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4140 4141 4142
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4143
static int
4144
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4145
{
4146 4147
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4148
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4149
	struct drm_i915_gem_request *request, *target = NULL;
4150
	int ret;
4151

4152 4153 4154 4155
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4156 4157 4158
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4159

4160
	spin_lock(&file_priv->mm.lock);
4161
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4162 4163
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4164

4165 4166 4167 4168 4169 4170 4171
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4172
		target = request;
4173
	}
4174 4175
	if (target)
		i915_gem_request_reference(target);
4176
	spin_unlock(&file_priv->mm.lock);
4177

4178
	if (target == NULL)
4179
		return 0;
4180

4181
	ret = __i915_wait_request(target, true, NULL, NULL);
4182 4183
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4184

4185
	i915_gem_request_unreference(target);
4186

4187 4188 4189
	return ret;
}

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4206 4207 4208 4209
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4210 4211 4212
	return false;
}

4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4231
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4232 4233 4234 4235

	obj->map_and_fenceable = mappable && fenceable;
}

4236 4237 4238 4239 4240 4241
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4242
{
4243
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4244
	struct i915_vma *vma;
4245
	unsigned bound;
4246 4247
	int ret;

4248 4249 4250
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4251
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4252
		return -EINVAL;
4253

4254 4255 4256
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4257 4258 4259 4260 4261 4262
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4263
	if (vma) {
B
Ben Widawsky 已提交
4264 4265 4266
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4267
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4268
			WARN(vma->pin_count,
4269
			     "bo is already pinned in %s with incorrect alignment:"
4270
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4271
			     " obj->map_and_fenceable=%d\n",
4272
			     ggtt_view ? "ggtt" : "ppgtt",
4273 4274
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4275
			     alignment,
4276
			     !!(flags & PIN_MAPPABLE),
4277
			     obj->map_and_fenceable);
4278
			ret = i915_vma_unbind(vma);
4279 4280
			if (ret)
				return ret;
4281 4282

			vma = NULL;
4283 4284 4285
		}
	}

4286
	bound = vma ? vma->bound : 0;
4287
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4288 4289
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4290 4291
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4292 4293
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4294 4295 4296
		if (ret)
			return ret;
	}
4297

4298 4299
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4300
		__i915_vma_set_map_and_fenceable(vma);
4301 4302
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4303

4304
	vma->pin_count++;
4305 4306 4307
	return 0;
}

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4325 4326 4327 4328
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4329
	BUG_ON(!view);
4330

4331
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4332
				      alignment, flags | PIN_GLOBAL);
4333 4334
}

4335
void
4336 4337
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4338
{
4339
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4340

4341
	WARN_ON(vma->pin_count == 0);
4342
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4343

4344
	--vma->pin_count;
4345 4346 4347 4348
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4349
		    struct drm_file *file)
4350 4351
{
	struct drm_i915_gem_busy *args = data;
4352
	struct drm_i915_gem_object *obj;
4353 4354
	int ret;

4355
	ret = i915_mutex_lock_interruptible(dev);
4356
	if (ret)
4357
		return ret;
4358

4359
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4360
	if (&obj->base == NULL) {
4361 4362
		ret = -ENOENT;
		goto unlock;
4363
	}
4364

4365 4366 4367 4368
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4369
	 */
4370
	ret = i915_gem_object_flush_active(obj);
4371 4372
	if (ret)
		goto unref;
4373

4374 4375 4376 4377
	args->busy = 0;
	if (obj->active) {
		int i;

4378
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4379 4380 4381 4382
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4383
				args->busy |= 1 << (16 + req->engine->exec_id);
4384 4385
		}
		if (obj->last_write_req)
4386
			args->busy |= obj->last_write_req->engine->exec_id;
4387
	}
4388

4389
unref:
4390
	drm_gem_object_unreference(&obj->base);
4391
unlock:
4392
	mutex_unlock(&dev->struct_mutex);
4393
	return ret;
4394 4395 4396 4397 4398 4399
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4400
	return i915_gem_ring_throttle(dev, file_priv);
4401 4402
}

4403 4404 4405 4406
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4407
	struct drm_i915_private *dev_priv = dev->dev_private;
4408
	struct drm_i915_gem_madvise *args = data;
4409
	struct drm_i915_gem_object *obj;
4410
	int ret;
4411 4412 4413 4414 4415 4416 4417 4418 4419

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4420 4421 4422 4423
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4424
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4425
	if (&obj->base == NULL) {
4426 4427
		ret = -ENOENT;
		goto unlock;
4428 4429
	}

B
Ben Widawsky 已提交
4430
	if (i915_gem_obj_is_pinned(obj)) {
4431 4432
		ret = -EINVAL;
		goto out;
4433 4434
	}

4435 4436 4437 4438 4439 4440 4441 4442 4443
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4444 4445
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4446

C
Chris Wilson 已提交
4447
	/* if the object is no longer attached, discard its backing storage */
4448
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4449 4450
		i915_gem_object_truncate(obj);

4451
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4452

4453
out:
4454
	drm_gem_object_unreference(&obj->base);
4455
unlock:
4456
	mutex_unlock(&dev->struct_mutex);
4457
	return ret;
4458 4459
}

4460 4461
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4462
{
4463 4464
	int i;

4465
	INIT_LIST_HEAD(&obj->global_list);
4466
	for (i = 0; i < I915_NUM_ENGINES; i++)
4467
		INIT_LIST_HEAD(&obj->engine_list[i]);
4468
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4469
	INIT_LIST_HEAD(&obj->vma_list);
4470
	INIT_LIST_HEAD(&obj->batch_pool_link);
4471

4472 4473
	obj->ops = ops;

4474 4475 4476 4477 4478 4479
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4480
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4481
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4482 4483 4484 4485
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4486
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4487
						  size_t size)
4488
{
4489
	struct drm_i915_gem_object *obj;
4490
	struct address_space *mapping;
D
Daniel Vetter 已提交
4491
	gfp_t mask;
4492
	int ret;
4493

4494
	obj = i915_gem_object_alloc(dev);
4495
	if (obj == NULL)
4496
		return ERR_PTR(-ENOMEM);
4497

4498 4499 4500
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4501

4502 4503 4504 4505 4506 4507 4508
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4509
	mapping = file_inode(obj->base.filp)->i_mapping;
4510
	mapping_set_gfp_mask(mapping, mask);
4511

4512
	i915_gem_object_init(obj, &i915_gem_object_ops);
4513

4514 4515
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4516

4517 4518
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4534 4535
	trace_i915_gem_object_create(obj);

4536
	return obj;
4537 4538 4539 4540 4541

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4542 4543
}

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4568
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4569
{
4570
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4571
	struct drm_device *dev = obj->base.dev;
4572
	struct drm_i915_private *dev_priv = dev->dev_private;
4573
	struct i915_vma *vma, *next;
4574

4575 4576
	intel_runtime_pm_get(dev_priv);

4577 4578
	trace_i915_gem_object_destroy(obj);

4579
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4580 4581 4582 4583
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4584 4585
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4586

4587 4588
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4589

4590
			WARN_ON(i915_vma_unbind(vma));
4591

4592 4593
			dev_priv->mm.interruptible = was_interruptible;
		}
4594 4595
	}

B
Ben Widawsky 已提交
4596 4597 4598 4599 4600
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4601 4602
	WARN_ON(obj->frontbuffer_bits);

4603 4604 4605 4606 4607
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4608 4609
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4610
	if (discard_backing_storage(obj))
4611
		obj->madv = I915_MADV_DONTNEED;
4612
	i915_gem_object_put_pages(obj);
4613
	i915_gem_object_free_mmap_offset(obj);
4614

4615 4616
	BUG_ON(obj->pages);

4617 4618
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4619

4620 4621 4622
	if (obj->ops->release)
		obj->ops->release(obj);

4623 4624
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4625

4626
	kfree(obj->bit_17);
4627
	i915_gem_object_free(obj);
4628 4629

	intel_runtime_pm_put(dev_priv);
4630 4631
}

4632 4633
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4634 4635
{
	struct i915_vma *vma;
4636
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4637 4638
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4639
			return vma;
4640 4641 4642 4643 4644 4645 4646 4647
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4648

4649
	GEM_BUG_ON(!view);
4650

4651
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4652
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4653
			return vma;
4654 4655 4656
	return NULL;
}

B
Ben Widawsky 已提交
4657 4658 4659
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4660 4661 4662 4663 4664

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4665 4666
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4667

4668
	list_del(&vma->obj_link);
4669

4670
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4671 4672
}

4673
static void
4674
i915_gem_stop_engines(struct drm_device *dev)
4675 4676
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4677
	struct intel_engine_cs *engine;
4678

4679
	for_each_engine(engine, dev_priv)
4680
		dev_priv->gt.stop_engine(engine);
4681 4682
}

4683
int
4684
i915_gem_suspend(struct drm_device *dev)
4685
{
4686
	struct drm_i915_private *dev_priv = dev->dev_private;
4687
	int ret = 0;
4688

4689
	mutex_lock(&dev->struct_mutex);
4690
	ret = i915_gpu_idle(dev);
4691
	if (ret)
4692
		goto err;
4693

4694
	i915_gem_retire_requests(dev_priv);
4695

4696
	i915_gem_stop_engines(dev);
4697
	i915_gem_context_lost(dev_priv);
4698 4699
	mutex_unlock(&dev->struct_mutex);

4700
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4701
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4702
	flush_delayed_work(&dev_priv->mm.idle_work);
4703

4704 4705 4706 4707 4708
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4709
	return 0;
4710 4711 4712 4713

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4714 4715
}

4716 4717
void i915_gem_init_swizzling(struct drm_device *dev)
{
4718
	struct drm_i915_private *dev_priv = dev->dev_private;
4719

4720
	if (INTEL_INFO(dev)->gen < 5 ||
4721 4722 4723 4724 4725 4726
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4727 4728 4729
	if (IS_GEN5(dev))
		return;

4730 4731
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4732
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4733
	else if (IS_GEN7(dev))
4734
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4735 4736
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4737 4738
	else
		BUG();
4739
}
D
Daniel Vetter 已提交
4740

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4768
int i915_gem_init_engines(struct drm_device *dev)
4769
{
4770
	struct drm_i915_private *dev_priv = dev->dev_private;
4771
	int ret;
4772

4773
	ret = intel_init_render_ring_buffer(dev);
4774
	if (ret)
4775
		return ret;
4776 4777

	if (HAS_BSD(dev)) {
4778
		ret = intel_init_bsd_ring_buffer(dev);
4779 4780
		if (ret)
			goto cleanup_render_ring;
4781
	}
4782

4783
	if (HAS_BLT(dev)) {
4784 4785 4786 4787 4788
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4789 4790 4791 4792 4793 4794
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4795 4796 4797 4798 4799
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4800

4801 4802
	return 0;

B
Ben Widawsky 已提交
4803
cleanup_vebox_ring:
4804
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4805
cleanup_blt_ring:
4806
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4807
cleanup_bsd_ring:
4808
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4809
cleanup_render_ring:
4810
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4811 4812 4813 4814 4815 4816 4817

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4818
	struct drm_i915_private *dev_priv = dev->dev_private;
4819
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4820
	int ret;
4821

4822 4823 4824
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4825
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4826
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4827

4828 4829 4830
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4831

4832
	if (HAS_PCH_NOP(dev)) {
4833 4834 4835 4836 4837 4838 4839 4840 4841
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4842 4843
	}

4844 4845
	i915_gem_init_swizzling(dev);

4846 4847 4848 4849 4850 4851 4852 4853
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4854
	BUG_ON(!dev_priv->kernel_context);
4855

4856 4857 4858 4859 4860 4861 4862
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4863
	for_each_engine(engine, dev_priv) {
4864
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4865
		if (ret)
4866
			goto out;
D
Daniel Vetter 已提交
4867
	}
4868

4869 4870
	intel_mocs_init_l3cc_table(dev);

4871
	/* We can't enable contexts until all firmware is loaded */
4872 4873 4874
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4875 4876 4877
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4878
		}
4879 4880
	}

4881 4882 4883 4884 4885
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
D
Daniel Vetter 已提交
4886

4887 4888
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4889
	return ret;
4890 4891
}

4892 4893 4894 4895 4896 4897
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
4898

4899
	if (!i915.enable_execlists) {
4900
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4901 4902 4903
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4904
	} else {
4905
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4906 4907 4908
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4909 4910
	}

4911 4912 4913 4914 4915 4916 4917 4918
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4919
	ret = i915_gem_init_userptr(dev);
4920 4921
	if (ret)
		goto out_unlock;
4922

4923
	i915_gem_init_ggtt(dev);
4924

4925
	ret = i915_gem_context_init(dev);
4926 4927
	if (ret)
		goto out_unlock;
4928

4929
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
4930
	if (ret)
4931
		goto out_unlock;
4932

4933
	ret = i915_gem_init_hw(dev);
4934 4935 4936 4937 4938 4939
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4940
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4941
		ret = 0;
4942
	}
4943 4944

out_unlock:
4945
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4946
	mutex_unlock(&dev->struct_mutex);
4947

4948
	return ret;
4949 4950
}

4951
void
4952
i915_gem_cleanup_engines(struct drm_device *dev)
4953
{
4954
	struct drm_i915_private *dev_priv = dev->dev_private;
4955
	struct intel_engine_cs *engine;
4956

4957
	for_each_engine(engine, dev_priv)
4958
		dev_priv->gt.cleanup_engine(engine);
4959 4960
}

4961
static void
4962
init_engine_lists(struct intel_engine_cs *engine)
4963
{
4964 4965
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4966 4967
}

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4982
	if (intel_vgpu_active(dev_priv))
4983 4984 4985 4986 4987 4988 4989 4990 4991
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4992
void
4993
i915_gem_load_init(struct drm_device *dev)
4994
{
4995
	struct drm_i915_private *dev_priv = dev->dev_private;
4996 4997
	int i;

4998
	dev_priv->objects =
4999 5000 5001 5002
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5003 5004 5005 5006 5007
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5008 5009 5010 5011 5012
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5013

B
Ben Widawsky 已提交
5014
	INIT_LIST_HEAD(&dev_priv->vm_list);
5015
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5016 5017
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5018
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5019 5020
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5021
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5022
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5023 5024
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5025 5026
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5027
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5028

5029 5030
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5031 5032 5033 5034 5035 5036 5037 5038
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5039
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5040

5041
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5042

5043 5044
	dev_priv->mm.interruptible = true;

5045
	mutex_init(&dev_priv->fb_tracking.lock);
5046
}
5047

5048 5049 5050 5051 5052 5053 5054 5055 5056
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5057
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5058
{
5059
	struct drm_i915_file_private *file_priv = file->driver_priv;
5060 5061 5062 5063 5064

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5065
	spin_lock(&file_priv->mm.lock);
5066 5067 5068 5069 5070 5071 5072 5073 5074
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5075
	spin_unlock(&file_priv->mm.lock);
5076

5077
	if (!list_empty(&file_priv->rps.link)) {
5078
		spin_lock(&to_i915(dev)->rps.client_lock);
5079
		list_del(&file_priv->rps.link);
5080
		spin_unlock(&to_i915(dev)->rps.client_lock);
5081
	}
5082 5083 5084 5085 5086
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5087
	int ret;
5088 5089 5090 5091 5092 5093 5094 5095 5096

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5097
	file_priv->file = file;
5098
	INIT_LIST_HEAD(&file_priv->rps.link);
5099 5100 5101 5102

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5103 5104
	file_priv->bsd_ring = -1;

5105 5106 5107
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5108

5109
	return ret;
5110 5111
}

5112 5113
/**
 * i915_gem_track_fb - update frontbuffer tracking
5114 5115 5116
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5117 5118 5119 5120
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5138
/* All the new VM stuff */
5139 5140
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5141 5142 5143 5144
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5145
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5146

5147
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5148
		if (vma->is_ggtt &&
5149 5150 5151
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5152 5153
			return vma->node.start;
	}
5154

5155 5156
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5157 5158 5159
	return -1;
}

5160 5161
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5162 5163 5164
{
	struct i915_vma *vma;

5165
	list_for_each_entry(vma, &o->vma_list, obj_link)
5166
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5167 5168
			return vma->node.start;

5169
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5170 5171 5172 5173 5174 5175 5176 5177
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5178
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5179
		if (vma->is_ggtt &&
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5190
				  const struct i915_ggtt_view *view)
5191 5192 5193
{
	struct i915_vma *vma;

5194
	list_for_each_entry(vma, &o->vma_list, obj_link)
5195
		if (vma->is_ggtt &&
5196
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5197
		    drm_mm_node_allocated(&vma->node))
5198 5199 5200 5201 5202 5203 5204
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5205
	struct i915_vma *vma;
5206

5207
	list_for_each_entry(vma, &o->vma_list, obj_link)
5208
		if (drm_mm_node_allocated(&vma->node))
5209 5210 5211 5212 5213
			return true;

	return false;
}

5214
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5215 5216 5217
{
	struct i915_vma *vma;

5218
	GEM_BUG_ON(list_empty(&o->vma_list));
5219

5220
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5221
		if (vma->is_ggtt &&
5222
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5223
			return vma->node.size;
5224
	}
5225

5226 5227 5228
	return 0;
}

5229
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5230 5231
{
	struct i915_vma *vma;
5232
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5233 5234
		if (vma->pin_count > 0)
			return true;
5235

5236
	return false;
5237
}
5238

5239 5240 5241 5242 5243 5244 5245
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5246
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5247 5248 5249 5250 5251 5252 5253
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5264
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5265
	if (IS_ERR(obj))
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5279
	obj->dirty = 1;		/* Backing store is now out of date */
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}