i915_gem.c 135.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/kthread.h>
39
#include <linux/reservation.h>
40
#include <linux/shmem_fs.h>
41
#include <linux/slab.h>
42
#include <linux/stop_machine.h>
43
#include <linux/swap.h>
J
Jesse Barnes 已提交
44
#include <linux/pci.h>
45
#include <linux/dma-buf.h>
46

47
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
48
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
49
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
50

51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
54
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
55 56
}

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59 60 61
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

62 63 64 65 66 67
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

68
static int
69
insert_mappable_node(struct i915_ggtt *ggtt,
70 71 72
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
73 74 75 76
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
77 78 79 80 81 82 83 84
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
87
				  u64 size)
88
{
89
	spin_lock(&dev_priv->mm.object_stat_lock);
90 91
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
92
	spin_unlock(&dev_priv->mm.object_stat_lock);
93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
96
				     u64 size)
97
{
98
	spin_lock(&dev_priv->mm.object_stat_lock);
99 100
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
101
	spin_unlock(&dev_priv->mm.object_stat_lock);
102 103
}

104
static int
105
i915_gem_wait_for_error(struct i915_gpu_error *error)
106 107 108
{
	int ret;

109 110
	might_sleep();

111
	if (!i915_reset_in_progress(error))
112 113
		return 0;

114 115 116 117 118
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
119
	ret = wait_event_interruptible_timeout(error->reset_queue,
120
					       !i915_reset_in_progress(error),
121
					       I915_RESET_TIMEOUT);
122 123 124 125
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
126
		return ret;
127 128
	} else {
		return 0;
129
	}
130 131
}

132
int i915_mutex_lock_interruptible(struct drm_device *dev)
133
{
134
	struct drm_i915_private *dev_priv = to_i915(dev);
135 136
	int ret;

137
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
138 139 140 141 142 143 144 145 146
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
147

148 149
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
150
			    struct drm_file *file)
151
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
154
	struct drm_i915_gem_get_aperture *args = data;
155
	struct i915_vma *vma;
156
	size_t pinned;
157

158
	pinned = 0;
159
	mutex_lock(&dev->struct_mutex);
160
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
161
		if (i915_vma_is_pinned(vma))
162
			pinned += vma->node.size;
163
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
164
		if (i915_vma_is_pinned(vma))
165
			pinned += vma->node.size;
166
	mutex_unlock(&dev->struct_mutex);
167

168
	args->aper_size = ggtt->base.total;
169
	args->aper_available_size = args->aper_size - pinned;
170

171 172 173
	return 0;
}

174
static struct sg_table *
175
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
176
{
177
	struct address_space *mapping = obj->base.filp->f_mapping;
178
	drm_dma_handle_t *phys;
179 180
	struct sg_table *st;
	struct scatterlist *sg;
181
	char *vaddr;
182
	int i;
183

184
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
185
		return ERR_PTR(-EINVAL);
186

187 188 189 190 191 192 193 194 195 196 197
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
198 199 200 201 202
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
203 204 205 206
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
207 208 209 210 211 212

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

213
		put_page(page);
214 215 216
		vaddr += PAGE_SIZE;
	}

217
	i915_gem_chipset_flush(to_i915(obj->base.dev));
218 219

	st = kmalloc(sizeof(*st), GFP_KERNEL);
220 221 222 223
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
224 225 226

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
227 228
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
229 230 231 232 233
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
234

235
	sg_dma_address(sg) = phys->busaddr;
236 237
	sg_dma_len(sg) = obj->base.size;

238 239 240 241 242
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
243
	return st;
244 245 246
}

static void
247
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
248 249
				struct sg_table *pages,
				bool needs_clflush)
250
{
C
Chris Wilson 已提交
251
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
252

C
Chris Wilson 已提交
253 254
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
255

256 257
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
258
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
259
		drm_clflush_sg(pages);
260 261 262 263 264 265 266 267 268

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
269
	__i915_gem_object_release_shmem(obj, pages, false);
270

C
Chris Wilson 已提交
271
	if (obj->mm.dirty) {
272
		struct address_space *mapping = obj->base.filp->f_mapping;
273
		char *vaddr = obj->phys_handle->vaddr;
274 275 276
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
277 278 279 280 281 282 283 284 285 286 287 288 289
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
290
			if (obj->mm.madv == I915_MADV_WILLNEED)
291
				mark_page_accessed(page);
292
			put_page(page);
293 294
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
295
		obj->mm.dirty = false;
296 297
	}

298 299
	sg_free_table(pages);
	kfree(pages);
300 301

	drm_pci_free(obj->base.dev, obj->phys_handle);
302 303 304 305 306
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
307
	i915_gem_object_unpin_pages(obj);
308 309 310 311 312 313 314 315
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

316 317
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

318
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
319 320 321
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
322 323 324
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
325

326 327 328 329
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
330
	 */
331 332 333 334 335 336
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
337 338 339 340 341
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

342 343 344 345 346 347 348 349 350 351 352 353 354
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

355 356 357 358 359
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
360
{
361
	struct drm_i915_gem_request *rq;
362

363
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
397 398
	}

399 400 401 402 403 404
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

405
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
435 436
		int ret;

437 438
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
439 440 441
		if (ret)
			return ret;

442 443 444 445
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
446
			if (timeout < 0)
447
				break;
448

449 450 451 452 453 454 455 456
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
457 458
	}

459
	if (excl && timeout >= 0)
460 461 462 463 464
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

531 532 533 534 535 536
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
537
 */
538 539 540 541 542
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
543
{
544 545 546 547 548 549 550
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
551

552 553 554
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
555
	return timeout < 0 ? timeout : 0;
556 557 558 559 560 561 562 563 564
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

565 566 567 568
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
569
	int ret;
570

571 572
	if (align > obj->base.size)
		return -EINVAL;
573

574
	if (obj->ops == &i915_gem_phys_ops)
575 576
		return 0;

C
Chris Wilson 已提交
577
	if (obj->mm.madv != I915_MADV_WILLNEED)
578 579 580 581 582
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
583 584 585 586
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

587
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
588 589
	if (obj->mm.pages)
		return -EBUSY;
590

591
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
592 593
	obj->ops = &i915_gem_phys_ops;

594 595 596 597 598 599 600 601 602
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
603 604 605 606 607
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
608
		     struct drm_file *file)
609 610
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
611
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
612 613 614 615

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
616
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
617 618
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
619

620
	drm_clflush_virt_range(vaddr, args->size);
621
	i915_gem_chipset_flush(to_i915(obj->base.dev));
622

623
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
624
	return 0;
625 626
}

627
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
628
{
629
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
630 631 632 633
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
634
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
635
	kmem_cache_free(dev_priv->objects, obj);
636 637
}

638 639
static int
i915_gem_create(struct drm_file *file,
640
		struct drm_i915_private *dev_priv,
641 642
		uint64_t size,
		uint32_t *handle_p)
643
{
644
	struct drm_i915_gem_object *obj;
645 646
	int ret;
	u32 handle;
647

648
	size = roundup(size, PAGE_SIZE);
649 650
	if (size == 0)
		return -EINVAL;
651 652

	/* Allocate the new object */
653
	obj = i915_gem_object_create(dev_priv, size);
654 655
	if (IS_ERR(obj))
		return PTR_ERR(obj);
656

657
	ret = drm_gem_handle_create(file, &obj->base, &handle);
658
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
659
	i915_gem_object_put(obj);
660 661
	if (ret)
		return ret;
662

663
	*handle_p = handle;
664 665 666
	return 0;
}

667 668 669 670 671 672
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
673
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
674
	args->size = args->pitch * args->height;
675
	return i915_gem_create(file, to_i915(dev),
676
			       args->size, &args->handle);
677 678 679 680
}

/**
 * Creates a new mm object and returns a handle to it.
681 682 683
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
684 685 686 687 688
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
689
	struct drm_i915_private *dev_priv = to_i915(dev);
690
	struct drm_i915_gem_create *args = data;
691

692
	i915_gem_flush_free_objects(dev_priv);
693

694
	return i915_gem_create(file, dev_priv,
695
			       args->size, &args->handle);
696 697
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

724
static inline int
725 726
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

750 751 752 753 754 755
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
756
				    unsigned int *needs_clflush)
757 758 759
{
	int ret;

760
	lockdep_assert_held(&obj->base.dev->struct_mutex);
761

762
	*needs_clflush = 0;
763 764
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
765

766 767 768 769 770
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
771 772 773
	if (ret)
		return ret;

C
Chris Wilson 已提交
774
	ret = i915_gem_object_pin_pages(obj);
775 776 777
	if (ret)
		return ret;

778 779
	i915_gem_object_flush_gtt_write_domain(obj);

780 781 782 783 784 785
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
786 787
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
788 789 790

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
791 792 793
		if (ret)
			goto err_unpin;

794
		*needs_clflush = 0;
795 796
	}

797
	/* return with the pages pinned */
798
	return 0;
799 800 801 802

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
803 804 805 806 807 808 809
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

810 811
	lockdep_assert_held(&obj->base.dev->struct_mutex);

812 813 814 815
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

816 817 818 819 820 821
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
822 823 824
	if (ret)
		return ret;

C
Chris Wilson 已提交
825
	ret = i915_gem_object_pin_pages(obj);
826 827 828
	if (ret)
		return ret;

829 830
	i915_gem_object_flush_gtt_write_domain(obj);

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
848 849 850
		if (ret)
			goto err_unpin;

851 852 853 854 855 856 857
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
858
	obj->mm.dirty = true;
859
	/* return with the pages pinned */
860
	return 0;
861 862 863 864

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
865 866
}

867 868 869 870
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
871
	if (unlikely(swizzled)) {
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

889 890 891
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
892
shmem_pread_slow(struct page *page, int offset, int length,
893 894 895 896 897 898 899 900
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
901
		shmem_clflush_swizzled_range(vaddr + offset, length,
902
					     page_do_bit17_swizzling);
903 904

	if (page_do_bit17_swizzling)
905
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
906
	else
907
		ret = __copy_to_user(user_data, vaddr + offset, length);
908 909
	kunmap(page);

910
	return ret ? - EFAULT : 0;
911 912
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
989 990
{
	void *vaddr;
991
	unsigned long unwritten;
992 993

	/* We can use the cpu mem copy function because this is X86. */
994 995 996 997 998 999 1000 1001 1002
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1003 1004 1005 1006
	return unwritten;
}

static int
1007 1008
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1009
{
1010 1011
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1012
	struct drm_mm_node node;
1013 1014 1015
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1016 1017
	int ret;

1018 1019 1020 1021 1022 1023 1024
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1025 1026 1027
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1028
		ret = i915_vma_put_fence(vma);
1029 1030 1031 1032 1033
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1034
	if (IS_ERR(vma)) {
1035
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1036
		if (ret)
1037 1038
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1039 1040 1041 1042 1043 1044
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1045
	mutex_unlock(&i915->drm.struct_mutex);
1046

1047 1048 1049
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1066
					       node.start, I915_CACHE_NONE, 0);
1067 1068 1069 1070
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1071 1072 1073

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1074 1075 1076 1077 1078 1079 1080 1081 1082
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1083
	mutex_lock(&i915->drm.struct_mutex);
1084 1085 1086 1087
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1088
				       node.start, node.size);
1089 1090
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1091
		i915_vma_unpin(vma);
1092
	}
1093 1094 1095
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1096

1097 1098 1099
	return ret;
}

1100 1101
/**
 * Reads data from the object referenced by handle.
1102 1103 1104
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1105 1106 1107 1108 1109
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1110
		     struct drm_file *file)
1111 1112
{
	struct drm_i915_gem_pread *args = data;
1113
	struct drm_i915_gem_object *obj;
1114
	int ret;
1115

1116 1117 1118 1119
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1120
		       u64_to_user_ptr(args->data_ptr),
1121 1122 1123
		       args->size))
		return -EFAULT;

1124
	obj = i915_gem_object_lookup(file, args->handle);
1125 1126
	if (!obj)
		return -ENOENT;
1127

1128
	/* Bounds check source.  */
1129
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1130
		ret = -EINVAL;
1131
		goto out;
C
Chris Wilson 已提交
1132 1133
	}

C
Chris Wilson 已提交
1134 1135
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1136 1137 1138 1139
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1140
	if (ret)
1141
		goto out;
1142

1143
	ret = i915_gem_object_pin_pages(obj);
1144
	if (ret)
1145
		goto out;
1146

1147
	ret = i915_gem_shmem_pread(obj, args);
1148
	if (ret == -EFAULT || ret == -ENODEV)
1149
		ret = i915_gem_gtt_pread(obj, args);
1150

1151 1152
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1153
	i915_gem_object_put(obj);
1154
	return ret;
1155 1156
}

1157 1158
/* This is the fast write path which cannot handle
 * page faults in the source data
1159
 */
1160

1161 1162 1163 1164
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1165
{
1166
	void *vaddr;
1167
	unsigned long unwritten;
1168

1169
	/* We can use the cpu mem copy function because this is X86. */
1170 1171
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1172
						      user_data, length);
1173 1174 1175 1176 1177 1178 1179
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1180 1181 1182 1183

	return unwritten;
}

1184 1185 1186
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1187
 * @obj: i915 GEM object
1188
 * @args: pwrite arguments structure
1189
 */
1190
static int
1191 1192
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1193
{
1194
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1195 1196
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1197 1198 1199
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1200
	int ret;
1201

1202 1203 1204
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1205

1206
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1207
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1208
				       PIN_MAPPABLE | PIN_NONBLOCK);
1209 1210 1211
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1212
		ret = i915_vma_put_fence(vma);
1213 1214 1215 1216 1217
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1218
	if (IS_ERR(vma)) {
1219
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1220
		if (ret)
1221 1222
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1223
	}
D
Daniel Vetter 已提交
1224 1225 1226 1227 1228

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1229 1230
	mutex_unlock(&i915->drm.struct_mutex);

1231
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1232

1233 1234 1235 1236
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1237 1238
		/* Operation in this page
		 *
1239 1240 1241
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1242
		 */
1243
		u32 page_base = node.start;
1244 1245
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1256
		/* If we get a fault while copying data, then (presumably) our
1257 1258
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1259 1260
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1261
		 */
1262 1263 1264 1265
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1266
		}
1267

1268 1269 1270
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1271
	}
1272
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1273 1274

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1275
out_unpin:
1276 1277 1278
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1279
				       node.start, node.size);
1280 1281
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1282
		i915_vma_unpin(vma);
1283
	}
1284
out_unlock:
1285
	intel_runtime_pm_put(i915);
1286
	mutex_unlock(&i915->drm.struct_mutex);
1287
	return ret;
1288 1289
}

1290
static int
1291
shmem_pwrite_slow(struct page *page, int offset, int length,
1292 1293 1294 1295
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1296
{
1297 1298
	char *vaddr;
	int ret;
1299

1300
	vaddr = kmap(page);
1301
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1302
		shmem_clflush_swizzled_range(vaddr + offset, length,
1303
					     page_do_bit17_swizzling);
1304
	if (page_do_bit17_swizzling)
1305 1306
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1307
	else
1308
		ret = __copy_from_user(vaddr + offset, user_data, length);
1309
	if (needs_clflush_after)
1310
		shmem_clflush_swizzled_range(vaddr + offset, length,
1311
					     page_do_bit17_swizzling);
1312
	kunmap(page);
1313

1314
	return ret ? -EFAULT : 0;
1315 1316
}

1317 1318 1319 1320 1321
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1322
static int
1323 1324 1325 1326
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1327
{
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1360
	unsigned int needs_clflush;
1361 1362
	unsigned int offset, idx;
	int ret;
1363

1364
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1365 1366 1367
	if (ret)
		return ret;

1368 1369 1370 1371
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1372

1373 1374 1375
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1376

1377 1378 1379 1380 1381 1382 1383
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1384

1385 1386 1387 1388 1389 1390
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1391

1392 1393 1394
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1395

1396 1397 1398 1399
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1400
		if (ret)
1401
			break;
1402

1403 1404 1405
		remain -= length;
		user_data += length;
		offset = 0;
1406
	}
1407

1408
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1409
	i915_gem_obj_finish_shmem_access(obj);
1410
	return ret;
1411 1412 1413 1414
}

/**
 * Writes data to the object referenced by handle.
1415 1416 1417
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1418 1419 1420 1421 1422
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1423
		      struct drm_file *file)
1424 1425
{
	struct drm_i915_gem_pwrite *args = data;
1426
	struct drm_i915_gem_object *obj;
1427 1428 1429 1430 1431 1432
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1433
		       u64_to_user_ptr(args->data_ptr),
1434 1435 1436
		       args->size))
		return -EFAULT;

1437
	obj = i915_gem_object_lookup(file, args->handle);
1438 1439
	if (!obj)
		return -ENOENT;
1440

1441
	/* Bounds check destination. */
1442
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1443
		ret = -EINVAL;
1444
		goto err;
C
Chris Wilson 已提交
1445 1446
	}

C
Chris Wilson 已提交
1447 1448
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1449 1450 1451 1452 1453
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1454 1455 1456
	if (ret)
		goto err;

1457
	ret = i915_gem_object_pin_pages(obj);
1458
	if (ret)
1459
		goto err;
1460

D
Daniel Vetter 已提交
1461
	ret = -EFAULT;
1462 1463 1464 1465 1466 1467
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1468
	if (!i915_gem_object_has_struct_page(obj) ||
1469
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1470 1471
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1472 1473
		 * textures). Fallback to the shmem path in that case.
		 */
1474
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1475

1476
	if (ret == -EFAULT || ret == -ENOSPC) {
1477 1478
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1479
		else
1480
			ret = i915_gem_shmem_pwrite(obj, args);
1481
	}
1482

1483
	i915_gem_object_unpin_pages(obj);
1484
err:
C
Chris Wilson 已提交
1485
	i915_gem_object_put(obj);
1486
	return ret;
1487 1488
}

1489
static inline enum fb_op_origin
1490 1491
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1492 1493
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1494 1495
}

1496 1497 1498 1499 1500 1501 1502 1503
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1504
			break;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1517
	list_move_tail(&obj->global_link, list);
1518 1519
}

1520
/**
1521 1522
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1523 1524 1525
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1526 1527 1528
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1529
			  struct drm_file *file)
1530 1531
{
	struct drm_i915_gem_set_domain *args = data;
1532
	struct drm_i915_gem_object *obj;
1533 1534
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1535
	int err;
1536

1537
	/* Only handle setting domains to types used by the CPU. */
1538
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1539 1540 1541 1542 1543 1544 1545 1546
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1547
	obj = i915_gem_object_lookup(file, args->handle);
1548 1549
	if (!obj)
		return -ENOENT;
1550

1551 1552 1553 1554
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1555
	err = i915_gem_object_wait(obj,
1556 1557 1558 1559
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1560
	if (err)
C
Chris Wilson 已提交
1561
		goto out;
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1573
		goto out;
1574 1575 1576

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1577
		goto out_unpin;
1578

1579
	if (read_domains & I915_GEM_DOMAIN_GTT)
1580
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1581
	else
1582
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1583

1584 1585
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1586

1587
	mutex_unlock(&dev->struct_mutex);
1588

1589 1590 1591
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1592
out_unpin:
1593
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1594 1595
out:
	i915_gem_object_put(obj);
1596
	return err;
1597 1598 1599 1600
}

/**
 * Called when user space has done writes to this buffer
1601 1602 1603
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1604 1605 1606
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1607
			 struct drm_file *file)
1608 1609
{
	struct drm_i915_gem_sw_finish *args = data;
1610
	struct drm_i915_gem_object *obj;
1611
	int err = 0;
1612

1613
	obj = i915_gem_object_lookup(file, args->handle);
1614 1615
	if (!obj)
		return -ENOENT;
1616 1617

	/* Pinned buffers may be scanout, so flush the cache */
1618 1619 1620 1621 1622 1623 1624
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1625

C
Chris Wilson 已提交
1626
	i915_gem_object_put(obj);
1627
	return err;
1628 1629 1630
}

/**
1631 1632 1633 1634 1635
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1636 1637 1638
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1649 1650 1651
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1652
		    struct drm_file *file)
1653 1654
{
	struct drm_i915_gem_mmap *args = data;
1655
	struct drm_i915_gem_object *obj;
1656 1657
	unsigned long addr;

1658 1659 1660
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1661
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1662 1663
		return -ENODEV;

1664 1665
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1666
		return -ENOENT;
1667

1668 1669 1670
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1671
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1672
		i915_gem_object_put(obj);
1673 1674 1675
		return -EINVAL;
	}

1676
	addr = vm_mmap(obj->base.filp, 0, args->size,
1677 1678
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1679 1680 1681 1682
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1683
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1684
			i915_gem_object_put(obj);
1685 1686
			return -EINTR;
		}
1687 1688 1689 1690 1691 1692 1693
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1694 1695

		/* This may race, but that's ok, it only gets set */
1696
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1697
	}
C
Chris Wilson 已提交
1698
	i915_gem_object_put(obj);
1699 1700 1701 1702 1703 1704 1705 1706
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1707 1708
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1709
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1710 1711
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1773 1774
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1775
		min_t(unsigned int, chunk,
1776
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1777 1778 1779 1780 1781 1782 1783 1784

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1785 1786
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1787
 * @area: CPU VMA in question
1788
 * @vmf: fault info
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1800 1801 1802
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1803
 */
C
Chris Wilson 已提交
1804
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1805
{
1806
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1807
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1808
	struct drm_device *dev = obj->base.dev;
1809 1810
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1811
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1812
	struct i915_vma *vma;
1813
	pgoff_t page_offset;
1814
	unsigned int flags;
1815
	int ret;
1816

1817
	/* We don't use vmf->pgoff since that has the fake offset */
1818
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1819

C
Chris Wilson 已提交
1820 1821
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1822
	/* Try to flush the object off the GPU first without holding the lock.
1823
	 * Upon acquiring the lock, we will perform our sanity checks and then
1824 1825 1826
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1827 1828 1829 1830
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1831
	if (ret)
1832 1833
		goto err;

1834 1835 1836 1837
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1838 1839 1840 1841 1842
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1843

1844
	/* Access to snoopable pages through the GTT is incoherent. */
1845
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1846
		ret = -EFAULT;
1847
		goto err_unlock;
1848 1849
	}

1850 1851 1852 1853 1854 1855 1856 1857
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1858
	/* Now pin it into the GTT as needed */
1859
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1860 1861
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1862
		struct i915_ggtt_view view =
1863
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1864

1865 1866 1867 1868 1869
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1870 1871
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1872 1873
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1874
		goto err_unlock;
C
Chris Wilson 已提交
1875
	}
1876

1877 1878
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1879
		goto err_unpin;
1880

1881
	ret = i915_vma_get_fence(vma);
1882
	if (ret)
1883
		goto err_unpin;
1884

1885
	/* Mark as being mmapped into userspace for later revocation */
1886
	assert_rpm_wakelock_held(dev_priv);
1887 1888 1889
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1890
	/* Finally, remap it using the new GTT offset */
1891
	ret = remap_io_mapping(area,
1892
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1893 1894 1895
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1896

1897
err_unpin:
C
Chris Wilson 已提交
1898
	__i915_vma_unpin(vma);
1899
err_unlock:
1900
	mutex_unlock(&dev->struct_mutex);
1901 1902
err_rpm:
	intel_runtime_pm_put(dev_priv);
1903
	i915_gem_object_unpin_pages(obj);
1904
err:
1905
	switch (ret) {
1906
	case -EIO:
1907 1908 1909 1910 1911 1912 1913
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 1915 1916
			ret = VM_FAULT_SIGBUS;
			break;
		}
1917
	case -EAGAIN:
D
Daniel Vetter 已提交
1918 1919 1920 1921
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1922
		 */
1923 1924
	case 0:
	case -ERESTARTSYS:
1925
	case -EINTR:
1926 1927 1928 1929 1930
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1931 1932
		ret = VM_FAULT_NOPAGE;
		break;
1933
	case -ENOMEM:
1934 1935
		ret = VM_FAULT_OOM;
		break;
1936
	case -ENOSPC:
1937
	case -EFAULT:
1938 1939
		ret = VM_FAULT_SIGBUS;
		break;
1940
	default:
1941
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 1943
		ret = VM_FAULT_SIGBUS;
		break;
1944
	}
1945
	return ret;
1946 1947
}

1948 1949 1950 1951
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1952
 * Preserve the reservation of the mmapping with the DRM core code, but
1953 1954 1955 1956 1957 1958 1959 1960 1961
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1962
void
1963
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964
{
1965 1966
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1967 1968 1969
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1970 1971 1972 1973
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1974
	 */
1975
	lockdep_assert_held(&i915->drm.struct_mutex);
1976
	intel_runtime_pm_get(i915);
1977

1978
	if (list_empty(&obj->userfault_link))
1979
		goto out;
1980

1981
	list_del_init(&obj->userfault_link);
1982 1983
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1984 1985 1986 1987 1988 1989 1990 1991 1992

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1993 1994 1995

out:
	intel_runtime_pm_put(i915);
1996 1997
}

1998
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1999
{
2000
	struct drm_i915_gem_object *obj, *on;
2001
	int i;
2002

2003 2004 2005 2006 2007 2008
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2009

2010 2011 2012
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2013 2014 2015
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2016 2017 2018 2019 2020 2021 2022 2023

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2034 2035 2036 2037 2038 2039 2040

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2041 2042
}

2043 2044
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2045
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2046
	int err;
2047

2048
	err = drm_gem_create_mmap_offset(&obj->base);
2049
	if (likely(!err))
2050
		return 0;
2051

2052 2053 2054 2055 2056
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2057

2058
		i915_gem_drain_freed_objects(dev_priv);
2059
		err = drm_gem_create_mmap_offset(&obj->base);
2060 2061 2062 2063
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2064

2065
	return err;
2066 2067 2068 2069 2070 2071 2072
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2073
int
2074 2075
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2076
		  uint32_t handle,
2077
		  uint64_t *offset)
2078
{
2079
	struct drm_i915_gem_object *obj;
2080 2081
	int ret;

2082
	obj = i915_gem_object_lookup(file, handle);
2083 2084
	if (!obj)
		return -ENOENT;
2085

2086
	ret = i915_gem_object_create_mmap_offset(obj);
2087 2088
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2089

C
Chris Wilson 已提交
2090
	i915_gem_object_put(obj);
2091
	return ret;
2092 2093
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2115
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2116 2117
}

D
Daniel Vetter 已提交
2118 2119 2120
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2121
{
2122
	i915_gem_object_free_mmap_offset(obj);
2123

2124 2125
	if (obj->base.filp == NULL)
		return;
2126

D
Daniel Vetter 已提交
2127 2128 2129 2130 2131
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2132
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2133
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2134
}
2135

2136
/* Try to discard unwanted pages */
2137
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2138
{
2139 2140
	struct address_space *mapping;

2141 2142 2143
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2144
	switch (obj->mm.madv) {
2145 2146 2147 2148 2149 2150 2151 2152 2153
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2154
	mapping = obj->base.filp->f_mapping,
2155
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2156 2157
}

2158
static void
2159 2160
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2161
{
2162 2163
	struct sgt_iter sgt_iter;
	struct page *page;
2164

2165
	__i915_gem_object_release_shmem(obj, pages, true);
2166

2167
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2168

2169
	if (i915_gem_object_needs_bit17_swizzle(obj))
2170
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2171

2172
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2173
		if (obj->mm.dirty)
2174
			set_page_dirty(page);
2175

C
Chris Wilson 已提交
2176
		if (obj->mm.madv == I915_MADV_WILLNEED)
2177
			mark_page_accessed(page);
2178

2179
		put_page(page);
2180
	}
C
Chris Wilson 已提交
2181
	obj->mm.dirty = false;
2182

2183 2184
	sg_free_table(pages);
	kfree(pages);
2185
}
C
Chris Wilson 已提交
2186

2187 2188 2189 2190 2191
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2192 2193
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2194 2195
}

2196 2197
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2198
{
2199
	struct sg_table *pages;
2200

C
Chris Wilson 已提交
2201
	if (i915_gem_object_has_pinned_pages(obj))
2202
		return;
2203

2204
	GEM_BUG_ON(obj->bind_count);
2205 2206 2207 2208
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2209
	mutex_lock_nested(&obj->mm.lock, subclass);
2210 2211
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2212

2213 2214 2215
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2216 2217
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2218

C
Chris Wilson 已提交
2219
	if (obj->mm.mapping) {
2220 2221
		void *ptr;

C
Chris Wilson 已提交
2222
		ptr = ptr_mask_bits(obj->mm.mapping);
2223 2224
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2225
		else
2226 2227
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2228
		obj->mm.mapping = NULL;
2229 2230
	}

2231 2232
	__i915_gem_object_reset_page_iter(obj);

2233
	obj->ops->put_pages(obj, pages);
2234 2235
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2236 2237
}

2238
static bool i915_sg_trim(struct sg_table *orig_st)
2239 2240 2241 2242 2243 2244
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2245
		return false;
2246

2247
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2248
		return false;
2249 2250 2251 2252 2253 2254 2255

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2256
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2257 2258 2259 2260

	sg_free_table(orig_st);

	*orig_st = new_st;
2261
	return true;
2262 2263
}

2264
static struct sg_table *
C
Chris Wilson 已提交
2265
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2266
{
2267
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2268 2269
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2270
	struct address_space *mapping;
2271 2272
	struct sg_table *st;
	struct scatterlist *sg;
2273
	struct sgt_iter sgt_iter;
2274
	struct page *page;
2275
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2276
	unsigned int max_segment;
I
Imre Deak 已提交
2277
	int ret;
C
Chris Wilson 已提交
2278
	gfp_t gfp;
2279

C
Chris Wilson 已提交
2280 2281 2282 2283
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2284 2285
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2286

2287
	max_segment = swiotlb_max_segment();
2288
	if (!max_segment)
2289
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2290

2291 2292
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2293
		return ERR_PTR(-ENOMEM);
2294

2295
rebuild_st:
2296 2297
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2298
		return ERR_PTR(-ENOMEM);
2299
	}
2300

2301 2302 2303 2304 2305
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2306
	mapping = obj->base.filp->f_mapping;
2307
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2308
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2309 2310 2311
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2312 2313
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2314 2315 2316 2317 2318
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2319 2320 2321 2322 2323 2324 2325
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2326
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2327 2328
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2329
				goto err_sg;
I
Imre Deak 已提交
2330
			}
C
Chris Wilson 已提交
2331
		}
2332 2333 2334
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2335 2336 2337 2338 2339 2340 2341 2342
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2343 2344 2345

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2346
	}
2347
	if (sg) /* loop terminated early; short sg table */
2348
		sg_mark_end(sg);
2349

2350 2351 2352
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2353
	ret = i915_gem_gtt_prepare_pages(obj, st);
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2373

2374
	if (i915_gem_object_needs_bit17_swizzle(obj))
2375
		i915_gem_object_do_bit_17_swizzle(obj, st);
2376

2377
	return st;
2378

2379
err_sg:
2380
	sg_mark_end(sg);
2381
err_pages:
2382 2383
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2384 2385
	sg_free_table(st);
	kfree(st);
2386 2387 2388 2389 2390 2391 2392 2393 2394

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2395 2396 2397
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2398 2399 2400 2401 2402 2403
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2404
	lockdep_assert_held(&obj->mm.lock);
2405 2406 2407 2408 2409

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2410 2411 2412 2413 2414 2415 2416

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2417 2418 2419 2420 2421 2422
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2423 2424
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2436 2437
}

2438
/* Ensure that the associated pages are gathered from the backing storage
2439
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2440
 * multiple times before they are released by a single call to
2441
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2442 2443 2444
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2445
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2446
{
2447
	int err;
2448

2449 2450 2451
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2452

2453 2454 2455 2456
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2457

2458 2459 2460
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2461

2462 2463
unlock:
	mutex_unlock(&obj->mm.lock);
2464
	return err;
2465 2466
}

2467
/* The 'mapping' part of i915_gem_object_pin_map() below */
2468 2469
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2470 2471
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2472
	struct sg_table *sgt = obj->mm.pages;
2473 2474
	struct sgt_iter sgt_iter;
	struct page *page;
2475 2476
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2477
	unsigned long i = 0;
2478
	pgprot_t pgprot;
2479 2480 2481
	void *addr;

	/* A single page can always be kmapped */
2482
	if (n_pages == 1 && type == I915_MAP_WB)
2483 2484
		return kmap(sg_page(sgt->sgl));

2485 2486 2487 2488 2489 2490
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2491

2492 2493
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2494 2495 2496 2497

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2498 2499 2500 2501 2502 2503 2504 2505 2506
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2507

2508 2509
	if (pages != stack_pages)
		drm_free_large(pages);
2510 2511 2512 2513 2514

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2515 2516
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2517
{
2518 2519 2520
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2521 2522
	int ret;

2523
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2524

2525
	ret = mutex_lock_interruptible(&obj->mm.lock);
2526 2527 2528
	if (ret)
		return ERR_PTR(ret);

2529 2530
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2531 2532 2533 2534
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2535

2536 2537 2538
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2539 2540 2541
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2542

C
Chris Wilson 已提交
2543
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2544 2545 2546
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2547
			goto err_unpin;
2548
		}
2549 2550 2551 2552 2553 2554

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2555
		ptr = obj->mm.mapping = NULL;
2556 2557
	}

2558 2559 2560 2561
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2562
			goto err_unpin;
2563 2564
		}

C
Chris Wilson 已提交
2565
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2566 2567
	}

2568 2569
out_unlock:
	mutex_unlock(&obj->mm.lock);
2570 2571
	return ptr;

2572 2573 2574 2575 2576
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2577 2578
}

2579
static bool ban_context(const struct i915_gem_context *ctx)
2580
{
2581 2582
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2583 2584
}

2585
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2586
{
2587
	ctx->guilty_count++;
2588 2589 2590
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2591 2592

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2593
			 ctx->name, ctx->ban_score,
2594
			 yesno(i915_gem_context_is_banned(ctx)));
2595

2596
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2597 2598
		return;

2599 2600 2601
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2602 2603 2604 2605
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2606
	ctx->active_count++;
2607 2608
}

2609
struct drm_i915_gem_request *
2610
i915_gem_find_active_request(struct intel_engine_cs *engine)
2611
{
2612 2613
	struct drm_i915_gem_request *request;

2614 2615 2616 2617 2618 2619 2620 2621
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2622
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2623
		if (__i915_gem_request_completed(request))
2624
			continue;
2625

2626
		GEM_BUG_ON(request->engine != engine);
2627 2628
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2629
		return request;
2630
	}
2631 2632 2633 2634

	return NULL;
}

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2649
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2650 2651 2652
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2653
	int err = 0;
2654 2655

	/* Ensure irq handler finishes, and not run again. */
2656 2657 2658
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2670 2671 2672 2673 2674 2675 2676 2677
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2678
		tasklet_kill(&engine->irq_tasklet);
2679
		tasklet_disable(&engine->irq_tasklet);
2680

2681 2682 2683
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2684 2685 2686 2687 2688 2689 2690
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2691
	i915_gem_revoke_fences(dev_priv);
2692 2693

	return err;
2694 2695
}

2696
static void skip_request(struct drm_i915_gem_request *request)
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2711 2712

	dma_fence_set_error(&request->fence, -EIO);
2713 2714
}

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2738 2739 2740 2741 2742 2743
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2776
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2777 2778 2779
{
	struct drm_i915_gem_request *request;

2780
	request = i915_gem_find_active_request(engine);
2781 2782 2783
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2784

2785 2786 2787 2788
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2789 2790 2791

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2792
}
2793

2794
void i915_gem_reset(struct drm_i915_private *dev_priv)
2795
{
2796
	struct intel_engine_cs *engine;
2797
	enum intel_engine_id id;
2798

2799 2800
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2801 2802
	i915_gem_retire_requests(dev_priv);

2803 2804 2805
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2806
		i915_gem_reset_engine(engine);
2807 2808 2809 2810
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2811

2812
	i915_gem_restore_fences(dev_priv);
2813 2814 2815 2816 2817 2818 2819

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2820 2821
}

2822 2823
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2824 2825 2826
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2827
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2828

2829
	for_each_engine(engine, dev_priv, id) {
2830
		tasklet_enable(&engine->irq_tasklet);
2831 2832
		kthread_unpark(engine->breadcrumbs.signaler);
	}
2833 2834
}

2835 2836
static void nop_submit_request(struct drm_i915_gem_request *request)
{
2837
	dma_fence_set_error(&request->fence, -EIO);
2838 2839
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2840 2841
}

2842
static void engine_set_wedged(struct intel_engine_cs *engine)
2843
{
2844 2845 2846
	struct drm_i915_gem_request *request;
	unsigned long flags;

2847 2848 2849 2850 2851 2852
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2853
	engine->submit_request = nop_submit_request;
2854

2855 2856 2857 2858 2859 2860
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2861 2862 2863 2864
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2865
	intel_engine_init_global_seqno(engine,
2866
				       intel_engine_last_submit(engine));
2867

2868 2869 2870 2871 2872 2873
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2874
	if (i915.enable_execlists) {
2875 2876 2877 2878
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2879 2880 2881
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2882 2883
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2884 2885

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2886
	}
2887 2888
}

2889
static int __i915_gem_set_wedged_BKL(void *data)
2890
{
2891
	struct drm_i915_private *i915 = data;
2892
	struct intel_engine_cs *engine;
2893
	enum intel_engine_id id;
2894

2895
	for_each_engine(engine, i915, id)
2896
		engine_set_wedged(engine);
2897 2898 2899 2900 2901 2902

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2903 2904
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2905

2906
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2907

2908
	i915_gem_context_lost(dev_priv);
2909
	i915_gem_retire_requests(dev_priv);
2910 2911

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2912 2913
}

2914
static void
2915 2916
i915_gem_retire_work_handler(struct work_struct *work)
{
2917
	struct drm_i915_private *dev_priv =
2918
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2919
	struct drm_device *dev = &dev_priv->drm;
2920

2921
	/* Come back later if the device is busy... */
2922
	if (mutex_trylock(&dev->struct_mutex)) {
2923
		i915_gem_retire_requests(dev_priv);
2924
		mutex_unlock(&dev->struct_mutex);
2925
	}
2926 2927 2928 2929 2930

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2931 2932
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2933 2934
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2935
				   round_jiffies_up_relative(HZ));
2936
	}
2937
}
2938

2939 2940 2941 2942
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2943
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2944
	struct drm_device *dev = &dev_priv->drm;
2945
	struct intel_engine_cs *engine;
2946
	enum intel_engine_id id;
2947 2948 2949 2950 2951
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2952 2953 2954 2955 2956 2957 2958
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2959
	if (READ_ONCE(dev_priv->gt.active_requests))
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2973 2974 2975 2976 2977 2978 2979
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2980
	if (dev_priv->gt.active_requests)
2981
		goto out_unlock;
2982

2983 2984 2985
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2986
	for_each_engine(engine, dev_priv, id)
2987
		i915_gem_batch_pool_fini(&engine->batch_pool);
2988

2989 2990 2991
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2992

2993 2994 2995 2996 2997
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2998

2999 3000 3001 3002
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3003
	}
3004 3005
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3016 3017 3018 3019 3020 3021

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3022 3023 3024
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3036 3037
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3038 3039 3040
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3065 3066
	ktime_t start;
	long ret;
3067

3068 3069 3070
	if (args->flags != 0)
		return -EINVAL;

3071
	obj = i915_gem_object_lookup(file, args->bo_handle);
3072
	if (!obj)
3073 3074
		return -ENOENT;

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3096 3097
	}

C
Chris Wilson 已提交
3098
	i915_gem_object_put(obj);
3099
	return ret;
3100 3101
}

3102
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3103
{
3104
	int ret, i;
3105

3106 3107 3108 3109 3110
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3111

3112 3113 3114 3115 3116 3117 3118
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3131 3132 3133
		if (ret)
			return ret;
	}
3134

3135
	return 0;
3136 3137
}

3138 3139
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3140 3141 3142 3143 3144
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3145
	if (!obj->mm.pages)
3146
		return;
3147

3148 3149 3150 3151
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3152
	if (obj->stolen || obj->phys_handle)
3153
		return;
3154

3155 3156 3157 3158 3159 3160 3161 3162
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3163 3164
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3165
		return;
3166
	}
3167

C
Chris Wilson 已提交
3168
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3169
	drm_clflush_sg(obj->mm.pages);
3170
	obj->cache_dirty = false;
3171 3172 3173 3174
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3175
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3176
{
3177
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3178

3179
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3180 3181
		return;

3182
	/* No actual flushing is required for the GTT write domain.  Writes
3183
	 * to it "immediately" go to main memory as far as we know, so there's
3184
	 * no chipset flush.  It also doesn't land in render cache.
3185 3186 3187 3188
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3189 3190 3191 3192 3193 3194 3195
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3196
	 */
3197
	wmb();
3198
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3199
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3200

3201
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3202

3203
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3204
	trace_i915_gem_object_change_domain(obj,
3205
					    obj->base.read_domains,
3206
					    I915_GEM_DOMAIN_GTT);
3207 3208 3209 3210
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3211
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3212
{
3213
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3214 3215
		return;

3216
	i915_gem_clflush_object(obj, obj->pin_display);
3217
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3218

3219
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3220
	trace_i915_gem_object_change_domain(obj,
3221
					    obj->base.read_domains,
3222
					    I915_GEM_DOMAIN_CPU);
3223 3224
}

3225 3226
/**
 * Moves a single object to the GTT read, and possibly write domain.
3227 3228
 * @obj: object to act on
 * @write: ask for write access or read only
3229 3230 3231 3232
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3233
int
3234
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3235
{
C
Chris Wilson 已提交
3236
	uint32_t old_write_domain, old_read_domains;
3237
	int ret;
3238

3239
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3240

3241 3242 3243 3244 3245 3246
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3247 3248 3249
	if (ret)
		return ret;

3250 3251 3252
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3253 3254 3255 3256 3257 3258 3259 3260
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3261
	ret = i915_gem_object_pin_pages(obj);
3262 3263 3264
	if (ret)
		return ret;

3265
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3266

3267 3268 3269 3270 3271 3272 3273
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3274 3275
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3276

3277 3278 3279
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3280
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3281
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3282
	if (write) {
3283 3284
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3285
		obj->mm.dirty = true;
3286 3287
	}

C
Chris Wilson 已提交
3288 3289 3290 3291
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3292
	i915_gem_object_unpin_pages(obj);
3293 3294 3295
	return 0;
}

3296 3297
/**
 * Changes the cache-level of an object across all VMA.
3298 3299
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3311 3312 3313
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3314
	struct i915_vma *vma;
3315
	int ret;
3316

3317 3318
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3319
	if (obj->cache_level == cache_level)
3320
		return 0;
3321

3322 3323 3324 3325 3326
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3327 3328
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3329 3330 3331
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3332
		if (i915_vma_is_pinned(vma)) {
3333 3334 3335 3336
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3349 3350
	}

3351 3352 3353 3354 3355 3356 3357
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3358
	if (obj->bind_count) {
3359 3360 3361 3362
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3363 3364 3365 3366 3367 3368
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3369 3370 3371
		if (ret)
			return ret;

3372 3373
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3390 3391 3392 3393 3394
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3395 3396 3397 3398 3399 3400 3401 3402
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3403 3404
		}

3405
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3406 3407 3408 3409 3410 3411 3412
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3413 3414
	}

3415 3416 3417 3418
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3419
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3420 3421 3422
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3423 3424 3425
	return 0;
}

B
Ben Widawsky 已提交
3426 3427
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3428
{
B
Ben Widawsky 已提交
3429
	struct drm_i915_gem_caching *args = data;
3430
	struct drm_i915_gem_object *obj;
3431
	int err = 0;
3432

3433 3434 3435 3436 3437 3438
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3439

3440 3441 3442 3443 3444 3445
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3446 3447 3448 3449
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3450 3451 3452 3453
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3454 3455 3456
out:
	rcu_read_unlock();
	return err;
3457 3458
}

B
Ben Widawsky 已提交
3459 3460
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3461
{
3462
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3463
	struct drm_i915_gem_caching *args = data;
3464 3465
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3466
	int ret = 0;
3467

B
Ben Widawsky 已提交
3468 3469
	switch (args->caching) {
	case I915_CACHING_NONE:
3470 3471
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3472
	case I915_CACHING_CACHED:
3473 3474 3475 3476 3477 3478
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3479
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3480 3481
			return -ENODEV;

3482 3483
		level = I915_CACHE_LLC;
		break;
3484
	case I915_CACHING_DISPLAY:
3485
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3486
		break;
3487 3488 3489 3490
	default:
		return -EINVAL;
	}

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3502
	if (ret)
3503
		goto out;
B
Ben Widawsky 已提交
3504

3505 3506 3507
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3508 3509 3510

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3511 3512 3513

out:
	i915_gem_object_put(obj);
3514 3515 3516
	return ret;
}

3517
/*
3518 3519 3520
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3521
 */
C
Chris Wilson 已提交
3522
struct i915_vma *
3523 3524
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3525
				     const struct i915_ggtt_view *view)
3526
{
C
Chris Wilson 已提交
3527
	struct i915_vma *vma;
3528
	u32 old_read_domains, old_write_domain;
3529 3530
	int ret;

3531 3532
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3533 3534 3535
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3536
	obj->pin_display++;
3537

3538 3539 3540 3541 3542 3543 3544 3545 3546
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3547
	ret = i915_gem_object_set_cache_level(obj,
3548 3549
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3550 3551
	if (ret) {
		vma = ERR_PTR(ret);
3552
		goto err_unpin_display;
C
Chris Wilson 已提交
3553
	}
3554

3555 3556
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3557 3558 3559 3560
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3561
	 */
3562
	vma = ERR_PTR(-ENOSPC);
3563
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3564 3565
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3582
	if (IS_ERR(vma))
3583
		goto err_unpin_display;
3584

3585 3586
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3587
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3588
	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3589 3590 3591
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3592

3593
	old_write_domain = obj->base.write_domain;
3594
	old_read_domains = obj->base.read_domains;
3595 3596 3597 3598

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3599
	obj->base.write_domain = 0;
3600
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3601 3602 3603

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3604
					    old_write_domain);
3605

C
Chris Wilson 已提交
3606
	return vma;
3607 3608

err_unpin_display:
3609
	obj->pin_display--;
C
Chris Wilson 已提交
3610
	return vma;
3611 3612 3613
}

void
C
Chris Wilson 已提交
3614
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3615
{
3616
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3617

C
Chris Wilson 已提交
3618
	if (WARN_ON(vma->obj->pin_display == 0))
3619 3620
		return;

3621
	if (--vma->obj->pin_display == 0)
3622
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3623

3624
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3625
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3626

C
Chris Wilson 已提交
3627
	i915_vma_unpin(vma);
3628 3629
}

3630 3631
/**
 * Moves a single object to the CPU read, and possibly write domain.
3632 3633
 * @obj: object to act on
 * @write: requesting write or read-only access
3634 3635 3636 3637
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3638
int
3639
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3640
{
C
Chris Wilson 已提交
3641
	uint32_t old_write_domain, old_read_domains;
3642 3643
	int ret;

3644
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3645

3646 3647 3648 3649 3650 3651
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3652 3653 3654
	if (ret)
		return ret;

3655 3656 3657
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3658
	i915_gem_object_flush_gtt_write_domain(obj);
3659

3660 3661
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3662

3663
	/* Flush the CPU cache if it's still invalid. */
3664
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3665
		i915_gem_clflush_object(obj, false);
3666

3667
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3668 3669 3670 3671 3672
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3673
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3674 3675 3676 3677 3678

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3679 3680
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3681
	}
3682

C
Chris Wilson 已提交
3683 3684 3685 3686
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3687 3688 3689
	return 0;
}

3690 3691 3692
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3693 3694 3695 3696
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3697 3698 3699
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3700
static int
3701
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3702
{
3703
	struct drm_i915_private *dev_priv = to_i915(dev);
3704
	struct drm_i915_file_private *file_priv = file->driver_priv;
3705
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3706
	struct drm_i915_gem_request *request, *target = NULL;
3707
	long ret;
3708

3709 3710 3711
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3712

3713
	spin_lock(&file_priv->mm.lock);
3714
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3715 3716
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3717

3718 3719 3720 3721 3722 3723 3724
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3725
		target = request;
3726
	}
3727
	if (target)
3728
		i915_gem_request_get(target);
3729
	spin_unlock(&file_priv->mm.lock);
3730

3731
	if (target == NULL)
3732
		return 0;
3733

3734 3735 3736
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3737
	i915_gem_request_put(target);
3738

3739
	return ret < 0 ? ret : 0;
3740 3741
}

C
Chris Wilson 已提交
3742
struct i915_vma *
3743 3744
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3745
			 u64 size,
3746 3747
			 u64 alignment,
			 u64 flags)
3748
{
3749 3750
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3751 3752
	struct i915_vma *vma;
	int ret;
3753

3754 3755
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3756
	vma = i915_vma_instance(obj, vm, view);
3757
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3758
		return vma;
3759 3760 3761 3762

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3763
			return ERR_PTR(-ENOSPC);
3764

3765 3766 3767 3768 3769 3770 3771 3772
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3773
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3792
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3793 3794 3795
				return ERR_PTR(-ENOSPC);
		}

3796 3797
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3798 3799 3800
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3801
		     !!(flags & PIN_MAPPABLE),
3802
		     i915_vma_is_map_and_fenceable(vma));
3803 3804
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3805
			return ERR_PTR(ret);
3806 3807
	}

C
Chris Wilson 已提交
3808 3809 3810
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3811

C
Chris Wilson 已提交
3812
	return vma;
3813 3814
}

3815
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3830 3831 3832 3833 3834 3835 3836 3837 3838
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3839 3840
}

3841
static __always_inline unsigned int
3842
__busy_set_if_active(const struct dma_fence *fence,
3843 3844
		     unsigned int (*flag)(unsigned int id))
{
3845
	struct drm_i915_gem_request *rq;
3846

3847 3848 3849 3850
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3851
	 *
3852
	 * Note we only report on the status of native fences.
3853
	 */
3854 3855 3856 3857 3858 3859 3860 3861 3862
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3863 3864
}

3865
static __always_inline unsigned int
3866
busy_check_reader(const struct dma_fence *fence)
3867
{
3868
	return __busy_set_if_active(fence, __busy_read_flag);
3869 3870
}

3871
static __always_inline unsigned int
3872
busy_check_writer(const struct dma_fence *fence)
3873
{
3874 3875 3876 3877
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3878 3879
}

3880 3881
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3882
		    struct drm_file *file)
3883 3884
{
	struct drm_i915_gem_busy *args = data;
3885
	struct drm_i915_gem_object *obj;
3886 3887
	struct reservation_object_list *list;
	unsigned int seq;
3888
	int err;
3889

3890
	err = -ENOENT;
3891 3892
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3893
	if (!obj)
3894
		goto out;
3895

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3914

3915 3916
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3917

3918 3919 3920 3921
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3922

3923 3924 3925 3926 3927 3928
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3929
	}
3930

3931 3932 3933 3934
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3935 3936 3937
out:
	rcu_read_unlock();
	return err;
3938 3939 3940 3941 3942 3943
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3944
	return i915_gem_ring_throttle(dev, file_priv);
3945 3946
}

3947 3948 3949 3950
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3951
	struct drm_i915_private *dev_priv = to_i915(dev);
3952
	struct drm_i915_gem_madvise *args = data;
3953
	struct drm_i915_gem_object *obj;
3954
	int err;
3955 3956 3957 3958 3959 3960 3961 3962 3963

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3964
	obj = i915_gem_object_lookup(file_priv, args->handle);
3965 3966 3967 3968 3969 3970
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3971

C
Chris Wilson 已提交
3972
	if (obj->mm.pages &&
3973
	    i915_gem_object_is_tiled(obj) &&
3974
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3975 3976
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3977
			__i915_gem_object_unpin_pages(obj);
3978 3979 3980
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3981
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3982
			__i915_gem_object_pin_pages(obj);
3983 3984
			obj->mm.quirked = true;
		}
3985 3986
	}

C
Chris Wilson 已提交
3987 3988
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3989

C
Chris Wilson 已提交
3990
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3991
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3992 3993
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3994
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3995
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3996

3997
out:
3998
	i915_gem_object_put(obj);
3999
	return err;
4000 4001
}

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

4012 4013
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4014
{
4015 4016
	mutex_init(&obj->mm.lock);

4017
	INIT_LIST_HEAD(&obj->global_link);
4018
	INIT_LIST_HEAD(&obj->userfault_link);
4019
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4020
	INIT_LIST_HEAD(&obj->vma_list);
4021
	INIT_LIST_HEAD(&obj->batch_pool_link);
4022

4023 4024
	obj->ops = ops;

4025 4026 4027
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4028
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4029
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4030 4031 4032 4033

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4034

4035
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4036 4037
}

4038
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4039 4040
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4041 4042 4043 4044
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4045
struct drm_i915_gem_object *
4046
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4047
{
4048
	struct drm_i915_gem_object *obj;
4049
	struct address_space *mapping;
D
Daniel Vetter 已提交
4050
	gfp_t mask;
4051
	int ret;
4052

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4064
	obj = i915_gem_object_alloc(dev_priv);
4065
	if (obj == NULL)
4066
		return ERR_PTR(-ENOMEM);
4067

4068
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4069 4070
	if (ret)
		goto fail;
4071

4072
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4073
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4074 4075 4076 4077 4078
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4079
	mapping = obj->base.filp->f_mapping;
4080
	mapping_set_gfp_mask(mapping, mask);
4081

4082
	i915_gem_object_init(obj, &i915_gem_object_ops);
4083

4084 4085
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4086

4087
	if (HAS_LLC(dev_priv)) {
4088
		/* On some devices, we can have the GPU use the LLC (the CPU
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4104 4105
	trace_i915_gem_object_create(obj);

4106
	return obj;
4107 4108 4109 4110

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4111 4112
}

4113 4114 4115 4116 4117 4118 4119 4120
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4121
	if (obj->mm.madv != I915_MADV_WILLNEED)
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4137 4138
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4139
{
4140
	struct drm_i915_gem_object *obj, *on;
4141

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4157 4158
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4159

4160
		list_del(&obj->global_link);
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4171

4172 4173
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4174
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4175 4176 4177 4178 4179
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4180
		reservation_object_fini(&obj->__builtin_resv);
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4203

4204 4205 4206 4207 4208 4209 4210
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4211

4212 4213 4214
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4215

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4230

4231 4232 4233
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4234

4235 4236 4237
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4238
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4239
		obj->mm.madv = I915_MADV_DONTNEED;
4240

4241 4242 4243 4244 4245 4246
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4247 4248
}

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4260 4261 4262 4263 4264 4265
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4266 4267
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4268 4269
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
	 * of the reset, so we only reset recent machines with logical
	 * context support (that must be reset to remove any stray contexts).
	 */
	if (HAS_HW_CONTEXTS(i915)) {
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4287
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4288
{
4289
	struct drm_device *dev = &dev_priv->drm;
4290
	int ret;
4291

4292 4293
	intel_suspend_gt_powersave(dev_priv);

4294
	mutex_lock(&dev->struct_mutex);
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4308 4309 4310
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4311
	if (ret)
4312
		goto err;
4313

4314
	i915_gem_retire_requests(dev_priv);
4315
	GEM_BUG_ON(dev_priv->gt.active_requests);
4316

4317
	assert_kernel_context_is_current(dev_priv);
4318
	i915_gem_context_lost(dev_priv);
4319 4320
	mutex_unlock(&dev->struct_mutex);

4321
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4322
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4323 4324 4325 4326 4327 4328 4329 4330

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4331

4332 4333 4334
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4335
	WARN_ON(dev_priv->gt.awake);
4336
	WARN_ON(!intel_execlists_idle(dev_priv));
4337

4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4357
	i915_gem_sanitize(dev_priv);
4358

4359
	return 0;
4360 4361 4362 4363

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4364 4365
}

4366
void i915_gem_resume(struct drm_i915_private *dev_priv)
4367
{
4368
	struct drm_device *dev = &dev_priv->drm;
4369

4370 4371
	WARN_ON(dev_priv->gt.awake);

4372
	mutex_lock(&dev->struct_mutex);
4373
	i915_gem_restore_gtt_mappings(dev_priv);
4374 4375 4376 4377 4378

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4379
	dev_priv->gt.resume(dev_priv);
4380 4381 4382 4383

	mutex_unlock(&dev->struct_mutex);
}

4384
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4385
{
4386
	if (INTEL_GEN(dev_priv) < 5 ||
4387 4388 4389 4390 4391 4392
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4393
	if (IS_GEN5(dev_priv))
4394 4395
		return;

4396
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4397
	if (IS_GEN6(dev_priv))
4398
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4399
	else if (IS_GEN7(dev_priv))
4400
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4401
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4402
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4403 4404
	else
		BUG();
4405
}
D
Daniel Vetter 已提交
4406

4407
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4408 4409 4410 4411 4412 4413 4414
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4415
static void init_unused_rings(struct drm_i915_private *dev_priv)
4416
{
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4429 4430 4431
	}
}

4432
static int __i915_gem_restart_engines(void *data)
4433
{
4434
	struct drm_i915_private *i915 = data;
4435
	struct intel_engine_cs *engine;
4436
	enum intel_engine_id id;
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4450
	int ret;
4451

4452 4453
	dev_priv->gt.last_init_time = ktime_get();

4454 4455 4456
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4457
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4458
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4459

4460
	if (IS_HASWELL(dev_priv))
4461
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4462
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4463

4464
	if (HAS_PCH_NOP(dev_priv)) {
4465
		if (IS_IVYBRIDGE(dev_priv)) {
4466 4467 4468
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4469
		} else if (INTEL_GEN(dev_priv) >= 7) {
4470 4471 4472 4473
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4474 4475
	}

4476
	i915_gem_init_swizzling(dev_priv);
4477

4478 4479 4480 4481 4482 4483
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4484
	init_unused_rings(dev_priv);
4485

4486
	BUG_ON(!dev_priv->kernel_context);
4487

4488
	ret = i915_ppgtt_init_hw(dev_priv);
4489 4490 4491 4492 4493 4494
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4495 4496 4497
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4498

4499
	intel_mocs_init_l3cc_table(dev_priv);
4500

4501
	/* We can't enable contexts until all firmware is loaded */
4502
	ret = intel_guc_setup(dev_priv);
4503 4504
	if (ret)
		goto out;
4505

4506 4507
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4508
	return ret;
4509 4510
}

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4532
int i915_gem_init(struct drm_i915_private *dev_priv)
4533 4534 4535
{
	int ret;

4536
	mutex_lock(&dev_priv->drm.struct_mutex);
4537

4538
	if (!i915.enable_execlists) {
4539
		dev_priv->gt.resume = intel_legacy_submission_resume;
4540
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4541
	} else {
4542
		dev_priv->gt.resume = intel_lr_context_resume;
4543
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4544 4545
	}

4546 4547 4548 4549 4550 4551 4552 4553
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4554
	i915_gem_init_userptr(dev_priv);
4555 4556 4557 4558

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4559

4560
	ret = i915_gem_context_init(dev_priv);
4561 4562
	if (ret)
		goto out_unlock;
4563

4564
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4565
	if (ret)
4566
		goto out_unlock;
4567

4568
	ret = i915_gem_init_hw(dev_priv);
4569
	if (ret == -EIO) {
4570
		/* Allow engine initialisation to fail by marking the GPU as
4571 4572 4573 4574
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4575
		i915_gem_set_wedged(dev_priv);
4576
		ret = 0;
4577
	}
4578 4579

out_unlock:
4580
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4581
	mutex_unlock(&dev_priv->drm.struct_mutex);
4582

4583
	return ret;
4584 4585
}

4586 4587 4588 4589 4590
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4591
void
4592
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4593
{
4594
	struct intel_engine_cs *engine;
4595
	enum intel_engine_id id;
4596

4597
	for_each_engine(engine, dev_priv, id)
4598
		dev_priv->gt.cleanup_engine(engine);
4599 4600
}

4601 4602 4603
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4604
	int i;
4605 4606 4607 4608

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4609 4610 4611
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4612 4613 4614 4615
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4616
	if (intel_vgpu_active(dev_priv))
4617 4618 4619 4620
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4621 4622 4623 4624 4625 4626 4627
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4628
	i915_gem_restore_fences(dev_priv);
4629

4630
	i915_gem_detect_bit_6_swizzle(dev_priv);
4631 4632
}

4633
int
4634
i915_gem_load_init(struct drm_i915_private *dev_priv)
4635
{
4636
	int err = -ENOMEM;
4637

4638 4639
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4640 4641
		goto err_out;

4642 4643
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4644 4645
		goto err_objects;

4646 4647 4648 4649 4650
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4651 4652
		goto err_vmas;

4653 4654 4655 4656 4657 4658
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4659 4660
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4661
	err = i915_gem_timeline_init__global(dev_priv);
4662 4663
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4664
		goto err_dependencies;
4665

4666
	INIT_LIST_HEAD(&dev_priv->context_list);
4667 4668
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4669 4670
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4671
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4672
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4673
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4674
			  i915_gem_retire_work_handler);
4675
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4676
			  i915_gem_idle_work_handler);
4677
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4678
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4679

4680 4681
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4682
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4683

4684 4685
	dev_priv->mm.interruptible = true;

4686 4687
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4688
	spin_lock_init(&dev_priv->fb_tracking.lock);
4689 4690 4691

	return 0;

4692 4693
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4694 4695 4696 4697 4698 4699 4700 4701
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4702
}
4703

4704
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4705
{
4706
	i915_gem_drain_freed_objects(dev_priv);
4707
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4708
	WARN_ON(dev_priv->mm.object_count);
4709

4710 4711 4712 4713 4714
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4715
	kmem_cache_destroy(dev_priv->dependencies);
4716 4717 4718
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4719 4720 4721

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4722 4723
}

4724 4725 4726 4727 4728 4729 4730 4731 4732
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;
}

4733 4734 4735
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4736 4737 4738 4739 4740
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4751 4752 4753
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4754 4755
	 */

4756 4757
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4758

4759
	for (p = phases; *p; p++) {
4760
		list_for_each_entry(obj, *p, global_link) {
4761 4762 4763
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4764
	}
4765
	mutex_unlock(&dev_priv->drm.struct_mutex);
4766 4767 4768 4769

	return 0;
}

4770
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4771
{
4772
	struct drm_i915_file_private *file_priv = file->driver_priv;
4773
	struct drm_i915_gem_request *request;
4774 4775 4776 4777 4778

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4779
	spin_lock(&file_priv->mm.lock);
4780
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4781
		request->file_priv = NULL;
4782
	spin_unlock(&file_priv->mm.lock);
4783

4784
	if (!list_empty(&file_priv->rps.link)) {
4785
		spin_lock(&to_i915(dev)->rps.client_lock);
4786
		list_del(&file_priv->rps.link);
4787
		spin_unlock(&to_i915(dev)->rps.client_lock);
4788
	}
4789 4790 4791 4792 4793
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4794
	int ret;
4795

4796
	DRM_DEBUG("\n");
4797 4798 4799 4800 4801 4802

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4803
	file_priv->dev_priv = to_i915(dev);
4804
	file_priv->file = file;
4805
	INIT_LIST_HEAD(&file_priv->rps.link);
4806 4807 4808 4809

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4810
	file_priv->bsd_engine = -1;
4811

4812 4813 4814
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4815

4816
	return ret;
4817 4818
}

4819 4820
/**
 * i915_gem_track_fb - update frontbuffer tracking
4821 4822 4823
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4824 4825 4826 4827
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4828 4829 4830 4831
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4832 4833 4834 4835 4836 4837 4838 4839 4840
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4841
	if (old) {
4842 4843
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4844 4845 4846
	}

	if (new) {
4847 4848
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4849 4850 4851
	}
}

4852 4853
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4854
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4855 4856 4857 4858 4859 4860 4861
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4862
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4863
	if (IS_ERR(obj))
4864 4865 4866 4867 4868 4869
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4870
	ret = i915_gem_object_pin_pages(obj);
4871 4872 4873
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4874
	sg = obj->mm.pages;
4875
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4876
	obj->mm.dirty = true; /* Backing store is now out of date */
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4888
	i915_gem_object_put(obj);
4889 4890
	return ERR_PTR(ret);
}
4891 4892 4893 4894 4895 4896

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4897
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4898 4899 4900 4901 4902
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4903
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5028
	if (!obj->mm.dirty)
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5044 5045 5046

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5047
#include "selftests/mock_gem_device.c"
5048
#include "selftests/huge_gem_object.c"
5049
#include "selftests/i915_gem_object.c"
5050
#include "selftests/i915_gem_coherency.c"
5051
#endif