i915_gem.c 131.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64 65 66 67
static int
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask);

static void
i915_gem_object_put_pages(struct drm_gem_object *obj);

68 69 70
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.gtt_count++;
	dev_priv->mm.gtt_memory += size;
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.gtt_count--;
	dev_priv->mm.gtt_memory -= size;
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.pin_count++;
	dev_priv->mm.pin_memory += size;
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.pin_count--;
	dev_priv->mm.pin_memory -= size;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

162
	WARN_ON(i915_verify_lists(dev));
163 164
	return 0;
}
165

166 167 168 169 170 171 172 173
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

174 175
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
J
Jesse Barnes 已提交
176
		     unsigned long end)
177 178 179
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
180 181 182
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
183 184 185
		return -EINVAL;
	}

J
Jesse Barnes 已提交
186 187
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
188

189
	dev_priv->mm.gtt_total = end - start;
J
Jesse Barnes 已提交
190 191 192

	return 0;
}
193

J
Jesse Barnes 已提交
194 195 196 197 198 199 200 201 202
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 204
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
205
	return ret;
206 207
}

208 209 210 211
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
212
	struct drm_i915_private *dev_priv = dev->dev_private;
213 214 215 216 217
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

218 219 220 221
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232 233 234 235

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
236 237
	int ret;
	u32 handle;
238 239 240 241

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
242
	obj = i915_gem_alloc_object(dev, args->size);
243 244 245 246
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
247
	if (ret) {
248 249 250
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
251
		return ret;
252
	}
253

254 255 256 257
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

258
	args->handle = handle;
259 260 261
	return 0;
}

262 263 264 265 266 267
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
268
	int unwritten;
269
	char *vaddr;
270 271

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
272
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 274
	kunmap_atomic(vaddr, KM_USER0);

275
	return unwritten ? -EFAULT : 0;
276 277
}

278 279 280
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
281
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282 283 284 285 286

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

287
static inline void
288 289 290 291 292 293 294 295
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

296 297
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
298 299 300

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

301 302
	kunmap(src_page);
	kunmap(dst_page);
303 304
}

305
static inline void
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

325 326
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

350 351
	kunmap(cpu_page);
	kunmap(gpu_page);
352 353
}

354 355 356 357 358 359 360 361 362 363
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
364
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 366 367 368 369 370 371 372 373
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

374 375 376
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
377

378
	ret = i915_gem_object_get_pages(obj, 0);
379 380 381 382 383 384 385 386
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

387
	obj_priv = to_intel_bo(obj);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

422 423 424 425 426
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

427
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
428 429 430 431 432 433 434

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

435 436
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
437 438 439
		if (ret)
			return ret;

440
		ret = i915_gem_object_get_pages(obj, 0);
441 442 443 444 445
	}

	return ret;
}

446 447 448 449 450 451 452 453 454 455 456
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
457
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
458 459 460 461 462 463 464 465 466 467
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
468
	int do_bit17_swizzling;
469 470 471 472 473 474 475 476 477 478 479

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

480
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
481 482 483 484 485
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
486
				      num_pages, 1, 0, user_pages, NULL);
487 488 489 490 491 492
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

493 494
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

495 496 497
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
498

499 500
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
501 502 503 504 505 506 507
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

508
	obj_priv = to_intel_bo(obj);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

531
		if (do_bit17_swizzling) {
532
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
533
					      shmem_page_offset,
534 535 536 537 538 539 540 541 542 543
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
544
		}
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
560
	drm_free_large(user_pages);
561 562 563 564

	return ret;
}

565 566 567 568 569 570 571 572 573 574 575 576
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
577
	int ret = 0;
578 579 580

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
581
		return -ENOENT;
582
	obj_priv = to_intel_bo(obj);
583

584 585
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
586
		ret = -EINVAL;
587
		goto out;
C
Chris Wilson 已提交
588 589
	}

590 591 592
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
593 594 595 596
	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
597
		goto out;
598 599
	}

600 601 602 603 604 605 606
	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
	}

607
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
608
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
609 610 611 612 613 614
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
615

616
out:
617
	drm_gem_object_unreference_unlocked(obj);
618
	return ret;
619 620
}

621 622
/* This is the fast write path which cannot handle
 * page faults in the source data
623
 */
624 625 626 627 628 629

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
630 631
{
	char *vaddr_atomic;
632
	unsigned long unwritten;
633

634
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
635 636
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
637
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
638 639 640 641 642 643 644 645 646
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

647
static inline void
648 649 650 651
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
652
{
653 654
	char __iomem *dst_vaddr;
	char *src_vaddr;
655

656 657 658 659 660 661 662 663 664
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
665 666
}

667 668 669 670 671 672
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
673 674
	int unwritten;
	char *vaddr;
675 676

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
677
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
678 679
	kunmap_atomic(vaddr, KM_USER0);

680
	return unwritten ? -EFAULT : 0;
681 682
}

683 684 685 686
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
687
static int
688 689 690
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
691
{
692
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
693
	drm_i915_private_t *dev_priv = dev->dev_private;
694
	ssize_t remain;
695
	loff_t offset, page_base;
696
	char __user *user_data;
697 698
	int page_offset, page_length;
	int ret;
699 700 701 702

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

703 704 705
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
706 707 708 709 710 711

	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
712
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
713 714 715
	if (ret)
		goto fail;

716
	obj_priv = to_intel_bo(obj);
717 718 719 720 721
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
722 723 724
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
725
		 */
726 727 728 729 730 731 732 733 734 735
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
736 737
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
738
		 */
739 740
		if (ret)
			goto fail;
741

742 743 744
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
745 746 747 748 749 750 751 752 753
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

754 755 756 757 758 759 760
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
761
static int
762 763 764
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
765
{
766
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
767 768 769 770 771 772 773 774
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
775
	int ret;
776 777 778 779 780 781 782 783 784 785 786 787
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

788
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
789 790 791 792 793 794 795 796 797 798 799
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
800

801 802 803 804
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out_unpin_pages;

805 806 807 808 809 810 811 812
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

813
	obj_priv = to_intel_bo(obj);
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

836 837 838 839 840
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
841 842 843 844 845 846 847 848 849 850 851 852 853

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
854
	drm_free_large(user_pages);
855 856 857 858

	return ret;
}

859 860 861 862
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
863
static int
864 865 866
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
867
{
868
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
869 870 871 872
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
873
	int ret;
874 875 876

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
877

878 879 880
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
881

882
	ret = i915_gem_object_get_pages(obj, 0);
883 884
	if (ret != 0)
		goto fail_unlock;
885

886
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
887 888 889
	if (ret != 0)
		goto fail_put_pages;

890
	obj_priv = to_intel_bo(obj);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
938
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
939 940 941 942 943 944 945 946 947 948
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
949
	int do_bit17_swizzling;
950 951 952 953 954 955 956 957 958 959 960

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

961
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
962 963 964 965 966 967 968 969 970 971
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
972 973
	}

974 975
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

976 977 978
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
979

980 981
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
982 983 984 985 986 987
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

988
	obj_priv = to_intel_bo(obj);
989
	offset = args->offset;
990
	obj_priv->dirty = 1;
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

1012
		if (do_bit17_swizzling) {
1013
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
1014 1015 1016
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
1017 1018 1019 1020 1021 1022 1023 1024
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
1025
		}
1026 1027 1028 1029

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
1030 1031
	}

1032 1033 1034
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
1035
	mutex_unlock(&dev->struct_mutex);
1036 1037 1038
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
1039
	drm_free_large(user_pages);
1040

1041
	return ret;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1060
		return -ENOENT;
1061
	obj_priv = to_intel_bo(obj);
1062

1063 1064
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1065
		ret = -EINVAL;
1066
		goto out;
C
Chris Wilson 已提交
1067 1068
	}

1069 1070 1071
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
1072 1073 1074 1075
	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
1076
		goto out;
1077 1078
	}

1079 1080 1081 1082 1083 1084 1085
	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
	}

1086 1087 1088 1089 1090 1091
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1092 1093 1094
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1095
		 obj_priv->gtt_space &&
1096
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1097 1098 1099 1100 1101
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
1102 1103
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1104 1105 1106 1107 1108 1109 1110
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
1111 1112 1113 1114 1115 1116

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

1117
out:
1118
	drm_gem_object_unreference_unlocked(obj);
1119 1120 1121 1122
	return ret;
}

/**
1123 1124
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1125 1126 1127 1128 1129
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1130
	struct drm_i915_private *dev_priv = dev->dev_private;
1131 1132
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1133
	struct drm_i915_gem_object *obj_priv;
1134 1135
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1136 1137 1138 1139 1140
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1141
	/* Only handle setting domains to types used by the CPU. */
1142
	if (write_domain & I915_GEM_GPU_DOMAINS)
1143 1144
		return -EINVAL;

1145
	if (read_domains & I915_GEM_GPU_DOMAINS)
1146 1147 1148 1149 1150 1151 1152 1153
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1154 1155
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1156
		return -ENOENT;
1157
	obj_priv = to_intel_bo(obj);
1158

1159 1160 1161 1162 1163
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1164 1165 1166

	intel_mark_busy(dev, obj);

1167 1168
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1169

1170 1171 1172 1173
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1174 1175 1176
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1177 1178 1179
				       &dev_priv->mm.fence_list);
		}

1180 1181 1182 1183 1184 1185
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1186
	} else {
1187
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1188 1189
	}

1190 1191 1192 1193
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1214
	if (obj == NULL)
1215
		return -ENOENT;
1216 1217 1218 1219 1220

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
1221 1222 1223
	}

	/* Pinned buffers may be scanout, so flush the cache */
1224
	if (to_intel_bo(obj)->pin_count)
1225 1226
		i915_gem_object_flush_cpu_write_domain(obj);

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1253
		return -ENOENT;
1254 1255 1256 1257 1258 1259 1260 1261

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1262
	drm_gem_object_unreference_unlocked(obj);
1263 1264 1265 1266 1267 1268 1269 1270
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1291
	drm_i915_private_t *dev_priv = dev->dev_private;
1292
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1293 1294 1295
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1296
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1297 1298 1299 1300 1301 1302 1303 1304

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1305
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1306 1307
		if (ret)
			goto unlock;
1308 1309

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1310 1311
		if (ret)
			goto unlock;
1312 1313 1314
	}

	/* Need a new fence register? */
1315
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1316
		ret = i915_gem_object_get_fence_reg(obj, true);
1317 1318
		if (ret)
			goto unlock;
1319
	}
1320

1321 1322 1323
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1324 1325 1326 1327 1328
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1329
unlock:
1330 1331 1332
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1333 1334 1335
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1336 1337 1338 1339
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1340
		return VM_FAULT_SIGBUS;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1360
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1361
	struct drm_map_list *list;
1362
	struct drm_local_map *map;
1363 1364 1365 1366
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1367
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1381
		ret = -ENOSPC;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1393 1394
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1408
	kfree(list->map);
1409 1410 1411 1412

	return ret;
}

1413 1414 1415 1416
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1417
 * Preserve the reservation of the mmapping with the DRM core code, but
1418 1419 1420 1421 1422 1423 1424 1425 1426
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1427
void
1428 1429 1430
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1431
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1432 1433 1434 1435 1436 1437

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1438 1439 1440 1441
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1442
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1455
		kfree(list->map);
1456 1457 1458 1459 1460 1461
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1473
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1474 1475 1476 1477 1478 1479
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1480
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1481 1482 1483 1484 1485 1486
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1487
	if (INTEL_INFO(dev)->gen == 3)
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1527
		return -ENOENT;
1528

1529 1530 1531 1532 1533
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1534

1535
	obj_priv = to_intel_bo(obj);
1536

1537 1538 1539 1540 1541 1542 1543 1544
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1545 1546
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1547 1548 1549
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1550
			return ret;
1551
		}
1552 1553 1554 1555 1556 1557 1558 1559 1560
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1561
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1575
static void
1576
i915_gem_object_put_pages(struct drm_gem_object *obj)
1577
{
1578
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1579 1580 1581
	int page_count = obj->size / PAGE_SIZE;
	int i;

1582
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1583
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1584

1585 1586
	if (--obj_priv->pages_refcount != 0)
		return;
1587

1588 1589 1590
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1591
	if (obj_priv->madv == I915_MADV_DONTNEED)
1592
		obj_priv->dirty = 0;
1593 1594 1595 1596 1597 1598

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1599
			mark_page_accessed(obj_priv->pages[i]);
1600 1601 1602

		page_cache_release(obj_priv->pages[i]);
	}
1603 1604
	obj_priv->dirty = 0;

1605
	drm_free_large(obj_priv->pages);
1606
	obj_priv->pages = NULL;
1607 1608
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1619
static void
1620
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1621
			       struct intel_ring_buffer *ring)
1622
{
1623
	struct drm_device *dev = obj->dev;
1624
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1625
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1626

1627 1628
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1629 1630 1631 1632 1633 1634

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1635

1636
	/* Move from whatever list we were on to the tail of execution. */
1637
	list_move_tail(&obj_priv->list, &ring->active_list);
1638
	obj_priv->last_rendering_seqno = seqno;
1639 1640
}

1641 1642 1643 1644 1645
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1646
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1647 1648 1649 1650 1651

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1652

1653 1654 1655 1656
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1657
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1658
	struct inode *inode;
1659

1660 1661 1662 1663 1664 1665
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1666
	inode = obj->filp->f_path.dentry->d_inode;
1667 1668 1669
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1670 1671

	obj_priv->madv = __I915_MADV_PURGED;
1672 1673 1674 1675 1676 1677 1678 1679
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1680 1681 1682 1683 1684
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1685
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1686 1687

	if (obj_priv->pin_count != 0)
C
Chris Wilson 已提交
1688
		list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1689 1690 1691
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1692 1693
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1694
	obj_priv->last_rendering_seqno = 0;
1695
	obj_priv->ring = NULL;
1696 1697 1698 1699
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1700
	WARN_ON(i915_verify_lists(dev));
1701 1702
}

1703
static void
1704
i915_gem_process_flushing_list(struct drm_device *dev,
1705
			       uint32_t flush_domains,
1706
			       struct intel_ring_buffer *ring)
1707 1708 1709 1710 1711 1712 1713
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1714
		struct drm_gem_object *obj = &obj_priv->base;
1715

1716 1717
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1718 1719 1720 1721
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1722
			i915_gem_object_move_to_active(obj, ring);
1723 1724

			/* update the fence lru list */
1725 1726 1727 1728
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1729
						&dev_priv->mm.fence_list);
1730
			}
1731 1732 1733 1734 1735 1736 1737

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1738

1739
uint32_t
1740
i915_add_request(struct drm_device *dev,
1741
		 struct drm_file *file,
C
Chris Wilson 已提交
1742
		 struct drm_i915_gem_request *request,
1743
		 struct intel_ring_buffer *ring)
1744 1745
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1746
	struct drm_i915_file_private *file_priv = NULL;
1747 1748 1749
	uint32_t seqno;
	int was_empty;

1750 1751
	if (file != NULL)
		file_priv = file->driver_priv;
1752

C
Chris Wilson 已提交
1753 1754 1755 1756 1757
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1758

1759
	seqno = ring->add_request(dev, ring, 0);
1760
	ring->outstanding_lazy_request = false;
1761 1762

	request->seqno = seqno;
1763
	request->ring = ring;
1764
	request->emitted_jiffies = jiffies;
1765 1766 1767
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1768
	if (file_priv) {
1769
		spin_lock(&file_priv->mm.lock);
1770
		request->file_priv = file_priv;
1771
		list_add_tail(&request->client_list,
1772
			      &file_priv->mm.request_list);
1773
		spin_unlock(&file_priv->mm.lock);
1774
	}
1775

B
Ben Gamari 已提交
1776
	if (!dev_priv->mm.suspended) {
1777 1778
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1779
		if (was_empty)
1780 1781
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1782
	}
1783 1784 1785 1786 1787 1788 1789 1790 1791
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1792
static void
1793
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1794 1795 1796 1797
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1798
	if (INTEL_INFO(dev)->gen >= 4)
1799
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1800 1801 1802

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1803 1804
}

1805 1806
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1807
{
1808 1809 1810 1811 1812 1813 1814 1815 1816
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1817 1818
}

1819 1820
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1821
{
1822 1823
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1824

1825 1826 1827 1828 1829
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		list_del(&request->list);
1830
		i915_gem_request_remove_from_client(request);
1831 1832 1833 1834
		kfree(request);
	}

	while (!list_empty(&ring->active_list)) {
1835 1836
		struct drm_i915_gem_object *obj_priv;

1837
		obj_priv = list_first_entry(&ring->active_list,
1838 1839 1840 1841
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
1842
		list_del_init(&obj_priv->gpu_write_list);
1843 1844 1845 1846
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1847
void i915_gem_reset(struct drm_device *dev)
1848 1849 1850
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1851
	int i;
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1874 1875 1876 1877 1878 1879
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
			    list)
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1891 1892
}

1893 1894 1895
/**
 * This function clears the request list as sequence numbers are passed.
 */
1896 1897 1898
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1899 1900 1901 1902
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1903 1904
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1905 1906
		return;

1907 1908
	WARN_ON(i915_verify_lists(dev));

1909
	seqno = ring->get_seqno(dev, ring);
1910
	while (!list_empty(&ring->request_list)) {
1911 1912
		struct drm_i915_gem_request *request;

1913
		request = list_first_entry(&ring->request_list,
1914 1915 1916
					   struct drm_i915_gem_request,
					   list);

1917
		if (!i915_seqno_passed(seqno, request->seqno))
1918 1919 1920 1921 1922
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1923
		i915_gem_request_remove_from_client(request);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1937

1938
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1939
			break;
1940 1941 1942 1943 1944 1945

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1946
	}
1947 1948 1949

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1950
		ring->user_irq_put(dev, ring);
1951 1952
		dev_priv->trace_irq_seqno = 0;
	}
1953 1954

	WARN_ON(i915_verify_lists(dev));
1955 1956
}

1957 1958 1959 1960 1961
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1976 1977 1978 1979 1980
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1981
static void
1982 1983 1984 1985 1986 1987 1988 1989 1990
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1991 1992 1993 1994 1995 1996
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1997
	i915_gem_retire_requests(dev);
1998

1999
	if (!dev_priv->mm.suspended &&
2000 2001 2002
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
2003
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2004 2005 2006
	mutex_unlock(&dev->struct_mutex);
}

2007
int
2008
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2009
		     bool interruptible, struct intel_ring_buffer *ring)
2010 2011
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2012
	u32 ier;
2013 2014 2015 2016
	int ret = 0;

	BUG_ON(seqno == 0);

2017 2018 2019
	if (atomic_read(&dev_priv->mm.wedged))
		return -EAGAIN;

2020
	if (ring->outstanding_lazy_request) {
C
Chris Wilson 已提交
2021
		seqno = i915_add_request(dev, NULL, NULL, ring);
2022 2023 2024
		if (seqno == 0)
			return -ENOMEM;
	}
2025
	BUG_ON(seqno == dev_priv->next_seqno);
2026

2027
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
2028
		if (HAS_PCH_SPLIT(dev))
2029 2030 2031
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2032 2033 2034 2035 2036 2037 2038
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2039 2040
		trace_i915_gem_request_wait_begin(dev, seqno);

2041
		ring->waiting_gem_seqno = seqno;
2042
		ring->user_irq_get(dev, ring);
2043
		if (interruptible)
2044 2045
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
2046
					ring->get_seqno(dev, ring), seqno)
2047
				|| atomic_read(&dev_priv->mm.wedged));
2048
		else
2049 2050
			wait_event(ring->irq_queue,
				i915_seqno_passed(
2051
					ring->get_seqno(dev, ring), seqno)
2052
				|| atomic_read(&dev_priv->mm.wedged));
2053

2054
		ring->user_irq_put(dev, ring);
2055
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
2056 2057

		trace_i915_gem_request_wait_end(dev, seqno);
2058
	}
2059
	if (atomic_read(&dev_priv->mm.wedged))
2060
		ret = -EAGAIN;
2061 2062

	if (ret && ret != -ERESTARTSYS)
2063
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2064
			  __func__, ret, seqno, ring->get_seqno(dev, ring),
2065
			  dev_priv->next_seqno);
2066 2067 2068 2069 2070 2071 2072

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2073
		i915_gem_retire_requests_ring(dev, ring);
2074 2075 2076 2077

	return ret;
}

2078 2079 2080 2081 2082
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2083
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2084
		  struct intel_ring_buffer *ring)
2085
{
2086
	return i915_do_wait_request(dev, seqno, 1, ring);
2087 2088
}

2089
static void
2090
i915_gem_flush_ring(struct drm_device *dev,
2091
		    struct drm_file *file_priv,
2092 2093 2094 2095 2096 2097 2098 2099
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2100 2101
static void
i915_gem_flush(struct drm_device *dev,
2102
	       struct drm_file *file_priv,
2103
	       uint32_t invalidate_domains,
2104 2105
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2106 2107
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2108

2109 2110
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2111

2112 2113
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2114
			i915_gem_flush_ring(dev, file_priv,
2115 2116 2117
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2118
			i915_gem_flush_ring(dev, file_priv,
2119 2120 2121
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
2122 2123
}

2124 2125 2126 2127 2128
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2129 2130
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2131 2132
{
	struct drm_device *dev = obj->dev;
2133
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2134 2135
	int ret;

2136 2137
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2138
	 */
2139
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2140 2141 2142 2143 2144

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2145 2146 2147 2148 2149
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2150 2151 2152 2153 2154 2155 2156 2157 2158
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2159
int
2160 2161 2162
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2163
	struct drm_i915_private *dev_priv = dev->dev_private;
2164
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2175 2176 2177
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2178 2179 2180 2181 2182 2183
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2184
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2185
	if (ret == -ERESTARTSYS)
2186
		return ret;
2187 2188 2189 2190
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2191 2192 2193 2194
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2195

2196 2197 2198 2199
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2200 2201
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2202

2203
	i915_gem_object_put_pages(obj);
2204
	BUG_ON(obj_priv->pages_refcount);
2205

2206
	i915_gem_info_remove_gtt(dev_priv, obj->size);
C
Chris Wilson 已提交
2207
	list_del_init(&obj_priv->list);
2208

2209 2210 2211
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;

2212 2213 2214
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2215 2216
	trace_i915_gem_object_unbind(obj);

2217
	return ret;
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2230
int
2231 2232 2233 2234
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2235
	int ret;
2236

2237 2238 2239 2240
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2241 2242 2243 2244
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2245
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2246 2247
	if (ret)
		return ret;
2248 2249

	if (HAS_BSD(dev)) {
2250
		ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2251 2252 2253 2254
		if (ret)
			return ret;
	}

2255
	return 0;
2256 2257
}

2258
static int
2259 2260
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2261
{
2262
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2263 2264 2265 2266 2267
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2268 2269 2270
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2271
	if (obj_priv->pages_refcount++ != 0)
2272 2273 2274 2275 2276 2277
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2278
	BUG_ON(obj_priv->pages != NULL);
2279
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2280 2281
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2282 2283 2284 2285 2286 2287
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2288
		page = read_cache_page_gfp(mapping, i,
2289
					   GFP_HIGHUSER |
2290
					   __GFP_COLD |
2291
					   __GFP_RECLAIMABLE |
2292
					   gfpmask);
2293 2294 2295
		if (IS_ERR(page))
			goto err_pages;

2296
		obj_priv->pages[i] = page;
2297
	}
2298 2299 2300 2301

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2302
	return 0;
2303 2304 2305 2306 2307 2308 2309 2310 2311

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2312 2313
}

2314 2315 2316 2317 2318
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2319
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2336 2337 2338 2339 2340
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2341
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2361
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2362
	int regnum = obj_priv->fence_reg;
2363
	int tile_width;
2364
	uint32_t fence_reg, val;
2365 2366 2367 2368
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2369
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2370
		     __func__, obj_priv->gtt_offset, obj->size);
2371 2372 2373
		return;
	}

2374 2375 2376
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2377
	else
2378 2379 2380 2381 2382
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2383

2384 2385 2386 2387 2388 2389
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2390 2391 2392 2393 2394 2395 2396
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2397 2398 2399 2400 2401
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2402 2403 2404 2405 2406 2407 2408
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2409
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2410 2411 2412
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2413
	uint32_t fence_size_bits;
2414

2415
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2416
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2417
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2418
		     __func__, obj_priv->gtt_offset);
2419 2420 2421
		return;
	}

2422 2423 2424 2425
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2426 2427 2428
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2429 2430 2431
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2432 2433 2434 2435 2436 2437
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2438 2439
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2454
		obj_priv = to_intel_bo(reg->obj);
2455 2456 2457 2458 2459 2460 2461 2462 2463
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2464 2465 2466 2467
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2484
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2485 2486 2487 2488 2489 2490 2491
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2505
int
2506 2507
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2508 2509
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2510
	struct drm_i915_private *dev_priv = dev->dev_private;
2511
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2512
	struct drm_i915_fence_reg *reg = NULL;
2513
	int ret;
2514

2515 2516
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2517 2518
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2519 2520 2521
		return 0;
	}

2522 2523 2524 2525 2526
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2527 2528 2529 2530 2531
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2532 2533
		break;
	case I915_TILING_Y:
2534 2535 2536 2537 2538
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2539 2540 2541
		break;
	}

2542
	ret = i915_find_fence_reg(dev, interruptible);
2543 2544
	if (ret < 0)
		return ret;
2545

2546 2547
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2548
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2549

2550 2551
	reg->obj = obj;

2552 2553
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2554
		sandybridge_write_fence_reg(reg);
2555 2556 2557
		break;
	case 5:
	case 4:
2558
		i965_write_fence_reg(reg);
2559 2560
		break;
	case 3:
2561
		i915_write_fence_reg(reg);
2562 2563
		break;
	case 2:
2564
		i830_write_fence_reg(reg);
2565 2566
		break;
	}
2567

2568 2569
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2570

2571
	return 0;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2585
	drm_i915_private_t *dev_priv = dev->dev_private;
2586
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2587 2588
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2589
	uint32_t fence_reg;
2590

2591 2592
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2593 2594
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2595 2596 2597
		break;
	case 5:
	case 4:
2598
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2599 2600
		break;
	case 3:
2601
		if (obj_priv->fence_reg >= 8)
2602
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2603
		else
2604 2605
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2606 2607

		I915_WRITE(fence_reg, 0);
2608
		break;
2609
	}
2610

2611
	reg->obj = NULL;
2612
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2613
	list_del_init(&reg->lru_list);
2614 2615
}

2616 2617 2618 2619
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2620
 * @bool: whether the wait upon the fence is interruptible
2621 2622 2623 2624 2625
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2626 2627
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2628 2629
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2630
	struct drm_i915_private *dev_priv = dev->dev_private;
2631
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2632
	struct drm_i915_fence_reg *reg;
2633 2634 2635 2636

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2637 2638 2639 2640 2641 2642
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2643 2644 2645 2646
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2647 2648
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2649 2650
		int ret;

2651
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2652 2653 2654
		if (ret)
			return ret;

2655
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2656
		if (ret)
2657
			return ret;
C
Chris Wilson 已提交
2658 2659

		reg->gpu = false;
2660 2661
	}

2662
	i915_gem_object_flush_gtt_write_domain(obj);
2663
	i915_gem_clear_fence_reg(obj);
2664 2665 2666 2667

	return 0;
}

2668 2669 2670 2671 2672 2673 2674 2675
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2676
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2677
	struct drm_mm_node *free_space;
2678
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2679
	int ret;
2680

C
Chris Wilson 已提交
2681
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2682 2683 2684 2685
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2686
	if (alignment == 0)
2687
		alignment = i915_gem_get_gtt_alignment(obj);
2688
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2689 2690 2691 2692
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2693 2694 2695
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2696
	if (obj->size > dev_priv->mm.gtt_total) {
2697 2698 2699 2700
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2701 2702 2703 2704 2705 2706
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2707
		if (obj_priv->gtt_space != NULL)
2708 2709 2710 2711 2712 2713
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2714
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2715
		if (ret)
2716
			return ret;
2717

2718 2719 2720
		goto search_free;
	}

2721
	ret = i915_gem_object_get_pages(obj, gfpmask);
2722 2723 2724
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2725 2726 2727

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2728 2729
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2730 2731
			if (ret) {
				/* now try to shrink everyone else */
2732 2733 2734
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2735 2736 2737 2738 2739 2740 2741 2742
				}

				return ret;
			}

			goto search_free;
		}

2743 2744 2745 2746 2747 2748 2749
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2750
					       obj_priv->pages,
2751
					       obj->size >> PAGE_SHIFT,
2752 2753
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2754
	if (obj_priv->agp_mem == NULL) {
2755
		i915_gem_object_put_pages(obj);
2756 2757
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2758

2759
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2760
		if (ret)
2761 2762 2763
			return ret;

		goto search_free;
2764 2765
	}

2766 2767
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2768
	i915_gem_info_add_gtt(dev_priv, obj->size);
2769

2770 2771 2772 2773
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2774 2775
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2776

C
Chris Wilson 已提交
2777 2778
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2779 2780 2781 2782 2783 2784
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2785
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2786 2787 2788 2789 2790

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2791
	if (obj_priv->pages == NULL)
2792 2793
		return;

C
Chris Wilson 已提交
2794
	trace_i915_gem_object_clflush(obj);
2795

2796
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2797 2798
}

2799
/** Flushes any GPU write domain for the object if it's dirty. */
2800
static int
2801 2802
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2803 2804
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2805
	uint32_t old_write_domain;
2806 2807

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2808
		return 0;
2809 2810

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2811
	old_write_domain = obj->write_domain;
2812
	i915_gem_flush_ring(dev, NULL,
2813 2814
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2815
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2816 2817 2818 2819

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2820 2821 2822 2823

	if (pipelined)
		return 0;

2824
	return i915_gem_object_wait_rendering(obj, true);
2825 2826 2827 2828 2829 2830
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2831 2832
	uint32_t old_write_domain;

2833 2834 2835 2836 2837 2838 2839
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2840
	old_write_domain = obj->write_domain;
2841
	obj->write_domain = 0;
C
Chris Wilson 已提交
2842 2843 2844 2845

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2846 2847 2848 2849 2850 2851 2852
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2853
	uint32_t old_write_domain;
2854 2855 2856 2857 2858 2859

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2860
	old_write_domain = obj->write_domain;
2861
	obj->write_domain = 0;
C
Chris Wilson 已提交
2862 2863 2864 2865

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2866 2867
}

2868 2869 2870 2871 2872 2873
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2874
int
2875 2876
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2877
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2878
	uint32_t old_write_domain, old_read_domains;
2879
	int ret;
2880

2881 2882 2883 2884
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2885
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2886 2887 2888
	if (ret != 0)
		return ret;

2889
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2890

2891
	if (write) {
2892
		ret = i915_gem_object_wait_rendering(obj, true);
2893 2894 2895
		if (ret)
			return ret;
	}
2896

2897 2898
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2899

2900 2901 2902 2903 2904 2905
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2906
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2907 2908
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2909 2910
	}

C
Chris Wilson 已提交
2911 2912 2913 2914
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2915 2916 2917
	return 0;
}

2918 2919 2920 2921 2922
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2923 2924
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2925
{
2926
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2927
	uint32_t old_read_domains;
2928 2929 2930 2931 2932 2933
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2934
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2935
	if (ret)
2936
		return ret;
2937

2938 2939 2940 2941 2942 2943 2944
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}

2945 2946
	i915_gem_object_flush_cpu_write_domain(obj);

2947
	old_read_domains = obj->read_domains;
2948
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2949 2950 2951

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2952
					    obj->write_domain);
2953 2954 2955 2956

	return 0;
}

2957 2958 2959 2960 2961 2962 2963 2964 2965
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2966
	uint32_t old_write_domain, old_read_domains;
2967 2968
	int ret;

2969
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2970 2971
	if (ret != 0)
		return ret;
2972

2973
	i915_gem_object_flush_gtt_write_domain(obj);
2974

2975 2976
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2977
	 */
2978
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2979

2980
	if (write) {
2981
		ret = i915_gem_object_wait_rendering(obj, true);
2982 2983 2984 2985
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2986 2987 2988
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2989 2990
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2991 2992
		i915_gem_clflush_object(obj);

2993
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2994 2995 2996 2997 2998
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2999 3000 3001 3002 3003 3004
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3005
		obj->read_domains = I915_GEM_DOMAIN_CPU;
3006 3007
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
3008

C
Chris Wilson 已提交
3009 3010 3011 3012
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3013 3014 3015
	return 0;
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3127
static void
3128
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3129 3130
{
	struct drm_device		*dev = obj->dev;
3131
	struct drm_i915_private		*dev_priv = dev->dev_private;
3132
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3133 3134
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3135
	uint32_t			old_read_domains;
3136

3137 3138
	intel_mark_busy(dev, obj);

3139 3140 3141 3142
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3143 3144
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3145 3146 3147 3148 3149 3150 3151 3152 3153
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3154 3155
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3156
		flush_domains |= obj->write_domain;
3157 3158
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3159 3160 3161 3162 3163
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3164
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3165
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3166 3167
		i915_gem_clflush_object(obj);

C
Chris Wilson 已提交
3168 3169
	old_read_domains = obj->read_domains;

3170 3171 3172 3173 3174 3175 3176 3177
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3178
	obj->read_domains = obj->pending_read_domains;
3179 3180 3181

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3182 3183
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
C
Chris Wilson 已提交
3184 3185 3186 3187

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3188 3189 3190
}

/**
3191
 * Moves the object from a partially CPU read to a full one.
3192
 *
3193 3194
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3195
 */
3196 3197
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3198
{
3199
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3200

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3212
			drm_clflush_pages(obj_priv->pages + i, 1);
3213 3214 3215 3216 3217 3218
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3219
	kfree(obj_priv->page_cpu_valid);
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3239
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3240
	uint32_t old_read_domains;
3241
	int i, ret;
3242

3243 3244
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3245

3246
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3247
	if (ret != 0)
3248
		return ret;
3249 3250 3251 3252 3253 3254
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3255

3256 3257 3258
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3259
	if (obj_priv->page_cpu_valid == NULL) {
3260 3261
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3262 3263 3264 3265
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3266 3267 3268 3269

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3270 3271
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3272 3273 3274
		if (obj_priv->page_cpu_valid[i])
			continue;

3275
		drm_clflush_pages(obj_priv->pages + i, 1);
3276 3277 3278 3279

		obj_priv->page_cpu_valid[i] = 1;
	}

3280 3281 3282 3283 3284
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3285
	old_read_domains = obj->read_domains;
3286 3287
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3288 3289 3290 3291
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3292 3293 3294 3295 3296 3297 3298 3299 3300
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
3301
				 struct drm_i915_gem_exec_object2 *entry)
3302 3303
{
	struct drm_device *dev = obj->dev;
3304
	drm_i915_private_t *dev_priv = dev->dev_private;
3305
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3306
	struct drm_i915_gem_relocation_entry __user *user_relocs;
3307
	int i, ret;
J
Jesse Barnes 已提交
3308 3309 3310 3311 3312 3313
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3314 3315 3316 3317 3318 3319 3320
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3321 3322 3323 3324 3325 3326

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3327 3328 3329 3330 3331
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
C
Chris Wilson 已提交
3332
		ret = i915_gem_object_get_fence_reg(obj, true);
J
Jesse Barnes 已提交
3333 3334 3335 3336
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
C
Chris Wilson 已提交
3337 3338

		dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
J
Jesse Barnes 已提交
3339 3340
	}

3341 3342 3343 3344 3345
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
3346
	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3347
	for (i = 0; i < entry->relocation_count; i++) {
3348
		struct drm_i915_gem_relocation_entry reloc;
3349 3350 3351
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;

3352 3353 3354 3355 3356 3357 3358 3359
		ret = __copy_from_user_inatomic(&reloc,
						user_relocs+i,
						sizeof(reloc));
		if (ret) {
			i915_gem_object_unpin(obj);
			return -EFAULT;
		}

3360
		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3361
						   reloc.target_handle);
3362 3363
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3364
			return -ENOENT;
3365
		}
3366
		target_obj_priv = to_intel_bo(target_obj);
3367

3368 3369 3370 3371 3372 3373
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3374 3375 3376 3377
			 (int) reloc.offset,
			 (int) reloc.target_handle,
			 (int) reloc.read_domains,
			 (int) reloc.write_domain,
3378
			 (int) target_obj_priv->gtt_offset,
3379 3380
			 (int) reloc.presumed_offset,
			 reloc.delta);
3381 3382
#endif

3383 3384 3385 3386 3387
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3388
				  reloc.target_handle);
3389 3390 3391 3392 3393
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3394
		/* Validate that the target is in a valid r/w GPU domain */
3395
		if (reloc.write_domain & (reloc.write_domain - 1)) {
3396 3397 3398
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3399 3400 3401 3402
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3403 3404
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3405 3406
			return -EINVAL;
		}
3407 3408
		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3409 3410 3411
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3412 3413 3414 3415
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3416 3417
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3418 3419
			return -EINVAL;
		}
3420 3421
		if (reloc.write_domain && target_obj->pending_write_domain &&
		    reloc.write_domain != target_obj->pending_write_domain) {
3422 3423 3424
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3425 3426 3427
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.write_domain,
3428 3429 3430 3431 3432 3433
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3434 3435
		target_obj->pending_read_domains |= reloc.read_domains;
		target_obj->pending_write_domain |= reloc.write_domain;
3436 3437 3438 3439

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3440
		if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
3441 3442 3443 3444
			drm_gem_object_unreference(target_obj);
			continue;
		}

3445
		/* Check that the relocation address is valid... */
3446
		if (reloc.offset > obj->size - 4) {
3447 3448
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3449 3450
				  obj, reloc.target_handle,
				  (int) reloc.offset, (int) obj->size);
3451 3452 3453 3454
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
3455
		if (reloc.offset & 3) {
3456 3457
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3458 3459
				  obj, reloc.target_handle,
				  (int) reloc.offset);
3460 3461 3462 3463 3464 3465
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
3466
		if (reloc.delta >= target_obj->size) {
3467 3468
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
3469 3470
				  obj, reloc.target_handle,
				  (int) reloc.delta, (int) target_obj->size);
3471 3472 3473 3474 3475
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3476 3477 3478 3479
		reloc.delta += target_obj_priv->gtt_offset;
		if (obj->write_domain == I915_GEM_DOMAIN_CPU) {
			uint32_t page_offset = reloc.offset & ~PAGE_MASK;
			char *vaddr;
3480

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
			vaddr = kmap_atomic(obj_priv->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
			*(uint32_t *)(vaddr + page_offset) = reloc.delta;
			kunmap_atomic(vaddr, KM_USER0);
		} else {
			uint32_t __iomem *reloc_entry;
			void __iomem *reloc_page;
			int ret;

			ret = i915_gem_object_set_to_gtt_domain(obj, 1);
			if (ret) {
				drm_gem_object_unreference(target_obj);
				i915_gem_object_unpin(obj);
				return ret;
			}

			/* Map the page containing the relocation we're going to perform.  */
			reloc.offset += obj_priv->gtt_offset;
			reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
							      reloc.offset & PAGE_MASK,
							      KM_USER0);
			reloc_entry = (uint32_t __iomem *)
				(reloc_page + (reloc.offset & ~PAGE_MASK));
			iowrite32(reloc.delta, reloc_entry);
			io_mapping_unmap_atomic(reloc_page, KM_USER0);
		}
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515

		drm_gem_object_unreference(target_obj);
	}

	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3516 3517 3518 3519
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3520 3521 3522 3523
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
3524
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3525
{
3526 3527
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3528
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3529 3530 3531 3532
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3533

3534
	spin_lock(&file_priv->mm.lock);
3535
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3536 3537 3538
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3539 3540
		ring = request->ring;
		seqno = request->seqno;
3541
	}
3542
	spin_unlock(&file_priv->mm.lock);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565

	if (seqno == 0)
		return 0;

	ret = 0;
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
		ring->user_irq_get(dev, ring);
		ret = wait_event_interruptible(ring->irq_queue,
					       i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
					       || atomic_read(&dev_priv->mm.wedged));
		ring->user_irq_put(dev, ring);

		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
	}

	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3566

3567 3568 3569
	return ret;
}

3570
static int
3571 3572
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3573
{
3574
	uint32_t exec_start, exec_len;
3575

3576 3577
	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;
3578

3579 3580
	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;
3581

3582 3583
	if (!exec_start)
		return -EINVAL;
3584

3585
	return 0;
3586 3587 3588
}

static int
3589 3590
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3591
{
3592
	int i;
3593

3594 3595 3596
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3597

3598 3599
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3600

3601 3602
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3603 3604
	}

3605 3606 3607
	return 0;
}

C
Chris Wilson 已提交
3608
static int
J
Jesse Barnes 已提交
3609 3610 3611 3612
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3613 3614 3615 3616
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3617
	struct drm_i915_gem_object *obj_priv;
3618
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3619
	struct drm_i915_gem_request *request = NULL;
3620
	int ret, i, pinned = 0;
3621
	uint64_t exec_offset;
3622
	int pin_tries, flips;
3623

3624 3625
	struct intel_ring_buffer *ring = NULL;

3626 3627 3628 3629
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3630 3631 3632 3633
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3634 3635 3636 3637
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3648 3649 3650 3651
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3652
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3653 3654
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3655 3656 3657 3658 3659
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3660
	if (args->num_cliprects != 0) {
3661 3662
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3663 3664
		if (cliprects == NULL) {
			ret = -ENOMEM;
3665
			goto pre_mutex_err;
3666
		}
3667 3668 3669 3670 3671 3672 3673 3674

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3675
			ret = -EFAULT;
3676 3677 3678 3679
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3680 3681 3682 3683 3684 3685
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3686 3687 3688
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;
3689 3690 3691

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3692 3693
		ret = -EBUSY;
		goto pre_mutex_err;
3694 3695
	}

3696
	/* Look up object handles */
3697 3698 3699 3700 3701 3702
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3703 3704
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3705
			ret = -ENOENT;
3706 3707
			goto err;
		}
3708

3709
		obj_priv = to_intel_bo(object_list[i]);
3710 3711 3712
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3713 3714
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3715
			ret = -EINVAL;
3716 3717 3718
			goto err;
		}
		obj_priv->in_execbuffer = true;
3719
	}
3720

3721 3722 3723
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3724

3725 3726 3727 3728 3729
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3730
							       &exec_list[i]);
3731 3732 3733 3734 3735 3736 3737 3738 3739
			if (ret)
				break;
			pinned = i + 1;
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3740
		if (ret != -ENOSPC || pin_tries >= 1) {
3741 3742
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3743 3744
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3745
					obj_priv = to_intel_bo(object_list[i]);
3746

3747
					total_size += object_list[i]->size;
3748 3749 3750 3751 3752
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3753
					  pinned+1, args->buffer_count,
3754 3755
					  total_size, num_fences,
					  ret);
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
				DRM_ERROR("%u objects [%u pinned, %u GTT], "
					  "%zu object bytes [%zu pinned], "
					  "%zu /%zu gtt bytes\n",
					  dev_priv->mm.object_count,
					  dev_priv->mm.pin_count,
					  dev_priv->mm.gtt_count,
					  dev_priv->mm.object_memory,
					  dev_priv->mm.pin_memory,
					  dev_priv->mm.gtt_memory,
					  dev_priv->mm.gtt_total);
3766
			}
3767 3768
			goto err;
		}
3769 3770 3771 3772

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3773
		pinned = 0;
3774 3775 3776

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3777
		if (ret && ret != -ENOSPC)
3778
			goto err;
3779 3780 3781 3782
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3783 3784 3785 3786 3787 3788
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3789

3790 3791 3792 3793 3794 3795 3796 3797
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3798 3799 3800 3801 3802 3803
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3804
	dev_priv->mm.flush_rings = 0;
3805

3806 3807 3808
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3809
		/* Compute new gpu domains and update invalidate/flush */
3810
		i915_gem_object_set_to_gpu_domain(obj);
3811 3812
	}

3813 3814 3815 3816 3817 3818 3819
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3820
		i915_gem_flush(dev, file_priv,
3821
			       dev->invalidate_domains,
3822 3823
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3824 3825
	}

3826 3827
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3828
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3829
		uint32_t old_write_domain = obj->write_domain;
3830 3831

		obj->write_domain = obj->pending_write_domain;
3832 3833 3834 3835
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);

C
Chris Wilson 已提交
3836 3837 3838
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3839 3840
	}

3841 3842 3843 3844 3845 3846 3847 3848
#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3849
	i915_gem_dump_object(batch_obj,
3850 3851 3852 3853 3854
			      args->batch_len,
			      __func__,
			      ~0);
#endif

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

			intel_ring_begin(dev, ring, 2);
			intel_ring_emit(dev, ring,
					MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(dev, ring, MI_NOOP);
			intel_ring_advance(dev, ring);
		}
	}

3884
	/* Exec the batchbuffer */
3885
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3886
					    cliprects, exec_offset);
3887 3888 3889 3890 3891 3892 3893 3894 3895
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3896
	i915_retire_commands(dev, ring);
3897

3898 3899 3900 3901 3902 3903
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
	}
3904

C
Chris Wilson 已提交
3905
	i915_add_request(dev, file_priv, request, ring);
C
Chris Wilson 已提交
3906
	request = NULL;
3907 3908

err:
3909 3910 3911
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3912 3913
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3914
			obj_priv = to_intel_bo(object_list[i]);
3915 3916
			obj_priv->in_execbuffer = false;
		}
3917
		drm_gem_object_unreference(object_list[i]);
3918
	}
3919 3920 3921

	mutex_unlock(&dev->struct_mutex);

3922
pre_mutex_err:
3923
	drm_free_large(object_list);
3924
	kfree(cliprects);
C
Chris Wilson 已提交
3925
	kfree(request);
3926 3927 3928 3929

	return ret;
}

J
Jesse Barnes 已提交
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3982
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3996
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4075 4076 4077 4078
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4079
	struct drm_i915_private *dev_priv = dev->dev_private;
4080
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4081 4082
	int ret;

4083
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4084
	WARN_ON(i915_verify_lists(dev));
4085 4086 4087 4088 4089

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4090 4091 4092 4093
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4094 4095 4096 4097 4098 4099
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4100 4101
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4102
		if (ret)
4103
			return ret;
4104
	}
J
Jesse Barnes 已提交
4105

4106 4107 4108 4109 4110 4111
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
4112
		i915_gem_info_add_pin(dev_priv, obj->size);
C
Chris Wilson 已提交
4113 4114 4115
		if (!obj_priv->active)
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.pinned_list);
4116 4117
	}

4118
	WARN_ON(i915_verify_lists(dev));
4119 4120 4121 4122 4123 4124 4125 4126
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4127
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4128

4129
	WARN_ON(i915_verify_lists(dev));
4130 4131 4132 4133 4134 4135 4136 4137 4138
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4139
		if (!obj_priv->active)
4140 4141
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
4142
		i915_gem_info_remove_pin(dev_priv, obj->size);
4143
	}
4144
	WARN_ON(i915_verify_lists(dev));
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4160
		return -ENOENT;
4161
	}
4162
	obj_priv = to_intel_bo(obj);
4163

4164 4165 4166 4167 4168 4169
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

C
Chris Wilson 已提交
4170 4171
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4172 4173 4174 4175 4176
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4177 4178 4179
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4180
		drm_gem_object_unreference(obj);
4181
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4194 4195 4196 4197 4198
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4199
	i915_gem_object_flush_cpu_write_domain(obj);
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4213
	struct drm_i915_gem_object *obj_priv;
4214
	int ret;
4215 4216 4217 4218 4219

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
4220
		return -ENOENT;
4221 4222
	}

4223
	obj_priv = to_intel_bo(obj);
4224 4225 4226 4227 4228 4229 4230

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

J
Jesse Barnes 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4256 4257
	int ret;

4258 4259 4260 4261
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4262
		return -ENOENT;
4263 4264
	}

4265 4266 4267 4268
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
4269 4270
	}

4271 4272 4273 4274
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4275
	 */
4276 4277 4278 4279 4280 4281 4282 4283
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4284 4285
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4286 4287
					    obj_priv->ring,
					    0, obj->write_domain);
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4298 4299 4300

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
4301
	return 0;
4302 4303 4304 4305 4306 4307 4308 4309 4310
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4311 4312 4313 4314 4315 4316 4317
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4318
	int ret;
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4332
		return -ENOENT;
4333
	}
4334
	obj_priv = to_intel_bo(obj);
4335

4336 4337 4338 4339 4340 4341
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

4342 4343 4344 4345 4346 4347 4348 4349
	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4350 4351
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4352

4353 4354 4355 4356 4357
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4358 4359
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4360 4361 4362 4363 4364 4365
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4366 4367 4368
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4369
	struct drm_i915_private *dev_priv = dev->dev_private;
4370
	struct drm_i915_gem_object *obj;
4371

4372 4373 4374
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4375

4376 4377 4378 4379
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4380

4381 4382
	i915_gem_info_add_obj(dev_priv, size);

4383 4384
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4385

4386
	obj->agp_type = AGP_USER_MEMORY;
4387
	obj->base.driver_private = NULL;
4388 4389 4390 4391
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4392

4393 4394 4395 4396 4397 4398
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4399

4400 4401 4402
	return 0;
}

4403
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4404
{
4405
	struct drm_device *dev = obj->dev;
4406
	drm_i915_private_t *dev_priv = dev->dev_private;
4407
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4408
	int ret;
4409

4410 4411 4412 4413 4414 4415
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4416

4417 4418
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4419

4420
	drm_gem_object_release(obj);
4421
	i915_gem_info_remove_obj(dev_priv, obj->size);
4422

4423
	kfree(obj_priv->page_cpu_valid);
4424
	kfree(obj_priv->bit_17);
4425
	kfree(obj_priv);
4426 4427
}

4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4444 4445 4446 4447 4448
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4449

4450
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4451

4452
	if (dev_priv->mm.suspended ||
4453 4454 4455
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4456 4457
		mutex_unlock(&dev->struct_mutex);
		return 0;
4458 4459
	}

4460
	ret = i915_gpu_idle(dev);
4461 4462
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4463
		return ret;
4464
	}
4465

4466 4467
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4468
		ret = i915_gem_evict_inactive(dev);
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4480
	del_timer_sync(&dev_priv->hangcheck_timer);
4481 4482

	i915_kernel_lost_context(dev);
4483
	i915_gem_cleanup_ringbuffer(dev);
4484

4485 4486
	mutex_unlock(&dev->struct_mutex);

4487 4488 4489
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4490 4491 4492
	return 0;
}

4493 4494 4495 4496
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4497
static int
4498 4499 4500 4501 4502 4503 4504
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4505
	obj = i915_gem_alloc_object(dev, 4096);
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4536 4537

static void
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4552 4553
}

4554 4555 4556 4557 4558
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4559

4560 4561 4562 4563 4564
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4565

4566
	ret = intel_init_render_ring_buffer(dev);
4567 4568 4569 4570
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4571
		ret = intel_init_bsd_ring_buffer(dev);
4572 4573
		if (ret)
			goto cleanup_render_ring;
4574
	}
4575

4576 4577
	dev_priv->next_seqno = 1;

4578 4579 4580 4581 4582 4583 4584
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4585 4586 4587 4588 4589 4590 4591 4592 4593
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4594 4595
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4596 4597 4598 4599
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4600 4601 4602 4603 4604 4605 4606
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4607 4608 4609
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4610
	if (atomic_read(&dev_priv->mm.wedged)) {
4611
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4612
		atomic_set(&dev_priv->mm.wedged, 0);
4613 4614 4615
	}

	mutex_lock(&dev->struct_mutex);
4616 4617 4618
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4619 4620
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4621
		return ret;
4622
	}
4623

4624
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4625
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4626 4627
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4628
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4629
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4630
	mutex_unlock(&dev->struct_mutex);
4631

4632 4633 4634
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4635

4636
	return 0;
4637 4638 4639 4640 4641 4642 4643 4644

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4645 4646 4647 4648 4649 4650
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4651 4652 4653
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4654
	drm_irq_uninstall(dev);
4655
	return i915_gem_idle(dev);
4656 4657 4658 4659 4660 4661 4662
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4663 4664 4665
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4666 4667 4668
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4669 4670 4671 4672 4673
}

void
i915_gem_load(struct drm_device *dev)
{
4674
	int i;
4675 4676 4677
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4678
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4679
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4680
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4681
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4682
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4683 4684
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4685 4686 4687 4688
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4689 4690
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4691 4692
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4693
	init_completion(&dev_priv->error_completion);
4694 4695 4696 4697
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4708
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4709 4710
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4711

4712
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4713 4714 4715 4716
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4717
	/* Initialize fence registers to zero */
4718 4719 4720 4721 4722 4723 4724
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4725 4726
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4727 4728
		break;
	case 3:
4729 4730 4731
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4732 4733 4734 4735
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4736
	}
4737
	i915_gem_detect_bit_6_swizzle(dev);
4738
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4739
}
4740 4741 4742 4743 4744

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4745 4746
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4747 4748 4749 4750 4751 4752 4753 4754
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4755
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4756 4757 4758 4759 4760
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4761
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4774
	kfree(phys_obj);
4775 4776 4777
	return ret;
}

4778
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4803
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4815
	obj_priv = to_intel_bo(obj);
4816 4817 4818
	if (!obj_priv->phys_obj)
		return;

4819
	ret = i915_gem_object_get_pages(obj, 0);
4820 4821 4822 4823 4824 4825
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4826
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4827 4828 4829 4830 4831
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4832
	drm_clflush_pages(obj_priv->pages, page_count);
4833
	drm_agp_chipset_flush(dev);
4834 4835

	i915_gem_object_put_pages(obj);
4836 4837 4838 4839 4840 4841 4842
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4843 4844 4845
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4856
	obj_priv = to_intel_bo(obj);
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4867
						obj->size, align);
4868
		if (ret) {
4869
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4870 4871 4872 4873 4874 4875 4876 4877
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4878
	ret = i915_gem_object_get_pages(obj, 0);
4879 4880 4881 4882 4883 4884 4885 4886
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4887
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4888 4889 4890 4891 4892 4893
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4894 4895
	i915_gem_object_put_pages(obj);

4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4906
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4907 4908 4909 4910 4911 4912 4913
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4914
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4915 4916 4917 4918 4919 4920 4921
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4922

4923
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4924
{
4925
	struct drm_i915_file_private *file_priv = file->driver_priv;
4926 4927 4928 4929 4930

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4931
	spin_lock(&file_priv->mm.lock);
4932 4933 4934 4935 4936 4937 4938 4939 4940
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4941
	spin_unlock(&file_priv->mm.lock);
4942
}
4943

4944 4945 4946 4947 4948 4949 4950
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4951
		      list_empty(&dev_priv->render_ring.active_list);
4952 4953
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4954 4955 4956 4957

	return !lists_empty;
}

4958
static int
4959
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4987
rescan:
4988 4989 4990 4991 4992 4993 4994 4995 4996
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4997
		i915_gem_retire_requests(dev);
4998 4999 5000 5001 5002

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
5003
				i915_gem_object_unbind(&obj_priv->base);
5004 5005 5006 5007 5008 5009 5010 5011
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

5012 5013
		would_deadlock = 0;

5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
5032
				i915_gem_object_unbind(&obj_priv->base);
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}