i915_gem.c 136.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56 57 58 59 60 61 62
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

63 64 65 66
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
67
	spin_lock(&dev_priv->mm.object_stat_lock);
68 69
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
70
	spin_unlock(&dev_priv->mm.object_stat_lock);
71 72 73 74 75
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
76
	spin_lock(&dev_priv->mm.object_stat_lock);
77 78
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
79
	spin_unlock(&dev_priv->mm.object_stat_lock);
80 81
}

82
static int
83
i915_gem_wait_for_error(struct i915_gpu_error *error)
84 85 86
{
	int ret;

87
	if (!i915_reset_in_progress(error))
88 89
		return 0;

90 91 92 93 94
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
95
	ret = wait_event_interruptible_timeout(error->reset_queue,
96
					       !i915_reset_in_progress(error),
97
					       10*HZ);
98 99 100 101
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
102
		return ret;
103 104
	} else {
		return 0;
105
	}
106 107
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109
{
110
	struct drm_i915_private *dev_priv = dev->dev_private;
111 112
	int ret;

113
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 115 116 117 118 119 120
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

121
	WARN_ON(i915_verify_lists(dev));
122 123
	return 0;
}
124

125 126
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127
			    struct drm_file *file)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
131
	struct drm_i915_gem_get_aperture *args = data;
132
	struct i915_vma *vma;
133
	size_t pinned;
134

135
	pinned = 0;
136
	mutex_lock(&dev->struct_mutex);
137
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 139
		if (vma->pin_count)
			pinned += vma->node.size;
140
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 142
		if (vma->pin_count)
			pinned += vma->node.size;
143
	mutex_unlock(&dev->struct_mutex);
144

145
	args->aper_size = ggtt->base.total;
146
	args->aper_available_size = args->aper_size - pinned;
147

148 149 150
	return 0;
}

151 152
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153
{
154 155 156 157 158
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

176
		put_page(page);
177 178 179
		vaddr += PAGE_SIZE;
	}

180
	i915_gem_chipset_flush(to_i915(obj->base.dev));
181 182 183 184 185 186 187 188 189 190 191 192 193

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
194

195 196 197 198 199 200 201 202 203 204 205 206 207
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
208

209
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
210
	if (WARN_ON(ret)) {
211 212 213 214 215 216 217 218 219 220
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
221
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222
		char *vaddr = obj->phys_handle->vaddr;
223 224 225
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
240
				mark_page_accessed(page);
241
			put_page(page);
242 243
			vaddr += PAGE_SIZE;
		}
244
		obj->dirty = 0;
245 246
	}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
270
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 272 273 274 275 276 277
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
278 279 280 281 282 283 284
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
285
	int ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

300 301 302 303
	ret = drop_pages(obj);
	if (ret)
		return ret;

304 305 306 307 308 309
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
310 311 312
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
313 314 315 316 317 318 319 320 321
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
322
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
323
	int ret = 0;
324 325 326 327 328 329 330

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
331

332
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 334 335 336 337 338 339 340 341 342
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
343 344 345 346
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
347 348
	}

349
	drm_clflush_virt_range(vaddr, args->size);
350
	i915_gem_chipset_flush(to_i915(dev));
351 352

out:
353
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354
	return ret;
355 356
}

357 358 359
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
360
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 362 363 364 365
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366
	kmem_cache_free(dev_priv->objects, obj);
367 368
}

369 370 371 372 373
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
374
{
375
	struct drm_i915_gem_object *obj;
376 377
	int ret;
	u32 handle;
378

379
	size = roundup(size, PAGE_SIZE);
380 381
	if (size == 0)
		return -EINVAL;
382 383

	/* Allocate the new object */
384
	obj = i915_gem_object_create(dev, size);
385 386
	if (IS_ERR(obj))
		return PTR_ERR(obj);
387

388
	ret = drm_gem_handle_create(file, &obj->base, &handle);
389
	/* drop reference from allocate - handle holds it now */
390 391 392
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
393

394
	*handle_p = handle;
395 396 397
	return 0;
}

398 399 400 401 402 403
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
404
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 406
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
407
			       args->size, &args->handle);
408 409 410 411 412 413 414 415 416 417
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
418

419
	return i915_gem_create(file, dev,
420
			       args->size, &args->handle);
421 422
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

449
static inline int
450 451
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

487
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

511 512 513
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
514
static int
515 516 517 518 519 520 521
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

522
	if (unlikely(page_do_bit17_swizzling))
523 524 525 526 527 528 529 530 531 532 533
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

534
	return ret ? -EFAULT : 0;
535 536
}

537 538 539 540
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
541
	if (unlikely(swizzled)) {
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

559 560 561 562 563 564 565 566 567 568 569 570
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
571 572 573
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
574 575 576 577 578 579 580 581 582 583 584

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

585
	return ret ? - EFAULT : 0;
586 587
}

588
static int
589 590 591 592
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
593
{
594
	char __user *user_data;
595
	ssize_t remain;
596
	loff_t offset;
597
	int shmem_page_offset, page_length, ret = 0;
598
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599
	int prefaulted = 0;
600
	int needs_clflush = 0;
601
	struct sg_page_iter sg_iter;
602

603
	user_data = u64_to_user_ptr(args->data_ptr);
604 605
	remain = args->size;

606
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607

608
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 610 611
	if (ret)
		return ret;

612
	offset = args->offset;
613

614 615
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
616
		struct page *page = sg_page_iter_page(&sg_iter);
617 618 619 620

		if (remain <= 0)
			break;

621 622 623 624 625
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
626
		shmem_page_offset = offset_in_page(offset);
627 628 629 630
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

631 632 633
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

634 635 636 637 638
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
639 640 641

		mutex_unlock(&dev->struct_mutex);

642
		if (likely(!i915.prefault_disable) && !prefaulted) {
643
			ret = fault_in_multipages_writeable(user_data, remain);
644 645 646 647 648 649 650
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
651

652 653 654
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
655

656
		mutex_lock(&dev->struct_mutex);
657 658

		if (ret)
659 660
			goto out;

661
next_page:
662
		remain -= page_length;
663
		user_data += page_length;
664 665 666
		offset += page_length;
	}

667
out:
668 669
	i915_gem_object_unpin_pages(obj);

670 671 672
	return ret;
}

673 674 675 676 677 678 679
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680
		     struct drm_file *file)
681 682
{
	struct drm_i915_gem_pread *args = data;
683
	struct drm_i915_gem_object *obj;
684
	int ret = 0;
685

686 687 688 689
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
690
		       u64_to_user_ptr(args->data_ptr),
691 692 693
		       args->size))
		return -EFAULT;

694
	ret = i915_mutex_lock_interruptible(dev);
695
	if (ret)
696
		return ret;
697

698
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
699
	if (&obj->base == NULL) {
700 701
		ret = -ENOENT;
		goto unlock;
702
	}
703

704
	/* Bounds check source.  */
705 706
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
707
		ret = -EINVAL;
708
		goto out;
C
Chris Wilson 已提交
709 710
	}

711 712 713 714 715 716 717 718
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
719 720
	trace_i915_gem_object_pread(obj, args->offset, args->size);

721
	ret = i915_gem_shmem_pread(dev, obj, args, file);
722

723
out:
724
	drm_gem_object_unreference(&obj->base);
725
unlock:
726
	mutex_unlock(&dev->struct_mutex);
727
	return ret;
728 729
}

730 731
/* This is the fast write path which cannot handle
 * page faults in the source data
732
 */
733 734 735 736 737 738

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
739
{
740 741
	void __iomem *vaddr_atomic;
	void *vaddr;
742
	unsigned long unwritten;
743

P
Peter Zijlstra 已提交
744
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 746 747
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
748
						      user_data, length);
P
Peter Zijlstra 已提交
749
	io_mapping_unmap_atomic(vaddr_atomic);
750
	return unwritten;
751 752
}

753 754 755 756
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
757
static int
758 759
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
760
			 struct drm_i915_gem_pwrite *args,
761
			 struct drm_file *file)
762
{
763 764
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
765
	ssize_t remain;
766
	loff_t offset, page_base;
767
	char __user *user_data;
D
Daniel Vetter 已提交
768 769
	int page_offset, page_length, ret;

770
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
771 772 773 774 775 776 777 778 779 780
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
781

782
	user_data = u64_to_user_ptr(args->data_ptr);
783 784
	remain = args->size;

785
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786

787
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788

789 790 791
	while (remain > 0) {
		/* Operation in this page
		 *
792 793 794
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
795
		 */
796 797
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
798 799 800 801 802
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
803 804
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
805
		 */
806
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
807 808
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
809
			goto out_flush;
D
Daniel Vetter 已提交
810
		}
811

812 813 814
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
815 816
	}

817
out_flush:
818
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
819
out_unpin:
B
Ben Widawsky 已提交
820
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
821
out:
822
	return ret;
823 824
}

825 826 827 828
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
829
static int
830 831 832 833 834
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
835
{
836
	char *vaddr;
837
	int ret;
838

839
	if (unlikely(page_do_bit17_swizzling))
840
		return -EINVAL;
841

842 843 844 845
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
846 847
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
848 849 850 851
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
852

853
	return ret ? -EFAULT : 0;
854 855
}

856 857
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
858
static int
859 860 861 862 863
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
864
{
865 866
	char *vaddr;
	int ret;
867

868
	vaddr = kmap(page);
869
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 871 872
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
873 874
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 876
						user_data,
						page_length);
877 878 879 880 881
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
882 883 884
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
885
	kunmap(page);
886

887
	return ret ? -EFAULT : 0;
888 889 890
}

static int
891 892 893 894
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
895 896
{
	ssize_t remain;
897 898
	loff_t offset;
	char __user *user_data;
899
	int shmem_page_offset, page_length, ret = 0;
900
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901
	int hit_slowpath = 0;
902 903
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
904
	struct sg_page_iter sg_iter;
905

906
	user_data = u64_to_user_ptr(args->data_ptr);
907 908
	remain = args->size;

909
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910

911 912 913 914 915
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
916
		needs_clflush_after = cpu_write_needs_clflush(obj);
917 918 919
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
920
	}
921 922 923 924 925
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
926

927 928 929 930
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

931
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932

933 934
	i915_gem_object_pin_pages(obj);

935
	offset = args->offset;
936
	obj->dirty = 1;
937

938 939
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
940
		struct page *page = sg_page_iter_page(&sg_iter);
941
		int partial_cacheline_write;
942

943 944 945
		if (remain <= 0)
			break;

946 947 948 949 950
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
951
		shmem_page_offset = offset_in_page(offset);
952 953 954 955 956

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

957 958 959 960 961 962 963
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

964 965 966
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

967 968 969 970 971 972
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
973 974 975

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
976 977 978 979
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
980

981
		mutex_lock(&dev->struct_mutex);
982 983

		if (ret)
984 985
			goto out;

986
next_page:
987
		remain -= page_length;
988
		user_data += page_length;
989
		offset += page_length;
990 991
	}

992
out:
993 994
	i915_gem_object_unpin_pages(obj);

995
	if (hit_slowpath) {
996 997 998 999 1000 1001 1002
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003
			if (i915_gem_clflush_object(obj, obj->pin_display))
1004
				needs_clflush_after = true;
1005
		}
1006
	}
1007

1008
	if (needs_clflush_after)
1009
		i915_gem_chipset_flush(to_i915(dev));
1010 1011
	else
		obj->cache_dirty = true;
1012

1013
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014
	return ret;
1015 1016 1017 1018 1019 1020 1021 1022 1023
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024
		      struct drm_file *file)
1025
{
1026
	struct drm_i915_private *dev_priv = dev->dev_private;
1027
	struct drm_i915_gem_pwrite *args = data;
1028
	struct drm_i915_gem_object *obj;
1029 1030 1031 1032 1033 1034
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1035
		       u64_to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	if (likely(!i915.prefault_disable)) {
1040
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1041 1042 1043 1044
						   args->size);
		if (ret)
			return -EFAULT;
	}
1045

1046 1047
	intel_runtime_pm_get(dev_priv);

1048
	ret = i915_mutex_lock_interruptible(dev);
1049
	if (ret)
1050
		goto put_rpm;
1051

1052
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1053
	if (&obj->base == NULL) {
1054 1055
		ret = -ENOENT;
		goto unlock;
1056
	}
1057

1058
	/* Bounds check destination. */
1059 1060
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1061
		ret = -EINVAL;
1062
		goto out;
C
Chris Wilson 已提交
1063 1064
	}

1065 1066 1067 1068 1069 1070 1071 1072
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1073 1074
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1075
	ret = -EFAULT;
1076 1077 1078 1079 1080 1081
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1082 1083 1084
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1085
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1086 1087 1088
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1089
	}
1090

1091 1092 1093 1094 1095 1096
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1097

1098
out:
1099
	drm_gem_object_unreference(&obj->base);
1100
unlock:
1101
	mutex_unlock(&dev->struct_mutex);
1102 1103 1104
put_rpm:
	intel_runtime_pm_put(dev_priv);

1105 1106 1107
	return ret;
}

1108 1109
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110
{
1111 1112
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1113

1114
	if (__i915_reset_in_progress(reset_counter)) {
1115 1116 1117 1118 1119
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1120
		return -EAGAIN;
1121 1122 1123 1124 1125
	}

	return 0;
}

1126 1127 1128 1129 1130 1131
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1132
		       struct intel_engine_cs *engine)
1133
{
1134
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1169
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170
{
1171
	unsigned long timeout;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1183

1184
	if (req->engine->irq_refcount)
1185 1186
		return -EBUSY;

1187 1188 1189 1190
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1191
	timeout = local_clock_us(&cpu) + 5;
1192
	while (!need_resched()) {
D
Daniel Vetter 已提交
1193
		if (i915_gem_request_completed(req, true))
1194 1195
			return 0;

1196 1197 1198
		if (signal_pending_state(state, current))
			break;

1199
		if (busywait_stop(timeout, cpu))
1200
			break;
1201

1202 1203
		cpu_relax_lowlatency();
	}
1204

D
Daniel Vetter 已提交
1205
	if (i915_gem_request_completed(req, false))
1206 1207 1208
		return 0;

	return -EAGAIN;
1209 1210
}

1211
/**
1212 1213
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1214 1215 1216
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1217 1218 1219 1220 1221 1222 1223
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1224
 * Returns 0 if the request was found within the alloted time. Else returns the
1225 1226
 * errno with remaining time filled in timeout argument.
 */
1227
int __i915_wait_request(struct drm_i915_gem_request *req,
1228
			bool interruptible,
1229
			s64 *timeout,
1230
			struct intel_rps_client *rps)
1231
{
1232
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233
	struct drm_i915_private *dev_priv = req->i915;
1234
	const bool irq_test_in_progress =
1235
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1236
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1237
	DEFINE_WAIT(wait);
1238
	unsigned long timeout_expire;
1239
	s64 before = 0; /* Only to silence a compiler warning. */
1240 1241
	int ret;

1242
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1243

1244 1245 1246
	if (list_empty(&req->list))
		return 0;

1247
	if (i915_gem_request_completed(req, true))
1248 1249
		return 0;

1250 1251 1252 1253 1254 1255 1256 1257 1258
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1259 1260 1261 1262 1263

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1264
	}
1265

1266
	if (INTEL_INFO(dev_priv)->gen >= 6)
1267
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1268

1269
	trace_i915_gem_request_wait_begin(req);
1270 1271

	/* Optimistic spin for the next jiffie before touching IRQs */
1272
	ret = __i915_spin_request(req, state);
1273 1274 1275
	if (ret == 0)
		goto out;

1276
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1277 1278 1279 1280
		ret = -ENODEV;
		goto out;
	}

1281 1282
	for (;;) {
		struct timer_list timer;
1283

1284
		prepare_to_wait(&engine->irq_queue, &wait, state);
1285

1286
		/* We need to check whether any gpu reset happened in between
1287 1288 1289 1290 1291 1292
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1293
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1294
			ret = 0;
1295 1296
			break;
		}
1297

1298
		if (i915_gem_request_completed(req, false)) {
1299 1300 1301
			ret = 0;
			break;
		}
1302

1303
		if (signal_pending_state(state, current)) {
1304 1305 1306 1307
			ret = -ERESTARTSYS;
			break;
		}

1308
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1309 1310 1311 1312 1313
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1314
		if (timeout || missed_irq(dev_priv, engine)) {
1315 1316
			unsigned long expire;

1317
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1318
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1319 1320 1321
			mod_timer(&timer, expire);
		}

1322
		io_schedule();
1323 1324 1325 1326 1327 1328

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1329
	if (!irq_test_in_progress)
1330
		engine->irq_put(engine);
1331

1332
	finish_wait(&engine->irq_queue, &wait);
1333

1334 1335 1336
out:
	trace_i915_gem_request_wait_end(req);

1337
	if (timeout) {
1338
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1339 1340

		*timeout = tres < 0 ? 0 : tres;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1351 1352
	}

1353
	return ret;
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1393 1394 1395

	put_pid(request->pid);
	request->pid = NULL;
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1415
	if (request->previous_context) {
1416
		if (i915.enable_execlists)
1417 1418
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1419 1420
	}

1421
	i915_gem_context_unreference(request->ctx);
1422 1423 1424 1425 1426 1427
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1428
	struct intel_engine_cs *engine = req->engine;
1429 1430
	struct drm_i915_gem_request *tmp;

1431
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1446
/**
1447
 * Waits for a request to be signaled, and cleans up the
1448 1449 1450
 * request and object lists appropriately for that event.
 */
int
1451
i915_wait_request(struct drm_i915_gem_request *req)
1452
{
1453
	struct drm_i915_private *dev_priv = req->i915;
1454
	bool interruptible;
1455 1456
	int ret;

1457 1458
	interruptible = dev_priv->mm.interruptible;

1459
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1460

1461
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1462 1463
	if (ret)
		return ret;
1464

1465 1466 1467 1468
	/* If the GPU hung, we want to keep the requests to find the guilty. */
	if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
		__i915_gem_request_retire__upto(req);

1469 1470 1471
	return 0;
}

1472 1473 1474 1475
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1476
int
1477 1478 1479
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1480
	int ret, i;
1481

1482
	if (!obj->active)
1483 1484
		return 0;

1485 1486 1487 1488 1489
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1490

1491
			i = obj->last_write_req->engine->id;
1492 1493 1494 1495 1496 1497
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1498
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1499 1500 1501 1502 1503 1504 1505 1506 1507
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1508
		GEM_BUG_ON(obj->active);
1509 1510 1511 1512 1513 1514 1515 1516 1517
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1518
	int ring = req->engine->id;
1519 1520 1521 1522 1523 1524

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1525 1526
	if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
		__i915_gem_request_retire__upto(req);
1527 1528
}

1529 1530 1531 1532 1533
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1534
					    struct intel_rps_client *rps,
1535 1536 1537 1538
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1539
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1540
	int ret, i, n = 0;
1541 1542 1543 1544

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1545
	if (!obj->active)
1546 1547
		return 0;

1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1557
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1568
	mutex_unlock(&dev->struct_mutex);
1569
	ret = 0;
1570
	for (i = 0; ret == 0 && i < n; i++)
1571
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1572 1573
	mutex_lock(&dev->struct_mutex);

1574 1575 1576 1577 1578 1579 1580
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1581 1582
}

1583 1584 1585 1586 1587 1588
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1589
/**
1590 1591
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1592 1593 1594
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1595
			  struct drm_file *file)
1596 1597
{
	struct drm_i915_gem_set_domain *args = data;
1598
	struct drm_i915_gem_object *obj;
1599 1600
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1601 1602
	int ret;

1603
	/* Only handle setting domains to types used by the CPU. */
1604
	if (write_domain & I915_GEM_GPU_DOMAINS)
1605 1606
		return -EINVAL;

1607
	if (read_domains & I915_GEM_GPU_DOMAINS)
1608 1609 1610 1611 1612 1613 1614 1615
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1616
	ret = i915_mutex_lock_interruptible(dev);
1617
	if (ret)
1618
		return ret;
1619

1620
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1621
	if (&obj->base == NULL) {
1622 1623
		ret = -ENOENT;
		goto unlock;
1624
	}
1625

1626 1627 1628 1629
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1630
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1631
							  to_rps_client(file),
1632
							  !write_domain);
1633 1634 1635
	if (ret)
		goto unref;

1636
	if (read_domains & I915_GEM_DOMAIN_GTT)
1637
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1638
	else
1639
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1640

1641 1642 1643 1644 1645
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1646
unref:
1647
	drm_gem_object_unreference(&obj->base);
1648
unlock:
1649 1650 1651 1652 1653 1654 1655 1656 1657
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1658
			 struct drm_file *file)
1659 1660
{
	struct drm_i915_gem_sw_finish *args = data;
1661
	struct drm_i915_gem_object *obj;
1662 1663
	int ret = 0;

1664
	ret = i915_mutex_lock_interruptible(dev);
1665
	if (ret)
1666
		return ret;
1667

1668
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1669
	if (&obj->base == NULL) {
1670 1671
		ret = -ENOENT;
		goto unlock;
1672 1673 1674
	}

	/* Pinned buffers may be scanout, so flush the cache */
1675
	if (obj->pin_display)
1676
		i915_gem_object_flush_cpu_write_domain(obj);
1677

1678
	drm_gem_object_unreference(&obj->base);
1679
unlock:
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1700 1701 1702
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1703
		    struct drm_file *file)
1704 1705 1706 1707 1708
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1709 1710 1711
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1712
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1713 1714
		return -ENODEV;

1715
	obj = drm_gem_object_lookup(file, args->handle);
1716
	if (obj == NULL)
1717
		return -ENOENT;
1718

1719 1720 1721 1722 1723 1724 1725 1726
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1727
	addr = vm_mmap(obj->filp, 0, args->size,
1728 1729
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1730 1731 1732 1733
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1734 1735 1736 1737
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1738 1739 1740 1741 1742 1743 1744 1745
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1746
	drm_gem_object_unreference_unlocked(obj);
1747 1748 1749 1750 1751 1752 1753 1754
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1755 1756
/**
 * i915_gem_fault - fault a page into the GTT
1757 1758
 * @vma: VMA in question
 * @vmf: fault info
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1773 1774
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1775 1776
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1777
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1778 1779 1780
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1781
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1782

1783 1784
	intel_runtime_pm_get(dev_priv);

1785 1786 1787 1788
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1789 1790 1791
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1792

C
Chris Wilson 已提交
1793 1794
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1795 1796 1797 1798 1799 1800 1801 1802 1803
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1804 1805
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1806
		ret = -EFAULT;
1807 1808 1809
		goto unlock;
	}

1810
	/* Use a partial view if the object is bigger than the aperture. */
1811
	if (obj->base.size >= ggtt->mappable_end &&
1812
	    obj->tiling_mode == I915_TILING_NONE) {
1813
		static const unsigned int chunk_size = 256; // 1 MiB
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1827 1828
	if (ret)
		goto unlock;
1829

1830 1831 1832
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1833

1834
	ret = i915_gem_object_get_fence(obj);
1835
	if (ret)
1836
		goto unpin;
1837

1838
	/* Finally, remap it using the new GTT offset */
1839
	pfn = ggtt->mappable_base +
1840
		i915_gem_obj_ggtt_offset_view(obj, &view);
1841
	pfn >>= PAGE_SHIFT;
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1852

1853 1854
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1855 1856 1857 1858 1859
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1881
unpin:
1882
	i915_gem_object_ggtt_unpin_view(obj, &view);
1883
unlock:
1884
	mutex_unlock(&dev->struct_mutex);
1885
out:
1886
	switch (ret) {
1887
	case -EIO:
1888 1889 1890 1891 1892 1893 1894
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1895 1896 1897
			ret = VM_FAULT_SIGBUS;
			break;
		}
1898
	case -EAGAIN:
D
Daniel Vetter 已提交
1899 1900 1901 1902
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1903
		 */
1904 1905
	case 0:
	case -ERESTARTSYS:
1906
	case -EINTR:
1907 1908 1909 1910 1911
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1912 1913
		ret = VM_FAULT_NOPAGE;
		break;
1914
	case -ENOMEM:
1915 1916
		ret = VM_FAULT_OOM;
		break;
1917
	case -ENOSPC:
1918
	case -EFAULT:
1919 1920
		ret = VM_FAULT_SIGBUS;
		break;
1921
	default:
1922
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1923 1924
		ret = VM_FAULT_SIGBUS;
		break;
1925
	}
1926 1927 1928

	intel_runtime_pm_put(dev_priv);
	return ret;
1929 1930
}

1931 1932 1933 1934
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1935
 * Preserve the reservation of the mmapping with the DRM core code, but
1936 1937 1938 1939 1940 1941 1942 1943 1944
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1945
void
1946
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1947
{
1948 1949 1950 1951 1952 1953
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1954 1955
	if (!obj->fault_mappable)
		return;
1956

1957 1958
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1969
	obj->fault_mappable = false;
1970 1971
}

1972 1973 1974 1975 1976 1977 1978 1979 1980
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1981
uint32_t
1982
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1983
{
1984
	uint32_t gtt_size;
1985 1986

	if (INTEL_INFO(dev)->gen >= 4 ||
1987 1988
	    tiling_mode == I915_TILING_NONE)
		return size;
1989 1990

	/* Previous chips need a power-of-two fence region when tiling */
1991
	if (IS_GEN3(dev))
1992
		gtt_size = 1024*1024;
1993
	else
1994
		gtt_size = 512*1024;
1995

1996 1997
	while (gtt_size < size)
		gtt_size <<= 1;
1998

1999
	return gtt_size;
2000 2001
}

2002 2003 2004 2005 2006
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2007
 * potential fence register mapping.
2008
 */
2009 2010 2011
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2012 2013 2014 2015 2016
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2017
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2018
	    tiling_mode == I915_TILING_NONE)
2019 2020
		return 4096;

2021 2022 2023 2024
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2025
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2026 2027
}

2028 2029 2030 2031 2032
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2033 2034
	dev_priv->mm.shrinker_no_lock_stealing = true;

2035 2036
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2037
		goto out;
2038 2039 2040 2041 2042 2043 2044 2045

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2046 2047 2048 2049 2050
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2051 2052
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2053
		goto out;
2054 2055

	i915_gem_shrink_all(dev_priv);
2056 2057 2058 2059 2060
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2061 2062 2063 2064 2065 2066 2067
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2068
int
2069 2070
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2071
		  uint32_t handle,
2072
		  uint64_t *offset)
2073
{
2074
	struct drm_i915_gem_object *obj;
2075 2076
	int ret;

2077
	ret = i915_mutex_lock_interruptible(dev);
2078
	if (ret)
2079
		return ret;
2080

2081
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2082
	if (&obj->base == NULL) {
2083 2084 2085
		ret = -ENOENT;
		goto unlock;
	}
2086

2087
	if (obj->madv != I915_MADV_WILLNEED) {
2088
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2089
		ret = -EFAULT;
2090
		goto out;
2091 2092
	}

2093 2094 2095
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2096

2097
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2098

2099
out:
2100
	drm_gem_object_unreference(&obj->base);
2101
unlock:
2102
	mutex_unlock(&dev->struct_mutex);
2103
	return ret;
2104 2105
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2127
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2128 2129
}

D
Daniel Vetter 已提交
2130 2131 2132
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2133
{
2134
	i915_gem_object_free_mmap_offset(obj);
2135

2136 2137
	if (obj->base.filp == NULL)
		return;
2138

D
Daniel Vetter 已提交
2139 2140 2141 2142 2143
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2144
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2145 2146
	obj->madv = __I915_MADV_PURGED;
}
2147

2148 2149 2150
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2151
{
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2166 2167
}

2168
static void
2169
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2170
{
2171 2172
	struct sgt_iter sgt_iter;
	struct page *page;
2173
	int ret;
2174

2175
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2176

C
Chris Wilson 已提交
2177
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2178
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2179 2180 2181
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2182
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2183 2184 2185
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2186 2187
	i915_gem_gtt_finish_object(obj);

2188
	if (i915_gem_object_needs_bit17_swizzle(obj))
2189 2190
		i915_gem_object_save_bit_17_swizzle(obj);

2191 2192
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2193

2194
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2195
		if (obj->dirty)
2196
			set_page_dirty(page);
2197

2198
		if (obj->madv == I915_MADV_WILLNEED)
2199
			mark_page_accessed(page);
2200

2201
		put_page(page);
2202
	}
2203
	obj->dirty = 0;
2204

2205 2206
	sg_free_table(obj->pages);
	kfree(obj->pages);
2207
}
C
Chris Wilson 已提交
2208

2209
int
2210 2211 2212 2213
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2214
	if (obj->pages == NULL)
2215 2216
		return 0;

2217 2218 2219
	if (obj->pages_pin_count)
		return -EBUSY;

2220
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2221

2222 2223 2224
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2225
	list_del(&obj->global_list);
2226

2227
	if (obj->mapping) {
2228 2229 2230 2231
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2232 2233 2234
		obj->mapping = NULL;
	}

2235
	ops->put_pages(obj);
2236
	obj->pages = NULL;
2237

2238
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2239 2240 2241 2242

	return 0;
}

2243
static int
C
Chris Wilson 已提交
2244
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245
{
C
Chris Wilson 已提交
2246
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247 2248
	int page_count, i;
	struct address_space *mapping;
2249 2250
	struct sg_table *st;
	struct scatterlist *sg;
2251
	struct sgt_iter sgt_iter;
2252
	struct page *page;
2253
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2254
	int ret;
C
Chris Wilson 已提交
2255
	gfp_t gfp;
2256

C
Chris Wilson 已提交
2257 2258 2259 2260 2261 2262 2263
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2264 2265 2266 2267
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2268
	page_count = obj->base.size / PAGE_SIZE;
2269 2270
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2271
		return -ENOMEM;
2272
	}
2273

2274 2275 2276 2277 2278
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2279
	mapping = file_inode(obj->base.filp)->i_mapping;
2280
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282 2283 2284
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2285 2286
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2287 2288 2289 2290 2291
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2292 2293 2294 2295 2296 2297 2298 2299
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2300
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2301 2302
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2303
				goto err_pages;
I
Imre Deak 已提交
2304
			}
C
Chris Wilson 已提交
2305
		}
2306 2307 2308 2309 2310 2311 2312 2313
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2314 2315 2316 2317 2318 2319 2320 2321 2322
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2323 2324 2325

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326
	}
2327 2328 2329 2330
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2331 2332
	obj->pages = st;

I
Imre Deak 已提交
2333 2334 2335 2336
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2337
	if (i915_gem_object_needs_bit17_swizzle(obj))
2338 2339
		i915_gem_object_do_bit_17_swizzle(obj);

2340 2341 2342 2343
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2344 2345 2346
	return 0;

err_pages:
2347
	sg_mark_end(sg);
2348 2349
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2350 2351
	sg_free_table(st);
	kfree(st);
2352 2353 2354 2355 2356 2357 2358 2359 2360

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2361 2362 2363 2364
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2381
	if (obj->pages)
2382 2383
		return 0;

2384
	if (obj->madv != I915_MADV_WILLNEED) {
2385
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386
		return -EFAULT;
2387 2388
	}

2389 2390
	BUG_ON(obj->pages_pin_count);

2391 2392 2393 2394
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2395
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396 2397 2398 2399

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2400
	return 0;
2401 2402
}

2403 2404 2405 2406 2407
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2408 2409
	struct sgt_iter sgt_iter;
	struct page *page;
2410 2411
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2412 2413 2414 2415 2416 2417 2418
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2419 2420 2421 2422 2423 2424
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2425

2426 2427
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2428 2429 2430 2431 2432 2433

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2434 2435
	if (pages != stack_pages)
		drm_free_large(pages);
2436 2437 2438 2439 2440

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2453 2454 2455
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2456 2457 2458 2459 2460 2461 2462 2463
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2464
void i915_vma_move_to_active(struct i915_vma *vma,
2465
			     struct drm_i915_gem_request *req)
2466
{
2467
	struct drm_i915_gem_object *obj = vma->obj;
2468
	struct intel_engine_cs *engine;
2469

2470
	engine = i915_gem_request_get_engine(req);
2471 2472

	/* Add a reference if we're newly entering the active list. */
2473
	if (obj->active == 0)
2474
		drm_gem_object_reference(&obj->base);
2475
	obj->active |= intel_engine_flag(engine);
2476

2477
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2478
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2479

2480
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2481 2482
}

2483 2484
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2485
{
2486 2487
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2488 2489

	i915_gem_request_assign(&obj->last_write_req, NULL);
2490
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2491 2492
}

2493
static void
2494
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2495
{
2496
	struct i915_vma *vma;
2497

2498 2499
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2500

2501
	list_del_init(&obj->engine_list[ring]);
2502 2503
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2504
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2505 2506 2507 2508 2509
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2510

2511 2512 2513 2514 2515 2516 2517
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2518 2519 2520
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2521
	}
2522

2523
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2524
	drm_gem_object_unreference(&obj->base);
2525 2526
}

2527
static int
2528
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2529
{
2530
	struct intel_engine_cs *engine;
2531
	int ret;
2532

2533
	/* Carefully retire all requests without writing to the rings */
2534
	for_each_engine(engine, dev_priv) {
2535
		ret = intel_engine_idle(engine);
2536 2537
		if (ret)
			return ret;
2538
	}
2539
	i915_gem_retire_requests(dev_priv);
2540 2541

	/* Finally reset hw state */
2542
	for_each_engine(engine, dev_priv)
2543
		intel_ring_init_seqno(engine, seqno);
2544

2545
	return 0;
2546 2547
}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2559
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2574
int
2575
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2576
{
2577 2578
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2579
		int ret = i915_gem_init_seqno(dev_priv, 0);
2580 2581
		if (ret)
			return ret;
2582

2583 2584
		dev_priv->next_seqno = 1;
	}
2585

2586
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2587
	return 0;
2588 2589
}

2590 2591 2592 2593 2594
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2595
void __i915_add_request(struct drm_i915_gem_request *request,
2596 2597
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2598
{
2599
	struct intel_engine_cs *engine;
2600
	struct drm_i915_private *dev_priv;
2601
	struct intel_ringbuffer *ringbuf;
2602
	u32 request_start;
2603
	u32 reserved_tail;
2604 2605
	int ret;

2606
	if (WARN_ON(request == NULL))
2607
		return;
2608

2609
	engine = request->engine;
2610
	dev_priv = request->i915;
2611 2612
	ringbuf = request->ringbuf;

2613 2614 2615 2616 2617
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2618
	request_start = intel_ring_get_tail(ringbuf);
2619 2620 2621
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2622 2623 2624 2625 2626 2627 2628
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2629 2630
	if (flush_caches) {
		if (i915.enable_execlists)
2631
			ret = logical_ring_flush_all_caches(request);
2632
		else
2633
			ret = intel_ring_flush_all_caches(request);
2634 2635 2636
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2637

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2660 2661 2662 2663 2664
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2665
	request->postfix = intel_ring_get_tail(ringbuf);
2666

2667
	if (i915.enable_execlists)
2668
		ret = engine->emit_request(request);
2669
	else {
2670
		ret = engine->add_request(request);
2671 2672

		request->tail = intel_ring_get_tail(ringbuf);
2673
	}
2674 2675
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2676

2677
	i915_queue_hangcheck(engine->i915);
2678

2679 2680 2681
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
2682
	intel_mark_busy(dev_priv);
2683

2684
	/* Sanity check that the reserved size was large enough. */
2685 2686 2687 2688 2689 2690 2691
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2692 2693
}

2694
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2695
				   const struct i915_gem_context *ctx)
2696
{
2697
	unsigned long elapsed;
2698

2699 2700 2701
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2702 2703
		return true;

2704 2705
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2706
		if (!i915_gem_context_is_default(ctx)) {
2707
			DRM_DEBUG("context hanging too fast, banning!\n");
2708
			return true;
2709 2710 2711
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2712
			return true;
2713
		}
2714 2715 2716 2717 2718
	}

	return false;
}

2719
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2720
				  struct i915_gem_context *ctx,
2721
				  const bool guilty)
2722
{
2723 2724 2725 2726
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2727

2728 2729 2730
	hs = &ctx->hang_stats;

	if (guilty) {
2731
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2732 2733 2734 2735
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2736 2737 2738
	}
}

2739 2740 2741 2742
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2743
	kmem_cache_free(req->i915->requests, req);
2744 2745
}

2746
static inline int
2747
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2748
			 struct i915_gem_context *ctx,
2749
			 struct drm_i915_gem_request **req_out)
2750
{
2751
	struct drm_i915_private *dev_priv = engine->i915;
2752
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2753
	struct drm_i915_gem_request *req;
2754 2755
	int ret;

2756 2757 2758
	if (!req_out)
		return -EINVAL;

2759
	*req_out = NULL;
2760

2761 2762 2763 2764 2765
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2766 2767 2768
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2769 2770
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2771 2772
		return -ENOMEM;

2773
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2774 2775
	if (ret)
		goto err;
2776

2777 2778
	kref_init(&req->ref);
	req->i915 = dev_priv;
2779
	req->engine = engine;
2780
	req->reset_counter = reset_counter;
2781 2782
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2783

2784 2785 2786 2787 2788 2789 2790
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2791
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2792 2793 2794 2795 2796 2797 2798

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
2799

2800
	*req_out = req;
2801
	return 0;
2802

2803 2804
err_ctx:
	i915_gem_context_unreference(ctx);
2805 2806 2807
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2808 2809
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
2824
		       struct i915_gem_context *ctx)
2825 2826 2827 2828 2829
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2830
		ctx = engine->i915->kernel_context;
2831 2832 2833 2834
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2835
struct drm_i915_gem_request *
2836
i915_gem_find_active_request(struct intel_engine_cs *engine)
2837
{
2838 2839
	struct drm_i915_gem_request *request;

2840
	list_for_each_entry(request, &engine->request_list, list) {
2841
		if (i915_gem_request_completed(request, false))
2842
			continue;
2843

2844
		return request;
2845
	}
2846 2847 2848 2849

	return NULL;
}

2850
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2851
				       struct intel_engine_cs *engine)
2852 2853 2854 2855
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2856
	request = i915_gem_find_active_request(engine);
2857 2858 2859 2860

	if (request == NULL)
		return;

2861
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2862

2863
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2864

2865
	list_for_each_entry_continue(request, &engine->request_list, list)
2866
		i915_set_reset_status(dev_priv, request->ctx, false);
2867
}
2868

2869
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2870
					struct intel_engine_cs *engine)
2871
{
2872 2873
	struct intel_ringbuffer *buffer;

2874
	while (!list_empty(&engine->active_list)) {
2875
		struct drm_i915_gem_object *obj;
2876

2877
		obj = list_first_entry(&engine->active_list,
2878
				       struct drm_i915_gem_object,
2879
				       engine_list[engine->id]);
2880

2881
		i915_gem_object_retire__read(obj, engine->id);
2882
	}
2883

2884 2885 2886 2887 2888 2889
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2890
	if (i915.enable_execlists) {
2891 2892
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2893

2894
		intel_execlists_cancel_requests(engine);
2895 2896
	}

2897 2898 2899 2900 2901 2902 2903
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2904
	while (!list_empty(&engine->request_list)) {
2905 2906
		struct drm_i915_gem_request *request;

2907
		request = list_first_entry(&engine->request_list,
2908 2909 2910
					   struct drm_i915_gem_request,
					   list);

2911
		i915_gem_request_retire(request);
2912
	}
2913 2914 2915 2916 2917 2918 2919 2920

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2921
	list_for_each_entry(buffer, &engine->buffers, link) {
2922 2923 2924
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2925 2926

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2927 2928
}

2929
void i915_gem_reset(struct drm_device *dev)
2930
{
2931
	struct drm_i915_private *dev_priv = dev->dev_private;
2932
	struct intel_engine_cs *engine;
2933

2934 2935 2936 2937 2938
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2939
	for_each_engine(engine, dev_priv)
2940
		i915_gem_reset_engine_status(dev_priv, engine);
2941

2942
	for_each_engine(engine, dev_priv)
2943
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2944

2945 2946
	i915_gem_context_reset(dev);

2947
	i915_gem_restore_fences(dev);
2948 2949

	WARN_ON(i915_verify_lists(dev));
2950 2951 2952 2953 2954
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2955
void
2956
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2957
{
2958
	WARN_ON(i915_verify_lists(engine->dev));
2959

2960 2961 2962 2963
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2964
	 */
2965
	while (!list_empty(&engine->request_list)) {
2966 2967
		struct drm_i915_gem_request *request;

2968
		request = list_first_entry(&engine->request_list,
2969 2970 2971
					   struct drm_i915_gem_request,
					   list);

2972
		if (!i915_gem_request_completed(request, true))
2973 2974
			break;

2975
		i915_gem_request_retire(request);
2976
	}
2977

2978 2979 2980 2981
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2982
	while (!list_empty(&engine->active_list)) {
2983 2984
		struct drm_i915_gem_object *obj;

2985 2986
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2987
				       engine_list[engine->id]);
2988

2989
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2990 2991
			break;

2992
		i915_gem_object_retire__read(obj, engine->id);
2993 2994
	}

2995 2996 2997 2998
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
2999
	}
3000

3001
	WARN_ON(i915_verify_lists(engine->dev));
3002 3003
}

3004
bool
3005
i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3006
{
3007
	struct intel_engine_cs *engine;
3008
	bool idle = true;
3009

3010
	for_each_engine(engine, dev_priv) {
3011 3012
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3013
		if (i915.enable_execlists) {
3014
			spin_lock_bh(&engine->execlist_lock);
3015
			idle &= list_empty(&engine->execlist_queue);
3016
			spin_unlock_bh(&engine->execlist_lock);
3017
		}
3018 3019 3020 3021 3022 3023 3024 3025
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3026 3027
}

3028
static void
3029 3030
i915_gem_retire_work_handler(struct work_struct *work)
{
3031 3032 3033
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3034
	bool idle;
3035

3036
	/* Come back later if the device is busy... */
3037 3038
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
3039
		idle = i915_gem_retire_requests(dev_priv);
3040
		mutex_unlock(&dev->struct_mutex);
3041
	}
3042
	if (!idle)
3043 3044
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3045
}
3046

3047 3048 3049 3050 3051
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3052
	struct drm_device *dev = dev_priv->dev;
3053
	struct intel_engine_cs *engine;
3054

3055 3056
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3057
			return;
3058

3059
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3060
	 * Also locking seems to be fubar here, engine->request_list is protected
3061 3062
	 * by dev->struct_mutex. */

3063
	intel_mark_idle(dev_priv);
3064 3065

	if (mutex_trylock(&dev->struct_mutex)) {
3066
		for_each_engine(engine, dev_priv)
3067
			i915_gem_batch_pool_fini(&engine->batch_pool);
3068

3069 3070
		mutex_unlock(&dev->struct_mutex);
	}
3071 3072
}

3073 3074 3075 3076 3077 3078 3079 3080
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3081
	int i;
3082 3083 3084

	if (!obj->active)
		return 0;
3085

3086
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3087
		struct drm_i915_gem_request *req;
3088

3089 3090 3091 3092
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3093
		if (i915_gem_request_completed(req, true))
3094
			i915_gem_object_retire__read(obj, i);
3095 3096 3097 3098 3099
	}

	return 0;
}

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3127
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3128 3129
	int i, n = 0;
	int ret;
3130

3131 3132 3133
	if (args->flags != 0)
		return -EINVAL;

3134 3135 3136 3137
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3138
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3139 3140 3141 3142 3143
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3144 3145
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3146 3147 3148
	if (ret)
		goto out;

3149
	if (!obj->active)
3150
		goto out;
3151 3152

	/* Do this after OLR check to make sure we make forward progress polling
3153
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3154
	 */
3155
	if (args->timeout_ns == 0) {
3156 3157 3158 3159 3160
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3161

3162
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3163 3164 3165 3166 3167 3168
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3169 3170
	mutex_unlock(&dev->struct_mutex);

3171 3172
	for (i = 0; i < n; i++) {
		if (ret == 0)
3173
			ret = __i915_wait_request(req[i], true,
3174
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3175
						  to_rps_client(file));
3176
		i915_gem_request_unreference(req[i]);
3177
	}
3178
	return ret;
3179 3180 3181 3182 3183 3184 3185

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3186 3187 3188
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3189 3190
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3191 3192 3193 3194
{
	struct intel_engine_cs *from;
	int ret;

3195
	from = i915_gem_request_get_engine(from_req);
3196 3197 3198
	if (to == from)
		return 0;

3199
	if (i915_gem_request_completed(from_req, true))
3200 3201
		return 0;

3202
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3203
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3204
		ret = __i915_wait_request(from_req,
3205 3206 3207
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3208 3209 3210
		if (ret)
			return ret;

3211
		i915_gem_object_retire_request(obj, from_req);
3212 3213
	} else {
		int idx = intel_ring_sync_index(from, to);
3214 3215 3216
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3217 3218 3219 3220

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3221
		if (*to_req == NULL) {
3222 3223 3224 3225 3226 3227 3228
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3229 3230
		}

3231 3232
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3247 3248 3249 3250 3251
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3252 3253 3254
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3255 3256 3257
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3258
 * rather than a particular GPU ring. Conceptually we serialise writes
3259
 * between engines inside the GPU. We only allow one engine to write
3260 3261 3262 3263 3264 3265 3266 3267 3268
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3269
 *
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3280 3281
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3282 3283
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3284 3285
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3286
{
3287
	const bool readonly = obj->base.pending_write_domain == 0;
3288
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3289
	int ret, i, n;
3290

3291
	if (!obj->active)
3292 3293
		return 0;

3294 3295
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3296

3297 3298 3299 3300 3301
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3302
		for (i = 0; i < I915_NUM_ENGINES; i++)
3303 3304 3305 3306
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3307
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3308 3309 3310
		if (ret)
			return ret;
	}
3311

3312
	return 0;
3313 3314
}

3315 3316 3317 3318 3319 3320 3321
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3322 3323 3324
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3347
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3348
{
3349
	struct drm_i915_gem_object *obj = vma->obj;
3350
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3351
	int ret;
3352

3353
	if (list_empty(&vma->obj_link))
3354 3355
		return 0;

3356 3357 3358 3359
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3360

B
Ben Widawsky 已提交
3361
	if (vma->pin_count)
3362
		return -EBUSY;
3363

3364 3365
	BUG_ON(obj->pages == NULL);

3366 3367 3368 3369 3370
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3371

3372
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3373
		i915_gem_object_finish_gtt(obj);
3374

3375 3376 3377 3378
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3379 3380

		__i915_vma_iounmap(vma);
3381
	}
3382

3383
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3384

3385
	vma->vm->unbind_vma(vma);
3386
	vma->bound = 0;
3387

3388
	list_del_init(&vma->vm_link);
3389
	if (vma->is_ggtt) {
3390 3391 3392 3393 3394 3395
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3396
		vma->ggtt_view.pages = NULL;
3397
	}
3398

B
Ben Widawsky 已提交
3399 3400 3401 3402
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3403
	 * no more VMAs exist. */
I
Imre Deak 已提交
3404
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3405
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3406

3407 3408 3409 3410 3411 3412
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3413
	return 0;
3414 3415
}

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3426
int i915_gpu_idle(struct drm_device *dev)
3427
{
3428
	struct drm_i915_private *dev_priv = dev->dev_private;
3429
	struct intel_engine_cs *engine;
3430
	int ret;
3431 3432

	/* Flush everything onto the inactive list. */
3433
	for_each_engine(engine, dev_priv) {
3434
		if (!i915.enable_execlists) {
3435 3436
			struct drm_i915_gem_request *req;

3437
			req = i915_gem_request_alloc(engine, NULL);
3438 3439
			if (IS_ERR(req))
				return PTR_ERR(req);
3440

3441
			ret = i915_switch_context(req);
3442
			i915_add_request_no_flush(req);
3443 3444
			if (ret)
				return ret;
3445
		}
3446

3447
		ret = intel_engine_idle(engine);
3448 3449 3450
		if (ret)
			return ret;
	}
3451

3452
	WARN_ON(i915_verify_lists(dev));
3453
	return 0;
3454 3455
}

3456
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3457 3458
				     unsigned long cache_level)
{
3459
	struct drm_mm_node *gtt_space = &vma->node;
3460 3461
	struct drm_mm_node *other;

3462 3463 3464 3465 3466 3467
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3468
	 */
3469
	if (vma->vm->mm.color_adjust == NULL)
3470 3471
		return true;

3472
	if (!drm_mm_node_allocated(gtt_space))
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3489
/**
3490 3491
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3492
 */
3493
static struct i915_vma *
3494 3495
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3496
			   const struct i915_ggtt_view *ggtt_view,
3497
			   unsigned alignment,
3498
			   uint64_t flags)
3499
{
3500
	struct drm_device *dev = obj->base.dev;
3501 3502
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3503
	u32 fence_alignment, unfenced_alignment;
3504 3505
	u32 search_flag, alloc_flag;
	u64 start, end;
3506
	u64 size, fence_size;
B
Ben Widawsky 已提交
3507
	struct i915_vma *vma;
3508
	int ret;
3509

3510 3511 3512 3513 3514
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3515

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3545

3546 3547 3548
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3549
		end = min_t(u64, end, ggtt->mappable_end);
3550
	if (flags & PIN_ZONE_4G)
3551
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3552

3553
	if (alignment == 0)
3554
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3555
						unfenced_alignment;
3556
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3557 3558 3559
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3560
		return ERR_PTR(-EINVAL);
3561 3562
	}

3563 3564 3565
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3566
	 */
3567
	if (size > end) {
3568
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3569 3570
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3571
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3572
			  end);
3573
		return ERR_PTR(-E2BIG);
3574 3575
	}

3576
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3577
	if (ret)
3578
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3579

3580 3581
	i915_gem_object_pin_pages(obj);

3582 3583 3584
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3585
	if (IS_ERR(vma))
3586
		goto err_unpin;
B
Ben Widawsky 已提交
3587

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3606
	} else {
3607 3608 3609 3610 3611 3612 3613
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3614

3615
search_free:
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3629

3630 3631
			goto err_free_vma;
		}
3632
	}
3633
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3634
		ret = -EINVAL;
3635
		goto err_remove_node;
3636 3637
	}

3638
	trace_i915_vma_bind(vma, flags);
3639
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3640
	if (ret)
I
Imre Deak 已提交
3641
		goto err_remove_node;
3642

3643
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3644
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3645

3646
	return vma;
B
Ben Widawsky 已提交
3647

3648
err_remove_node:
3649
	drm_mm_remove_node(&vma->node);
3650
err_free_vma:
B
Ben Widawsky 已提交
3651
	i915_gem_vma_destroy(vma);
3652
	vma = ERR_PTR(ret);
3653
err_unpin:
B
Ben Widawsky 已提交
3654
	i915_gem_object_unpin_pages(obj);
3655
	return vma;
3656 3657
}

3658
bool
3659 3660
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3661 3662 3663 3664 3665
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3666
	if (obj->pages == NULL)
3667
		return false;
3668

3669 3670 3671 3672
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3673
	if (obj->stolen || obj->phys_handle)
3674
		return false;
3675

3676 3677 3678 3679 3680 3681 3682 3683
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3684 3685
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3686
		return false;
3687
	}
3688

C
Chris Wilson 已提交
3689
	trace_i915_gem_object_clflush(obj);
3690
	drm_clflush_sg(obj->pages);
3691
	obj->cache_dirty = false;
3692 3693

	return true;
3694 3695 3696 3697
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3698
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3699
{
C
Chris Wilson 已提交
3700 3701
	uint32_t old_write_domain;

3702
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3703 3704
		return;

3705
	/* No actual flushing is required for the GTT write domain.  Writes
3706 3707
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3708 3709 3710 3711
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3712
	 */
3713 3714
	wmb();

3715 3716
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3717

3718
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3719

C
Chris Wilson 已提交
3720
	trace_i915_gem_object_change_domain(obj,
3721
					    obj->base.read_domains,
C
Chris Wilson 已提交
3722
					    old_write_domain);
3723 3724 3725 3726
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3727
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3728
{
C
Chris Wilson 已提交
3729
	uint32_t old_write_domain;
3730

3731
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3732 3733
		return;

3734
	if (i915_gem_clflush_object(obj, obj->pin_display))
3735
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3736

3737 3738
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3739

3740
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3741

C
Chris Wilson 已提交
3742
	trace_i915_gem_object_change_domain(obj,
3743
					    obj->base.read_domains,
C
Chris Wilson 已提交
3744
					    old_write_domain);
3745 3746
}

3747 3748 3749 3750 3751 3752
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3753
int
3754
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3755
{
3756 3757 3758
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3759
	uint32_t old_write_domain, old_read_domains;
3760
	struct i915_vma *vma;
3761
	int ret;
3762

3763 3764 3765
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3766
	ret = i915_gem_object_wait_rendering(obj, !write);
3767 3768 3769
	if (ret)
		return ret;

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3782
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3783

3784 3785 3786 3787 3788 3789 3790
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3791 3792
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3793

3794 3795 3796
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3797 3798
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3799
	if (write) {
3800 3801 3802
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3803 3804
	}

C
Chris Wilson 已提交
3805 3806 3807 3808
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3809
	/* And bump the LRU for this access */
3810 3811
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3812
		list_move_tail(&vma->vm_link,
3813
			       &ggtt->base.inactive_list);
3814

3815 3816 3817
	return 0;
}

3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3831 3832 3833
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3834
	struct drm_device *dev = obj->base.dev;
3835
	struct i915_vma *vma, *next;
3836
	bool bound = false;
3837
	int ret = 0;
3838 3839

	if (obj->cache_level == cache_level)
3840
		goto out;
3841

3842 3843 3844 3845 3846
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3847
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3848 3849 3850 3851 3852 3853 3854 3855
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3856
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3857
			ret = i915_vma_unbind(vma);
3858 3859
			if (ret)
				return ret;
3860 3861
		} else
			bound = true;
3862 3863
	}

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3876
		ret = i915_gem_object_wait_rendering(obj, false);
3877 3878 3879
		if (ret)
			return ret;

3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3897 3898 3899
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3900 3901 3902 3903 3904 3905 3906 3907
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3908 3909
		}

3910
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3911 3912 3913 3914 3915 3916 3917
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3918 3919
	}

3920
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3921 3922 3923
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3924
out:
3925 3926 3927 3928
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3929 3930 3931 3932
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
3933
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3934 3935 3936 3937 3938
	}

	return 0;
}

B
Ben Widawsky 已提交
3939 3940
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3941
{
B
Ben Widawsky 已提交
3942
	struct drm_i915_gem_caching *args = data;
3943 3944
	struct drm_i915_gem_object *obj;

3945
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3946 3947
	if (&obj->base == NULL)
		return -ENOENT;
3948

3949 3950 3951 3952 3953 3954
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3955 3956 3957 3958
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3959 3960 3961 3962
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3963

3964 3965
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3966 3967
}

B
Ben Widawsky 已提交
3968 3969
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3970
{
3971
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3972
	struct drm_i915_gem_caching *args = data;
3973 3974 3975 3976
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3977 3978
	switch (args->caching) {
	case I915_CACHING_NONE:
3979 3980
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3981
	case I915_CACHING_CACHED:
3982 3983 3984 3985 3986 3987
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3988
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3989 3990
			return -ENODEV;

3991 3992
		level = I915_CACHE_LLC;
		break;
3993 3994 3995
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3996 3997 3998 3999
	default:
		return -EINVAL;
	}

4000 4001
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4002 4003
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4004
		goto rpm_put;
B
Ben Widawsky 已提交
4005

4006
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4017 4018 4019
rpm_put:
	intel_runtime_pm_put(dev_priv);

4020 4021 4022
	return ret;
}

4023
/*
4024 4025 4026
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4027 4028
 */
int
4029 4030
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4031
				     const struct i915_ggtt_view *view)
4032
{
4033
	u32 old_read_domains, old_write_domain;
4034 4035
	int ret;

4036 4037 4038
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4039
	obj->pin_display++;
4040

4041 4042 4043 4044 4045 4046 4047 4048 4049
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4050 4051
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4052
	if (ret)
4053
		goto err_unpin_display;
4054

4055 4056 4057 4058
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4059 4060 4061
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4062
	if (ret)
4063
		goto err_unpin_display;
4064

4065
	i915_gem_object_flush_cpu_write_domain(obj);
4066

4067
	old_write_domain = obj->base.write_domain;
4068
	old_read_domains = obj->base.read_domains;
4069 4070 4071 4072

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4073
	obj->base.write_domain = 0;
4074
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4075 4076 4077

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4078
					    old_write_domain);
4079 4080

	return 0;
4081 4082

err_unpin_display:
4083
	obj->pin_display--;
4084 4085 4086 4087
	return ret;
}

void
4088 4089
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4090
{
4091 4092 4093
	if (WARN_ON(obj->pin_display == 0))
		return;

4094 4095
	i915_gem_object_ggtt_unpin_view(obj, view);

4096
	obj->pin_display--;
4097 4098
}

4099 4100 4101 4102 4103 4104
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4105
int
4106
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4107
{
C
Chris Wilson 已提交
4108
	uint32_t old_write_domain, old_read_domains;
4109 4110
	int ret;

4111 4112 4113
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4114
	ret = i915_gem_object_wait_rendering(obj, !write);
4115 4116 4117
	if (ret)
		return ret;

4118
	i915_gem_object_flush_gtt_write_domain(obj);
4119

4120 4121
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4122

4123
	/* Flush the CPU cache if it's still invalid. */
4124
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4125
		i915_gem_clflush_object(obj, false);
4126

4127
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4128 4129 4130 4131 4132
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4133
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4134 4135 4136 4137 4138

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4139 4140
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4141
	}
4142

C
Chris Wilson 已提交
4143 4144 4145 4146
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4147 4148 4149
	return 0;
}

4150 4151 4152
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4153 4154 4155 4156
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4157 4158 4159
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4160
static int
4161
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4162
{
4163 4164
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4165
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4166
	struct drm_i915_gem_request *request, *target = NULL;
4167
	int ret;
4168

4169 4170 4171 4172
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4173 4174 4175
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4176

4177
	spin_lock(&file_priv->mm.lock);
4178
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4179 4180
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4181

4182 4183 4184 4185 4186 4187 4188
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4189
		target = request;
4190
	}
4191 4192
	if (target)
		i915_gem_request_reference(target);
4193
	spin_unlock(&file_priv->mm.lock);
4194

4195
	if (target == NULL)
4196
		return 0;
4197

4198
	ret = __i915_wait_request(target, true, NULL, NULL);
4199 4200
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4201

4202
	i915_gem_request_unreference(target);
4203

4204 4205 4206
	return ret;
}

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4223 4224 4225 4226
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4227 4228 4229
	return false;
}

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4248
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4249 4250 4251 4252

	obj->map_and_fenceable = mappable && fenceable;
}

4253 4254 4255 4256 4257 4258
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4259
{
4260
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4261
	struct i915_vma *vma;
4262
	unsigned bound;
4263 4264
	int ret;

4265 4266 4267
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4268
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4269
		return -EINVAL;
4270

4271 4272 4273
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4274 4275 4276 4277 4278 4279
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4280
	if (vma) {
B
Ben Widawsky 已提交
4281 4282 4283
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4284
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4285
			WARN(vma->pin_count,
4286
			     "bo is already pinned in %s with incorrect alignment:"
4287
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4288
			     " obj->map_and_fenceable=%d\n",
4289
			     ggtt_view ? "ggtt" : "ppgtt",
4290 4291
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4292
			     alignment,
4293
			     !!(flags & PIN_MAPPABLE),
4294
			     obj->map_and_fenceable);
4295
			ret = i915_vma_unbind(vma);
4296 4297
			if (ret)
				return ret;
4298 4299

			vma = NULL;
4300 4301 4302
		}
	}

4303
	bound = vma ? vma->bound : 0;
4304
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4305 4306
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4307 4308
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4309 4310
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4311 4312 4313
		if (ret)
			return ret;
	}
4314

4315 4316
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4317
		__i915_vma_set_map_and_fenceable(vma);
4318 4319
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4320

4321
	vma->pin_count++;
4322 4323 4324
	return 0;
}

4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4342 4343 4344 4345
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4346
	BUG_ON(!view);
4347

4348
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4349
				      alignment, flags | PIN_GLOBAL);
4350 4351
}

4352
void
4353 4354
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4355
{
4356
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4357

4358
	WARN_ON(vma->pin_count == 0);
4359
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4360

4361
	--vma->pin_count;
4362 4363 4364 4365
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4366
		    struct drm_file *file)
4367 4368
{
	struct drm_i915_gem_busy *args = data;
4369
	struct drm_i915_gem_object *obj;
4370 4371
	int ret;

4372
	ret = i915_mutex_lock_interruptible(dev);
4373
	if (ret)
4374
		return ret;
4375

4376
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4377
	if (&obj->base == NULL) {
4378 4379
		ret = -ENOENT;
		goto unlock;
4380
	}
4381

4382 4383 4384 4385
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4386
	 */
4387
	ret = i915_gem_object_flush_active(obj);
4388 4389
	if (ret)
		goto unref;
4390

4391 4392 4393 4394
	args->busy = 0;
	if (obj->active) {
		int i;

4395
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4396 4397 4398 4399
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4400
				args->busy |= 1 << (16 + req->engine->exec_id);
4401 4402
		}
		if (obj->last_write_req)
4403
			args->busy |= obj->last_write_req->engine->exec_id;
4404
	}
4405

4406
unref:
4407
	drm_gem_object_unreference(&obj->base);
4408
unlock:
4409
	mutex_unlock(&dev->struct_mutex);
4410
	return ret;
4411 4412 4413 4414 4415 4416
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4417
	return i915_gem_ring_throttle(dev, file_priv);
4418 4419
}

4420 4421 4422 4423
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4424
	struct drm_i915_private *dev_priv = dev->dev_private;
4425
	struct drm_i915_gem_madvise *args = data;
4426
	struct drm_i915_gem_object *obj;
4427
	int ret;
4428 4429 4430 4431 4432 4433 4434 4435 4436

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4437 4438 4439 4440
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4441
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4442
	if (&obj->base == NULL) {
4443 4444
		ret = -ENOENT;
		goto unlock;
4445 4446
	}

B
Ben Widawsky 已提交
4447
	if (i915_gem_obj_is_pinned(obj)) {
4448 4449
		ret = -EINVAL;
		goto out;
4450 4451
	}

4452 4453 4454 4455 4456 4457 4458 4459 4460
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4461 4462
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4463

C
Chris Wilson 已提交
4464
	/* if the object is no longer attached, discard its backing storage */
4465
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4466 4467
		i915_gem_object_truncate(obj);

4468
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4469

4470
out:
4471
	drm_gem_object_unreference(&obj->base);
4472
unlock:
4473
	mutex_unlock(&dev->struct_mutex);
4474
	return ret;
4475 4476
}

4477 4478
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4479
{
4480 4481
	int i;

4482
	INIT_LIST_HEAD(&obj->global_list);
4483
	for (i = 0; i < I915_NUM_ENGINES; i++)
4484
		INIT_LIST_HEAD(&obj->engine_list[i]);
4485
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4486
	INIT_LIST_HEAD(&obj->vma_list);
4487
	INIT_LIST_HEAD(&obj->batch_pool_link);
4488

4489 4490
	obj->ops = ops;

4491 4492 4493 4494 4495 4496
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4497
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4498
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4499 4500 4501 4502
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4503
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4504
						  size_t size)
4505
{
4506
	struct drm_i915_gem_object *obj;
4507
	struct address_space *mapping;
D
Daniel Vetter 已提交
4508
	gfp_t mask;
4509
	int ret;
4510

4511
	obj = i915_gem_object_alloc(dev);
4512
	if (obj == NULL)
4513
		return ERR_PTR(-ENOMEM);
4514

4515 4516 4517
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4518

4519 4520 4521 4522 4523 4524 4525
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4526
	mapping = file_inode(obj->base.filp)->i_mapping;
4527
	mapping_set_gfp_mask(mapping, mask);
4528

4529
	i915_gem_object_init(obj, &i915_gem_object_ops);
4530

4531 4532
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4533

4534 4535
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4551 4552
	trace_i915_gem_object_create(obj);

4553
	return obj;
4554 4555 4556 4557 4558

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4559 4560
}

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4585
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4586
{
4587
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4588
	struct drm_device *dev = obj->base.dev;
4589
	struct drm_i915_private *dev_priv = dev->dev_private;
4590
	struct i915_vma *vma, *next;
4591

4592 4593
	intel_runtime_pm_get(dev_priv);

4594 4595
	trace_i915_gem_object_destroy(obj);

4596
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4597 4598 4599 4600
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4601 4602
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4603

4604 4605
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4606

4607
			WARN_ON(i915_vma_unbind(vma));
4608

4609 4610
			dev_priv->mm.interruptible = was_interruptible;
		}
4611 4612
	}

B
Ben Widawsky 已提交
4613 4614 4615 4616 4617
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4618 4619
	WARN_ON(obj->frontbuffer_bits);

4620 4621 4622 4623 4624
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4625 4626
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4627
	if (discard_backing_storage(obj))
4628
		obj->madv = I915_MADV_DONTNEED;
4629
	i915_gem_object_put_pages(obj);
4630
	i915_gem_object_free_mmap_offset(obj);
4631

4632 4633
	BUG_ON(obj->pages);

4634 4635
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4636

4637 4638 4639
	if (obj->ops->release)
		obj->ops->release(obj);

4640 4641
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4642

4643
	kfree(obj->bit_17);
4644
	i915_gem_object_free(obj);
4645 4646

	intel_runtime_pm_put(dev_priv);
4647 4648
}

4649 4650
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4651 4652
{
	struct i915_vma *vma;
4653
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4654 4655
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4656
			return vma;
4657 4658 4659 4660 4661 4662 4663 4664
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4665

4666
	GEM_BUG_ON(!view);
4667

4668
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4669
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4670
			return vma;
4671 4672 4673
	return NULL;
}

B
Ben Widawsky 已提交
4674 4675 4676
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4677 4678 4679 4680 4681

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4682 4683
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4684

4685
	list_del(&vma->obj_link);
4686

4687
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4688 4689
}

4690
static void
4691
i915_gem_stop_engines(struct drm_device *dev)
4692 4693
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4694
	struct intel_engine_cs *engine;
4695

4696
	for_each_engine(engine, dev_priv)
4697
		dev_priv->gt.stop_engine(engine);
4698 4699
}

4700
int
4701
i915_gem_suspend(struct drm_device *dev)
4702
{
4703
	struct drm_i915_private *dev_priv = dev->dev_private;
4704
	int ret = 0;
4705

4706
	mutex_lock(&dev->struct_mutex);
4707
	ret = i915_gpu_idle(dev);
4708
	if (ret)
4709
		goto err;
4710

4711
	i915_gem_retire_requests(dev_priv);
4712

4713
	i915_gem_stop_engines(dev);
4714
	i915_gem_context_lost(dev_priv);
4715 4716
	mutex_unlock(&dev->struct_mutex);

4717
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4718
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4719
	flush_delayed_work(&dev_priv->mm.idle_work);
4720

4721 4722 4723 4724 4725
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4726
	return 0;
4727 4728 4729 4730

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4731 4732
}

4733 4734
void i915_gem_init_swizzling(struct drm_device *dev)
{
4735
	struct drm_i915_private *dev_priv = dev->dev_private;
4736

4737
	if (INTEL_INFO(dev)->gen < 5 ||
4738 4739 4740 4741 4742 4743
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4744 4745 4746
	if (IS_GEN5(dev))
		return;

4747 4748
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4749
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4750
	else if (IS_GEN7(dev))
4751
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4752 4753
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4754 4755
	else
		BUG();
4756
}
D
Daniel Vetter 已提交
4757

4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4785
int i915_gem_init_engines(struct drm_device *dev)
4786
{
4787
	struct drm_i915_private *dev_priv = dev->dev_private;
4788
	int ret;
4789

4790
	ret = intel_init_render_ring_buffer(dev);
4791
	if (ret)
4792
		return ret;
4793 4794

	if (HAS_BSD(dev)) {
4795
		ret = intel_init_bsd_ring_buffer(dev);
4796 4797
		if (ret)
			goto cleanup_render_ring;
4798
	}
4799

4800
	if (HAS_BLT(dev)) {
4801 4802 4803 4804 4805
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4806 4807 4808 4809 4810 4811
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4812 4813 4814 4815 4816
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4817

4818 4819
	return 0;

B
Ben Widawsky 已提交
4820
cleanup_vebox_ring:
4821
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4822
cleanup_blt_ring:
4823
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4824
cleanup_bsd_ring:
4825
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4826
cleanup_render_ring:
4827
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4828 4829 4830 4831 4832 4833 4834

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4835
	struct drm_i915_private *dev_priv = dev->dev_private;
4836
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4837
	int ret;
4838

4839 4840 4841
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4842
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4843
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4844

4845 4846 4847
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4848

4849
	if (HAS_PCH_NOP(dev)) {
4850 4851 4852 4853 4854 4855 4856 4857 4858
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4859 4860
	}

4861 4862
	i915_gem_init_swizzling(dev);

4863 4864 4865 4866 4867 4868 4869 4870
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4871
	BUG_ON(!dev_priv->kernel_context);
4872

4873 4874 4875 4876 4877 4878 4879
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4880
	for_each_engine(engine, dev_priv) {
4881
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4882
		if (ret)
4883
			goto out;
D
Daniel Vetter 已提交
4884
	}
4885

4886 4887
	intel_mocs_init_l3cc_table(dev);

4888
	/* We can't enable contexts until all firmware is loaded */
4889
	if (HAS_GUC(dev)) {
4890
		ret = intel_guc_setup(dev);
4891
		if (ret)
4892
			goto out;
4893 4894
	}

4895 4896 4897 4898 4899
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
D
Daniel Vetter 已提交
4900

4901 4902
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4903
	return ret;
4904 4905
}

4906 4907 4908 4909 4910 4911
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
4912

4913
	if (!i915.enable_execlists) {
4914
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4915 4916 4917
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4918
	} else {
4919
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4920 4921 4922
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4923 4924
	}

4925 4926 4927 4928 4929 4930 4931 4932
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4933
	i915_gem_init_userptr(dev_priv);
4934
	i915_gem_init_ggtt(dev);
4935

4936
	ret = i915_gem_context_init(dev);
4937 4938
	if (ret)
		goto out_unlock;
4939

4940
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
4941
	if (ret)
4942
		goto out_unlock;
4943

4944
	ret = i915_gem_init_hw(dev);
4945 4946 4947 4948 4949 4950
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4951
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4952
		ret = 0;
4953
	}
4954 4955

out_unlock:
4956
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4957
	mutex_unlock(&dev->struct_mutex);
4958

4959
	return ret;
4960 4961
}

4962
void
4963
i915_gem_cleanup_engines(struct drm_device *dev)
4964
{
4965
	struct drm_i915_private *dev_priv = dev->dev_private;
4966
	struct intel_engine_cs *engine;
4967

4968
	for_each_engine(engine, dev_priv)
4969
		dev_priv->gt.cleanup_engine(engine);
4970 4971
}

4972
static void
4973
init_engine_lists(struct intel_engine_cs *engine)
4974
{
4975 4976
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4977 4978
}

4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4993
	if (intel_vgpu_active(dev_priv))
4994 4995 4996 4997 4998 4999 5000 5001 5002
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5003
void
5004
i915_gem_load_init(struct drm_device *dev)
5005
{
5006
	struct drm_i915_private *dev_priv = dev->dev_private;
5007 5008
	int i;

5009
	dev_priv->objects =
5010 5011 5012 5013
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5014 5015 5016 5017 5018
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5019 5020 5021 5022 5023
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5024

B
Ben Widawsky 已提交
5025
	INIT_LIST_HEAD(&dev_priv->vm_list);
5026
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5027 5028
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5029
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5030 5031
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5032
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5033
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5034 5035
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5036 5037
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5038
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5039

5040 5041
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5042 5043 5044 5045 5046 5047 5048 5049
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5050
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5051

5052
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5053

5054 5055
	dev_priv->mm.interruptible = true;

5056
	mutex_init(&dev_priv->fb_tracking.lock);
5057
}
5058

5059 5060 5061 5062 5063 5064 5065 5066 5067
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5096
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5097
{
5098
	struct drm_i915_file_private *file_priv = file->driver_priv;
5099 5100 5101 5102 5103

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5104
	spin_lock(&file_priv->mm.lock);
5105 5106 5107 5108 5109 5110 5111 5112 5113
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5114
	spin_unlock(&file_priv->mm.lock);
5115

5116
	if (!list_empty(&file_priv->rps.link)) {
5117
		spin_lock(&to_i915(dev)->rps.client_lock);
5118
		list_del(&file_priv->rps.link);
5119
		spin_unlock(&to_i915(dev)->rps.client_lock);
5120
	}
5121 5122 5123 5124 5125
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5126
	int ret;
5127 5128 5129 5130 5131 5132 5133 5134 5135

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5136
	file_priv->file = file;
5137
	INIT_LIST_HEAD(&file_priv->rps.link);
5138 5139 5140 5141

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5142 5143
	file_priv->bsd_ring = -1;

5144 5145 5146
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5147

5148
	return ret;
5149 5150
}

5151 5152
/**
 * i915_gem_track_fb - update frontbuffer tracking
5153 5154 5155
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5156 5157 5158 5159
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5177
/* All the new VM stuff */
5178 5179
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5180 5181 5182 5183
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5184
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5185

5186
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5187
		if (vma->is_ggtt &&
5188 5189 5190
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5191 5192
			return vma->node.start;
	}
5193

5194 5195
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5196 5197 5198
	return -1;
}

5199 5200
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5201 5202 5203
{
	struct i915_vma *vma;

5204
	list_for_each_entry(vma, &o->vma_list, obj_link)
5205
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5206 5207
			return vma->node.start;

5208
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5209 5210 5211 5212 5213 5214 5215 5216
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5217
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5218
		if (vma->is_ggtt &&
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5229
				  const struct i915_ggtt_view *view)
5230 5231 5232
{
	struct i915_vma *vma;

5233
	list_for_each_entry(vma, &o->vma_list, obj_link)
5234
		if (vma->is_ggtt &&
5235
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5236
		    drm_mm_node_allocated(&vma->node))
5237 5238 5239 5240 5241 5242 5243
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5244
	struct i915_vma *vma;
5245

5246
	list_for_each_entry(vma, &o->vma_list, obj_link)
5247
		if (drm_mm_node_allocated(&vma->node))
5248 5249 5250 5251 5252
			return true;

	return false;
}

5253
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5254 5255 5256
{
	struct i915_vma *vma;

5257
	GEM_BUG_ON(list_empty(&o->vma_list));
5258

5259
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5260
		if (vma->is_ggtt &&
5261
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5262
			return vma->node.size;
5263
	}
5264

5265 5266 5267
	return 0;
}

5268
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5269 5270
{
	struct i915_vma *vma;
5271
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5272 5273
		if (vma->pin_count > 0)
			return true;
5274

5275
	return false;
5276
}
5277

5278 5279 5280 5281 5282 5283 5284
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5285
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5286 5287 5288 5289 5290 5291 5292
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5303
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5304
	if (IS_ERR(obj))
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5318
	obj->dirty = 1;		/* Backing store is now out of date */
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}