i915_gem.c 131.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/stop_machine.h>
42
#include <linux/swap.h>
J
Jesse Barnes 已提交
43
#include <linux/pci.h>
44
#include <linux/dma-buf.h>
45

46
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49

50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
53
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 55
}

56 57
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
58 59 60
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

61 62 63 64 65 66
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

67
static int
68
insert_mappable_node(struct i915_ggtt *ggtt,
69 70 71
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
72
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
73 74
						   size, 0,
						   I915_COLOR_UNEVICTABLE,
75
						   0, ggtt->mappable_end,
76 77 78 79 80 81 82 83 84 85
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88
				  u64 size)
89
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97
				     u64 size)
98
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static int
106
i915_gem_wait_for_error(struct i915_gpu_error *error)
107 108 109
{
	int ret;

110 111
	might_sleep();

112
	if (!i915_reset_in_progress(error))
113 114
		return 0;

115 116 117 118 119
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
120
	ret = wait_event_interruptible_timeout(error->reset_queue,
121
					       !i915_reset_in_progress(error),
122
					       I915_RESET_TIMEOUT);
123 124 125 126
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
127
		return ret;
128 129
	} else {
		return 0;
130
	}
131 132
}

133
int i915_mutex_lock_interruptible(struct drm_device *dev)
134
{
135
	struct drm_i915_private *dev_priv = to_i915(dev);
136 137
	int ret;

138
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
139 140 141 142 143 144 145 146 147
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
148

149 150
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
151
			    struct drm_file *file)
152
{
153
	struct drm_i915_private *dev_priv = to_i915(dev);
154
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
155
	struct drm_i915_gem_get_aperture *args = data;
156
	struct i915_vma *vma;
157
	size_t pinned;
158

159
	pinned = 0;
160
	mutex_lock(&dev->struct_mutex);
161
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
165
		if (i915_vma_is_pinned(vma))
166
			pinned += vma->node.size;
167
	mutex_unlock(&dev->struct_mutex);
168

169
	args->aper_size = ggtt->base.total;
170
	args->aper_available_size = args->aper_size - pinned;
171

172 173 174
	return 0;
}

175
static struct sg_table *
176
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
177
{
178
	struct address_space *mapping = obj->base.filp->f_mapping;
179
	drm_dma_handle_t *phys;
180 181
	struct sg_table *st;
	struct scatterlist *sg;
182
	char *vaddr;
183
	int i;
184

185
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
186
		return ERR_PTR(-EINVAL);
187

188 189 190 191 192 193 194 195 196 197 198
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
199 200 201 202 203
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
204 205 206 207
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
208 209 210 211 212 213

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

214
		put_page(page);
215 216 217
		vaddr += PAGE_SIZE;
	}

218
	i915_gem_chipset_flush(to_i915(obj->base.dev));
219 220

	st = kmalloc(sizeof(*st), GFP_KERNEL);
221 222 223 224
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
225 226 227

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
228 229
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
230 231 232 233 234
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
235

236
	sg_dma_address(sg) = phys->busaddr;
237 238
	sg_dma_len(sg) = obj->base.size;

239 240 241 242 243
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
244
	return st;
245 246 247
}

static void
248
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
249 250
				struct sg_table *pages,
				bool needs_clflush)
251
{
C
Chris Wilson 已提交
252
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
253

C
Chris Wilson 已提交
254 255
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
256

257 258
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
259
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
260
		drm_clflush_sg(pages);
261 262 263 264 265 266 267 268 269

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
270
	__i915_gem_object_release_shmem(obj, pages, false);
271

C
Chris Wilson 已提交
272
	if (obj->mm.dirty) {
273
		struct address_space *mapping = obj->base.filp->f_mapping;
274
		char *vaddr = obj->phys_handle->vaddr;
275 276 277
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
278 279 280 281 282 283 284 285 286 287 288 289 290
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
291
			if (obj->mm.madv == I915_MADV_WILLNEED)
292
				mark_page_accessed(page);
293
			put_page(page);
294 295
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
296
		obj->mm.dirty = false;
297 298
	}

299 300
	sg_free_table(pages);
	kfree(pages);
301 302

	drm_pci_free(obj->base.dev, obj->phys_handle);
303 304 305 306 307
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
308
	i915_gem_object_unpin_pages(obj);
309 310 311 312 313 314 315 316
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

317
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
318 319 320
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
321 322 323
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
324

325 326 327 328
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
329
	 */
330 331 332 333 334 335
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
336 337 338 339 340
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

341 342 343 344 345 346 347 348 349 350 351 352 353
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

354 355 356 357 358
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
359
{
360
	struct drm_i915_gem_request *rq;
361

362
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
396 397
	}

398 399 400 401 402 403
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

404
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
434 435
		int ret;

436 437
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
438 439 440
		if (ret)
			return ret;

441 442 443 444 445 446
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
447

448 449 450 451 452 453 454 455
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
456 457
	}

458 459 460 461 462 463
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

530 531 532 533 534 535
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
536
 */
537 538 539 540 541
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
542
{
543 544 545 546 547 548 549
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
550

551 552 553
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
554
	return timeout < 0 ? timeout : 0;
555 556 557 558 559 560 561 562 563
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

564 565 566 567
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
568
	int ret;
569

570 571
	if (align > obj->base.size)
		return -EINVAL;
572

573
	if (obj->ops == &i915_gem_phys_ops)
574 575
		return 0;

C
Chris Wilson 已提交
576
	if (obj->mm.madv != I915_MADV_WILLNEED)
577 578 579 580 581
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
582 583 584 585
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

586
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
587 588
	if (obj->mm.pages)
		return -EBUSY;
589 590 591

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
592
	return i915_gem_object_pin_pages(obj);
593 594 595 596 597
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
598
		     struct drm_file *file)
599 600
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
601
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
602 603 604 605

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
606
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
607 608
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
609

610
	drm_clflush_virt_range(vaddr, args->size);
611
	i915_gem_chipset_flush(to_i915(obj->base.dev));
612

613
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
614
	return 0;
615 616
}

617
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
618
{
619
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
620 621 622 623
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
624
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
625
	kmem_cache_free(dev_priv->objects, obj);
626 627
}

628 629
static int
i915_gem_create(struct drm_file *file,
630
		struct drm_i915_private *dev_priv,
631 632
		uint64_t size,
		uint32_t *handle_p)
633
{
634
	struct drm_i915_gem_object *obj;
635 636
	int ret;
	u32 handle;
637

638
	size = roundup(size, PAGE_SIZE);
639 640
	if (size == 0)
		return -EINVAL;
641 642

	/* Allocate the new object */
643
	obj = i915_gem_object_create(dev_priv, size);
644 645
	if (IS_ERR(obj))
		return PTR_ERR(obj);
646

647
	ret = drm_gem_handle_create(file, &obj->base, &handle);
648
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
649
	i915_gem_object_put(obj);
650 651
	if (ret)
		return ret;
652

653
	*handle_p = handle;
654 655 656
	return 0;
}

657 658 659 660 661 662
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
663
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
664
	args->size = args->pitch * args->height;
665
	return i915_gem_create(file, to_i915(dev),
666
			       args->size, &args->handle);
667 668 669 670
}

/**
 * Creates a new mm object and returns a handle to it.
671 672 673
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
674 675 676 677 678
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
679
	struct drm_i915_private *dev_priv = to_i915(dev);
680
	struct drm_i915_gem_create *args = data;
681

682
	i915_gem_flush_free_objects(dev_priv);
683

684
	return i915_gem_create(file, dev_priv,
685
			       args->size, &args->handle);
686 687
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

714
static inline int
715 716
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

740 741 742 743 744 745
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
746
				    unsigned int *needs_clflush)
747 748 749
{
	int ret;

750
	lockdep_assert_held(&obj->base.dev->struct_mutex);
751

752
	*needs_clflush = 0;
753 754
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
755

756 757 758 759 760
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
761 762 763
	if (ret)
		return ret;

C
Chris Wilson 已提交
764
	ret = i915_gem_object_pin_pages(obj);
765 766 767
	if (ret)
		return ret;

768 769
	i915_gem_object_flush_gtt_write_domain(obj);

770 771 772 773 774 775
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
776 777
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
778 779 780

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
781 782 783
		if (ret)
			goto err_unpin;

784
		*needs_clflush = 0;
785 786
	}

787
	/* return with the pages pinned */
788
	return 0;
789 790 791 792

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
793 794 795 796 797 798 799
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

800 801
	lockdep_assert_held(&obj->base.dev->struct_mutex);

802 803 804 805
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

806 807 808 809 810 811
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
812 813 814
	if (ret)
		return ret;

C
Chris Wilson 已提交
815
	ret = i915_gem_object_pin_pages(obj);
816 817 818
	if (ret)
		return ret;

819 820
	i915_gem_object_flush_gtt_write_domain(obj);

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
838 839 840
		if (ret)
			goto err_unpin;

841 842 843 844 845 846 847
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
848
	obj->mm.dirty = true;
849
	/* return with the pages pinned */
850
	return 0;
851 852 853 854

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
855 856
}

857 858 859 860
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
861
	if (unlikely(swizzled)) {
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

879 880 881
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
882
shmem_pread_slow(struct page *page, int offset, int length,
883 884 885 886 887 888 889 890
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
891
		shmem_clflush_swizzled_range(vaddr + offset, length,
892
					     page_do_bit17_swizzling);
893 894

	if (page_do_bit17_swizzling)
895
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
896
	else
897
		ret = __copy_to_user(user_data, vaddr + offset, length);
898 899
	kunmap(page);

900
	return ret ? - EFAULT : 0;
901 902
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
979 980
{
	void *vaddr;
981
	unsigned long unwritten;
982 983

	/* We can use the cpu mem copy function because this is X86. */
984 985 986 987 988 989 990 991 992
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
993 994 995 996
	return unwritten;
}

static int
997 998
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
999
{
1000 1001
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1002
	struct drm_mm_node node;
1003 1004 1005
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1006 1007
	int ret;

1008 1009 1010 1011 1012 1013 1014
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1015 1016 1017
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1018
		ret = i915_vma_put_fence(vma);
1019 1020 1021 1022 1023
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1024
	if (IS_ERR(vma)) {
1025
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1026
		if (ret)
1027 1028
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1029 1030 1031 1032 1033 1034
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1035
	mutex_unlock(&i915->drm.struct_mutex);
1036

1037 1038 1039
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1056
					       node.start, I915_CACHE_NONE, 0);
1057 1058 1059 1060
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1061 1062 1063

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1064 1065 1066 1067 1068 1069 1070 1071 1072
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1073
	mutex_lock(&i915->drm.struct_mutex);
1074 1075 1076 1077
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1078
				       node.start, node.size);
1079 1080
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1081
		i915_vma_unpin(vma);
1082
	}
1083 1084 1085
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1086

1087 1088 1089
	return ret;
}

1090 1091
/**
 * Reads data from the object referenced by handle.
1092 1093 1094
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1095 1096 1097 1098 1099
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1100
		     struct drm_file *file)
1101 1102
{
	struct drm_i915_gem_pread *args = data;
1103
	struct drm_i915_gem_object *obj;
1104
	int ret;
1105

1106 1107 1108 1109
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1110
		       u64_to_user_ptr(args->data_ptr),
1111 1112 1113
		       args->size))
		return -EFAULT;

1114
	obj = i915_gem_object_lookup(file, args->handle);
1115 1116
	if (!obj)
		return -ENOENT;
1117

1118
	/* Bounds check source.  */
1119
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1120
		ret = -EINVAL;
1121
		goto out;
C
Chris Wilson 已提交
1122 1123
	}

C
Chris Wilson 已提交
1124 1125
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1126 1127 1128 1129
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1130
	if (ret)
1131
		goto out;
1132

1133
	ret = i915_gem_object_pin_pages(obj);
1134
	if (ret)
1135
		goto out;
1136

1137
	ret = i915_gem_shmem_pread(obj, args);
1138
	if (ret == -EFAULT || ret == -ENODEV)
1139
		ret = i915_gem_gtt_pread(obj, args);
1140

1141 1142
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1143
	i915_gem_object_put(obj);
1144
	return ret;
1145 1146
}

1147 1148
/* This is the fast write path which cannot handle
 * page faults in the source data
1149
 */
1150

1151 1152 1153 1154
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1155
{
1156
	void *vaddr;
1157
	unsigned long unwritten;
1158

1159
	/* We can use the cpu mem copy function because this is X86. */
1160 1161
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1162
						      user_data, length);
1163 1164 1165 1166 1167 1168 1169
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1170 1171 1172 1173

	return unwritten;
}

1174 1175 1176
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1177
 * @obj: i915 GEM object
1178
 * @args: pwrite arguments structure
1179
 */
1180
static int
1181 1182
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1183
{
1184
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1185 1186
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1187 1188 1189
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1190
	int ret;
1191

1192 1193 1194
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1195

1196
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1197
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1198
				       PIN_MAPPABLE | PIN_NONBLOCK);
1199 1200 1201
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1202
		ret = i915_vma_put_fence(vma);
1203 1204 1205 1206 1207
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1208
	if (IS_ERR(vma)) {
1209
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1210
		if (ret)
1211 1212
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1213
	}
D
Daniel Vetter 已提交
1214 1215 1216 1217 1218

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1219 1220
	mutex_unlock(&i915->drm.struct_mutex);

1221
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1222

1223 1224 1225 1226
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1227 1228
		/* Operation in this page
		 *
1229 1230 1231
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1232
		 */
1233
		u32 page_base = node.start;
1234 1235
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1246
		/* If we get a fault while copying data, then (presumably) our
1247 1248
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1249 1250
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1251
		 */
1252 1253 1254 1255
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1256
		}
1257

1258 1259 1260
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1261
	}
1262
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1263 1264

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1265
out_unpin:
1266 1267 1268
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1269
				       node.start, node.size);
1270 1271
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1272
		i915_vma_unpin(vma);
1273
	}
1274
out_unlock:
1275
	intel_runtime_pm_put(i915);
1276
	mutex_unlock(&i915->drm.struct_mutex);
1277
	return ret;
1278 1279
}

1280
static int
1281
shmem_pwrite_slow(struct page *page, int offset, int length,
1282 1283 1284 1285
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1286
{
1287 1288
	char *vaddr;
	int ret;
1289

1290
	vaddr = kmap(page);
1291
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1292
		shmem_clflush_swizzled_range(vaddr + offset, length,
1293
					     page_do_bit17_swizzling);
1294
	if (page_do_bit17_swizzling)
1295 1296
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1297
	else
1298
		ret = __copy_from_user(vaddr + offset, user_data, length);
1299
	if (needs_clflush_after)
1300
		shmem_clflush_swizzled_range(vaddr + offset, length,
1301
					     page_do_bit17_swizzling);
1302
	kunmap(page);
1303

1304
	return ret ? -EFAULT : 0;
1305 1306
}

1307 1308 1309 1310 1311
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1312
static int
1313 1314 1315 1316
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1317
{
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1350
	unsigned int needs_clflush;
1351 1352
	unsigned int offset, idx;
	int ret;
1353

1354
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1355 1356 1357
	if (ret)
		return ret;

1358 1359 1360 1361
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1362

1363 1364 1365
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1366

1367 1368 1369 1370 1371 1372 1373
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1374

1375 1376 1377 1378 1379 1380
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1381

1382 1383 1384
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1385

1386 1387 1388 1389
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1390
		if (ret)
1391
			break;
1392

1393 1394 1395
		remain -= length;
		user_data += length;
		offset = 0;
1396
	}
1397

1398
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1399
	i915_gem_obj_finish_shmem_access(obj);
1400
	return ret;
1401 1402 1403 1404
}

/**
 * Writes data to the object referenced by handle.
1405 1406 1407
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1408 1409 1410 1411 1412
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1413
		      struct drm_file *file)
1414 1415
{
	struct drm_i915_gem_pwrite *args = data;
1416
	struct drm_i915_gem_object *obj;
1417 1418 1419 1420 1421 1422
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1423
		       u64_to_user_ptr(args->data_ptr),
1424 1425 1426
		       args->size))
		return -EFAULT;

1427
	obj = i915_gem_object_lookup(file, args->handle);
1428 1429
	if (!obj)
		return -ENOENT;
1430

1431
	/* Bounds check destination. */
1432
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1433
		ret = -EINVAL;
1434
		goto err;
C
Chris Wilson 已提交
1435 1436
	}

C
Chris Wilson 已提交
1437 1438
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1439 1440 1441 1442 1443
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1444 1445 1446
	if (ret)
		goto err;

1447
	ret = i915_gem_object_pin_pages(obj);
1448
	if (ret)
1449
		goto err;
1450

D
Daniel Vetter 已提交
1451
	ret = -EFAULT;
1452 1453 1454 1455 1456 1457
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1458
	if (!i915_gem_object_has_struct_page(obj) ||
1459
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1460 1461
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1462 1463
		 * textures). Fallback to the shmem path in that case.
		 */
1464
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1465

1466
	if (ret == -EFAULT || ret == -ENOSPC) {
1467 1468
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1469
		else
1470
			ret = i915_gem_shmem_pwrite(obj, args);
1471
	}
1472

1473
	i915_gem_object_unpin_pages(obj);
1474
err:
C
Chris Wilson 已提交
1475
	i915_gem_object_put(obj);
1476
	return ret;
1477 1478
}

1479
static inline enum fb_op_origin
1480 1481
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1482 1483
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1484 1485
}

1486 1487 1488 1489 1490 1491 1492 1493
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1494
			break;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1507
	list_move_tail(&obj->global_link, list);
1508 1509
}

1510
/**
1511 1512
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1513 1514 1515
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1516 1517 1518
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1519
			  struct drm_file *file)
1520 1521
{
	struct drm_i915_gem_set_domain *args = data;
1522
	struct drm_i915_gem_object *obj;
1523 1524
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1525
	int err;
1526

1527
	/* Only handle setting domains to types used by the CPU. */
1528
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1529 1530 1531 1532 1533 1534 1535 1536
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1537
	obj = i915_gem_object_lookup(file, args->handle);
1538 1539
	if (!obj)
		return -ENOENT;
1540

1541 1542 1543 1544
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1545
	err = i915_gem_object_wait(obj,
1546 1547 1548 1549
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1550
	if (err)
C
Chris Wilson 已提交
1551
		goto out;
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1563
		goto out;
1564 1565 1566

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1567
		goto out_unpin;
1568

1569
	if (read_domains & I915_GEM_DOMAIN_GTT)
1570
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1571
	else
1572
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1573

1574 1575
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1576

1577
	mutex_unlock(&dev->struct_mutex);
1578

1579 1580 1581
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1582
out_unpin:
1583
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1584 1585
out:
	i915_gem_object_put(obj);
1586
	return err;
1587 1588 1589 1590
}

/**
 * Called when user space has done writes to this buffer
1591 1592 1593
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1594 1595 1596
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1597
			 struct drm_file *file)
1598 1599
{
	struct drm_i915_gem_sw_finish *args = data;
1600
	struct drm_i915_gem_object *obj;
1601
	int err = 0;
1602

1603
	obj = i915_gem_object_lookup(file, args->handle);
1604 1605
	if (!obj)
		return -ENOENT;
1606 1607

	/* Pinned buffers may be scanout, so flush the cache */
1608 1609 1610 1611 1612 1613 1614
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1615

C
Chris Wilson 已提交
1616
	i915_gem_object_put(obj);
1617
	return err;
1618 1619 1620
}

/**
1621 1622 1623 1624 1625
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1626 1627 1628
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1639 1640 1641
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1642
		    struct drm_file *file)
1643 1644
{
	struct drm_i915_gem_mmap *args = data;
1645
	struct drm_i915_gem_object *obj;
1646 1647
	unsigned long addr;

1648 1649 1650
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1651
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1652 1653
		return -ENODEV;

1654 1655
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1656
		return -ENOENT;
1657

1658 1659 1660
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1661
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1662
		i915_gem_object_put(obj);
1663 1664 1665
		return -EINVAL;
	}

1666
	addr = vm_mmap(obj->base.filp, 0, args->size,
1667 1668
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1669 1670 1671 1672
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1673
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1674
			i915_gem_object_put(obj);
1675 1676
			return -EINTR;
		}
1677 1678 1679 1680 1681 1682 1683
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1684 1685

		/* This may race, but that's ok, it only gets set */
1686
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1687
	}
C
Chris Wilson 已提交
1688
	i915_gem_object_put(obj);
1689 1690 1691 1692 1693 1694 1695 1696
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1697 1698
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1699
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1700 1701
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1763 1764
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1765
		min_t(unsigned int, chunk,
1766
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1767 1768 1769 1770 1771 1772 1773 1774

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1775 1776
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1777
 * @area: CPU VMA in question
1778
 * @vmf: fault info
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1790 1791 1792
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1793
 */
C
Chris Wilson 已提交
1794
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1795
{
1796
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1797
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1798
	struct drm_device *dev = obj->base.dev;
1799 1800
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1801
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1802
	struct i915_vma *vma;
1803
	pgoff_t page_offset;
1804
	unsigned int flags;
1805
	int ret;
1806

1807
	/* We don't use vmf->pgoff since that has the fake offset */
1808
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1809

C
Chris Wilson 已提交
1810 1811
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1812
	/* Try to flush the object off the GPU first without holding the lock.
1813
	 * Upon acquiring the lock, we will perform our sanity checks and then
1814 1815 1816
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1817 1818 1819 1820
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1821
	if (ret)
1822 1823
		goto err;

1824 1825 1826 1827
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1828 1829 1830 1831 1832
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1833

1834
	/* Access to snoopable pages through the GTT is incoherent. */
1835
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1836
		ret = -EFAULT;
1837
		goto err_unlock;
1838 1839
	}

1840 1841 1842 1843 1844 1845 1846 1847
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1848
	/* Now pin it into the GTT as needed */
1849
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1850 1851
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1852
		struct i915_ggtt_view view =
1853
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1854

1855 1856 1857 1858 1859
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1860 1861
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1862 1863
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1864
		goto err_unlock;
C
Chris Wilson 已提交
1865
	}
1866

1867 1868
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1869
		goto err_unpin;
1870

1871
	ret = i915_vma_get_fence(vma);
1872
	if (ret)
1873
		goto err_unpin;
1874

1875
	/* Mark as being mmapped into userspace for later revocation */
1876
	assert_rpm_wakelock_held(dev_priv);
1877 1878 1879
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1880
	/* Finally, remap it using the new GTT offset */
1881
	ret = remap_io_mapping(area,
1882
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1883 1884 1885
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1886

1887
err_unpin:
C
Chris Wilson 已提交
1888
	__i915_vma_unpin(vma);
1889
err_unlock:
1890
	mutex_unlock(&dev->struct_mutex);
1891 1892
err_rpm:
	intel_runtime_pm_put(dev_priv);
1893
	i915_gem_object_unpin_pages(obj);
1894
err:
1895
	switch (ret) {
1896
	case -EIO:
1897 1898 1899 1900 1901 1902 1903
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1904 1905 1906
			ret = VM_FAULT_SIGBUS;
			break;
		}
1907
	case -EAGAIN:
D
Daniel Vetter 已提交
1908 1909 1910 1911
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1912
		 */
1913 1914
	case 0:
	case -ERESTARTSYS:
1915
	case -EINTR:
1916 1917 1918 1919 1920
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1921 1922
		ret = VM_FAULT_NOPAGE;
		break;
1923
	case -ENOMEM:
1924 1925
		ret = VM_FAULT_OOM;
		break;
1926
	case -ENOSPC:
1927
	case -EFAULT:
1928 1929
		ret = VM_FAULT_SIGBUS;
		break;
1930
	default:
1931
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1932 1933
		ret = VM_FAULT_SIGBUS;
		break;
1934
	}
1935
	return ret;
1936 1937
}

1938 1939 1940 1941
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1942
 * Preserve the reservation of the mmapping with the DRM core code, but
1943 1944 1945 1946 1947 1948 1949 1950 1951
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1952
void
1953
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1954
{
1955 1956
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1957 1958 1959
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1960 1961 1962 1963
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1964
	 */
1965
	lockdep_assert_held(&i915->drm.struct_mutex);
1966
	intel_runtime_pm_get(i915);
1967

1968
	if (list_empty(&obj->userfault_link))
1969
		goto out;
1970

1971
	list_del_init(&obj->userfault_link);
1972 1973
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1974 1975 1976 1977 1978 1979 1980 1981 1982

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1983 1984 1985

out:
	intel_runtime_pm_put(i915);
1986 1987
}

1988
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1989
{
1990
	struct drm_i915_gem_object *obj, *on;
1991
	int i;
1992

1993 1994 1995 1996 1997 1998
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1999

2000 2001 2002
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2003 2004 2005
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2023 2024
}

2025 2026
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2027
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2028
	int err;
2029

2030
	err = drm_gem_create_mmap_offset(&obj->base);
2031
	if (likely(!err))
2032
		return 0;
2033

2034 2035 2036 2037 2038
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2039

2040
		i915_gem_drain_freed_objects(dev_priv);
2041
		err = drm_gem_create_mmap_offset(&obj->base);
2042 2043 2044 2045
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2046

2047
	return err;
2048 2049 2050 2051 2052 2053 2054
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2055
int
2056 2057
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2058
		  uint32_t handle,
2059
		  uint64_t *offset)
2060
{
2061
	struct drm_i915_gem_object *obj;
2062 2063
	int ret;

2064
	obj = i915_gem_object_lookup(file, handle);
2065 2066
	if (!obj)
		return -ENOENT;
2067

2068
	ret = i915_gem_object_create_mmap_offset(obj);
2069 2070
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2071

C
Chris Wilson 已提交
2072
	i915_gem_object_put(obj);
2073
	return ret;
2074 2075
}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2097
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2098 2099
}

D
Daniel Vetter 已提交
2100 2101 2102
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2103
{
2104
	i915_gem_object_free_mmap_offset(obj);
2105

2106 2107
	if (obj->base.filp == NULL)
		return;
2108

D
Daniel Vetter 已提交
2109 2110 2111 2112 2113
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2114
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2115
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2116
}
2117

2118
/* Try to discard unwanted pages */
2119
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2120
{
2121 2122
	struct address_space *mapping;

2123 2124 2125
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2126
	switch (obj->mm.madv) {
2127 2128 2129 2130 2131 2132 2133 2134 2135
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2136
	mapping = obj->base.filp->f_mapping,
2137
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2138 2139
}

2140
static void
2141 2142
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2143
{
2144 2145
	struct sgt_iter sgt_iter;
	struct page *page;
2146

2147
	__i915_gem_object_release_shmem(obj, pages, true);
2148

2149
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2150

2151
	if (i915_gem_object_needs_bit17_swizzle(obj))
2152
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2153

2154
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2155
		if (obj->mm.dirty)
2156
			set_page_dirty(page);
2157

C
Chris Wilson 已提交
2158
		if (obj->mm.madv == I915_MADV_WILLNEED)
2159
			mark_page_accessed(page);
2160

2161
		put_page(page);
2162
	}
C
Chris Wilson 已提交
2163
	obj->mm.dirty = false;
2164

2165 2166
	sg_free_table(pages);
	kfree(pages);
2167
}
C
Chris Wilson 已提交
2168

2169 2170 2171 2172 2173
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2174 2175
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2176 2177
}

2178 2179
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2180
{
2181
	struct sg_table *pages;
2182

C
Chris Wilson 已提交
2183
	if (i915_gem_object_has_pinned_pages(obj))
2184
		return;
2185

2186
	GEM_BUG_ON(obj->bind_count);
2187 2188 2189 2190
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2191
	mutex_lock_nested(&obj->mm.lock, subclass);
2192 2193
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2194

2195 2196 2197
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2198 2199
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2200

C
Chris Wilson 已提交
2201
	if (obj->mm.mapping) {
2202 2203
		void *ptr;

C
Chris Wilson 已提交
2204
		ptr = ptr_mask_bits(obj->mm.mapping);
2205 2206
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2207
		else
2208 2209
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2210
		obj->mm.mapping = NULL;
2211 2212
	}

2213 2214
	__i915_gem_object_reset_page_iter(obj);

2215
	obj->ops->put_pages(obj, pages);
2216 2217
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

2229
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2230 2231 2232 2233 2234 2235 2236 2237
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2238
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2239 2240 2241 2242 2243 2244

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2245
static struct sg_table *
C
Chris Wilson 已提交
2246
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2247
{
2248
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2249 2250
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2251
	struct address_space *mapping;
2252 2253
	struct sg_table *st;
	struct scatterlist *sg;
2254
	struct sgt_iter sgt_iter;
2255
	struct page *page;
2256
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2257
	unsigned int max_segment;
I
Imre Deak 已提交
2258
	int ret;
C
Chris Wilson 已提交
2259
	gfp_t gfp;
2260

C
Chris Wilson 已提交
2261 2262 2263 2264
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2265 2266
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2267

2268
	max_segment = swiotlb_max_segment();
2269
	if (!max_segment)
2270
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2271

2272 2273
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2274
		return ERR_PTR(-ENOMEM);
2275

2276
rebuild_st:
2277 2278
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2279
		return ERR_PTR(-ENOMEM);
2280
	}
2281

2282 2283 2284 2285 2286
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2287
	mapping = obj->base.filp->f_mapping;
2288
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2289
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2290 2291 2292
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2293 2294
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2295 2296 2297 2298 2299
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2300 2301 2302 2303 2304 2305 2306
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2307
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2308 2309
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2310
				goto err_sg;
I
Imre Deak 已提交
2311
			}
C
Chris Wilson 已提交
2312
		}
2313 2314 2315
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2316 2317 2318 2319 2320 2321 2322 2323
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2324 2325 2326

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2327
	}
2328
	if (sg) /* loop terminated early; short sg table */
2329
		sg_mark_end(sg);
2330

2331 2332 2333
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2334
	ret = i915_gem_gtt_prepare_pages(obj, st);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2354

2355
	if (i915_gem_object_needs_bit17_swizzle(obj))
2356
		i915_gem_object_do_bit_17_swizzle(obj, st);
2357

2358
	return st;
2359

2360
err_sg:
2361
	sg_mark_end(sg);
2362
err_pages:
2363 2364
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2365 2366
	sg_free_table(st);
	kfree(st);
2367 2368 2369 2370 2371 2372 2373 2374 2375

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2376 2377 2378
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2379 2380 2381 2382 2383 2384
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2385
	lockdep_assert_held(&obj->mm.lock);
2386 2387 2388 2389 2390

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2391 2392 2393 2394 2395 2396 2397

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2398 2399 2400 2401 2402 2403
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2404 2405
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2417 2418
}

2419
/* Ensure that the associated pages are gathered from the backing storage
2420
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2421
 * multiple times before they are released by a single call to
2422
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2423 2424 2425
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2426
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2427
{
2428
	int err;
2429

2430 2431 2432
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2433

2434 2435 2436 2437
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2438

2439 2440 2441
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2442

2443 2444
unlock:
	mutex_unlock(&obj->mm.lock);
2445
	return err;
2446 2447
}

2448
/* The 'mapping' part of i915_gem_object_pin_map() below */
2449 2450
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2451 2452
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2453
	struct sg_table *sgt = obj->mm.pages;
2454 2455
	struct sgt_iter sgt_iter;
	struct page *page;
2456 2457
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2458
	unsigned long i = 0;
2459
	pgprot_t pgprot;
2460 2461 2462
	void *addr;

	/* A single page can always be kmapped */
2463
	if (n_pages == 1 && type == I915_MAP_WB)
2464 2465
		return kmap(sg_page(sgt->sgl));

2466 2467 2468 2469 2470 2471
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2472

2473 2474
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2475 2476 2477 2478

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2479 2480 2481 2482 2483 2484 2485 2486 2487
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2488

2489 2490
	if (pages != stack_pages)
		drm_free_large(pages);
2491 2492 2493 2494 2495

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2496 2497
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2498
{
2499 2500 2501
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2502 2503
	int ret;

2504
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2505

2506
	ret = mutex_lock_interruptible(&obj->mm.lock);
2507 2508 2509
	if (ret)
		return ERR_PTR(ret);

2510 2511
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2512 2513 2514 2515
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2516

2517 2518 2519
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2520 2521 2522
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2523

C
Chris Wilson 已提交
2524
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2525 2526 2527
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2528
			goto err_unpin;
2529
		}
2530 2531 2532 2533 2534 2535

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2536
		ptr = obj->mm.mapping = NULL;
2537 2538
	}

2539 2540 2541 2542
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2543
			goto err_unpin;
2544 2545
		}

C
Chris Wilson 已提交
2546
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2547 2548
	}

2549 2550
out_unlock:
	mutex_unlock(&obj->mm.lock);
2551 2552
	return ptr;

2553 2554 2555 2556 2557
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2558 2559
}

2560
static bool ban_context(const struct i915_gem_context *ctx)
2561
{
2562 2563
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2564 2565
}

2566
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2567
{
2568
	ctx->guilty_count++;
2569 2570 2571
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2572 2573

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2574
			 ctx->name, ctx->ban_score,
2575
			 yesno(i915_gem_context_is_banned(ctx)));
2576

2577
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2578 2579
		return;

2580 2581 2582
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2583 2584 2585 2586
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2587
	ctx->active_count++;
2588 2589
}

2590
struct drm_i915_gem_request *
2591
i915_gem_find_active_request(struct intel_engine_cs *engine)
2592
{
2593 2594
	struct drm_i915_gem_request *request;

2595 2596 2597 2598 2599 2600 2601 2602
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2603
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2604
		if (__i915_gem_request_completed(request))
2605
			continue;
2606

2607
		GEM_BUG_ON(request->engine != engine);
2608
		return request;
2609
	}
2610 2611 2612 2613

	return NULL;
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2628
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2629 2630 2631
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2632
	int err = 0;
2633 2634

	/* Ensure irq handler finishes, and not run again. */
2635 2636 2637
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2638 2639
		tasklet_kill(&engine->irq_tasklet);

2640 2641 2642 2643 2644 2645 2646
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2647
	i915_gem_revoke_fences(dev_priv);
2648 2649

	return err;
2650 2651
}

2652
static void skip_request(struct drm_i915_gem_request *request)
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2667 2668

	dma_fence_set_error(&request->fence, -EIO);
2669 2670
}

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2694 2695 2696 2697 2698 2699
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2732
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2733 2734 2735
{
	struct drm_i915_gem_request *request;

2736 2737 2738
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2739
	request = i915_gem_find_active_request(engine);
2740
	if (!request)
2741 2742
		return;

2743
	if (!i915_gem_reset_request(request))
2744 2745 2746
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2747
			 engine->name, request->global_seqno);
2748 2749 2750 2751

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

2752
	/* If this context is now banned, skip all of its pending requests. */
2753
	if (i915_gem_context_is_banned(request->ctx))
2754
		engine_skip_context(request);
2755
}
2756

2757
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2758
{
2759
	struct intel_engine_cs *engine;
2760
	enum intel_engine_id id;
2761

2762 2763
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2764 2765
	i915_gem_retire_requests(dev_priv);

2766
	for_each_engine(engine, dev_priv, id)
2767 2768
		i915_gem_reset_engine(engine);

2769
	i915_gem_restore_fences(dev_priv);
2770 2771 2772 2773 2774 2775 2776

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2777 2778 2779 2780
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
2781
	dma_fence_set_error(&request->fence, -EIO);
2782 2783
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2784 2785
}

2786
static void engine_set_wedged(struct intel_engine_cs *engine)
2787
{
2788 2789 2790
	struct drm_i915_gem_request *request;
	unsigned long flags;

2791 2792 2793 2794 2795 2796
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2797
	engine->submit_request = nop_submit_request;
2798

2799 2800 2801 2802 2803 2804
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2805 2806 2807 2808
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2809
	intel_engine_init_global_seqno(engine,
2810
				       intel_engine_last_submit(engine));
2811

2812 2813 2814 2815 2816 2817
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2818
	if (i915.enable_execlists) {
2819 2820 2821 2822
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2823 2824 2825
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2826 2827
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2828 2829

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2830
	}
2831 2832
}

2833
static int __i915_gem_set_wedged_BKL(void *data)
2834
{
2835
	struct drm_i915_private *i915 = data;
2836
	struct intel_engine_cs *engine;
2837
	enum intel_engine_id id;
2838

2839
	for_each_engine(engine, i915, id)
2840
		engine_set_wedged(engine);
2841 2842 2843 2844 2845 2846

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2847 2848
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2849

2850
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2851

2852
	i915_gem_context_lost(dev_priv);
2853
	i915_gem_retire_requests(dev_priv);
2854 2855

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2856 2857
}

2858
static void
2859 2860
i915_gem_retire_work_handler(struct work_struct *work)
{
2861
	struct drm_i915_private *dev_priv =
2862
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2863
	struct drm_device *dev = &dev_priv->drm;
2864

2865
	/* Come back later if the device is busy... */
2866
	if (mutex_trylock(&dev->struct_mutex)) {
2867
		i915_gem_retire_requests(dev_priv);
2868
		mutex_unlock(&dev->struct_mutex);
2869
	}
2870 2871 2872 2873 2874

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2875 2876
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2877 2878
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2879
				   round_jiffies_up_relative(HZ));
2880
	}
2881
}
2882

2883 2884 2885 2886
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2887
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2888
	struct drm_device *dev = &dev_priv->drm;
2889
	struct intel_engine_cs *engine;
2890
	enum intel_engine_id id;
2891 2892 2893 2894 2895
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2896 2897 2898 2899 2900 2901 2902
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2903
	if (READ_ONCE(dev_priv->gt.active_requests))
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2917 2918 2919 2920 2921 2922 2923
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2924
	if (dev_priv->gt.active_requests)
2925
		goto out_unlock;
2926

2927 2928 2929
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2930
	for_each_engine(engine, dev_priv, id)
2931
		i915_gem_batch_pool_fini(&engine->batch_pool);
2932

2933 2934 2935
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2936

2937 2938 2939 2940 2941
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2942

2943 2944 2945 2946
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2947
	}
2948 2949
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2960 2961 2962 2963 2964 2965

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2966 2967 2968
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2980 2981
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2982 2983 2984
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3009 3010
	ktime_t start;
	long ret;
3011

3012 3013 3014
	if (args->flags != 0)
		return -EINVAL;

3015
	obj = i915_gem_object_lookup(file, args->bo_handle);
3016
	if (!obj)
3017 3018
		return -ENOENT;

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3030 3031
	}

C
Chris Wilson 已提交
3032
	i915_gem_object_put(obj);
3033
	return ret;
3034 3035
}

3036
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3037
{
3038
	int ret, i;
3039

3040 3041 3042 3043 3044
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3045

3046 3047 3048 3049 3050 3051 3052
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3065 3066 3067
		if (ret)
			return ret;
	}
3068

3069
	return 0;
3070 3071
}

3072 3073
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3074 3075 3076 3077 3078
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3079
	if (!obj->mm.pages)
3080
		return;
3081

3082 3083 3084 3085
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3086
	if (obj->stolen || obj->phys_handle)
3087
		return;
3088

3089 3090 3091 3092 3093 3094 3095 3096
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3097 3098
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3099
		return;
3100
	}
3101

C
Chris Wilson 已提交
3102
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3103
	drm_clflush_sg(obj->mm.pages);
3104
	obj->cache_dirty = false;
3105 3106 3107 3108
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3109
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3110
{
3111
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3112

3113
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3114 3115
		return;

3116
	/* No actual flushing is required for the GTT write domain.  Writes
3117
	 * to it "immediately" go to main memory as far as we know, so there's
3118
	 * no chipset flush.  It also doesn't land in render cache.
3119 3120 3121 3122
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3123 3124 3125 3126 3127 3128 3129
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3130
	 */
3131
	wmb();
3132
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3133
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3134

3135
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3136

3137
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3138
	trace_i915_gem_object_change_domain(obj,
3139
					    obj->base.read_domains,
3140
					    I915_GEM_DOMAIN_GTT);
3141 3142 3143 3144
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3145
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3146
{
3147
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3148 3149
		return;

3150
	i915_gem_clflush_object(obj, obj->pin_display);
3151
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3152

3153
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3154
	trace_i915_gem_object_change_domain(obj,
3155
					    obj->base.read_domains,
3156
					    I915_GEM_DOMAIN_CPU);
3157 3158
}

3159 3160
/**
 * Moves a single object to the GTT read, and possibly write domain.
3161 3162
 * @obj: object to act on
 * @write: ask for write access or read only
3163 3164 3165 3166
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3167
int
3168
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3169
{
C
Chris Wilson 已提交
3170
	uint32_t old_write_domain, old_read_domains;
3171
	int ret;
3172

3173
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3174

3175 3176 3177 3178 3179 3180
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3181 3182 3183
	if (ret)
		return ret;

3184 3185 3186
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3187 3188 3189 3190 3191 3192 3193 3194
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3195
	ret = i915_gem_object_pin_pages(obj);
3196 3197 3198
	if (ret)
		return ret;

3199
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3200

3201 3202 3203 3204 3205 3206 3207
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3208 3209
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3210

3211 3212 3213
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3214
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3215
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3216
	if (write) {
3217 3218
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3219
		obj->mm.dirty = true;
3220 3221
	}

C
Chris Wilson 已提交
3222 3223 3224 3225
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3226
	i915_gem_object_unpin_pages(obj);
3227 3228 3229
	return 0;
}

3230 3231
/**
 * Changes the cache-level of an object across all VMA.
3232 3233
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3245 3246 3247
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3248
	struct i915_vma *vma;
3249
	int ret;
3250

3251 3252
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3253
	if (obj->cache_level == cache_level)
3254
		return 0;
3255

3256 3257 3258 3259 3260
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3261 3262
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3263 3264 3265
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3266
		if (i915_vma_is_pinned(vma)) {
3267 3268 3269 3270
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3283 3284
	}

3285 3286 3287 3288 3289 3290 3291
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3292
	if (obj->bind_count) {
3293 3294 3295 3296
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3297 3298 3299 3300 3301 3302
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3303 3304 3305
		if (ret)
			return ret;

3306 3307
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3324 3325 3326 3327 3328
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3329 3330 3331 3332 3333 3334 3335 3336
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3337 3338
		}

3339
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3340 3341 3342 3343 3344 3345 3346
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3347 3348
	}

3349 3350 3351 3352
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3353
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3354 3355 3356
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3357 3358 3359
	return 0;
}

B
Ben Widawsky 已提交
3360 3361
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3362
{
B
Ben Widawsky 已提交
3363
	struct drm_i915_gem_caching *args = data;
3364
	struct drm_i915_gem_object *obj;
3365
	int err = 0;
3366

3367 3368 3369 3370 3371 3372
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3373

3374 3375 3376 3377 3378 3379
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3380 3381 3382 3383
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3384 3385 3386 3387
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3388 3389 3390
out:
	rcu_read_unlock();
	return err;
3391 3392
}

B
Ben Widawsky 已提交
3393 3394
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3395
{
3396
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3397
	struct drm_i915_gem_caching *args = data;
3398 3399
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3400
	int ret = 0;
3401

B
Ben Widawsky 已提交
3402 3403
	switch (args->caching) {
	case I915_CACHING_NONE:
3404 3405
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3406
	case I915_CACHING_CACHED:
3407 3408 3409 3410 3411 3412
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3413
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3414 3415
			return -ENODEV;

3416 3417
		level = I915_CACHE_LLC;
		break;
3418
	case I915_CACHING_DISPLAY:
3419
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3420
		break;
3421 3422 3423 3424
	default:
		return -EINVAL;
	}

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3436
	if (ret)
3437
		goto out;
B
Ben Widawsky 已提交
3438

3439 3440 3441
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3442 3443 3444

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3445 3446 3447

out:
	i915_gem_object_put(obj);
3448 3449 3450
	return ret;
}

3451
/*
3452 3453 3454
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3455
 */
C
Chris Wilson 已提交
3456
struct i915_vma *
3457 3458
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3459
				     const struct i915_ggtt_view *view)
3460
{
C
Chris Wilson 已提交
3461
	struct i915_vma *vma;
3462
	u32 old_read_domains, old_write_domain;
3463 3464
	int ret;

3465 3466
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3467 3468 3469
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3470
	obj->pin_display++;
3471

3472 3473 3474 3475 3476 3477 3478 3479 3480
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3481
	ret = i915_gem_object_set_cache_level(obj,
3482 3483
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3484 3485
	if (ret) {
		vma = ERR_PTR(ret);
3486
		goto err_unpin_display;
C
Chris Wilson 已提交
3487
	}
3488

3489 3490
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3491 3492 3493 3494
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3495
	 */
3496
	vma = ERR_PTR(-ENOSPC);
3497
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3498 3499
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3516
	if (IS_ERR(vma))
3517
		goto err_unpin_display;
3518

3519 3520
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3521 3522 3523 3524 3525
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
	if (obj->cache_dirty) {
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3526

3527
	old_write_domain = obj->base.write_domain;
3528
	old_read_domains = obj->base.read_domains;
3529 3530 3531 3532

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3533
	obj->base.write_domain = 0;
3534
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3535 3536 3537

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3538
					    old_write_domain);
3539

C
Chris Wilson 已提交
3540
	return vma;
3541 3542

err_unpin_display:
3543
	obj->pin_display--;
C
Chris Wilson 已提交
3544
	return vma;
3545 3546 3547
}

void
C
Chris Wilson 已提交
3548
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3549
{
3550
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3551

C
Chris Wilson 已提交
3552
	if (WARN_ON(vma->obj->pin_display == 0))
3553 3554
		return;

3555
	if (--vma->obj->pin_display == 0)
3556
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3557

3558
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3559
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3560

C
Chris Wilson 已提交
3561
	i915_vma_unpin(vma);
3562 3563
}

3564 3565
/**
 * Moves a single object to the CPU read, and possibly write domain.
3566 3567
 * @obj: object to act on
 * @write: requesting write or read-only access
3568 3569 3570 3571
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3572
int
3573
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3574
{
C
Chris Wilson 已提交
3575
	uint32_t old_write_domain, old_read_domains;
3576 3577
	int ret;

3578
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3579

3580 3581 3582 3583 3584 3585
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3586 3587 3588
	if (ret)
		return ret;

3589 3590 3591
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3592
	i915_gem_object_flush_gtt_write_domain(obj);
3593

3594 3595
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3596

3597
	/* Flush the CPU cache if it's still invalid. */
3598
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3599
		i915_gem_clflush_object(obj, false);
3600

3601
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3602 3603 3604 3605 3606
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3607
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3608 3609 3610 3611 3612

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3613 3614
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3615
	}
3616

C
Chris Wilson 已提交
3617 3618 3619 3620
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3621 3622 3623
	return 0;
}

3624 3625 3626
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3627 3628 3629 3630
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3631 3632 3633
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3634
static int
3635
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3636
{
3637
	struct drm_i915_private *dev_priv = to_i915(dev);
3638
	struct drm_i915_file_private *file_priv = file->driver_priv;
3639
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3640
	struct drm_i915_gem_request *request, *target = NULL;
3641
	long ret;
3642

3643 3644 3645
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3646

3647
	spin_lock(&file_priv->mm.lock);
3648
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3649 3650
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3651

3652 3653 3654 3655 3656 3657 3658
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3659
		target = request;
3660
	}
3661
	if (target)
3662
		i915_gem_request_get(target);
3663
	spin_unlock(&file_priv->mm.lock);
3664

3665
	if (target == NULL)
3666
		return 0;
3667

3668 3669 3670
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3671
	i915_gem_request_put(target);
3672

3673
	return ret < 0 ? ret : 0;
3674 3675
}

C
Chris Wilson 已提交
3676
struct i915_vma *
3677 3678
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3679
			 u64 size,
3680 3681
			 u64 alignment,
			 u64 flags)
3682
{
3683 3684
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3685 3686
	struct i915_vma *vma;
	int ret;
3687

3688 3689
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3690
	vma = i915_vma_instance(obj, vm, view);
3691
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3692
		return vma;
3693 3694 3695 3696

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3697
			return ERR_PTR(-ENOSPC);
3698

3699 3700 3701 3702 3703 3704 3705 3706
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3707
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3726
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3727 3728 3729
				return ERR_PTR(-ENOSPC);
		}

3730 3731
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3732 3733 3734
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3735
		     !!(flags & PIN_MAPPABLE),
3736
		     i915_vma_is_map_and_fenceable(vma));
3737 3738
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3739
			return ERR_PTR(ret);
3740 3741
	}

C
Chris Wilson 已提交
3742 3743 3744
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3745

C
Chris Wilson 已提交
3746
	return vma;
3747 3748
}

3749
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3764 3765 3766 3767 3768 3769 3770 3771 3772
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3773 3774
}

3775
static __always_inline unsigned int
3776
__busy_set_if_active(const struct dma_fence *fence,
3777 3778
		     unsigned int (*flag)(unsigned int id))
{
3779
	struct drm_i915_gem_request *rq;
3780

3781 3782 3783 3784
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3785
	 *
3786
	 * Note we only report on the status of native fences.
3787
	 */
3788 3789 3790 3791 3792 3793 3794 3795 3796
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3797 3798
}

3799
static __always_inline unsigned int
3800
busy_check_reader(const struct dma_fence *fence)
3801
{
3802
	return __busy_set_if_active(fence, __busy_read_flag);
3803 3804
}

3805
static __always_inline unsigned int
3806
busy_check_writer(const struct dma_fence *fence)
3807
{
3808 3809 3810 3811
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3812 3813
}

3814 3815
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3816
		    struct drm_file *file)
3817 3818
{
	struct drm_i915_gem_busy *args = data;
3819
	struct drm_i915_gem_object *obj;
3820 3821
	struct reservation_object_list *list;
	unsigned int seq;
3822
	int err;
3823

3824
	err = -ENOENT;
3825 3826
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3827
	if (!obj)
3828
		goto out;
3829

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3848

3849 3850
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3851

3852 3853 3854 3855
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3856

3857 3858 3859 3860 3861 3862
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3863
	}
3864

3865 3866 3867 3868
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3869 3870 3871
out:
	rcu_read_unlock();
	return err;
3872 3873 3874 3875 3876 3877
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3878
	return i915_gem_ring_throttle(dev, file_priv);
3879 3880
}

3881 3882 3883 3884
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3885
	struct drm_i915_private *dev_priv = to_i915(dev);
3886
	struct drm_i915_gem_madvise *args = data;
3887
	struct drm_i915_gem_object *obj;
3888
	int err;
3889 3890 3891 3892 3893 3894 3895 3896 3897

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3898
	obj = i915_gem_object_lookup(file_priv, args->handle);
3899 3900 3901 3902 3903 3904
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3905

C
Chris Wilson 已提交
3906
	if (obj->mm.pages &&
3907
	    i915_gem_object_is_tiled(obj) &&
3908
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3909 3910
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3911
			__i915_gem_object_unpin_pages(obj);
3912 3913 3914
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3915
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3916
			__i915_gem_object_pin_pages(obj);
3917 3918
			obj->mm.quirked = true;
		}
3919 3920
	}

C
Chris Wilson 已提交
3921 3922
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3923

C
Chris Wilson 已提交
3924
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3925
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3926 3927
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3928
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3929
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3930

3931
out:
3932
	i915_gem_object_put(obj);
3933
	return err;
3934 3935
}

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3946 3947
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3948
{
3949 3950
	mutex_init(&obj->mm.lock);

3951
	INIT_LIST_HEAD(&obj->global_link);
3952
	INIT_LIST_HEAD(&obj->userfault_link);
3953
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3954
	INIT_LIST_HEAD(&obj->vma_list);
3955
	INIT_LIST_HEAD(&obj->batch_pool_link);
3956

3957 3958
	obj->ops = ops;

3959 3960 3961
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3962
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3963
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3964 3965 3966 3967

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3968

3969
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3970 3971
}

3972
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3973 3974
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3975 3976 3977 3978
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3979
struct drm_i915_gem_object *
3980
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3981
{
3982
	struct drm_i915_gem_object *obj;
3983
	struct address_space *mapping;
D
Daniel Vetter 已提交
3984
	gfp_t mask;
3985
	int ret;
3986

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

3998
	obj = i915_gem_object_alloc(dev_priv);
3999
	if (obj == NULL)
4000
		return ERR_PTR(-ENOMEM);
4001

4002
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4003 4004
	if (ret)
		goto fail;
4005

4006
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4007
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4008 4009 4010 4011 4012
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4013
	mapping = obj->base.filp->f_mapping;
4014
	mapping_set_gfp_mask(mapping, mask);
4015

4016
	i915_gem_object_init(obj, &i915_gem_object_ops);
4017

4018 4019
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4020

4021
	if (HAS_LLC(dev_priv)) {
4022
		/* On some devices, we can have the GPU use the LLC (the CPU
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4038 4039
	trace_i915_gem_object_create(obj);

4040
	return obj;
4041 4042 4043 4044

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4045 4046
}

4047 4048 4049 4050 4051 4052 4053 4054
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4055
	if (obj->mm.madv != I915_MADV_WILLNEED)
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4071 4072
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4073
{
4074
	struct drm_i915_gem_object *obj, *on;
4075

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4091 4092
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4093

4094
		list_del(&obj->global_link);
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4105

4106 4107
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4108
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4109 4110 4111 4112 4113
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4114
		reservation_object_fini(&obj->__builtin_resv);
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4137

4138 4139 4140 4141 4142 4143 4144
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4145

4146 4147 4148
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4149

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4164

4165 4166 4167
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4168

4169 4170 4171
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4172
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4173
		obj->mm.madv = I915_MADV_DONTNEED;
4174

4175 4176 4177 4178 4179 4180
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4181 4182
}

4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4194 4195 4196 4197 4198 4199
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4200 4201
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4202 4203
}

4204
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4205
{
4206
	struct drm_device *dev = &dev_priv->drm;
4207
	int ret;
4208

4209 4210
	intel_suspend_gt_powersave(dev_priv);

4211
	mutex_lock(&dev->struct_mutex);
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4225 4226 4227
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4228
	if (ret)
4229
		goto err;
4230

4231
	i915_gem_retire_requests(dev_priv);
4232
	GEM_BUG_ON(dev_priv->gt.active_requests);
4233

4234
	assert_kernel_context_is_current(dev_priv);
4235
	i915_gem_context_lost(dev_priv);
4236 4237
	mutex_unlock(&dev->struct_mutex);

4238
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4239
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4240 4241 4242 4243 4244 4245 4246 4247

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4248

4249 4250 4251
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4252
	WARN_ON(dev_priv->gt.awake);
4253
	WARN_ON(!intel_execlists_idle(dev_priv));
4254

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4274
	if (HAS_HW_CONTEXTS(dev_priv)) {
4275 4276 4277 4278
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4279
	return 0;
4280 4281 4282 4283

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4284 4285
}

4286
void i915_gem_resume(struct drm_i915_private *dev_priv)
4287
{
4288
	struct drm_device *dev = &dev_priv->drm;
4289

4290 4291
	WARN_ON(dev_priv->gt.awake);

4292
	mutex_lock(&dev->struct_mutex);
4293
	i915_gem_restore_gtt_mappings(dev_priv);
4294 4295 4296 4297 4298

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4299
	dev_priv->gt.resume(dev_priv);
4300 4301 4302 4303

	mutex_unlock(&dev->struct_mutex);
}

4304
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4305
{
4306
	if (INTEL_GEN(dev_priv) < 5 ||
4307 4308 4309 4310 4311 4312
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4313
	if (IS_GEN5(dev_priv))
4314 4315
		return;

4316
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4317
	if (IS_GEN6(dev_priv))
4318
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4319
	else if (IS_GEN7(dev_priv))
4320
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4321
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4322
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4323 4324
	else
		BUG();
4325
}
D
Daniel Vetter 已提交
4326

4327
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4328 4329 4330 4331 4332 4333 4334
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4335
static void init_unused_rings(struct drm_i915_private *dev_priv)
4336
{
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4349 4350 4351
	}
}

4352
int
4353
i915_gem_init_hw(struct drm_i915_private *dev_priv)
4354
{
4355
	struct intel_engine_cs *engine;
4356
	enum intel_engine_id id;
C
Chris Wilson 已提交
4357
	int ret;
4358

4359 4360
	dev_priv->gt.last_init_time = ktime_get();

4361 4362 4363
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4364
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4365
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4366

4367
	if (IS_HASWELL(dev_priv))
4368
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4369
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4370

4371
	if (HAS_PCH_NOP(dev_priv)) {
4372
		if (IS_IVYBRIDGE(dev_priv)) {
4373 4374 4375
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4376
		} else if (INTEL_GEN(dev_priv) >= 7) {
4377 4378 4379 4380
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4381 4382
	}

4383
	i915_gem_init_swizzling(dev_priv);
4384

4385 4386 4387 4388 4389 4390
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4391
	init_unused_rings(dev_priv);
4392

4393
	BUG_ON(!dev_priv->kernel_context);
4394

4395
	ret = i915_ppgtt_init_hw(dev_priv);
4396 4397 4398 4399 4400 4401
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4402
	for_each_engine(engine, dev_priv, id) {
4403
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4404
		if (ret)
4405
			goto out;
D
Daniel Vetter 已提交
4406
	}
4407

4408
	intel_mocs_init_l3cc_table(dev_priv);
4409

4410
	/* We can't enable contexts until all firmware is loaded */
4411
	ret = intel_guc_setup(dev_priv);
4412 4413
	if (ret)
		goto out;
4414

4415 4416
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4417
	return ret;
4418 4419
}

4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4441
int i915_gem_init(struct drm_i915_private *dev_priv)
4442 4443 4444
{
	int ret;

4445
	mutex_lock(&dev_priv->drm.struct_mutex);
4446

4447
	if (!i915.enable_execlists) {
4448
		dev_priv->gt.resume = intel_legacy_submission_resume;
4449
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4450
	} else {
4451
		dev_priv->gt.resume = intel_lr_context_resume;
4452
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4453 4454
	}

4455 4456 4457 4458 4459 4460 4461 4462
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4463
	i915_gem_init_userptr(dev_priv);
4464 4465 4466 4467

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4468

4469
	ret = i915_gem_context_init(dev_priv);
4470 4471
	if (ret)
		goto out_unlock;
4472

4473
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4474
	if (ret)
4475
		goto out_unlock;
4476

4477
	ret = i915_gem_init_hw(dev_priv);
4478
	if (ret == -EIO) {
4479
		/* Allow engine initialisation to fail by marking the GPU as
4480 4481 4482 4483
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4484
		i915_gem_set_wedged(dev_priv);
4485
		ret = 0;
4486
	}
4487 4488

out_unlock:
4489
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4490
	mutex_unlock(&dev_priv->drm.struct_mutex);
4491

4492
	return ret;
4493 4494
}

4495
void
4496
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4497
{
4498
	struct intel_engine_cs *engine;
4499
	enum intel_engine_id id;
4500

4501
	for_each_engine(engine, dev_priv, id)
4502
		dev_priv->gt.cleanup_engine(engine);
4503 4504
}

4505 4506 4507
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4508
	int i;
4509 4510 4511 4512

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4513 4514 4515
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4516 4517 4518 4519
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4520
	if (intel_vgpu_active(dev_priv))
4521 4522 4523 4524
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4525 4526 4527 4528 4529 4530 4531
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4532
	i915_gem_restore_fences(dev_priv);
4533

4534
	i915_gem_detect_bit_6_swizzle(dev_priv);
4535 4536
}

4537
int
4538
i915_gem_load_init(struct drm_i915_private *dev_priv)
4539
{
4540
	int err = -ENOMEM;
4541

4542 4543
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4544 4545
		goto err_out;

4546 4547
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4548 4549
		goto err_objects;

4550 4551 4552 4553 4554
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4555 4556
		goto err_vmas;

4557 4558 4559 4560 4561 4562
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4563 4564
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4565
	err = i915_gem_timeline_init__global(dev_priv);
4566 4567
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4568
		goto err_dependencies;
4569

4570
	INIT_LIST_HEAD(&dev_priv->context_list);
4571 4572
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4573 4574
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4575
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4576
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4577
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4578
			  i915_gem_retire_work_handler);
4579
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4580
			  i915_gem_idle_work_handler);
4581
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4582
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4583

4584 4585
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4586
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4587

4588 4589
	dev_priv->mm.interruptible = true;

4590 4591
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4592
	spin_lock_init(&dev_priv->fb_tracking.lock);
4593 4594 4595

	return 0;

4596 4597
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4598 4599 4600 4601 4602 4603 4604 4605
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4606
}
4607

4608
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4609
{
4610 4611
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4612 4613 4614 4615 4616
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4617
	kmem_cache_destroy(dev_priv->dependencies);
4618 4619 4620
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4621 4622 4623

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4624 4625
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4639 4640 4641
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4642 4643 4644 4645 4646
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4657 4658 4659
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4660 4661
	 */

4662 4663
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4664

4665
	for (p = phases; *p; p++) {
4666
		list_for_each_entry(obj, *p, global_link) {
4667 4668 4669
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4670
	}
4671
	mutex_unlock(&dev_priv->drm.struct_mutex);
4672 4673 4674 4675

	return 0;
}

4676
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4677
{
4678
	struct drm_i915_file_private *file_priv = file->driver_priv;
4679
	struct drm_i915_gem_request *request;
4680 4681 4682 4683 4684

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4685
	spin_lock(&file_priv->mm.lock);
4686
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4687
		request->file_priv = NULL;
4688
	spin_unlock(&file_priv->mm.lock);
4689

4690
	if (!list_empty(&file_priv->rps.link)) {
4691
		spin_lock(&to_i915(dev)->rps.client_lock);
4692
		list_del(&file_priv->rps.link);
4693
		spin_unlock(&to_i915(dev)->rps.client_lock);
4694
	}
4695 4696 4697 4698 4699
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4700
	int ret;
4701

4702
	DRM_DEBUG("\n");
4703 4704 4705 4706 4707 4708

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4709
	file_priv->dev_priv = to_i915(dev);
4710
	file_priv->file = file;
4711
	INIT_LIST_HEAD(&file_priv->rps.link);
4712 4713 4714 4715

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4716
	file_priv->bsd_engine = -1;
4717

4718 4719 4720
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4721

4722
	return ret;
4723 4724
}

4725 4726
/**
 * i915_gem_track_fb - update frontbuffer tracking
4727 4728 4729
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4730 4731 4732 4733
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4734 4735 4736 4737
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4738 4739 4740 4741 4742 4743 4744 4745 4746
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4747
	if (old) {
4748 4749
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4750 4751 4752
	}

	if (new) {
4753 4754
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4755 4756 4757
	}
}

4758 4759
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4760
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4761 4762 4763 4764 4765 4766 4767
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4768
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4769
	if (IS_ERR(obj))
4770 4771 4772 4773 4774 4775
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4776
	ret = i915_gem_object_pin_pages(obj);
4777 4778 4779
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4780
	sg = obj->mm.pages;
4781
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4782
	obj->mm.dirty = true; /* Backing store is now out of date */
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4794
	i915_gem_object_put(obj);
4795 4796
	return ERR_PTR(ret);
}
4797 4798 4799 4800 4801 4802

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4803
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4804 4805 4806 4807 4808
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4809
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4934
	if (!obj->mm.dirty)
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}