i915_gem.c 140.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85
				  u64 size)
86
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94
				     u64 size)
95
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107 108
	might_sleep();

109
	if (!i915_reset_in_progress(error))
110 111
		return 0;

112 113 114 115 116
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
117
	ret = wait_event_interruptible_timeout(error->reset_queue,
118
					       !i915_reset_in_progress(error),
119
					       I915_RESET_TIMEOUT);
120 121 122 123
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
124
		return ret;
125 126
	} else {
		return 0;
127
	}
128 129
}

130
int i915_mutex_lock_interruptible(struct drm_device *dev)
131
{
132
	struct drm_i915_private *dev_priv = to_i915(dev);
133 134
	int ret;

135
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
136 137 138 139 140 141 142 143 144
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172
static struct sg_table *
173
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175
	struct address_space *mapping = obj->base.filp->f_mapping;
176 177 178 179
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182
		return ERR_PTR(-EINVAL);
183 184 185 186 187 188 189

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
190
			return ERR_CAST(page);
191 192 193 194 195 196

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
205
		return ERR_PTR(-ENOMEM);
206 207 208

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
209
		return ERR_PTR(-ENOMEM);
210 211 212 213 214
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

219
	return st;
220 221 222
}

static void
223
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj)
224
{
C
Chris Wilson 已提交
225
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
226

C
Chris Wilson 已提交
227 228
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
229

230 231 232 233 234 235 236 237 238 239 240 241 242
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		i915_gem_clflush_object(obj, false);

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
	__i915_gem_object_release_shmem(obj);

C
Chris Wilson 已提交
243
	if (obj->mm.dirty) {
244
		struct address_space *mapping = obj->base.filp->f_mapping;
245
		char *vaddr = obj->phys_handle->vaddr;
246 247 248
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249 250 251 252 253 254 255 256 257 258 259 260 261
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
262
			if (obj->mm.madv == I915_MADV_WILLNEED)
263
				mark_page_accessed(page);
264
			put_page(page);
265 266
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
267
		obj->mm.dirty = false;
268 269
	}

270 271
	sg_free_table(pages);
	kfree(pages);
272 273 274 275 276 277
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
C
Chris Wilson 已提交
278
	i915_gem_object_unpin_pages(obj);
279 280 281 282 283 284 285 286
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

287
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
288 289 290
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
291 292 293
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
294

295 296 297 298
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
299
	 */
300 301 302 303 304 305
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
306 307 308 309 310
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

311 312 313 314 315 316 317 318 319 320 321 322 323
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

324 325 326 327 328
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
329
{
330
	struct drm_i915_gem_request *rq;
331

332
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
366 367
	}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	if (rps && rq->fence.seqno == rq->engine->last_submitted_seqno) {
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
404 405
		int ret;

406 407
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
408 409 410
		if (ret)
			return ret;

411 412 413 414 415 416
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
417

418 419 420 421 422 423 424 425
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
426 427
	}

428 429 430 431 432 433
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
434 435
}

436 437 438 439 440 441
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
442
 */
443 444 445 446 447
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
448
{
449
	struct reservation_object *resv;
450 451
	struct i915_gem_active *active;
	unsigned long active_mask;
452
	int idx;
453

454 455 456 457 458 459 460
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
461

462
	if (flags & I915_WAIT_ALL) {
463
		active = obj->last_read;
464
		active_mask = i915_gem_object_get_active(obj);
465 466 467 468 469
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

470
	for_each_active(active_mask, idx) {
471 472 473 474 475 476 477 478 479 480 481
		struct drm_i915_gem_request *request;

		request = i915_gem_active_get_unlocked(&active[idx]);
		if (request) {
			timeout = i915_gem_object_wait_fence(&request->fence,
							     flags, timeout,
							     rps);
			i915_gem_request_put(request);
		}
		if (timeout < 0)
			return timeout;
482 483
	}

484 485 486 487 488 489
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv)
		timeout = i915_gem_object_wait_reservation(resv,
							   flags, timeout,
							   rps);
	return timeout < 0 ? timeout : 0;
490 491 492 493 494 495 496 497 498
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

499 500 501 502 503
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
504
	int ret;
505 506 507 508 509 510 511 512

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

C
Chris Wilson 已提交
513
	if (obj->mm.madv != I915_MADV_WILLNEED)
514 515 516 517 518
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
519 520 521 522
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

523 524 525
	__i915_gem_object_put_pages(obj);
	if (obj->mm.pages)
		return -EBUSY;
526

527 528 529 530 531 532
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
533 534
	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
535
	return i915_gem_object_pin_pages(obj);
536 537 538 539 540
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
541
		     struct drm_file *file)
542 543 544
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
545
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
546
	int ret;
547 548 549 550

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
551 552 553 554 555 556
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
557
				   to_rps_client(file));
558 559
	if (ret)
		return ret;
560

561
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
562 563 564 565 566 567 568 569 570 571
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
572 573 574 575
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
576 577
	}

578
	drm_clflush_virt_range(vaddr, args->size);
579
	i915_gem_chipset_flush(to_i915(dev));
580 581

out:
582
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
583
	return ret;
584 585
}

586 587
void *i915_gem_object_alloc(struct drm_device *dev)
{
588
	struct drm_i915_private *dev_priv = to_i915(dev);
589
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
590 591 592 593
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
594
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
595
	kmem_cache_free(dev_priv->objects, obj);
596 597
}

598 599 600 601 602
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
603
{
604
	struct drm_i915_gem_object *obj;
605 606
	int ret;
	u32 handle;
607

608
	size = roundup(size, PAGE_SIZE);
609 610
	if (size == 0)
		return -EINVAL;
611 612

	/* Allocate the new object */
613
	obj = i915_gem_object_create(dev, size);
614 615
	if (IS_ERR(obj))
		return PTR_ERR(obj);
616

617
	ret = drm_gem_handle_create(file, &obj->base, &handle);
618
	/* drop reference from allocate - handle holds it now */
619
	i915_gem_object_put_unlocked(obj);
620 621
	if (ret)
		return ret;
622

623
	*handle_p = handle;
624 625 626
	return 0;
}

627 628 629 630 631 632
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
633
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
634 635
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
636
			       args->size, &args->handle);
637 638 639 640
}

/**
 * Creates a new mm object and returns a handle to it.
641 642 643
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
644 645 646 647 648 649
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
650

651
	return i915_gem_create(file, dev,
652
			       args->size, &args->handle);
653 654
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

681
static inline int
682 683
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

707 708 709 710 711 712
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
713
				    unsigned int *needs_clflush)
714 715 716
{
	int ret;

717
	lockdep_assert_held(&obj->base.dev->struct_mutex);
718

719
	*needs_clflush = 0;
720 721
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
722

723 724 725 726 727
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
728 729 730
	if (ret)
		return ret;

C
Chris Wilson 已提交
731
	ret = i915_gem_object_pin_pages(obj);
732 733 734
	if (ret)
		return ret;

735 736
	i915_gem_object_flush_gtt_write_domain(obj);

737 738 739 740 741 742
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
743 744
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
745 746 747

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
748 749 750
		if (ret)
			goto err_unpin;

751
		*needs_clflush = 0;
752 753
	}

754
	/* return with the pages pinned */
755
	return 0;
756 757 758 759

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
760 761 762 763 764 765 766
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

767 768
	lockdep_assert_held(&obj->base.dev->struct_mutex);

769 770 771 772
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

773 774 775 776 777 778
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
779 780 781
	if (ret)
		return ret;

C
Chris Wilson 已提交
782
	ret = i915_gem_object_pin_pages(obj);
783 784 785
	if (ret)
		return ret;

786 787
	i915_gem_object_flush_gtt_write_domain(obj);

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
805 806 807
		if (ret)
			goto err_unpin;

808 809 810 811 812 813 814
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
815
	obj->mm.dirty = true;
816
	/* return with the pages pinned */
817
	return 0;
818 819 820 821

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
822 823
}

824 825 826
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
827
static int
828 829 830 831 832 833 834
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

835
	if (unlikely(page_do_bit17_swizzling))
836 837 838 839 840 841 842 843 844 845 846
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

847
	return ret ? -EFAULT : 0;
848 849
}

850 851 852 853
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
854
	if (unlikely(swizzled)) {
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

872 873 874 875 876 877 878 879 880 881 882 883
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
884 885 886
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
887 888 889 890 891 892 893 894 895 896 897

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

898
	return ret ? - EFAULT : 0;
899 900
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
928
	struct drm_i915_private *dev_priv = to_i915(dev);
929
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
930
	struct i915_vma *vma;
931 932 933 934 935 936
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

937
	intel_runtime_pm_get(to_i915(dev));
C
Chris Wilson 已提交
938
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
939 940 941
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
942
		ret = i915_vma_put_fence(vma);
943 944 945 946 947
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
948
	if (IS_ERR(vma)) {
949 950 951 952
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

C
Chris Wilson 已提交
953
		ret = i915_gem_object_pin_pages(obj);
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
970
		ret = fault_in_pages_writeable(user_data, remain);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
1002
		if (slow_user_access(&ggtt->mappable, page_base,
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1029
				       node.start, node.size);
1030 1031 1032
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1033
		i915_vma_unpin(vma);
1034 1035
	}
out:
1036
	intel_runtime_pm_put(to_i915(dev));
1037 1038 1039
	return ret;
}

1040
static int
1041 1042 1043 1044
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
1045
{
1046
	char __user *user_data;
1047
	ssize_t remain;
1048
	loff_t offset;
1049
	int shmem_page_offset, page_length, ret = 0;
1050
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1051
	int prefaulted = 0;
1052
	int needs_clflush = 0;
1053
	struct sg_page_iter sg_iter;
1054

1055
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1056 1057 1058
	if (ret)
		return ret;

1059 1060
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1061
	offset = args->offset;
1062
	remain = args->size;
1063

C
Chris Wilson 已提交
1064
	for_each_sg_page(obj->mm.pages->sgl, &sg_iter, obj->mm.pages->nents,
1065
			 offset >> PAGE_SHIFT) {
1066
		struct page *page = sg_page_iter_page(&sg_iter);
1067 1068 1069 1070

		if (remain <= 0)
			break;

1071 1072 1073 1074 1075
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1076
		shmem_page_offset = offset_in_page(offset);
1077 1078 1079 1080
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1081 1082 1083
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1084 1085 1086 1087 1088
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
1089 1090 1091

		mutex_unlock(&dev->struct_mutex);

1092
		if (likely(!i915.prefault_disable) && !prefaulted) {
1093
			ret = fault_in_pages_writeable(user_data, remain);
1094 1095 1096 1097 1098 1099 1100
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
1101

1102 1103 1104
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
1105

1106
		mutex_lock(&dev->struct_mutex);
1107 1108

		if (ret)
1109 1110
			goto out;

1111
next_page:
1112
		remain -= page_length;
1113
		user_data += page_length;
1114 1115 1116
		offset += page_length;
	}

1117
out:
1118
	i915_gem_obj_finish_shmem_access(obj);
1119

1120 1121 1122
	return ret;
}

1123 1124
/**
 * Reads data from the object referenced by handle.
1125 1126 1127
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1128 1129 1130 1131 1132
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1133
		     struct drm_file *file)
1134 1135
{
	struct drm_i915_gem_pread *args = data;
1136
	struct drm_i915_gem_object *obj;
1137
	int ret = 0;
1138

1139 1140 1141 1142
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1143
		       u64_to_user_ptr(args->data_ptr),
1144 1145 1146
		       args->size))
		return -EFAULT;

1147
	obj = i915_gem_object_lookup(file, args->handle);
1148 1149
	if (!obj)
		return -ENOENT;
1150

1151
	/* Bounds check source.  */
1152 1153
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1154
		ret = -EINVAL;
1155
		goto err;
C
Chris Wilson 已提交
1156 1157
	}

C
Chris Wilson 已提交
1158 1159
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1160 1161 1162 1163
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1164 1165 1166 1167 1168 1169 1170
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1171
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1172

1173
	/* pread for non shmem backed objects */
1174
	if (ret == -EFAULT || ret == -ENODEV)
1175 1176 1177
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

1178
	i915_gem_object_put(obj);
1179
	mutex_unlock(&dev->struct_mutex);
1180 1181 1182 1183 1184

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1185
	return ret;
1186 1187
}

1188 1189
/* This is the fast write path which cannot handle
 * page faults in the source data
1190
 */
1191 1192 1193 1194 1195 1196

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1197
{
1198 1199
	void __iomem *vaddr_atomic;
	void *vaddr;
1200
	unsigned long unwritten;
1201

P
Peter Zijlstra 已提交
1202
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1203 1204 1205
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1206
						      user_data, length);
P
Peter Zijlstra 已提交
1207
	io_mapping_unmap_atomic(vaddr_atomic);
1208
	return unwritten;
1209 1210
}

1211 1212 1213
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1214
 * @i915: i915 device private data
1215 1216 1217
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1218
 */
1219
static int
1220
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1221
			 struct drm_i915_gem_object *obj,
1222
			 struct drm_i915_gem_pwrite *args,
1223
			 struct drm_file *file)
1224
{
1225
	struct i915_ggtt *ggtt = &i915->ggtt;
1226
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1227
	struct i915_vma *vma;
1228 1229
	struct drm_mm_node node;
	uint64_t remain, offset;
1230
	char __user *user_data;
1231
	int ret;
1232 1233
	bool hit_slow_path = false;

1234
	if (i915_gem_object_is_tiled(obj))
1235
		return -EFAULT;
D
Daniel Vetter 已提交
1236

1237
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1238
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1239
				       PIN_MAPPABLE | PIN_NONBLOCK);
1240 1241 1242
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1243
		ret = i915_vma_put_fence(vma);
1244 1245 1246 1247 1248
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1249
	if (IS_ERR(vma)) {
1250 1251 1252 1253
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

C
Chris Wilson 已提交
1254
		ret = i915_gem_object_pin_pages(obj);
1255 1256 1257 1258 1259
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}
	}
D
Daniel Vetter 已提交
1260 1261 1262 1263 1264

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1265
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1266
	obj->mm.dirty = true;
1267

1268 1269 1270 1271
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1272 1273
		/* Operation in this page
		 *
1274 1275 1276
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1277
		 */
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1291
		/* If we get a fault while copying data, then (presumably) our
1292 1293
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1294 1295
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1296
		 */
1297
		if (fast_user_write(&ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1298
				    page_offset, user_data, page_length)) {
1299 1300
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
1301
			if (slow_user_access(&ggtt->mappable,
1302 1303 1304 1305 1306 1307 1308 1309 1310
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1311
		}
1312

1313 1314 1315
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1316 1317
	}

1318
out_flush:
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1332
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1333
out_unpin:
1334 1335 1336
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1337
				       node.start, node.size);
1338 1339 1340
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1341
		i915_vma_unpin(vma);
1342
	}
D
Daniel Vetter 已提交
1343
out:
1344
	intel_runtime_pm_put(i915);
1345
	return ret;
1346 1347
}

1348 1349 1350 1351
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1352
static int
1353 1354 1355 1356 1357
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1358
{
1359
	char *vaddr;
1360
	int ret;
1361

1362
	if (unlikely(page_do_bit17_swizzling))
1363
		return -EINVAL;
1364

1365 1366 1367 1368
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1369 1370
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1371 1372 1373 1374
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1375

1376
	return ret ? -EFAULT : 0;
1377 1378
}

1379 1380
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1381
static int
1382 1383 1384 1385 1386
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1387
{
1388 1389
	char *vaddr;
	int ret;
1390

1391
	vaddr = kmap(page);
1392
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1393 1394 1395
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1396 1397
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1398 1399
						user_data,
						page_length);
1400 1401 1402 1403 1404
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1405 1406 1407
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1408
	kunmap(page);
1409

1410
	return ret ? -EFAULT : 0;
1411 1412 1413
}

static int
1414 1415 1416 1417
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1418 1419
{
	ssize_t remain;
1420 1421
	loff_t offset;
	char __user *user_data;
1422
	int shmem_page_offset, page_length, ret = 0;
1423
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1424
	int hit_slowpath = 0;
1425
	unsigned int needs_clflush;
1426
	struct sg_page_iter sg_iter;
1427

1428
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1429 1430 1431
	if (ret)
		return ret;

1432 1433
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1434
	offset = args->offset;
1435
	remain = args->size;
1436

C
Chris Wilson 已提交
1437
	for_each_sg_page(obj->mm.pages->sgl, &sg_iter, obj->mm.pages->nents,
1438
			 offset >> PAGE_SHIFT) {
1439
		struct page *page = sg_page_iter_page(&sg_iter);
1440
		int partial_cacheline_write;
1441

1442 1443 1444
		if (remain <= 0)
			break;

1445 1446 1447 1448 1449
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1450
		shmem_page_offset = offset_in_page(offset);
1451 1452 1453 1454 1455

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1456 1457 1458
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1459
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1460 1461 1462
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1463 1464 1465
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1466 1467 1468
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1469
					needs_clflush & CLFLUSH_AFTER);
1470 1471
		if (ret == 0)
			goto next_page;
1472 1473 1474

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1475 1476 1477
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1478
					needs_clflush & CLFLUSH_AFTER);
1479

1480
		mutex_lock(&dev->struct_mutex);
1481 1482

		if (ret)
1483 1484
			goto out;

1485
next_page:
1486
		remain -= page_length;
1487
		user_data += page_length;
1488
		offset += page_length;
1489 1490
	}

1491
out:
1492
	i915_gem_obj_finish_shmem_access(obj);
1493

1494
	if (hit_slowpath) {
1495 1496 1497 1498 1499
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1500
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1501
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1502
			if (i915_gem_clflush_object(obj, obj->pin_display))
1503
				needs_clflush |= CLFLUSH_AFTER;
1504
		}
1505
	}
1506

1507
	if (needs_clflush & CLFLUSH_AFTER)
1508
		i915_gem_chipset_flush(to_i915(dev));
1509

1510
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1511
	return ret;
1512 1513 1514 1515
}

/**
 * Writes data to the object referenced by handle.
1516 1517 1518
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1519 1520 1521 1522 1523
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1524
		      struct drm_file *file)
1525
{
1526
	struct drm_i915_private *dev_priv = to_i915(dev);
1527
	struct drm_i915_gem_pwrite *args = data;
1528
	struct drm_i915_gem_object *obj;
1529 1530 1531 1532 1533 1534
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1535
		       u64_to_user_ptr(args->data_ptr),
1536 1537 1538
		       args->size))
		return -EFAULT;

1539
	if (likely(!i915.prefault_disable)) {
1540
		ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1541 1542 1543 1544
						   args->size);
		if (ret)
			return -EFAULT;
	}
1545

1546
	obj = i915_gem_object_lookup(file, args->handle);
1547 1548
	if (!obj)
		return -ENOENT;
1549

1550
	/* Bounds check destination. */
1551 1552
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1553
		ret = -EINVAL;
1554
		goto err;
C
Chris Wilson 已提交
1555 1556
	}

C
Chris Wilson 已提交
1557 1558
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1559 1560 1561 1562 1563
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1564 1565 1566 1567 1568 1569 1570 1571 1572
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1573
	ret = -EFAULT;
1574 1575 1576 1577 1578 1579
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1580
	if (!i915_gem_object_has_struct_page(obj) ||
1581
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1582 1583
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1584 1585 1586
		 * textures). Fallback to the shmem path in that case.
		 */
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1587

1588
	if (ret == -EFAULT || ret == -ENOSPC) {
1589 1590
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1591
		else
1592
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1593
	}
1594

1595
	i915_gem_object_put(obj);
1596
	mutex_unlock(&dev->struct_mutex);
1597 1598
	intel_runtime_pm_put(dev_priv);

1599
	return ret;
1600 1601 1602 1603 1604 1605

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1606 1607
}

1608
static inline enum fb_op_origin
1609 1610
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1611 1612
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1613 1614
}

1615
/**
1616 1617
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1618 1619 1620
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1621 1622 1623
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1624
			  struct drm_file *file)
1625 1626
{
	struct drm_i915_gem_set_domain *args = data;
1627
	struct drm_i915_gem_object *obj;
1628 1629
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1630 1631
	int ret;

1632
	/* Only handle setting domains to types used by the CPU. */
1633
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1634 1635 1636 1637 1638 1639 1640 1641
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1642
	obj = i915_gem_object_lookup(file, args->handle);
1643 1644
	if (!obj)
		return -ENOENT;
1645

1646 1647 1648 1649
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1650 1651 1652 1653 1654
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1655 1656 1657 1658
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1659
	if (ret)
1660
		goto err;
1661

1662
	if (read_domains & I915_GEM_DOMAIN_GTT)
1663
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1664
	else
1665
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1666

1667
	if (write_domain != 0)
1668
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1669

1670
	i915_gem_object_put(obj);
1671 1672
	mutex_unlock(&dev->struct_mutex);
	return ret;
1673 1674 1675 1676

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1677 1678 1679 1680
}

/**
 * Called when user space has done writes to this buffer
1681 1682 1683
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1684 1685 1686
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1687
			 struct drm_file *file)
1688 1689
{
	struct drm_i915_gem_sw_finish *args = data;
1690
	struct drm_i915_gem_object *obj;
1691
	int err = 0;
1692

1693
	obj = i915_gem_object_lookup(file, args->handle);
1694 1695
	if (!obj)
		return -ENOENT;
1696 1697

	/* Pinned buffers may be scanout, so flush the cache */
1698 1699 1700 1701 1702 1703 1704
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1705

1706 1707
	i915_gem_object_put_unlocked(obj);
	return err;
1708 1709 1710
}

/**
1711 1712 1713 1714 1715
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1716 1717 1718
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1729 1730 1731
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1732
		    struct drm_file *file)
1733 1734
{
	struct drm_i915_gem_mmap *args = data;
1735
	struct drm_i915_gem_object *obj;
1736 1737
	unsigned long addr;

1738 1739 1740
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1741
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1742 1743
		return -ENODEV;

1744 1745
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1746
		return -ENOENT;
1747

1748 1749 1750
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1751
	if (!obj->base.filp) {
1752
		i915_gem_object_put_unlocked(obj);
1753 1754 1755
		return -EINVAL;
	}

1756
	addr = vm_mmap(obj->base.filp, 0, args->size,
1757 1758
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1759 1760 1761 1762
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1763
		if (down_write_killable(&mm->mmap_sem)) {
1764
			i915_gem_object_put_unlocked(obj);
1765 1766
			return -EINTR;
		}
1767 1768 1769 1770 1771 1772 1773
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1774 1775

		/* This may race, but that's ok, it only gets set */
1776
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1777
	}
1778
	i915_gem_object_put_unlocked(obj);
1779 1780 1781 1782 1783 1784 1785 1786
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1847 1848
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1849
 * @area: CPU VMA in question
1850
 * @vmf: fault info
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1862 1863 1864
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1865
 */
C
Chris Wilson 已提交
1866
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1867
{
1868
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1869
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1870
	struct drm_device *dev = obj->base.dev;
1871 1872
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1873
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1874
	struct i915_vma *vma;
1875
	pgoff_t page_offset;
1876
	unsigned int flags;
1877
	int ret;
1878

1879
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1880
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1881 1882
		PAGE_SHIFT;

C
Chris Wilson 已提交
1883 1884
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1885
	/* Try to flush the object off the GPU first without holding the lock.
1886
	 * Upon acquiring the lock, we will perform our sanity checks and then
1887 1888 1889
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1890 1891 1892 1893
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1894
	if (ret)
1895 1896 1897 1898 1899 1900 1901
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1902

1903 1904
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1905
		ret = -EFAULT;
1906
		goto err_unlock;
1907 1908
	}

1909 1910 1911 1912 1913 1914 1915 1916
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1917
	/* Now pin it into the GTT as needed */
1918
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1919 1920
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1921 1922
		unsigned int chunk_size;

1923
		/* Use a partial view if it is bigger than available space */
1924 1925 1926
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
			chunk_size = max(chunk_size, tile_row_pages(obj));
1927

1928 1929 1930 1931
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1932
			min_t(unsigned int, chunk_size,
1933
			      vma_pages(area) - view.params.partial.offset);
1934

1935 1936 1937 1938 1939 1940
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1941 1942 1943 1944 1945
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1946 1947
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1948 1949
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1950
		goto err_unlock;
C
Chris Wilson 已提交
1951
	}
1952

1953 1954
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1955
		goto err_unpin;
1956

1957
	ret = i915_vma_get_fence(vma);
1958
	if (ret)
1959
		goto err_unpin;
1960

1961
	/* Mark as being mmapped into userspace for later revocation */
1962
	assert_rpm_wakelock_held(dev_priv);
1963 1964 1965
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1966
	/* Finally, remap it using the new GTT offset */
1967 1968 1969 1970 1971
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1972

1973
err_unpin:
C
Chris Wilson 已提交
1974
	__i915_vma_unpin(vma);
1975
err_unlock:
1976
	mutex_unlock(&dev->struct_mutex);
1977 1978 1979
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1980
	switch (ret) {
1981
	case -EIO:
1982 1983 1984 1985 1986 1987 1988
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1989 1990 1991
			ret = VM_FAULT_SIGBUS;
			break;
		}
1992
	case -EAGAIN:
D
Daniel Vetter 已提交
1993 1994 1995 1996
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1997
		 */
1998 1999
	case 0:
	case -ERESTARTSYS:
2000
	case -EINTR:
2001 2002 2003 2004 2005
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2006 2007
		ret = VM_FAULT_NOPAGE;
		break;
2008
	case -ENOMEM:
2009 2010
		ret = VM_FAULT_OOM;
		break;
2011
	case -ENOSPC:
2012
	case -EFAULT:
2013 2014
		ret = VM_FAULT_SIGBUS;
		break;
2015
	default:
2016
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2017 2018
		ret = VM_FAULT_SIGBUS;
		break;
2019
	}
2020
	return ret;
2021 2022
}

2023 2024 2025 2026
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2027
 * Preserve the reservation of the mmapping with the DRM core code, but
2028 2029 2030 2031 2032 2033 2034 2035 2036
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2037
void
2038
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2039
{
2040 2041
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2042 2043 2044
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2045 2046 2047 2048
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2049
	 */
2050
	lockdep_assert_held(&i915->drm.struct_mutex);
2051
	intel_runtime_pm_get(i915);
2052

2053
	if (list_empty(&obj->userfault_link))
2054
		goto out;
2055

2056
	list_del_init(&obj->userfault_link);
2057 2058
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2059 2060 2061 2062 2063 2064 2065 2066 2067

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2068 2069 2070

out:
	intel_runtime_pm_put(i915);
2071 2072
}

2073
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2074
{
2075
	struct drm_i915_gem_object *obj, *on;
2076
	int i;
2077

2078 2079 2080 2081 2082 2083
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2084

2085 2086 2087
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2088 2089 2090
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2108 2109
}

2110 2111
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
2112
 * @dev_priv: i915 device
2113 2114 2115 2116 2117 2118
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
2119 2120
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
2121
{
2122
	u64 ggtt_size;
2123

2124 2125
	GEM_BUG_ON(size == 0);

2126
	if (INTEL_GEN(dev_priv) >= 4 ||
2127 2128
	    tiling_mode == I915_TILING_NONE)
		return size;
2129 2130

	/* Previous chips need a power-of-two fence region when tiling */
2131
	if (IS_GEN3(dev_priv))
2132
		ggtt_size = 1024*1024;
2133
	else
2134
		ggtt_size = 512*1024;
2135

2136 2137
	while (ggtt_size < size)
		ggtt_size <<= 1;
2138

2139
	return ggtt_size;
2140 2141
}

2142
/**
2143
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2144
 * @dev_priv: i915 device
2145 2146
 * @size: object size
 * @tiling_mode: tiling mode
2147
 * @fenced: is fenced alignment required or not
2148
 *
2149
 * Return the required global GTT alignment for an object, taking into account
2150
 * potential fence register mapping.
2151
 */
2152
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2153
				int tiling_mode, bool fenced)
2154
{
2155 2156
	GEM_BUG_ON(size == 0);

2157 2158 2159 2160
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2161
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2162
	    tiling_mode == I915_TILING_NONE)
2163 2164
		return 4096;

2165 2166 2167 2168
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2169
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2170 2171
}

2172 2173
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2174
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2175
	int err;
2176

2177 2178 2179
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2180

2181 2182 2183
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2184
	 */
2185
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2186 2187 2188 2189 2190 2191 2192 2193 2194
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2195

2196
	return err;
2197 2198 2199 2200 2201 2202 2203
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2204
int
2205 2206
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2207
		  uint32_t handle,
2208
		  uint64_t *offset)
2209
{
2210
	struct drm_i915_gem_object *obj;
2211 2212
	int ret;

2213
	obj = i915_gem_object_lookup(file, handle);
2214 2215
	if (!obj)
		return -ENOENT;
2216

2217
	ret = i915_gem_object_create_mmap_offset(obj);
2218 2219
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2220

2221
	i915_gem_object_put_unlocked(obj);
2222
	return ret;
2223 2224
}

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2246
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2247 2248
}

D
Daniel Vetter 已提交
2249 2250 2251
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2252
{
2253
	i915_gem_object_free_mmap_offset(obj);
2254

2255 2256
	if (obj->base.filp == NULL)
		return;
2257

D
Daniel Vetter 已提交
2258 2259 2260 2261 2262
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2263
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2264
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2265
}
2266

2267
/* Try to discard unwanted pages */
2268
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2269
{
2270 2271
	struct address_space *mapping;

2272 2273 2274
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2275
	switch (obj->mm.madv) {
2276 2277 2278 2279 2280 2281 2282 2283 2284
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2285
	mapping = obj->base.filp->f_mapping,
2286
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2287 2288
}

2289
static void
2290 2291
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2292
{
2293 2294
	struct sgt_iter sgt_iter;
	struct page *page;
2295

2296
	__i915_gem_object_release_shmem(obj);
2297

2298
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2299

2300
	if (i915_gem_object_needs_bit17_swizzle(obj))
2301
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2302

2303
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2304
		if (obj->mm.dirty)
2305
			set_page_dirty(page);
2306

C
Chris Wilson 已提交
2307
		if (obj->mm.madv == I915_MADV_WILLNEED)
2308
			mark_page_accessed(page);
2309

2310
		put_page(page);
2311
	}
C
Chris Wilson 已提交
2312
	obj->mm.dirty = false;
2313

2314 2315
	sg_free_table(pages);
	kfree(pages);
2316
}
C
Chris Wilson 已提交
2317

2318 2319 2320 2321 2322
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2323 2324
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2325 2326
}

2327
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2328
{
2329
	struct sg_table *pages;
2330

C
Chris Wilson 已提交
2331
	if (i915_gem_object_has_pinned_pages(obj))
2332
		return;
2333

2334
	GEM_BUG_ON(obj->bind_count);
2335 2336 2337 2338 2339 2340 2341
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, SINGLE_DEPTH_NESTING);
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2342

2343 2344 2345
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2346 2347
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2348

C
Chris Wilson 已提交
2349
	if (obj->mm.mapping) {
2350 2351
		void *ptr;

C
Chris Wilson 已提交
2352
		ptr = ptr_mask_bits(obj->mm.mapping);
2353 2354
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2355
		else
2356 2357
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2358
		obj->mm.mapping = NULL;
2359 2360
	}

2361 2362
	__i915_gem_object_reset_page_iter(obj);

2363
	obj->ops->put_pages(obj, pages);
2364 2365
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2366 2367
}

2368
static unsigned int swiotlb_max_size(void)
2369 2370 2371 2372 2373 2374 2375 2376
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2377
static struct sg_table *
C
Chris Wilson 已提交
2378
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2379
{
2380
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2381 2382
	int page_count, i;
	struct address_space *mapping;
2383 2384
	struct sg_table *st;
	struct scatterlist *sg;
2385
	struct sgt_iter sgt_iter;
2386
	struct page *page;
2387
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2388
	unsigned int max_segment;
I
Imre Deak 已提交
2389
	int ret;
C
Chris Wilson 已提交
2390
	gfp_t gfp;
2391

C
Chris Wilson 已提交
2392 2393 2394 2395
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2396 2397
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2398

2399 2400
	max_segment = swiotlb_max_size();
	if (!max_segment)
2401
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2402

2403 2404
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2405
		return ERR_PTR(-ENOMEM);
2406

2407
	page_count = obj->base.size / PAGE_SIZE;
2408 2409
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2410
		return ERR_PTR(-ENOMEM);
2411
	}
2412

2413 2414 2415 2416 2417
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2418
	mapping = obj->base.filp->f_mapping;
2419
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2420
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2421 2422 2423
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2424 2425
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2426 2427 2428 2429 2430
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2431 2432 2433 2434 2435 2436 2437
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2438
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2439 2440
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2441
				goto err_pages;
I
Imre Deak 已提交
2442
			}
C
Chris Wilson 已提交
2443
		}
2444 2445 2446
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2447 2448 2449 2450 2451 2452 2453 2454
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2455 2456 2457

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2458
	}
2459
	if (sg) /* loop terminated early; short sg table */
2460
		sg_mark_end(sg);
2461

2462
	ret = i915_gem_gtt_prepare_pages(obj, st);
I
Imre Deak 已提交
2463 2464 2465
	if (ret)
		goto err_pages;

2466
	if (i915_gem_object_needs_bit17_swizzle(obj))
2467
		i915_gem_object_do_bit_17_swizzle(obj, st);
2468

2469
	if (i915_gem_object_is_tiled(obj) &&
2470
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
C
Chris Wilson 已提交
2471
		__i915_gem_object_pin_pages(obj);
2472

2473
	return st;
2474 2475

err_pages:
2476
	sg_mark_end(sg);
2477 2478
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2479 2480
	sg_free_table(st);
	kfree(st);
2481 2482 2483 2484 2485 2486 2487 2488 2489

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2490 2491 2492
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2493 2494 2495 2496 2497 2498
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2499
	lockdep_assert_held(&obj->mm.lock);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2522 2523
}

2524
/* Ensure that the associated pages are gathered from the backing storage
2525
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2526
 * multiple times before they are released by a single call to
2527
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2528 2529 2530
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2531
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2532
{
2533
	int err;
2534

2535 2536 2537
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2538

2539 2540 2541 2542 2543 2544
	if (likely(obj->mm.pages)) {
		__i915_gem_object_pin_pages(obj);
		goto unlock;
	}

	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2545

2546
	err = ____i915_gem_object_get_pages(obj);
2547 2548
	if (!err)
		atomic_set_release(&obj->mm.pages_pin_count, 1);
2549

2550 2551
unlock:
	mutex_unlock(&obj->mm.lock);
2552
	return err;
2553 2554
}

2555
/* The 'mapping' part of i915_gem_object_pin_map() below */
2556 2557
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2558 2559
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2560
	struct sg_table *sgt = obj->mm.pages;
2561 2562
	struct sgt_iter sgt_iter;
	struct page *page;
2563 2564
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2565
	unsigned long i = 0;
2566
	pgprot_t pgprot;
2567 2568 2569
	void *addr;

	/* A single page can always be kmapped */
2570
	if (n_pages == 1 && type == I915_MAP_WB)
2571 2572
		return kmap(sg_page(sgt->sgl));

2573 2574 2575 2576 2577 2578
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2579

2580 2581
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2582 2583 2584 2585

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2586 2587 2588 2589 2590 2591 2592 2593 2594
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2595

2596 2597
	if (pages != stack_pages)
		drm_free_large(pages);
2598 2599 2600 2601 2602

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2603 2604
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2605
{
2606 2607 2608
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2609 2610
	int ret;

2611
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2612

2613
	ret = mutex_lock_interruptible(&obj->mm.lock);
2614 2615 2616
	if (ret)
		return ERR_PTR(ret);

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
		ret = ____i915_gem_object_get_pages(obj);
		if (ret)
			goto err_unlock;

		GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count));
		atomic_set_release(&obj->mm.pages_pin_count, 1);
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2628

C
Chris Wilson 已提交
2629
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2630 2631 2632
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2633
			goto err_unpin;
2634
		}
2635 2636 2637 2638 2639 2640

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2641
		ptr = obj->mm.mapping = NULL;
2642 2643
	}

2644 2645 2646 2647
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2648
			goto err_unpin;
2649 2650
		}

C
Chris Wilson 已提交
2651
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2652 2653
	}

2654 2655
out_unlock:
	mutex_unlock(&obj->mm.lock);
2656 2657
	return ptr;

2658 2659 2660 2661 2662
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2663 2664
}

2665
static void
2666 2667
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2668
{
2669 2670
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2671

2672
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2673 2674
}

2675
static void
2676 2677
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2678
{
2679 2680 2681
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2682

2683
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2684

2685 2686
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2687
		return;
2688

2689 2690 2691 2692
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2693 2694 2695
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2696

2697 2698 2699 2700
	if (i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_clear_active_reference(obj);
		i915_gem_object_put(obj);
	}
2701 2702
}

2703
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2704
{
2705
	unsigned long elapsed;
2706

2707
	if (ctx->hang_stats.banned)
2708 2709
		return true;

2710
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2711 2712
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2713 2714
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2715 2716 2717 2718 2719
	}

	return false;
}

2720
static void i915_set_reset_status(struct i915_gem_context *ctx,
2721
				  const bool guilty)
2722
{
2723
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2724 2725

	if (guilty) {
2726
		hs->banned = i915_context_is_banned(ctx);
2727 2728 2729 2730
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2731 2732 2733
	}
}

2734
struct drm_i915_gem_request *
2735
i915_gem_find_active_request(struct intel_engine_cs *engine)
2736
{
2737 2738
	struct drm_i915_gem_request *request;

2739 2740 2741 2742 2743 2744 2745 2746
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2747
	list_for_each_entry(request, &engine->request_list, link) {
2748
		if (i915_gem_request_completed(request))
2749
			continue;
2750

2751 2752 2753
		if (!i915_sw_fence_done(&request->submit))
			break;

2754
		return request;
2755
	}
2756 2757 2758 2759

	return NULL;
}

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2778 2779
{
	struct drm_i915_gem_request *request;
2780
	struct i915_gem_context *incomplete_ctx;
2781 2782
	bool ring_hung;

2783 2784 2785
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2786
	request = i915_gem_find_active_request(engine);
2787
	if (!request)
2788 2789
		return;

2790
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2791 2792 2793
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2794
	i915_set_reset_status(request->ctx, ring_hung);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
			 engine->name, request->fence.seqno);

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2816
	list_for_each_entry_continue(request, &engine->request_list, link)
2817 2818
		if (request->ctx == incomplete_ctx)
			reset_request(request);
2819
}
2820

2821
void i915_gem_reset(struct drm_i915_private *dev_priv)
2822
{
2823
	struct intel_engine_cs *engine;
2824
	enum intel_engine_id id;
2825

2826 2827
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2828 2829
	i915_gem_retire_requests(dev_priv);

2830
	for_each_engine(engine, dev_priv, id)
2831 2832 2833
		i915_gem_reset_engine(engine);

	i915_gem_restore_fences(&dev_priv->drm);
2834 2835 2836 2837 2838 2839 2840

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2841 2842 2843 2844 2845 2846 2847 2848 2849
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2850

2851 2852 2853 2854
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2855
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2856

2857 2858 2859 2860 2861 2862
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2863
	if (i915.enable_execlists) {
2864 2865 2866 2867 2868 2869
		spin_lock(&engine->execlist_lock);
		INIT_LIST_HEAD(&engine->execlist_queue);
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		spin_unlock(&engine->execlist_lock);
2870 2871
	}

2872
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2873 2874
}

2875
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2876
{
2877
	struct intel_engine_cs *engine;
2878
	enum intel_engine_id id;
2879

2880 2881
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2882

2883
	i915_gem_context_lost(dev_priv);
2884
	for_each_engine(engine, dev_priv, id)
2885
		i915_gem_cleanup_engine(engine);
2886
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2887

2888
	i915_gem_retire_requests(dev_priv);
2889 2890
}

2891
static void
2892 2893
i915_gem_retire_work_handler(struct work_struct *work)
{
2894
	struct drm_i915_private *dev_priv =
2895
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2896
	struct drm_device *dev = &dev_priv->drm;
2897

2898
	/* Come back later if the device is busy... */
2899
	if (mutex_trylock(&dev->struct_mutex)) {
2900
		i915_gem_retire_requests(dev_priv);
2901
		mutex_unlock(&dev->struct_mutex);
2902
	}
2903 2904 2905 2906 2907

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2908 2909
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2910 2911
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2912
				   round_jiffies_up_relative(HZ));
2913
	}
2914
}
2915

2916 2917 2918 2919
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2920
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2921
	struct drm_device *dev = &dev_priv->drm;
2922
	struct intel_engine_cs *engine;
2923
	enum intel_engine_id id;
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2945

2946
	for_each_engine(engine, dev_priv, id)
2947
		i915_gem_batch_pool_fini(&engine->batch_pool);
2948

2949 2950 2951
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2952

2953 2954 2955 2956 2957
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2958

2959 2960 2961 2962
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2963
	}
2964 2965
}

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2976 2977 2978 2979 2980 2981

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2982 2983 2984
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2996 2997
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2998 2999 3000
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3025 3026
	ktime_t start;
	long ret;
3027

3028 3029 3030
	if (args->flags != 0)
		return -EINVAL;

3031
	obj = i915_gem_object_lookup(file, args->bo_handle);
3032
	if (!obj)
3033 3034
		return -ENOENT;

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3046 3047
	}

3048
	i915_gem_object_put_unlocked(obj);
3049
	return ret;
3050 3051
}

3052 3053
static void __i915_vma_iounmap(struct i915_vma *vma)
{
3054
	GEM_BUG_ON(i915_vma_is_pinned(vma));
3055 3056 3057 3058 3059 3060 3061 3062

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3063
int i915_vma_unbind(struct i915_vma *vma)
3064
{
3065
	struct drm_i915_gem_object *obj = vma->obj;
3066
	unsigned long active;
3067
	int ret;
3068

3069 3070
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3071 3072 3073 3074
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
3075
	if (active) {
3076 3077
		int idx;

3078 3079 3080 3081 3082
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
3083
		__i915_vma_pin(vma);
3084

3085 3086 3087 3088
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
3089
				break;
3090 3091
		}

3092
		__i915_vma_unpin(vma);
3093 3094 3095
		if (ret)
			return ret;

3096 3097 3098
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

3099
	if (i915_vma_is_pinned(vma))
3100 3101
		return -EBUSY;

3102 3103
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
3104

3105
	GEM_BUG_ON(obj->bind_count == 0);
C
Chris Wilson 已提交
3106
	GEM_BUG_ON(!obj->mm.pages);
3107

3108
	if (i915_vma_is_map_and_fenceable(vma)) {
3109
		/* release the fence reg _after_ flushing */
3110
		ret = i915_vma_put_fence(vma);
3111 3112
		if (ret)
			return ret;
3113

3114 3115 3116
		/* Force a pagefault for domain tracking on next user access */
		i915_gem_release_mmap(obj);

3117
		__i915_vma_iounmap(vma);
3118
		vma->flags &= ~I915_VMA_CAN_FENCE;
3119
	}
3120

3121 3122 3123 3124
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
3125
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3126

3127 3128 3129
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

C
Chris Wilson 已提交
3130
	if (vma->pages != obj->mm.pages) {
3131 3132 3133
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
3134
	}
3135
	vma->pages = NULL;
3136

B
Ben Widawsky 已提交
3137
	/* Since the unbound list is global, only move to that list if
3138
	 * no more VMAs exist. */
3139 3140 3141
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
3142

3143 3144 3145 3146 3147 3148
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3149
destroy:
3150
	if (unlikely(i915_vma_is_closed(vma)))
3151 3152
		i915_vma_destroy(vma);

3153
	return 0;
3154 3155
}

3156
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3157
			   unsigned int flags)
3158
{
3159
	struct intel_engine_cs *engine;
3160
	enum intel_engine_id id;
3161
	int ret;
3162

3163
	for_each_engine(engine, dev_priv, id) {
3164 3165 3166
		if (engine->last_context == NULL)
			continue;

3167
		ret = intel_engine_idle(engine, flags);
3168 3169 3170
		if (ret)
			return ret;
	}
3171

3172
	return 0;
3173 3174
}

3175
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3176 3177
				     unsigned long cache_level)
{
3178
	struct drm_mm_node *gtt_space = &vma->node;
3179 3180
	struct drm_mm_node *other;

3181 3182 3183 3184 3185 3186
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3187
	 */
3188
	if (vma->vm->mm.color_adjust == NULL)
3189 3190
		return true;

3191
	if (!drm_mm_node_allocated(gtt_space))
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3208
/**
3209 3210
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3211
 * @size: requested size in bytes (can be larger than the VMA)
3212
 * @alignment: required alignment
3213
 * @flags: mask of PIN_* flags to use
3214 3215 3216 3217 3218 3219 3220
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3221
 */
3222 3223
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3224
{
3225 3226
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3227
	u64 start, end;
3228
	int ret;
3229

3230
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3231
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3232 3233 3234

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3235 3236
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3237

3238 3239 3240 3241
	alignment = max(max(alignment, vma->display_alignment),
			i915_gem_get_ggtt_alignment(dev_priv, size,
						    i915_gem_object_get_tiling(obj),
						    flags & PIN_MAPPABLE));
3242

3243
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3244 3245

	end = vma->vm->total;
3246
	if (flags & PIN_MAPPABLE)
3247
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3248
	if (flags & PIN_ZONE_4G)
3249
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3250

3251 3252 3253
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3254
	 */
3255
	if (size > end) {
3256
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3257
			  size, obj->base.size,
3258
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3259
			  end);
3260
		return -E2BIG;
3261 3262
	}

C
Chris Wilson 已提交
3263
	ret = i915_gem_object_pin_pages(obj);
C
Chris Wilson 已提交
3264
	if (ret)
3265
		return ret;
C
Chris Wilson 已提交
3266

3267
	if (flags & PIN_OFFSET_FIXED) {
3268
		u64 offset = flags & PIN_OFFSET_MASK;
3269
		if (offset & (alignment - 1) || offset > end - size) {
3270
			ret = -EINVAL;
3271
			goto err_unpin;
3272
		}
3273

3274 3275 3276
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3277
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3278 3279 3280
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3281 3282 3283
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3284
		}
3285
	} else {
3286 3287
		u32 search_flag, alloc_flag;

3288 3289 3290 3291 3292 3293 3294
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3295

3296 3297 3298 3299 3300 3301 3302 3303 3304
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3305
search_free:
3306 3307
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3308 3309 3310 3311 3312 3313
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3314
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3315 3316 3317 3318 3319
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3320

3321
			goto err_unpin;
3322
		}
3323 3324 3325

		GEM_BUG_ON(vma->node.start < start);
		GEM_BUG_ON(vma->node.start + vma->node.size > end);
3326
	}
3327
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3328

3329
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3330
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3331
	obj->bind_count++;
3332

3333
	return 0;
B
Ben Widawsky 已提交
3334

3335
err_unpin:
B
Ben Widawsky 已提交
3336
	i915_gem_object_unpin_pages(obj);
3337
	return ret;
3338 3339
}

3340
bool
3341 3342
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3343 3344 3345 3346 3347
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3348
	if (!obj->mm.pages)
3349
		return false;
3350

3351 3352 3353 3354
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3355
	if (obj->stolen || obj->phys_handle)
3356
		return false;
3357

3358 3359 3360 3361 3362 3363 3364 3365
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3366 3367
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3368
		return false;
3369
	}
3370

C
Chris Wilson 已提交
3371
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3372
	drm_clflush_sg(obj->mm.pages);
3373
	obj->cache_dirty = false;
3374 3375

	return true;
3376 3377 3378 3379
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3380
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3381
{
3382
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3383

3384
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3385 3386
		return;

3387
	/* No actual flushing is required for the GTT write domain.  Writes
3388
	 * to it "immediately" go to main memory as far as we know, so there's
3389
	 * no chipset flush.  It also doesn't land in render cache.
3390 3391 3392 3393
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3394 3395 3396 3397 3398 3399 3400
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3401
	 */
3402
	wmb();
3403
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3404
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3405

3406
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3407

3408
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3409
	trace_i915_gem_object_change_domain(obj,
3410
					    obj->base.read_domains,
3411
					    I915_GEM_DOMAIN_GTT);
3412 3413 3414 3415
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3416
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3417
{
3418
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3419 3420
		return;

3421
	if (i915_gem_clflush_object(obj, obj->pin_display))
3422
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3423

3424
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3425

3426
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3427
	trace_i915_gem_object_change_domain(obj,
3428
					    obj->base.read_domains,
3429
					    I915_GEM_DOMAIN_CPU);
3430 3431
}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}
}

3450 3451
/**
 * Moves a single object to the GTT read, and possibly write domain.
3452 3453
 * @obj: object to act on
 * @write: ask for write access or read only
3454 3455 3456 3457
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3458
int
3459
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3460
{
C
Chris Wilson 已提交
3461
	uint32_t old_write_domain, old_read_domains;
3462
	int ret;
3463

3464
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3465

3466 3467 3468 3469 3470 3471
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3472 3473 3474
	if (ret)
		return ret;

3475 3476 3477
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3478 3479 3480 3481 3482 3483 3484 3485
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3486
	ret = i915_gem_object_pin_pages(obj);
3487 3488 3489
	if (ret)
		return ret;

3490
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3491

3492 3493 3494 3495 3496 3497 3498
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3499 3500
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3501

3502 3503 3504
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3505 3506
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3507
	if (write) {
3508 3509
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3510
		obj->mm.dirty = true;
3511 3512
	}

C
Chris Wilson 已提交
3513 3514 3515 3516
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3517
	/* And bump the LRU for this access */
3518
	i915_gem_object_bump_inactive_ggtt(obj);
C
Chris Wilson 已提交
3519
	i915_gem_object_unpin_pages(obj);
3520

3521 3522 3523
	return 0;
}

3524 3525
/**
 * Changes the cache-level of an object across all VMA.
3526 3527
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3539 3540 3541
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3542
	struct i915_vma *vma;
3543
	int ret = 0;
3544

3545 3546
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3547
	if (obj->cache_level == cache_level)
3548
		goto out;
3549

3550 3551 3552 3553 3554
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3555 3556
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3557 3558 3559
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3560
		if (i915_vma_is_pinned(vma)) {
3561 3562 3563 3564
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3577 3578
	}

3579 3580 3581 3582 3583 3584 3585
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3586
	if (obj->bind_count) {
3587 3588 3589 3590
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3591 3592 3593 3594 3595 3596
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3597 3598 3599
		if (ret)
			return ret;

3600
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3617 3618 3619 3620 3621
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3622 3623 3624 3625 3626 3627 3628 3629
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3630 3631
		}

3632
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3633 3634 3635 3636 3637 3638 3639
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3640 3641
	}

3642
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3643 3644 3645
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3646
out:
3647 3648 3649 3650
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3651
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3652
		if (i915_gem_clflush_object(obj, true))
3653
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3654 3655 3656 3657 3658
	}

	return 0;
}

B
Ben Widawsky 已提交
3659 3660
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3661
{
B
Ben Widawsky 已提交
3662
	struct drm_i915_gem_caching *args = data;
3663 3664
	struct drm_i915_gem_object *obj;

3665 3666
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3667
		return -ENOENT;
3668

3669 3670 3671 3672 3673 3674
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3675 3676 3677 3678
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3679 3680 3681 3682
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3683

3684
	i915_gem_object_put_unlocked(obj);
3685
	return 0;
3686 3687
}

B
Ben Widawsky 已提交
3688 3689
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3690
{
3691
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3692
	struct drm_i915_gem_caching *args = data;
3693 3694 3695 3696
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3697 3698
	switch (args->caching) {
	case I915_CACHING_NONE:
3699 3700
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3701
	case I915_CACHING_CACHED:
3702 3703 3704 3705 3706 3707
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3708
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3709 3710
			return -ENODEV;

3711 3712
		level = I915_CACHE_LLC;
		break;
3713
	case I915_CACHING_DISPLAY:
3714
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3715
		break;
3716 3717 3718 3719
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3720 3721
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3722
		return ret;
B
Ben Widawsky 已提交
3723

3724 3725
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3726 3727 3728 3729 3730
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3731
	i915_gem_object_put(obj);
3732 3733 3734 3735 3736
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3737
/*
3738 3739 3740
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3741
 */
C
Chris Wilson 已提交
3742
struct i915_vma *
3743 3744
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3745
				     const struct i915_ggtt_view *view)
3746
{
C
Chris Wilson 已提交
3747
	struct i915_vma *vma;
3748
	u32 old_read_domains, old_write_domain;
3749 3750
	int ret;

3751 3752
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3753 3754 3755
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3756
	obj->pin_display++;
3757

3758 3759 3760 3761 3762 3763 3764 3765 3766
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3767
	ret = i915_gem_object_set_cache_level(obj,
3768 3769
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3770 3771
	if (ret) {
		vma = ERR_PTR(ret);
3772
		goto err_unpin_display;
C
Chris Wilson 已提交
3773
	}
3774

3775 3776
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3777 3778 3779 3780
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3781
	 */
3782 3783 3784 3785 3786 3787
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
	if (IS_ERR(vma))
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
C
Chris Wilson 已提交
3788
	if (IS_ERR(vma))
3789
		goto err_unpin_display;
3790

3791 3792
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3793
	i915_gem_object_flush_cpu_write_domain(obj);
3794

3795
	old_write_domain = obj->base.write_domain;
3796
	old_read_domains = obj->base.read_domains;
3797 3798 3799 3800

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3801
	obj->base.write_domain = 0;
3802
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3803 3804 3805

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3806
					    old_write_domain);
3807

C
Chris Wilson 已提交
3808
	return vma;
3809 3810

err_unpin_display:
3811
	obj->pin_display--;
C
Chris Wilson 已提交
3812
	return vma;
3813 3814 3815
}

void
C
Chris Wilson 已提交
3816
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3817
{
3818 3819
	lockdep_assert_held(&vma->vm->dev->struct_mutex);

C
Chris Wilson 已提交
3820
	if (WARN_ON(vma->obj->pin_display == 0))
3821 3822
		return;

3823 3824
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3825

3826 3827 3828 3829
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3830
	i915_vma_unpin(vma);
3831 3832
}

3833 3834
/**
 * Moves a single object to the CPU read, and possibly write domain.
3835 3836
 * @obj: object to act on
 * @write: requesting write or read-only access
3837 3838 3839 3840
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3841
int
3842
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3843
{
C
Chris Wilson 已提交
3844
	uint32_t old_write_domain, old_read_domains;
3845 3846
	int ret;

3847
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3848

3849 3850 3851 3852 3853 3854
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3855 3856 3857
	if (ret)
		return ret;

3858 3859 3860
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3861
	i915_gem_object_flush_gtt_write_domain(obj);
3862

3863 3864
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3865

3866
	/* Flush the CPU cache if it's still invalid. */
3867
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3868
		i915_gem_clflush_object(obj, false);
3869

3870
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3871 3872 3873 3874 3875
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3876
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3877 3878 3879 3880 3881

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3882 3883
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3884
	}
3885

C
Chris Wilson 已提交
3886 3887 3888 3889
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3890 3891 3892
	return 0;
}

3893 3894 3895
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3896 3897 3898 3899
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3900 3901 3902
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3903
static int
3904
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3905
{
3906
	struct drm_i915_private *dev_priv = to_i915(dev);
3907
	struct drm_i915_file_private *file_priv = file->driver_priv;
3908
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3909
	struct drm_i915_gem_request *request, *target = NULL;
3910
	long ret;
3911

3912 3913 3914
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3915

3916
	spin_lock(&file_priv->mm.lock);
3917
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3918 3919
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3920

3921 3922 3923 3924 3925 3926 3927
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3928
		target = request;
3929
	}
3930
	if (target)
3931
		i915_gem_request_get(target);
3932
	spin_unlock(&file_priv->mm.lock);
3933

3934
	if (target == NULL)
3935
		return 0;
3936

3937 3938 3939
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3940
	i915_gem_request_put(target);
3941

3942
	return ret < 0 ? ret : 0;
3943 3944
}

3945
static bool
3946
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3947
{
3948 3949 3950
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3951 3952 3953 3954
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3955 3956
		return true;

3957
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3958 3959 3960 3961 3962 3963
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3964 3965 3966 3967
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3968 3969 3970
	return false;
}

3971 3972 3973
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3974
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3975 3976 3977
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3978
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3979
					    vma->size,
3980
					    i915_gem_object_get_tiling(obj));
3981
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3982
						      vma->size,
3983
						      i915_gem_object_get_tiling(obj),
3984
						      true);
3985 3986 3987 3988 3989

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3990
		    dev_priv->ggtt.mappable_end);
3991

3992 3993 3994 3995 3996 3997
	/*
	 * Explicitly disable for rotated VMA since the display does not
	 * need the fence and the VMA is not accessible to other users.
	 */
	if (mappable && fenceable &&
	    vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
3998 3999 4000
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
4001 4002
}

4003 4004
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
4005
{
4006
	unsigned int bound = vma->flags;
4007 4008
	int ret;

4009
	lockdep_assert_held(&vma->vm->dev->struct_mutex);
4010
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
4011
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
4012

4013 4014 4015 4016
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
4017

4018
	if ((bound & I915_VMA_BIND_MASK) == 0) {
4019 4020 4021
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
4022
	}
4023

4024
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
4025
	if (ret)
4026
		goto err;
4027

4028
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
4029
		__i915_vma_set_map_and_fenceable(vma);
4030

4031
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
4032 4033
	return 0;

4034 4035 4036
err:
	__i915_vma_unpin(vma);
	return ret;
4037 4038
}

C
Chris Wilson 已提交
4039
struct i915_vma *
4040 4041
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4042
			 u64 size,
4043 4044
			 u64 alignment,
			 u64 flags)
4045
{
4046 4047
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4048 4049
	struct i915_vma *vma;
	int ret;
4050

4051 4052
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
4053
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
4054
	if (IS_ERR(vma))
C
Chris Wilson 已提交
4055
		return vma;
4056 4057 4058 4059

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4060
			return ERR_PTR(-ENOSPC);
4061

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

4097 4098
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4099 4100 4101
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4102
		     !!(flags & PIN_MAPPABLE),
4103
		     i915_vma_is_map_and_fenceable(vma));
4104 4105
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4106
			return ERR_PTR(ret);
4107 4108
	}

C
Chris Wilson 已提交
4109 4110 4111
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4112

C
Chris Wilson 已提交
4113
	return vma;
4114 4115
}

4116
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4131 4132 4133 4134 4135 4136 4137 4138 4139
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4140 4141
}

4142
static __always_inline unsigned int
4143 4144 4145
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
4146
	struct drm_i915_gem_request *request;
4147

4148 4149 4150
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
4151

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
4208 4209
}

4210
static __always_inline unsigned int
4211 4212 4213 4214 4215
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

4216
static __always_inline unsigned int
4217 4218 4219 4220 4221
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

4222 4223
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4224
		    struct drm_file *file)
4225 4226
{
	struct drm_i915_gem_busy *args = data;
4227
	struct drm_i915_gem_object *obj;
4228
	unsigned long active;
4229

4230
	obj = i915_gem_object_lookup(file, args->handle);
4231 4232
	if (!obj)
		return -ENOENT;
4233

4234
	args->busy = 0;
4235 4236 4237
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
4238

4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
4255 4256 4257 4258 4259 4260
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
4261 4262 4263 4264 4265 4266 4267
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
4268 4269 4270 4271 4272
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
4273 4274 4275 4276 4277 4278 4279 4280 4281
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
4282
	}
4283

4284 4285
	i915_gem_object_put_unlocked(obj);
	return 0;
4286 4287 4288 4289 4290 4291
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4292
	return i915_gem_ring_throttle(dev, file_priv);
4293 4294
}

4295 4296 4297 4298
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4299
	struct drm_i915_private *dev_priv = to_i915(dev);
4300
	struct drm_i915_gem_madvise *args = data;
4301
	struct drm_i915_gem_object *obj;
4302
	int err;
4303 4304 4305 4306 4307 4308 4309 4310 4311

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4312
	obj = i915_gem_object_lookup(file_priv, args->handle);
4313 4314 4315 4316 4317 4318
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4319

C
Chris Wilson 已提交
4320
	if (obj->mm.pages &&
4321
	    i915_gem_object_is_tiled(obj) &&
4322
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
C
Chris Wilson 已提交
4323 4324
		if (obj->mm.madv == I915_MADV_WILLNEED)
			__i915_gem_object_unpin_pages(obj);
4325
		if (args->madv == I915_MADV_WILLNEED)
C
Chris Wilson 已提交
4326
			__i915_gem_object_pin_pages(obj);
4327 4328
	}

C
Chris Wilson 已提交
4329 4330
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4331

C
Chris Wilson 已提交
4332
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4333
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4334 4335
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4336
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4337
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4338

4339
out:
4340
	i915_gem_object_put(obj);
4341
	return err;
4342 4343
}

4344 4345
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4346
{
4347 4348
	int i;

4349 4350
	mutex_init(&obj->mm.lock);

4351
	INIT_LIST_HEAD(&obj->global_list);
4352
	INIT_LIST_HEAD(&obj->userfault_link);
4353
	for (i = 0; i < I915_NUM_ENGINES; i++)
4354 4355 4356 4357
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
4358
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4359
	INIT_LIST_HEAD(&obj->vma_list);
4360
	INIT_LIST_HEAD(&obj->batch_pool_link);
4361

4362 4363
	obj->ops = ops;

4364
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
C
Chris Wilson 已提交
4365 4366 4367 4368

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4369

4370
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4371 4372
}

4373
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4374
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4375 4376 4377 4378
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4379 4380 4381 4382 4383 4384
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
i915_gem_object_create(struct drm_device *dev, u64 size)
4385
{
4386
	struct drm_i915_gem_object *obj;
4387
	struct address_space *mapping;
D
Daniel Vetter 已提交
4388
	gfp_t mask;
4389
	int ret;
4390

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4402
	obj = i915_gem_object_alloc(dev);
4403
	if (obj == NULL)
4404
		return ERR_PTR(-ENOMEM);
4405

4406 4407 4408
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4409

4410 4411 4412 4413 4414 4415 4416
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4417
	mapping = obj->base.filp->f_mapping;
4418
	mapping_set_gfp_mask(mapping, mask);
4419

4420
	i915_gem_object_init(obj, &i915_gem_object_ops);
4421

4422 4423
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4424

4425 4426
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4442 4443
	trace_i915_gem_object_create(obj);

4444
	return obj;
4445 4446 4447 4448 4449

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4450 4451
}

4452 4453 4454 4455 4456 4457 4458 4459
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4460
	if (obj->mm.madv != I915_MADV_WILLNEED)
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4476
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4477
{
4478
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4479
	struct drm_device *dev = obj->base.dev;
4480
	struct drm_i915_private *dev_priv = to_i915(dev);
4481
	struct i915_vma *vma, *next;
4482

4483 4484
	intel_runtime_pm_get(dev_priv);

4485 4486
	trace_i915_gem_object_destroy(obj);

4487 4488 4489 4490 4491 4492 4493
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4494
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4495
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4496
		GEM_BUG_ON(i915_vma_is_active(vma));
4497
		vma->flags &= ~I915_VMA_PIN_MASK;
4498
		i915_vma_close(vma);
4499
	}
4500
	GEM_BUG_ON(obj->bind_count);
4501

4502
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4503

C
Chris Wilson 已提交
4504
	if (obj->mm.pages && obj->mm.madv == I915_MADV_WILLNEED &&
4505
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4506
	    i915_gem_object_is_tiled(obj))
C
Chris Wilson 已提交
4507
		__i915_gem_object_unpin_pages(obj);
4508

C
Chris Wilson 已提交
4509 4510 4511 4512
	if (obj->ops->release)
		obj->ops->release(obj);

	if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4513
		atomic_set(&obj->mm.pages_pin_count, 0);
4514
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4515 4516
		obj->mm.madv = I915_MADV_DONTNEED;
	__i915_gem_object_put_pages(obj);
4517

C
Chris Wilson 已提交
4518
	GEM_BUG_ON(obj->mm.pages);
4519

4520 4521
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4522

4523 4524
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4525

4526
	kfree(obj->bit_17);
4527
	i915_gem_object_free(obj);
4528 4529

	intel_runtime_pm_put(dev_priv);
4530 4531
}

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4543
int i915_gem_suspend(struct drm_device *dev)
4544
{
4545
	struct drm_i915_private *dev_priv = to_i915(dev);
4546
	int ret;
4547

4548 4549
	intel_suspend_gt_powersave(dev_priv);

4550
	mutex_lock(&dev->struct_mutex);
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4564 4565 4566
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4567
	if (ret)
4568
		goto err;
4569

4570
	i915_gem_retire_requests(dev_priv);
4571

4572
	i915_gem_context_lost(dev_priv);
4573 4574
	mutex_unlock(&dev->struct_mutex);

4575
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4576 4577
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4578

4579 4580 4581
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4582
	WARN_ON(dev_priv->gt.awake);
4583

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
	if (HAS_HW_CONTEXTS(dev)) {
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4608
	return 0;
4609 4610 4611 4612

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4613 4614
}

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4626
	dev_priv->gt.resume(dev_priv);
4627 4628 4629 4630

	mutex_unlock(&dev->struct_mutex);
}

4631 4632
void i915_gem_init_swizzling(struct drm_device *dev)
{
4633
	struct drm_i915_private *dev_priv = to_i915(dev);
4634

4635
	if (INTEL_INFO(dev)->gen < 5 ||
4636 4637 4638 4639 4640 4641
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4642
	if (IS_GEN5(dev_priv))
4643 4644
		return;

4645
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4646
	if (IS_GEN6(dev_priv))
4647
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4648
	else if (IS_GEN7(dev_priv))
4649
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4650
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4651
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4652 4653
	else
		BUG();
4654
}
D
Daniel Vetter 已提交
4655

4656
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4657 4658 4659 4660 4661 4662 4663
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4664
static void init_unused_rings(struct drm_i915_private *dev_priv)
4665
{
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4678 4679 4680
	}
}

4681 4682 4683
int
i915_gem_init_hw(struct drm_device *dev)
{
4684
	struct drm_i915_private *dev_priv = to_i915(dev);
4685
	struct intel_engine_cs *engine;
4686
	enum intel_engine_id id;
C
Chris Wilson 已提交
4687
	int ret;
4688

4689 4690
	dev_priv->gt.last_init_time = ktime_get();

4691 4692 4693
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4694
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4695
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4696

4697
	if (IS_HASWELL(dev_priv))
4698
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4699
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4700

4701
	if (HAS_PCH_NOP(dev_priv)) {
4702
		if (IS_IVYBRIDGE(dev_priv)) {
4703 4704 4705 4706 4707 4708 4709 4710
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4711 4712
	}

4713 4714
	i915_gem_init_swizzling(dev);

4715 4716 4717 4718 4719 4720
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4721
	init_unused_rings(dev_priv);
4722

4723
	BUG_ON(!dev_priv->kernel_context);
4724

4725 4726 4727 4728 4729 4730 4731
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4732
	for_each_engine(engine, dev_priv, id) {
4733
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4734
		if (ret)
4735
			goto out;
D
Daniel Vetter 已提交
4736
	}
4737

4738 4739
	intel_mocs_init_l3cc_table(dev);

4740
	/* We can't enable contexts until all firmware is loaded */
4741 4742 4743
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4744

4745 4746
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4747
	return ret;
4748 4749
}

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4771 4772
int i915_gem_init(struct drm_device *dev)
{
4773
	struct drm_i915_private *dev_priv = to_i915(dev);
4774 4775 4776
	int ret;

	mutex_lock(&dev->struct_mutex);
4777

4778
	if (!i915.enable_execlists) {
4779
		dev_priv->gt.resume = intel_legacy_submission_resume;
4780
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4781
	} else {
4782
		dev_priv->gt.resume = intel_lr_context_resume;
4783
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4784 4785
	}

4786 4787 4788 4789 4790 4791 4792 4793
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4794
	i915_gem_init_userptr(dev_priv);
4795 4796 4797 4798

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4799

4800
	ret = i915_gem_context_init(dev);
4801 4802
	if (ret)
		goto out_unlock;
4803

4804
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4805
	if (ret)
4806
		goto out_unlock;
4807

4808
	ret = i915_gem_init_hw(dev);
4809
	if (ret == -EIO) {
4810
		/* Allow engine initialisation to fail by marking the GPU as
4811 4812 4813 4814
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4815
		i915_gem_set_wedged(dev_priv);
4816
		ret = 0;
4817
	}
4818 4819

out_unlock:
4820
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4821
	mutex_unlock(&dev->struct_mutex);
4822

4823
	return ret;
4824 4825
}

4826
void
4827
i915_gem_cleanup_engines(struct drm_device *dev)
4828
{
4829
	struct drm_i915_private *dev_priv = to_i915(dev);
4830
	struct intel_engine_cs *engine;
4831
	enum intel_engine_id id;
4832

4833
	for_each_engine(engine, dev_priv, id)
4834
		dev_priv->gt.cleanup_engine(engine);
4835 4836
}

4837 4838 4839
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4840
	struct drm_device *dev = &dev_priv->drm;
4841
	int i;
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4852
	if (intel_vgpu_active(dev_priv))
4853 4854 4855 4856
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4857 4858 4859 4860 4861 4862 4863
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4864 4865 4866 4867 4868
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4869
void
4870
i915_gem_load_init(struct drm_device *dev)
4871
{
4872
	struct drm_i915_private *dev_priv = to_i915(dev);
4873

4874
	dev_priv->objects =
4875 4876 4877 4878
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4879 4880 4881 4882 4883
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4884 4885 4886
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4887 4888 4889
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4890
				  NULL);
4891

4892
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4893 4894
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4895
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4896
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4897
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4898
			  i915_gem_retire_work_handler);
4899
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4900
			  i915_gem_idle_work_handler);
4901
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4902
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4903

4904 4905
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4906
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4907

4908 4909
	dev_priv->mm.interruptible = true;

4910 4911
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4912
	spin_lock_init(&dev_priv->fb_tracking.lock);
4913
}
4914

4915 4916 4917 4918 4919 4920 4921
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4922 4923 4924

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4925 4926
}

4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4940 4941 4942
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4943 4944 4945 4946 4947
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4958 4959 4960
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4961 4962
	 */

4963 4964
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4965

4966 4967 4968 4969 4970
	for (p = phases; *p; p++) {
		list_for_each_entry(obj, *p, global_list) {
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4971
	}
4972
	mutex_unlock(&dev_priv->drm.struct_mutex);
4973 4974 4975 4976

	return 0;
}

4977
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4978
{
4979
	struct drm_i915_file_private *file_priv = file->driver_priv;
4980
	struct drm_i915_gem_request *request;
4981 4982 4983 4984 4985

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4986
	spin_lock(&file_priv->mm.lock);
4987
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4988
		request->file_priv = NULL;
4989
	spin_unlock(&file_priv->mm.lock);
4990

4991
	if (!list_empty(&file_priv->rps.link)) {
4992
		spin_lock(&to_i915(dev)->rps.client_lock);
4993
		list_del(&file_priv->rps.link);
4994
		spin_unlock(&to_i915(dev)->rps.client_lock);
4995
	}
4996 4997 4998 4999 5000
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5001
	int ret;
5002 5003 5004 5005 5006 5007 5008 5009

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5010
	file_priv->dev_priv = to_i915(dev);
5011
	file_priv->file = file;
5012
	INIT_LIST_HEAD(&file_priv->rps.link);
5013 5014 5015 5016

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5017
	file_priv->bsd_engine = -1;
5018

5019 5020 5021
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5022

5023
	return ret;
5024 5025
}

5026 5027
/**
 * i915_gem_track_fb - update frontbuffer tracking
5028 5029 5030
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5031 5032 5033 5034
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5035 5036 5037 5038
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5039 5040 5041 5042 5043 5044 5045 5046 5047
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5048
	if (old) {
5049 5050
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5051 5052 5053
	}

	if (new) {
5054 5055
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5056 5057 5058
	}
}

5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5069
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5070
	if (IS_ERR(obj))
5071 5072 5073 5074 5075 5076
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
5077
	ret = i915_gem_object_pin_pages(obj);
5078 5079 5080
	if (ret)
		goto fail;

C
Chris Wilson 已提交
5081
	sg = obj->mm.pages;
5082
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
5083
	obj->mm.dirty = true; /* Backing store is now out of date */
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
5095
	i915_gem_object_put(obj);
5096 5097
	return ERR_PTR(ret);
}
5098 5099 5100 5101 5102 5103

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5104
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5105 5106 5107 5108 5109
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5110
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5235
	if (!obj->mm.dirty)
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}