i915_gem.c 159.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
M
Matthew Auld 已提交
38
#include "i915_gemfs.h"
39
#include <linux/dma-fence-array.h>
40
#include <linux/kthread.h>
41
#include <linux/reservation.h>
42
#include <linux/shmem_fs.h>
43
#include <linux/slab.h>
44
#include <linux/stop_machine.h>
45
#include <linux/swap.h>
J
Jesse Barnes 已提交
46
#include <linux/pci.h>
47
#include <linux/dma-buf.h>
48

49
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50

51 52
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
53
	if (obj->cache_dirty)
54 55
		return false;

56
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 58
		return true;

59
	return obj->pin_global; /* currently in use by HW, keep flushed */
60 61
}

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67 68 69 70
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81
				  u64 size)
82
{
83
	spin_lock(&dev_priv->mm.object_stat_lock);
84 85
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
86
	spin_unlock(&dev_priv->mm.object_stat_lock);
87 88 89
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90
				     u64 size)
91
{
92
	spin_lock(&dev_priv->mm.object_stat_lock);
93 94
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
95
	spin_unlock(&dev_priv->mm.object_stat_lock);
96 97
}

98
static int
99
i915_gem_wait_for_error(struct i915_gpu_error *error)
100 101 102
{
	int ret;

103 104
	might_sleep();

105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
110
	ret = wait_event_interruptible_timeout(error->reset_queue,
111
					       !i915_reset_backoff(error),
112
					       I915_RESET_TIMEOUT);
113 114 115 116
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
117
		return ret;
118 119
	} else {
		return 0;
120
	}
121 122
}

123
int i915_mutex_lock_interruptible(struct drm_device *dev)
124
{
125
	struct drm_i915_private *dev_priv = to_i915(dev);
126 127
	int ret;

128
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 130 131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
138

139 140
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141
			    struct drm_file *file)
142
{
143
	struct drm_i915_private *dev_priv = to_i915(dev);
144
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
145
	struct drm_i915_gem_get_aperture *args = data;
146
	struct i915_vma *vma;
147
	u64 pinned;
148

149
	pinned = ggtt->base.reserved;
150
	mutex_lock(&dev->struct_mutex);
151
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152
		if (i915_vma_is_pinned(vma))
153
			pinned += vma->node.size;
154
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155
		if (i915_vma_is_pinned(vma))
156
			pinned += vma->node.size;
157
	mutex_unlock(&dev->struct_mutex);
158

159
	args->aper_size = ggtt->base.total;
160
	args->aper_available_size = args->aper_size - pinned;
161

162 163 164
	return 0;
}

165
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173
	int err;
174

175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176
		return -EINVAL;
177

178 179 180 181 182
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
183
			     roundup_pow_of_two(obj->base.size),
184 185
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
186
		return -ENOMEM;
187 188

	vaddr = phys->vaddr;
189 190 191 192 193
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
194
		if (IS_ERR(page)) {
195
			err = PTR_ERR(page);
196 197
			goto err_phys;
		}
198 199 200 201 202 203

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

204
		put_page(page);
205 206 207
		vaddr += PAGE_SIZE;
	}

208
	i915_gem_chipset_flush(to_i915(obj->base.dev));
209 210

	st = kmalloc(sizeof(*st), GFP_KERNEL);
211
	if (!st) {
212
		err = -ENOMEM;
213 214
		goto err_phys;
	}
215 216 217

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
218
		err = -ENOMEM;
219
		goto err_phys;
220 221 222 223 224
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
225

226
	sg_dma_address(sg) = phys->busaddr;
227 228
	sg_dma_len(sg) = obj->base.size;

229
	obj->phys_handle = phys;
230

231
	__i915_gem_object_set_pages(obj, st, sg->length);
232 233

	return 0;
234 235 236

err_phys:
	drm_pci_free(obj->base.dev, phys);
237 238

	return err;
239 240
}

241 242
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
243 244
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
245 246 247 248
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

249
static void
250
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 252
				struct sg_table *pages,
				bool needs_clflush)
253
{
C
Chris Wilson 已提交
254
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255

C
Chris Wilson 已提交
256 257
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
258

259
	if (needs_clflush &&
260
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262
		drm_clflush_sg(pages);
263

264
	__start_cpu_write(obj);
265 266 267 268 269 270
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
271
	__i915_gem_object_release_shmem(obj, pages, false);
272

C
Chris Wilson 已提交
273
	if (obj->mm.dirty) {
274
		struct address_space *mapping = obj->base.filp->f_mapping;
275
		char *vaddr = obj->phys_handle->vaddr;
276 277 278
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 280 281 282 283 284 285 286 287 288 289 290 291
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
292
			if (obj->mm.madv == I915_MADV_WILLNEED)
293
				mark_page_accessed(page);
294
			put_page(page);
295 296
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
297
		obj->mm.dirty = false;
298 299
	}

300 301
	sg_free_table(pages);
	kfree(pages);
302 303

	drm_pci_free(obj->base.dev, obj->phys_handle);
304 305 306 307 308
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
309
	i915_gem_object_unpin_pages(obj);
310 311 312 313 314 315 316 317
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

318 319
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

320
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 322 323
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
324 325 326
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
327

328 329 330 331
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
332
	 */
333
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
334 335 336
	if (ret)
		return ret;

337 338 339 340 341 342 343 344 345 346 347 348 349
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

350 351 352 353
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
354
			   struct intel_rps_client *rps_client)
355
{
356
	struct i915_request *rq;
357

358
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359

360 361 362 363 364 365 366 367 368
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
369
	if (i915_request_completed(rq))
370 371
		goto out;

372 373
	/*
	 * This client is about to stall waiting for the GPU. In many cases
374 375 376 377 378 379 380 381 382 383 384 385 386 387
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
388
	if (rps_client && !i915_request_started(rq)) {
389
		if (INTEL_GEN(rq->i915) >= 6)
390
			gen6_rps_boost(rq, rps_client);
391 392
	}

393
	timeout = i915_request_wait(rq, flags, timeout);
394 395

out:
396 397
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
398 399 400 401 402 403 404 405

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
406
				 struct intel_rps_client *rps_client)
407
{
408
	unsigned int seq = __read_seqcount_begin(&resv->seq);
409
	struct dma_fence *excl;
410
	bool prune_fences = false;
411 412 413 414

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
415 416
		int ret;

417 418
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
419 420 421
		if (ret)
			return ret;

422 423 424
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
425
							     rps_client);
426
			if (timeout < 0)
427
				break;
428

429 430 431 432 433 434
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
435

436 437 438 439 440 441 442 443 444
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
445
		prune_fences = count && timeout >= 0;
446 447
	} else {
		excl = reservation_object_get_excl_rcu(resv);
448 449
	}

450
	if (excl && timeout >= 0)
451 452
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
453 454 455

	dma_fence_put(excl);

456 457
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
458 459 460
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
461
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
462 463 464 465 466
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
467 468
	}

469
	return timeout;
470 471
}

472 473
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
474
	struct i915_request *rq;
475 476
	struct intel_engine_cs *engine;

477
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
478 479 480 481 482
		return;

	rq = to_request(fence);
	engine = rq->engine;

483 484 485 486
	rcu_read_lock();
	if (engine->schedule)
		engine->schedule(rq, prio);
	rcu_read_unlock();
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

537 538 539 540 541
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
542
 * @rps_client: client (user process) to charge for any waitboosting
543
 */
544 545 546 547
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
548
		     struct intel_rps_client *rps_client)
549
{
550 551 552 553 554 555 556
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
557

558 559
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
560
						   rps_client);
561
	return timeout < 0 ? timeout : 0;
562 563 564 565 566 567
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

568
	return &fpriv->rps_client;
569 570
}

571 572 573
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
574
		     struct drm_file *file)
575 576
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
577
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
578 579 580 581

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
582
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
583 584
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
585

586
	drm_clflush_virt_range(vaddr, args->size);
587
	i915_gem_chipset_flush(to_i915(obj->base.dev));
588

589
	intel_fb_obj_flush(obj, ORIGIN_CPU);
590
	return 0;
591 592
}

593
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
594
{
595
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
596 597 598 599
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
600
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
601
	kmem_cache_free(dev_priv->objects, obj);
602 603
}

604 605
static int
i915_gem_create(struct drm_file *file,
606
		struct drm_i915_private *dev_priv,
607 608
		uint64_t size,
		uint32_t *handle_p)
609
{
610
	struct drm_i915_gem_object *obj;
611 612
	int ret;
	u32 handle;
613

614
	size = roundup(size, PAGE_SIZE);
615 616
	if (size == 0)
		return -EINVAL;
617 618

	/* Allocate the new object */
619
	obj = i915_gem_object_create(dev_priv, size);
620 621
	if (IS_ERR(obj))
		return PTR_ERR(obj);
622

623
	ret = drm_gem_handle_create(file, &obj->base, &handle);
624
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
625
	i915_gem_object_put(obj);
626 627
	if (ret)
		return ret;
628

629
	*handle_p = handle;
630 631 632
	return 0;
}

633 634 635 636 637 638
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
639
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
640
	args->size = args->pitch * args->height;
641
	return i915_gem_create(file, to_i915(dev),
642
			       args->size, &args->handle);
643 644
}

645 646 647 648 649 650
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

651 652
/**
 * Creates a new mm object and returns a handle to it.
653 654 655
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
656 657 658 659 660
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
661
	struct drm_i915_private *dev_priv = to_i915(dev);
662
	struct drm_i915_gem_create *args = data;
663

664
	i915_gem_flush_free_objects(dev_priv);
665

666
	return i915_gem_create(file, dev_priv,
667
			       args->size, &args->handle);
668 669
}

670 671 672 673 674 675 676
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

677
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
678
{
679 680 681 682 683
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
684 685 686 687 688 689 690 691 692 693
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
694 695
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
696
	 */
697

698 699
	wmb();

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

715
	if (!(obj->write_domain & flush_domains))
716 717
		return;

718
	switch (obj->write_domain) {
719
	case I915_GEM_DOMAIN_GTT:
720
		i915_gem_flush_ggtt_writes(dev_priv);
721 722 723

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
724

725
		for_each_ggtt_vma(vma, obj) {
726 727 728 729 730
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
731 732 733 734 735
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
736 737 738 739 740

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
741 742
	}

743
	obj->write_domain = 0;
744 745
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

772
static inline int
773 774
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

798 799 800 801 802 803
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
804
				    unsigned int *needs_clflush)
805 806 807
{
	int ret;

808
	lockdep_assert_held(&obj->base.dev->struct_mutex);
809

810
	*needs_clflush = 0;
811 812
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
813

814 815 816 817 818
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
819 820 821
	if (ret)
		return ret;

C
Chris Wilson 已提交
822
	ret = i915_gem_object_pin_pages(obj);
823 824 825
	if (ret)
		return ret;

826 827
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
828 829 830 831 832 833 834
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

835
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
836

837 838 839 840 841
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
842
	if (!obj->cache_dirty &&
843
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
844
		*needs_clflush = CLFLUSH_BEFORE;
845

846
out:
847
	/* return with the pages pinned */
848
	return 0;
849 850 851 852

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
853 854 855 856 857 858 859
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

860 861
	lockdep_assert_held(&obj->base.dev->struct_mutex);

862 863 864 865
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

866 867 868 869 870 871
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
872 873 874
	if (ret)
		return ret;

C
Chris Wilson 已提交
875
	ret = i915_gem_object_pin_pages(obj);
876 877 878
	if (ret)
		return ret;

879 880
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
881 882 883 884 885 886 887
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

888
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
889

890 891 892 893 894
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
895
	if (!obj->cache_dirty) {
896
		*needs_clflush |= CLFLUSH_AFTER;
897

898 899 900 901
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
902
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
903 904
			*needs_clflush |= CLFLUSH_BEFORE;
	}
905

906
out:
907
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
908
	obj->mm.dirty = true;
909
	/* return with the pages pinned */
910
	return 0;
911 912 913 914

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
915 916
}

917 918 919 920
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
921
	if (unlikely(swizzled)) {
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

939 940 941
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
942
shmem_pread_slow(struct page *page, int offset, int length,
943 944 945 946 947 948 949 950
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
951
		shmem_clflush_swizzled_range(vaddr + offset, length,
952
					     page_do_bit17_swizzling);
953 954

	if (page_do_bit17_swizzling)
955
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
956
	else
957
		ret = __copy_to_user(user_data, vaddr + offset, length);
958 959
	kunmap(page);

960
	return ret ? - EFAULT : 0;
961 962
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1039
{
1040
	void __iomem *vaddr;
1041
	unsigned long unwritten;
1042 1043

	/* We can use the cpu mem copy function because this is X86. */
1044 1045 1046 1047
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1048 1049
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1050 1051 1052 1053
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1054 1055
		io_mapping_unmap(vaddr);
	}
1056 1057 1058 1059
	return unwritten;
}

static int
1060 1061
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1062
{
1063 1064
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1065
	struct drm_mm_node node;
1066 1067 1068
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1069 1070
	int ret;

1071 1072 1073 1074 1075 1076
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1077 1078 1079
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1080 1081 1082
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1083
		ret = i915_vma_put_fence(vma);
1084 1085 1086 1087 1088
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1089
	if (IS_ERR(vma)) {
1090
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1091
		if (ret)
1092 1093
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1094 1095 1096 1097 1098 1099
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1100
	mutex_unlock(&i915->drm.struct_mutex);
1101

1102 1103 1104
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1121
					       node.start, I915_CACHE_NONE, 0);
1122 1123 1124 1125
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1126

1127
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1128
				  user_data, page_length)) {
1129 1130 1131 1132 1133 1134 1135 1136 1137
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1138
	mutex_lock(&i915->drm.struct_mutex);
1139 1140 1141 1142
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1143
				       node.start, node.size);
1144 1145
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1146
		i915_vma_unpin(vma);
1147
	}
1148 1149 1150
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1151

1152 1153 1154
	return ret;
}

1155 1156
/**
 * Reads data from the object referenced by handle.
1157 1158 1159
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1160 1161 1162 1163 1164
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1165
		     struct drm_file *file)
1166 1167
{
	struct drm_i915_gem_pread *args = data;
1168
	struct drm_i915_gem_object *obj;
1169
	int ret;
1170

1171 1172 1173 1174
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1175
		       u64_to_user_ptr(args->data_ptr),
1176 1177 1178
		       args->size))
		return -EFAULT;

1179
	obj = i915_gem_object_lookup(file, args->handle);
1180 1181
	if (!obj)
		return -ENOENT;
1182

1183
	/* Bounds check source.  */
1184
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1185
		ret = -EINVAL;
1186
		goto out;
C
Chris Wilson 已提交
1187 1188
	}

C
Chris Wilson 已提交
1189 1190
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1191 1192 1193 1194
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1195
	if (ret)
1196
		goto out;
1197

1198
	ret = i915_gem_object_pin_pages(obj);
1199
	if (ret)
1200
		goto out;
1201

1202
	ret = i915_gem_shmem_pread(obj, args);
1203
	if (ret == -EFAULT || ret == -ENODEV)
1204
		ret = i915_gem_gtt_pread(obj, args);
1205

1206 1207
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1208
	i915_gem_object_put(obj);
1209
	return ret;
1210 1211
}

1212 1213
/* This is the fast write path which cannot handle
 * page faults in the source data
1214
 */
1215

1216 1217 1218 1219
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1220
{
1221
	void __iomem *vaddr;
1222
	unsigned long unwritten;
1223

1224
	/* We can use the cpu mem copy function because this is X86. */
1225 1226
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1227
						      user_data, length);
1228 1229
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1230 1231 1232
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1233 1234
		io_mapping_unmap(vaddr);
	}
1235 1236 1237 1238

	return unwritten;
}

1239 1240 1241
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1242
 * @obj: i915 GEM object
1243
 * @args: pwrite arguments structure
1244
 */
1245
static int
1246 1247
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1248
{
1249
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1250 1251
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1252 1253 1254
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1255
	int ret;
1256

1257 1258 1259
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1278
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1279 1280 1281
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1282 1283 1284
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1285
		ret = i915_vma_put_fence(vma);
1286 1287 1288 1289 1290
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1291
	if (IS_ERR(vma)) {
1292
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1293
		if (ret)
1294
			goto out_rpm;
1295
		GEM_BUG_ON(!node.allocated);
1296
	}
D
Daniel Vetter 已提交
1297 1298 1299 1300 1301

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1302 1303
	mutex_unlock(&i915->drm.struct_mutex);

1304
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1305

1306 1307 1308 1309
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1310 1311
		/* Operation in this page
		 *
1312 1313 1314
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1315
		 */
1316
		u32 page_base = node.start;
1317 1318
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1329
		/* If we get a fault while copying data, then (presumably) our
1330 1331
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1332 1333
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1334
		 */
1335
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1336 1337 1338
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1339
		}
1340

1341 1342 1343
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1344
	}
1345
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1346 1347

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1348
out_unpin:
1349 1350 1351
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1352
				       node.start, node.size);
1353 1354
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1355
		i915_vma_unpin(vma);
1356
	}
1357
out_rpm:
1358
	intel_runtime_pm_put(i915);
1359
out_unlock:
1360
	mutex_unlock(&i915->drm.struct_mutex);
1361
	return ret;
1362 1363
}

1364
static int
1365
shmem_pwrite_slow(struct page *page, int offset, int length,
1366 1367 1368 1369
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1370
{
1371 1372
	char *vaddr;
	int ret;
1373

1374
	vaddr = kmap(page);
1375
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1376
		shmem_clflush_swizzled_range(vaddr + offset, length,
1377
					     page_do_bit17_swizzling);
1378
	if (page_do_bit17_swizzling)
1379 1380
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1381
	else
1382
		ret = __copy_from_user(vaddr + offset, user_data, length);
1383
	if (needs_clflush_after)
1384
		shmem_clflush_swizzled_range(vaddr + offset, length,
1385
					     page_do_bit17_swizzling);
1386
	kunmap(page);
1387

1388
	return ret ? -EFAULT : 0;
1389 1390
}

1391 1392 1393 1394 1395
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1396
static int
1397 1398 1399 1400
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1401
{
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1434
	unsigned int needs_clflush;
1435 1436
	unsigned int offset, idx;
	int ret;
1437

1438
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1439 1440 1441
	if (ret)
		return ret;

1442 1443 1444 1445
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1446

1447 1448 1449
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1450

1451 1452 1453 1454 1455 1456 1457
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1458

1459 1460 1461 1462 1463 1464
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1465

1466 1467 1468
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1469

1470 1471 1472 1473
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1474
		if (ret)
1475
			break;
1476

1477 1478 1479
		remain -= length;
		user_data += length;
		offset = 0;
1480
	}
1481

1482
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1483
	i915_gem_obj_finish_shmem_access(obj);
1484
	return ret;
1485 1486 1487 1488
}

/**
 * Writes data to the object referenced by handle.
1489 1490 1491
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1492 1493 1494 1495 1496
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1497
		      struct drm_file *file)
1498 1499
{
	struct drm_i915_gem_pwrite *args = data;
1500
	struct drm_i915_gem_object *obj;
1501 1502 1503 1504 1505 1506
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1507
		       u64_to_user_ptr(args->data_ptr),
1508 1509 1510
		       args->size))
		return -EFAULT;

1511
	obj = i915_gem_object_lookup(file, args->handle);
1512 1513
	if (!obj)
		return -ENOENT;
1514

1515
	/* Bounds check destination. */
1516
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1517
		ret = -EINVAL;
1518
		goto err;
C
Chris Wilson 已提交
1519 1520
	}

C
Chris Wilson 已提交
1521 1522
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1523 1524 1525 1526 1527 1528
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1529 1530 1531 1532 1533
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1534 1535 1536
	if (ret)
		goto err;

1537
	ret = i915_gem_object_pin_pages(obj);
1538
	if (ret)
1539
		goto err;
1540

D
Daniel Vetter 已提交
1541
	ret = -EFAULT;
1542 1543 1544 1545 1546 1547
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1548
	if (!i915_gem_object_has_struct_page(obj) ||
1549
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1550 1551
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1552 1553
		 * textures). Fallback to the shmem path in that case.
		 */
1554
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1555

1556
	if (ret == -EFAULT || ret == -ENOSPC) {
1557 1558
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1559
		else
1560
			ret = i915_gem_shmem_pwrite(obj, args);
1561
	}
1562

1563
	i915_gem_object_unpin_pages(obj);
1564
err:
C
Chris Wilson 已提交
1565
	i915_gem_object_put(obj);
1566
	return ret;
1567 1568
}

1569 1570 1571 1572 1573 1574
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1575 1576
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1577
	for_each_ggtt_vma(vma, obj) {
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1588
	spin_lock(&i915->mm.obj_lock);
1589
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1590 1591
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1592 1593
}

1594
/**
1595 1596
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1597 1598 1599
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1600 1601 1602
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1603
			  struct drm_file *file)
1604 1605
{
	struct drm_i915_gem_set_domain *args = data;
1606
	struct drm_i915_gem_object *obj;
1607 1608
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1609
	int err;
1610

1611
	/* Only handle setting domains to types used by the CPU. */
1612
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1613 1614 1615 1616 1617 1618 1619 1620
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1621
	obj = i915_gem_object_lookup(file, args->handle);
1622 1623
	if (!obj)
		return -ENOENT;
1624

1625 1626 1627 1628
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1629
	err = i915_gem_object_wait(obj,
1630 1631 1632 1633
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1634
	if (err)
C
Chris Wilson 已提交
1635
		goto out;
1636

T
Tina Zhang 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1650 1651 1652 1653 1654 1655 1656 1657 1658
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1659
		goto out;
1660 1661 1662

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1663
		goto out_unpin;
1664

1665 1666 1667 1668
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1669
	else
1670
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1671

1672 1673
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1674

1675
	mutex_unlock(&dev->struct_mutex);
1676

1677
	if (write_domain != 0)
1678 1679
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1680

C
Chris Wilson 已提交
1681
out_unpin:
1682
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1683 1684
out:
	i915_gem_object_put(obj);
1685
	return err;
1686 1687 1688 1689
}

/**
 * Called when user space has done writes to this buffer
1690 1691 1692
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1693 1694 1695
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1696
			 struct drm_file *file)
1697 1698
{
	struct drm_i915_gem_sw_finish *args = data;
1699
	struct drm_i915_gem_object *obj;
1700

1701
	obj = i915_gem_object_lookup(file, args->handle);
1702 1703
	if (!obj)
		return -ENOENT;
1704

T
Tina Zhang 已提交
1705 1706 1707 1708 1709
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1710
	/* Pinned buffers may be scanout, so flush the cache */
1711
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1712
	i915_gem_object_put(obj);
1713 1714

	return 0;
1715 1716 1717
}

/**
1718 1719 1720 1721 1722
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1723 1724 1725
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1736 1737 1738
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1739
		    struct drm_file *file)
1740 1741
{
	struct drm_i915_gem_mmap *args = data;
1742
	struct drm_i915_gem_object *obj;
1743 1744
	unsigned long addr;

1745 1746 1747
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1748
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1749 1750
		return -ENODEV;

1751 1752
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1753
		return -ENOENT;
1754

1755 1756 1757
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1758
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1759
		i915_gem_object_put(obj);
1760
		return -ENXIO;
1761 1762
	}

1763
	addr = vm_mmap(obj->base.filp, 0, args->size,
1764 1765
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1766 1767 1768 1769
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1770
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1771
			i915_gem_object_put(obj);
1772 1773
			return -EINTR;
		}
1774 1775 1776 1777 1778 1779 1780
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1781 1782

		/* This may race, but that's ok, it only gets set */
1783
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1784
	}
C
Chris Wilson 已提交
1785
	i915_gem_object_put(obj);
1786 1787 1788 1789 1790 1791 1792 1793
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1794 1795
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1796
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1797 1798
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1819 1820 1821
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1849
	return 2;
1850 1851
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1863 1864
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1865
		min_t(unsigned int, chunk,
1866
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1867 1868 1869 1870 1871 1872 1873 1874

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1875 1876
/**
 * i915_gem_fault - fault a page into the GTT
1877
 * @vmf: fault info
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1889 1890 1891
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1892
 */
1893
int i915_gem_fault(struct vm_fault *vmf)
1894
{
1895
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1896
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1897
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1898
	struct drm_device *dev = obj->base.dev;
1899 1900
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1901
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1902
	struct i915_vma *vma;
1903
	pgoff_t page_offset;
1904
	unsigned int flags;
1905
	int ret;
1906

1907
	/* We don't use vmf->pgoff since that has the fake offset */
1908
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1909

C
Chris Wilson 已提交
1910 1911
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1912
	/* Try to flush the object off the GPU first without holding the lock.
1913
	 * Upon acquiring the lock, we will perform our sanity checks and then
1914 1915 1916
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1917 1918 1919 1920
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1921
	if (ret)
1922 1923
		goto err;

1924 1925 1926 1927
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1928 1929 1930 1931 1932
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1933

1934
	/* Access to snoopable pages through the GTT is incoherent. */
1935
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1936
		ret = -EFAULT;
1937
		goto err_unlock;
1938 1939
	}

1940 1941 1942 1943 1944 1945 1946 1947
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1948
	/* Now pin it into the GTT as needed */
1949
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1950 1951
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1952
		struct i915_ggtt_view view =
1953
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1954

1955 1956 1957 1958 1959
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1960 1961
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1962 1963
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1964
		goto err_unlock;
C
Chris Wilson 已提交
1965
	}
1966

1967 1968
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1969
		goto err_unpin;
1970

1971
	ret = i915_vma_pin_fence(vma);
1972
	if (ret)
1973
		goto err_unpin;
1974

1975
	/* Finally, remap it using the new GTT offset */
1976
	ret = remap_io_mapping(area,
1977
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1978
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1979
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1980
			       &ggtt->iomap);
1981 1982
	if (ret)
		goto err_fence;
1983

1984 1985 1986 1987 1988 1989
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1990 1991
	i915_vma_set_ggtt_write(vma);

1992
err_fence:
1993
	i915_vma_unpin_fence(vma);
1994
err_unpin:
C
Chris Wilson 已提交
1995
	__i915_vma_unpin(vma);
1996
err_unlock:
1997
	mutex_unlock(&dev->struct_mutex);
1998 1999
err_rpm:
	intel_runtime_pm_put(dev_priv);
2000
	i915_gem_object_unpin_pages(obj);
2001
err:
2002
	switch (ret) {
2003
	case -EIO:
2004 2005 2006 2007 2008 2009 2010
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011 2012 2013
			ret = VM_FAULT_SIGBUS;
			break;
		}
2014
	case -EAGAIN:
D
Daniel Vetter 已提交
2015 2016 2017 2018
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2019
		 */
2020 2021
	case 0:
	case -ERESTARTSYS:
2022
	case -EINTR:
2023 2024 2025 2026 2027
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2028 2029
		ret = VM_FAULT_NOPAGE;
		break;
2030
	case -ENOMEM:
2031 2032
		ret = VM_FAULT_OOM;
		break;
2033
	case -ENOSPC:
2034
	case -EFAULT:
2035 2036
		ret = VM_FAULT_SIGBUS;
		break;
2037
	default:
2038
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2039 2040
		ret = VM_FAULT_SIGBUS;
		break;
2041
	}
2042
	return ret;
2043 2044
}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2056
	for_each_ggtt_vma(vma, obj)
2057 2058 2059
		i915_vma_unset_userfault(vma);
}

2060 2061 2062 2063
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2064
 * Preserve the reservation of the mmapping with the DRM core code, but
2065 2066 2067 2068 2069 2070 2071 2072 2073
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2074
void
2075
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2076
{
2077 2078
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2079 2080 2081
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2082 2083 2084 2085
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2086
	 */
2087
	lockdep_assert_held(&i915->drm.struct_mutex);
2088
	intel_runtime_pm_get(i915);
2089

2090
	if (!obj->userfault_count)
2091
		goto out;
2092

2093
	__i915_gem_object_release_mmap(obj);
2094 2095 2096 2097 2098 2099 2100 2101 2102

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2103 2104 2105

out:
	intel_runtime_pm_put(i915);
2106 2107
}

2108
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2109
{
2110
	struct drm_i915_gem_object *obj, *on;
2111
	int i;
2112

2113 2114 2115 2116 2117 2118
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2119

2120
	list_for_each_entry_safe(obj, on,
2121 2122
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2123 2124 2125 2126 2127 2128 2129 2130

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2141 2142 2143 2144

		if (!reg->vma)
			continue;

2145
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2146 2147
		reg->dirty = true;
	}
2148 2149
}

2150 2151
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2152
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2153
	int err;
2154

2155
	err = drm_gem_create_mmap_offset(&obj->base);
2156
	if (likely(!err))
2157
		return 0;
2158

2159 2160 2161 2162 2163
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2164

2165
		i915_gem_drain_freed_objects(dev_priv);
2166
		err = drm_gem_create_mmap_offset(&obj->base);
2167 2168 2169 2170
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2171

2172
	return err;
2173 2174 2175 2176 2177 2178 2179
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2180
int
2181 2182
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2183
		  uint32_t handle,
2184
		  uint64_t *offset)
2185
{
2186
	struct drm_i915_gem_object *obj;
2187 2188
	int ret;

2189
	obj = i915_gem_object_lookup(file, handle);
2190 2191
	if (!obj)
		return -ENOENT;
2192

2193
	ret = i915_gem_object_create_mmap_offset(obj);
2194 2195
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2196

C
Chris Wilson 已提交
2197
	i915_gem_object_put(obj);
2198
	return ret;
2199 2200
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2222
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2223 2224
}

D
Daniel Vetter 已提交
2225 2226 2227
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2228
{
2229
	i915_gem_object_free_mmap_offset(obj);
2230

2231 2232
	if (obj->base.filp == NULL)
		return;
2233

D
Daniel Vetter 已提交
2234 2235 2236 2237 2238
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2239
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2240
	obj->mm.madv = __I915_MADV_PURGED;
2241
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2242
}
2243

2244
/* Try to discard unwanted pages */
2245
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2246
{
2247 2248
	struct address_space *mapping;

2249
	lockdep_assert_held(&obj->mm.lock);
2250
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2251

C
Chris Wilson 已提交
2252
	switch (obj->mm.madv) {
2253 2254 2255 2256 2257 2258 2259 2260 2261
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2262
	mapping = obj->base.filp->f_mapping,
2263
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2264 2265
}

2266
static void
2267 2268
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2269
{
2270 2271
	struct sgt_iter sgt_iter;
	struct page *page;
2272

2273
	__i915_gem_object_release_shmem(obj, pages, true);
2274

2275
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2276

2277
	if (i915_gem_object_needs_bit17_swizzle(obj))
2278
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2279

2280
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2281
		if (obj->mm.dirty)
2282
			set_page_dirty(page);
2283

C
Chris Wilson 已提交
2284
		if (obj->mm.madv == I915_MADV_WILLNEED)
2285
			mark_page_accessed(page);
2286

2287
		put_page(page);
2288
	}
C
Chris Wilson 已提交
2289
	obj->mm.dirty = false;
2290

2291 2292
	sg_free_table(pages);
	kfree(pages);
2293
}
C
Chris Wilson 已提交
2294

2295 2296 2297
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2298
	void __rcu **slot;
2299

2300
	rcu_read_lock();
C
Chris Wilson 已提交
2301 2302
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2303
	rcu_read_unlock();
2304 2305
}

2306 2307
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2308
{
2309
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2310
	struct sg_table *pages;
2311

C
Chris Wilson 已提交
2312
	if (i915_gem_object_has_pinned_pages(obj))
2313
		return;
2314

2315
	GEM_BUG_ON(obj->bind_count);
2316
	if (!i915_gem_object_has_pages(obj))
2317 2318 2319
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2320
	mutex_lock_nested(&obj->mm.lock, subclass);
2321 2322
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2323

2324 2325 2326
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2327 2328
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2329

2330 2331 2332 2333
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2334
	if (obj->mm.mapping) {
2335 2336
		void *ptr;

2337
		ptr = page_mask_bits(obj->mm.mapping);
2338 2339
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2340
		else
2341 2342
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2343
		obj->mm.mapping = NULL;
2344 2345
	}

2346 2347
	__i915_gem_object_reset_page_iter(obj);

2348 2349 2350
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2351 2352
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2353 2354
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2355 2356
}

2357
static bool i915_sg_trim(struct sg_table *orig_st)
2358 2359 2360 2361 2362 2363
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2364
		return false;
2365

2366
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2367
		return false;
2368 2369 2370 2371 2372 2373 2374

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2375
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2376 2377 2378 2379

	sg_free_table(orig_st);

	*orig_st = new_st;
2380
	return true;
2381 2382
}

2383
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2384
{
2385
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2386 2387
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2388
	struct address_space *mapping;
2389 2390
	struct sg_table *st;
	struct scatterlist *sg;
2391
	struct sgt_iter sgt_iter;
2392
	struct page *page;
2393
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2394
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2395
	unsigned int sg_page_sizes;
2396
	gfp_t noreclaim;
I
Imre Deak 已提交
2397
	int ret;
2398

C
Chris Wilson 已提交
2399 2400 2401 2402
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2403 2404
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2405

2406 2407
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2408
		return -ENOMEM;
2409

2410
rebuild_st:
2411 2412
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2413
		return -ENOMEM;
2414
	}
2415

2416 2417 2418 2419 2420
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2421
	mapping = obj->base.filp->f_mapping;
2422
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2423 2424
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2425 2426
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2427
	sg_page_sizes = 0;
2428
	for (i = 0; i < page_count; i++) {
2429 2430 2431 2432 2433 2434 2435
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2436
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2437 2438 2439 2440 2441 2442 2443 2444
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2445
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2446
			cond_resched();
2447

C
Chris Wilson 已提交
2448 2449 2450
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2451 2452 2453 2454
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2455
			 */
2456 2457 2458
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2471
				 * this we want __GFP_RETRY_MAYFAIL.
2472
				 */
M
Michal Hocko 已提交
2473
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2474
			}
2475 2476
		} while (1);

2477 2478 2479
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2480
			if (i) {
M
Matthew Auld 已提交
2481
				sg_page_sizes |= sg->length;
2482
				sg = sg_next(sg);
2483
			}
2484 2485 2486 2487 2488 2489
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2490 2491 2492

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2493
	}
2494
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2495
		sg_page_sizes |= sg->length;
2496
		sg_mark_end(sg);
2497
	}
2498

2499 2500 2501
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2502
	ret = i915_gem_gtt_prepare_pages(obj, st);
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2522

2523
	if (i915_gem_object_needs_bit17_swizzle(obj))
2524
		i915_gem_object_do_bit_17_swizzle(obj, st);
2525

M
Matthew Auld 已提交
2526
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2527 2528

	return 0;
2529

2530
err_sg:
2531
	sg_mark_end(sg);
2532
err_pages:
2533 2534
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2535 2536
	sg_free_table(st);
	kfree(st);
2537 2538 2539 2540 2541 2542 2543 2544 2545

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2546 2547 2548
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2549
	return ret;
2550 2551 2552
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2553
				 struct sg_table *pages,
M
Matthew Auld 已提交
2554
				 unsigned int sg_page_sizes)
2555
{
2556 2557 2558 2559
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2560
	lockdep_assert_held(&obj->mm.lock);
2561 2562 2563 2564 2565

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2566 2567

	if (i915_gem_object_is_tiled(obj) &&
2568
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2569 2570 2571 2572
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2573

M
Matthew Auld 已提交
2574 2575
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2576 2577

	/*
M
Matthew Auld 已提交
2578 2579 2580 2581 2582 2583
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2584 2585 2586 2587 2588 2589 2590
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2591 2592 2593 2594

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2595 2596 2597 2598
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2599
	int err;
2600 2601 2602 2603 2604 2605

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2606
	err = obj->ops->get_pages(obj);
2607
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2608

2609
	return err;
2610 2611
}

2612
/* Ensure that the associated pages are gathered from the backing storage
2613
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2614
 * multiple times before they are released by a single call to
2615
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2616 2617 2618
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2619
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2620
{
2621
	int err;
2622

2623 2624 2625
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2626

2627
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2628 2629
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2630 2631 2632
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2633

2634 2635 2636
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2637

2638 2639
unlock:
	mutex_unlock(&obj->mm.lock);
2640
	return err;
2641 2642
}

2643
/* The 'mapping' part of i915_gem_object_pin_map() below */
2644 2645
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2646 2647
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2648
	struct sg_table *sgt = obj->mm.pages;
2649 2650
	struct sgt_iter sgt_iter;
	struct page *page;
2651 2652
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2653
	unsigned long i = 0;
2654
	pgprot_t pgprot;
2655 2656 2657
	void *addr;

	/* A single page can always be kmapped */
2658
	if (n_pages == 1 && type == I915_MAP_WB)
2659 2660
		return kmap(sg_page(sgt->sgl));

2661 2662
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2663
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2664 2665 2666
		if (!pages)
			return NULL;
	}
2667

2668 2669
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2670 2671 2672 2673

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2674
	switch (type) {
2675 2676 2677
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2678 2679 2680 2681 2682 2683 2684 2685
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2686

2687
	if (pages != stack_pages)
M
Michal Hocko 已提交
2688
		kvfree(pages);
2689 2690 2691 2692 2693

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2694 2695
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2696
{
2697 2698 2699
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2700 2701
	int ret;

T
Tina Zhang 已提交
2702 2703
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2704

2705
	ret = mutex_lock_interruptible(&obj->mm.lock);
2706 2707 2708
	if (ret)
		return ERR_PTR(ret);

2709 2710 2711
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2712
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2713
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2714 2715
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2716 2717 2718
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2719

2720 2721 2722
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2723 2724
		pinned = false;
	}
2725
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2726

2727
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2728 2729 2730
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2731
			goto err_unpin;
2732
		}
2733 2734 2735 2736 2737 2738

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2739
		ptr = obj->mm.mapping = NULL;
2740 2741
	}

2742 2743 2744 2745
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2746
			goto err_unpin;
2747 2748
		}

2749
		obj->mm.mapping = page_pack_bits(ptr, type);
2750 2751
	}

2752 2753
out_unlock:
	mutex_unlock(&obj->mm.lock);
2754 2755
	return ptr;

2756 2757 2758 2759 2760
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2761 2762
}

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2780
	if (i915_gem_object_has_pages(obj))
2781 2782
		return -ENODEV;

2783 2784 2785
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2835
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2836
{
2837
	bool banned;
2838

2839
	atomic_inc(&ctx->guilty_count);
2840

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	banned = false;
	if (i915_gem_context_is_bannable(ctx)) {
		unsigned int score;

		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
					  &ctx->ban_score);
		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;

		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
				 ctx->name, score, yesno(banned));
	}
2852
	if (!banned)
2853 2854
		return;

2855 2856 2857 2858 2859 2860
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2861 2862 2863 2864
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2865
	atomic_inc(&ctx->active_count);
2866 2867
}

2868
struct i915_request *
2869
i915_gem_find_active_request(struct intel_engine_cs *engine)
2870
{
2871
	struct i915_request *request, *active = NULL;
2872
	unsigned long flags;
2873

2874 2875 2876 2877 2878 2879 2880 2881
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2882
	spin_lock_irqsave(&engine->timeline->lock, flags);
2883
	list_for_each_entry(request, &engine->timeline->requests, link) {
2884
		if (__i915_request_completed(request, request->global_seqno))
2885
			continue;
2886

2887
		GEM_BUG_ON(request->engine != engine);
2888 2889
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2890 2891 2892

		active = request;
		break;
2893
	}
2894
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2895

2896
	return active;
2897 2898
}

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2913 2914 2915 2916
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
2917
struct i915_request *
2918 2919
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
2920
	struct i915_request *request = NULL;
2921

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

2943 2944
	/*
	 * Prevent request submission to the hardware until we have
2945 2946
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
2947
	 * to a second via its execlists->tasklet *just* as we are
2948
	 * calling engine->init_hw() and also writing the ELSP.
2949
	 * Turning off the execlists->tasklet until the reset is over
2950
	 * prevents the race.
2951 2952 2953 2954 2955 2956 2957
	 *
	 * Note that this needs to be a single atomic operation on the
	 * tasklet (flush existing tasks, prevent new tasks) to prevent
	 * a race between reset and set-wedged. It is not, so we do the best
	 * we can atm and make sure we don't lock the machine up in the more
	 * common case of recursively being called from set-wedged from inside
	 * i915_reset.
2958
	 */
2959 2960
	if (!atomic_read(&engine->execlists.tasklet.count))
		tasklet_kill(&engine->execlists.tasklet);
2961
	tasklet_disable(&engine->execlists.tasklet);
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	/*
	 * We're using worker to queue preemption requests from the tasklet in
	 * GuC submission mode.
	 * Even though tasklet was disabled, we may still have a worker queued.
	 * Let's make sure that all workers scheduled before disabling the
	 * tasklet are completed before continuing with the reset.
	 */
	if (engine->i915->guc.preempt_wq)
		flush_workqueue(engine->i915->guc.preempt_wq);

2973 2974 2975
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2976 2977 2978
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2979 2980 2981 2982

	return request;
}

2983
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2984 2985
{
	struct intel_engine_cs *engine;
2986
	struct i915_request *request;
2987
	enum intel_engine_id id;
2988
	int err = 0;
2989

2990
	for_each_engine(engine, dev_priv, id) {
2991 2992 2993 2994
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2995
		}
2996 2997

		engine->hangcheck.active_request = request;
2998 2999
	}

3000
	i915_gem_revoke_fences(dev_priv);
3001
	intel_uc_sanitize(dev_priv);
3002 3003

	return err;
3004 3005
}

3006
static void skip_request(struct i915_request *request)
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3021 3022

	dma_fence_set_error(&request->fence, -EIO);
3023 3024
}

3025
static void engine_skip_context(struct i915_request *request)
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

3048
/* Returns the request if it was guilty of the hang */
3049
static struct i915_request *
3050
i915_gem_reset_request(struct intel_engine_cs *engine,
3051
		       struct i915_request *request)
3052
{
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3074
	if (engine_stalled(engine)) {
3075 3076
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
3077 3078 3079 3080

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
3081
	} else {
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
3099 3100
	}

3101
	return request;
3102 3103
}

3104
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3105
			   struct i915_request *request)
3106
{
3107 3108 3109 3110 3111 3112
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3113

3114 3115 3116 3117
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
3118 3119 3120
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3121 3122 3123

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3124
}
3125

3126
void i915_gem_reset(struct drm_i915_private *dev_priv)
3127
{
3128
	struct intel_engine_cs *engine;
3129
	enum intel_engine_id id;
3130

3131 3132
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3133
	i915_retire_requests(dev_priv);
3134

3135 3136 3137
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3138
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3139 3140 3141
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3153
		if (intel_engine_is_idle(engine)) {
3154
			struct i915_request *rq;
3155

3156 3157
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3158
			if (!IS_ERR(rq))
3159
				__i915_request_add(rq, false);
3160
		}
3161
	}
3162

3163
	i915_gem_restore_fences(dev_priv);
3164 3165 3166 3167 3168 3169 3170

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
3171 3172
}

3173 3174
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3175
	tasklet_enable(&engine->execlists.tasklet);
3176
	kthread_unpark(engine->breadcrumbs.signaler);
3177 3178

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3179 3180
}

3181 3182
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3183 3184 3185
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3186
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3187

3188
	for_each_engine(engine, dev_priv, id) {
3189
		engine->hangcheck.active_request = NULL;
3190
		i915_gem_reset_finish_engine(engine);
3191
	}
3192 3193
}

3194
static void nop_submit_request(struct i915_request *request)
3195 3196 3197
{
	dma_fence_set_error(&request->fence, -EIO);

3198
	i915_request_submit(request);
3199 3200
}

3201
static void nop_complete_submit_request(struct i915_request *request)
3202
{
3203 3204
	unsigned long flags;

3205
	dma_fence_set_error(&request->fence, -EIO);
3206 3207

	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3208
	__i915_request_submit(request);
3209
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3210
	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3211 3212
}

3213
void i915_gem_set_wedged(struct drm_i915_private *i915)
3214
{
3215 3216 3217
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3218 3219 3220 3221 3222 3223 3224
	if (drm_debug & DRM_UT_DRIVER) {
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3225 3226 3227
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3228 3229 3230 3231 3232
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3233 3234
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3235

3236
		engine->submit_request = nop_submit_request;
3237
		engine->schedule = NULL;
3238
	}
3239
	i915->caps.scheduler = 0;
3240 3241 3242 3243 3244

	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3245
	 */
3246
	synchronize_rcu();
3247

3248 3249 3250
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3251

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3263
	 */
3264
	synchronize_rcu();
3265

3266 3267
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3268

3269 3270
		/*
		 * Mark all pending requests as complete so that any concurrent
3271 3272 3273 3274 3275 3276 3277
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
		spin_lock_irqsave(&engine->timeline->lock, flags);
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3278 3279

		i915_gem_reset_finish_engine(engine);
3280
	}
3281

3282
	wake_up_all(&i915->gpu_error.reset_queue);
3283 3284
}

3285 3286 3287 3288 3289 3290 3291 3292 3293
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3294 3295
	/*
	 * Before unwedging, make sure that all pending operations
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3306
			struct i915_request *rq;
3307 3308 3309 3310 3311 3312

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

3313 3314
			/*
			 * We can't use our normal waiter as we want to
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}
3329 3330
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3331

3332 3333
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3334 3335 3336 3337 3338 3339 3340 3341
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3342
	i915_gem_contexts_lost(i915);
3343 3344 3345 3346 3347 3348 3349

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3350
static void
3351 3352
i915_gem_retire_work_handler(struct work_struct *work)
{
3353
	struct drm_i915_private *dev_priv =
3354
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3355
	struct drm_device *dev = &dev_priv->drm;
3356

3357
	/* Come back later if the device is busy... */
3358
	if (mutex_trylock(&dev->struct_mutex)) {
3359
		i915_retire_requests(dev_priv);
3360
		mutex_unlock(&dev->struct_mutex);
3361
	}
3362

3363 3364
	/*
	 * Keep the retire handler running until we are finally idle.
3365 3366 3367
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3368
	if (READ_ONCE(dev_priv->gt.awake))
3369 3370
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3371
				   round_jiffies_up_relative(HZ));
3372
}
3373

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3433 3434 3435 3436 3437 3438 3439
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3440 3441 3442 3443
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3444
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3445
	unsigned int epoch = I915_EPOCH_INVALID;
3446 3447 3448 3449 3450
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3451 3452
	/*
	 * Wait for last execlists context complete, but bail out in case a
3453 3454 3455 3456 3457
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3458
	 */
3459 3460 3461 3462
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3463 3464 3465 3466

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3467
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3468 3469 3470 3471 3472 3473 3474
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3475 3476 3477 3478
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3479
	if (new_requests_since_last_retire(dev_priv))
3480
		goto out_unlock;
3481

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(dev_priv->drm.irq);

3495
	intel_engines_park(dev_priv);
3496 3497
	i915_gem_timelines_park(dev_priv);

3498
	i915_pmu_gt_parked(dev_priv);
3499

3500 3501
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
3502 3503
	epoch = dev_priv->gt.epoch;
	GEM_BUG_ON(epoch == I915_EPOCH_INVALID);
3504
	rearm_hangcheck = false;
3505

3506 3507
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
3508 3509 3510

	intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);

3511 3512
	intel_runtime_pm_put(dev_priv);
out_unlock:
3513
	mutex_unlock(&dev_priv->drm.struct_mutex);
3514

3515 3516 3517 3518
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3519
	}
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3537 3538
}

3539 3540
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3541
	struct drm_i915_private *i915 = to_i915(gem->dev);
3542 3543
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3544
	struct i915_lut_handle *lut, *ln;
3545

3546 3547 3548 3549 3550 3551
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3552
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3553 3554 3555 3556
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3557 3558 3559 3560 3561 3562 3563
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3564
			i915_vma_close(vma);
3565

3566 3567
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3568

3569 3570
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3571
	}
3572 3573

	mutex_unlock(&i915->drm.struct_mutex);
3574 3575
}

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3587 3588
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3589 3590 3591
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3592 3593 3594 3595 3596 3597 3598
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3599
 *  -EAGAIN: incomplete, restart syscall
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3616 3617
	ktime_t start;
	long ret;
3618

3619 3620 3621
	if (args->flags != 0)
		return -EINVAL;

3622
	obj = i915_gem_object_lookup(file, args->bo_handle);
3623
	if (!obj)
3624 3625
		return -ENOENT;

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3647 3648 3649 3650

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3651 3652
	}

C
Chris Wilson 已提交
3653
	i915_gem_object_put(obj);
3654
	return ret;
3655 3656
}

3657
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3658
{
3659
	int ret, i;
3660

3661 3662 3663 3664 3665
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3666

3667 3668 3669
	return 0;
}

3670 3671
static int wait_for_engines(struct drm_i915_private *i915)
{
3672
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3673 3674
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3675
		GEM_TRACE_DUMP();
3676 3677
		i915_gem_set_wedged(i915);
		return -EIO;
3678 3679 3680 3681 3682
	}

	return 0;
}

3683 3684 3685 3686
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3687 3688 3689 3690
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3701
		i915_retire_requests(i915);
3702 3703

		ret = wait_for_engines(i915);
3704 3705
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3706
	}
3707

3708
	return ret;
3709 3710
}

3711 3712
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3713 3714 3715 3716 3717 3718 3719
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3720
	obj->write_domain = 0;
3721 3722 3723 3724
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3725
	if (!READ_ONCE(obj->pin_global))
3726 3727 3728 3729 3730 3731 3732
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3757
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3778
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3779 3780 3781 3782 3783
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3784 3785
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3786
	if (write) {
3787 3788
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3789 3790 3791 3792 3793 3794 3795
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3796 3797
/**
 * Moves a single object to the GTT read, and possibly write domain.
3798 3799
 * @obj: object to act on
 * @write: ask for write access or read only
3800 3801 3802 3803
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3804
int
3805
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3806
{
3807
	int ret;
3808

3809
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3810

3811 3812 3813 3814 3815 3816
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3817 3818 3819
	if (ret)
		return ret;

3820
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3821 3822
		return 0;

3823 3824 3825 3826 3827 3828 3829 3830
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3831
	ret = i915_gem_object_pin_pages(obj);
3832 3833 3834
	if (ret)
		return ret;

3835
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3836

3837 3838 3839 3840
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3841
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3842 3843
		mb();

3844 3845 3846
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3847 3848
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3849
	if (write) {
3850 3851
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3852
		obj->mm.dirty = true;
3853 3854
	}

C
Chris Wilson 已提交
3855
	i915_gem_object_unpin_pages(obj);
3856 3857 3858
	return 0;
}

3859 3860
/**
 * Changes the cache-level of an object across all VMA.
3861 3862
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3874 3875 3876
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3877
	struct i915_vma *vma;
3878
	int ret;
3879

3880 3881
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3882
	if (obj->cache_level == cache_level)
3883
		return 0;
3884

3885 3886 3887 3888 3889
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3890 3891
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3892 3893 3894
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3895
		if (i915_vma_is_pinned(vma)) {
3896 3897 3898 3899
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3900 3901
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3913 3914
	}

3915 3916 3917 3918 3919 3920 3921
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3922
	if (obj->bind_count) {
3923 3924 3925 3926
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3927 3928 3929 3930 3931 3932
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3933 3934 3935
		if (ret)
			return ret;

3936 3937
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3954
			for_each_ggtt_vma(vma, obj) {
3955 3956 3957 3958
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3959 3960 3961 3962 3963 3964 3965 3966
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3967 3968
		}

3969
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3970 3971 3972 3973 3974 3975 3976
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3977 3978
	}

3979
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3980
		vma->node.color = cache_level;
3981
	i915_gem_object_set_cache_coherency(obj, cache_level);
3982
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3983

3984 3985 3986
	return 0;
}

B
Ben Widawsky 已提交
3987 3988
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3989
{
B
Ben Widawsky 已提交
3990
	struct drm_i915_gem_caching *args = data;
3991
	struct drm_i915_gem_object *obj;
3992
	int err = 0;
3993

3994 3995 3996 3997 3998 3999
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4000

4001 4002 4003 4004 4005 4006
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4007 4008 4009 4010
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4011 4012 4013 4014
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4015 4016 4017
out:
	rcu_read_unlock();
	return err;
4018 4019
}

B
Ben Widawsky 已提交
4020 4021
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4022
{
4023
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4024
	struct drm_i915_gem_caching *args = data;
4025 4026
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4027
	int ret = 0;
4028

B
Ben Widawsky 已提交
4029 4030
	switch (args->caching) {
	case I915_CACHING_NONE:
4031 4032
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4033
	case I915_CACHING_CACHED:
4034 4035 4036 4037 4038 4039
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4040
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4041 4042
			return -ENODEV;

4043 4044
		level = I915_CACHE_LLC;
		break;
4045
	case I915_CACHING_DISPLAY:
4046
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4047
		break;
4048 4049 4050 4051
	default:
		return -EINVAL;
	}

4052 4053 4054 4055
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4065 4066 4067 4068 4069 4070 4071
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4072
	if (ret)
4073
		goto out;
B
Ben Widawsky 已提交
4074

4075 4076 4077
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4078 4079 4080

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4081 4082 4083

out:
	i915_gem_object_put(obj);
4084 4085 4086
	return ret;
}

4087
/*
4088 4089 4090 4091
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4092
 */
C
Chris Wilson 已提交
4093
struct i915_vma *
4094 4095
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4096 4097
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4098
{
C
Chris Wilson 已提交
4099
	struct i915_vma *vma;
4100 4101
	int ret;

4102 4103
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4104
	/* Mark the global pin early so that we account for the
4105 4106
	 * display coherency whilst setting up the cache domains.
	 */
4107
	obj->pin_global++;
4108

4109 4110 4111 4112 4113 4114 4115 4116 4117
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4118
	ret = i915_gem_object_set_cache_level(obj,
4119 4120
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4121 4122
	if (ret) {
		vma = ERR_PTR(ret);
4123
		goto err_unpin_global;
C
Chris Wilson 已提交
4124
	}
4125

4126 4127
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4128 4129 4130 4131
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4132
	 */
4133
	vma = ERR_PTR(-ENOSPC);
4134 4135
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4136
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4137 4138 4139 4140
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4141
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4142
	if (IS_ERR(vma))
4143
		goto err_unpin_global;
4144

4145 4146
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4147
	__i915_gem_object_flush_for_display(obj);
4148

4149 4150 4151
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4152
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4153

C
Chris Wilson 已提交
4154
	return vma;
4155

4156 4157
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4158
	return vma;
4159 4160 4161
}

void
C
Chris Wilson 已提交
4162
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4163
{
4164
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4165

4166
	if (WARN_ON(vma->obj->pin_global == 0))
4167 4168
		return;

4169
	if (--vma->obj->pin_global == 0)
4170
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4171

4172
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4173
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4174

C
Chris Wilson 已提交
4175
	i915_vma_unpin(vma);
4176 4177
}

4178 4179
/**
 * Moves a single object to the CPU read, and possibly write domain.
4180 4181
 * @obj: object to act on
 * @write: requesting write or read-only access
4182 4183 4184 4185
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4186
int
4187
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4188 4189 4190
{
	int ret;

4191
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4192

4193 4194 4195 4196 4197 4198
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4199 4200 4201
	if (ret)
		return ret;

4202
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4203

4204
	/* Flush the CPU cache if it's still invalid. */
4205
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4206
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4207
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4208 4209 4210 4211 4212
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4213
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4214 4215 4216 4217

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4218 4219
	if (write)
		__start_cpu_write(obj);
4220 4221 4222 4223

	return 0;
}

4224 4225 4226
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4227 4228 4229 4230
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4231 4232 4233
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4234
static int
4235
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4236
{
4237
	struct drm_i915_private *dev_priv = to_i915(dev);
4238
	struct drm_i915_file_private *file_priv = file->driver_priv;
4239
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4240
	struct i915_request *request, *target = NULL;
4241
	long ret;
4242

4243 4244 4245
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4246

4247
	spin_lock(&file_priv->mm.lock);
4248
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4249 4250
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4251

4252 4253 4254 4255
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4256

4257
		target = request;
4258
	}
4259
	if (target)
4260
		i915_request_get(target);
4261
	spin_unlock(&file_priv->mm.lock);
4262

4263
	if (target == NULL)
4264
		return 0;
4265

4266
	ret = i915_request_wait(target,
4267 4268
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4269
	i915_request_put(target);
4270

4271
	return ret < 0 ? ret : 0;
4272 4273
}

C
Chris Wilson 已提交
4274
struct i915_vma *
4275 4276
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4277
			 u64 size,
4278 4279
			 u64 alignment,
			 u64 flags)
4280
{
4281 4282
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4283 4284
	struct i915_vma *vma;
	int ret;
4285

4286 4287
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4288 4289
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4320
	vma = i915_vma_instance(obj, vm, view);
4321
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4322
		return vma;
4323 4324

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4325 4326 4327
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4328

4329
			if (flags & PIN_MAPPABLE &&
4330
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4331 4332 4333
				return ERR_PTR(-ENOSPC);
		}

4334 4335
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4336 4337 4338
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4339
		     !!(flags & PIN_MAPPABLE),
4340
		     i915_vma_is_map_and_fenceable(vma));
4341 4342
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4343
			return ERR_PTR(ret);
4344 4345
	}

C
Chris Wilson 已提交
4346 4347 4348
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4349

C
Chris Wilson 已提交
4350
	return vma;
4351 4352
}

4353
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4368 4369 4370 4371 4372 4373 4374 4375 4376
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4377 4378
}

4379
static __always_inline unsigned int
4380
__busy_set_if_active(const struct dma_fence *fence,
4381 4382
		     unsigned int (*flag)(unsigned int id))
{
4383
	struct i915_request *rq;
4384

4385 4386 4387 4388
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4389
	 *
4390
	 * Note we only report on the status of native fences.
4391
	 */
4392 4393 4394 4395
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4396 4397
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4398 4399
		return 0;

4400
	return flag(rq->engine->uabi_id);
4401 4402
}

4403
static __always_inline unsigned int
4404
busy_check_reader(const struct dma_fence *fence)
4405
{
4406
	return __busy_set_if_active(fence, __busy_read_flag);
4407 4408
}

4409
static __always_inline unsigned int
4410
busy_check_writer(const struct dma_fence *fence)
4411
{
4412 4413 4414 4415
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4416 4417
}

4418 4419
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4420
		    struct drm_file *file)
4421 4422
{
	struct drm_i915_gem_busy *args = data;
4423
	struct drm_i915_gem_object *obj;
4424 4425
	struct reservation_object_list *list;
	unsigned int seq;
4426
	int err;
4427

4428
	err = -ENOENT;
4429 4430
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4431
	if (!obj)
4432
		goto out;
4433

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4452

4453 4454
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4455

4456 4457 4458 4459
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4460

4461 4462 4463 4464 4465 4466
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4467
	}
4468

4469 4470 4471 4472
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4473 4474 4475
out:
	rcu_read_unlock();
	return err;
4476 4477 4478 4479 4480 4481
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4482
	return i915_gem_ring_throttle(dev, file_priv);
4483 4484
}

4485 4486 4487 4488
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4489
	struct drm_i915_private *dev_priv = to_i915(dev);
4490
	struct drm_i915_gem_madvise *args = data;
4491
	struct drm_i915_gem_object *obj;
4492
	int err;
4493 4494 4495 4496 4497 4498 4499 4500 4501

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4502
	obj = i915_gem_object_lookup(file_priv, args->handle);
4503 4504 4505 4506 4507 4508
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4509

4510
	if (i915_gem_object_has_pages(obj) &&
4511
	    i915_gem_object_is_tiled(obj) &&
4512
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4513 4514
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4515
			__i915_gem_object_unpin_pages(obj);
4516 4517 4518
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4519
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4520
			__i915_gem_object_pin_pages(obj);
4521 4522
			obj->mm.quirked = true;
		}
4523 4524
	}

C
Chris Wilson 已提交
4525 4526
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4527

C
Chris Wilson 已提交
4528
	/* if the object is no longer attached, discard its backing storage */
4529 4530
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4531 4532
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4533
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4534
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4535

4536
out:
4537
	i915_gem_object_put(obj);
4538
	return err;
4539 4540
}

4541
static void
4542
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4543 4544 4545 4546
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4547
	intel_fb_obj_flush(obj, ORIGIN_CS);
4548 4549
}

4550 4551
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4552
{
4553 4554
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4555
	INIT_LIST_HEAD(&obj->vma_list);
4556
	INIT_LIST_HEAD(&obj->lut_list);
4557
	INIT_LIST_HEAD(&obj->batch_pool_link);
4558

4559 4560
	obj->ops = ops;

4561 4562 4563
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4564
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4565
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4566 4567 4568 4569

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4570

4571
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4572 4573
}

4574
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4575 4576
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4577

4578 4579
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4580 4581

	.pwrite = i915_gem_object_pwrite_gtt,
4582 4583
};

M
Matthew Auld 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4608
struct drm_i915_gem_object *
4609
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4610
{
4611
	struct drm_i915_gem_object *obj;
4612
	struct address_space *mapping;
4613
	unsigned int cache_level;
D
Daniel Vetter 已提交
4614
	gfp_t mask;
4615
	int ret;
4616

4617 4618 4619 4620 4621
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4622
	if (size >> PAGE_SHIFT > INT_MAX)
4623 4624 4625 4626 4627
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4628
	obj = i915_gem_object_alloc(dev_priv);
4629
	if (obj == NULL)
4630
		return ERR_PTR(-ENOMEM);
4631

M
Matthew Auld 已提交
4632
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4633 4634
	if (ret)
		goto fail;
4635

4636
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4637
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4638 4639 4640 4641 4642
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4643
	mapping = obj->base.filp->f_mapping;
4644
	mapping_set_gfp_mask(mapping, mask);
4645
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4646

4647
	i915_gem_object_init(obj, &i915_gem_object_ops);
4648

4649 4650
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4651

4652
	if (HAS_LLC(dev_priv))
4653
		/* On some devices, we can have the GPU use the LLC (the CPU
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4665 4666 4667
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4668

4669
	i915_gem_object_set_cache_coherency(obj, cache_level);
4670

4671 4672
	trace_i915_gem_object_create(obj);

4673
	return obj;
4674 4675 4676 4677

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4678 4679
}

4680 4681 4682 4683 4684 4685 4686 4687
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4688
	if (obj->mm.madv != I915_MADV_WILLNEED)
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4704 4705
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4706
{
4707
	struct drm_i915_gem_object *obj, *on;
4708

4709
	intel_runtime_pm_get(i915);
4710
	llist_for_each_entry_safe(obj, on, freed, freed) {
4711 4712 4713 4714
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4715 4716
		mutex_lock(&i915->drm.struct_mutex);

4717 4718 4719 4720 4721 4722 4723
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4724 4725
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4726

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4739
		mutex_unlock(&i915->drm.struct_mutex);
4740 4741

		GEM_BUG_ON(obj->bind_count);
4742
		GEM_BUG_ON(obj->userfault_count);
4743
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4744
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4745 4746 4747

		if (obj->ops->release)
			obj->ops->release(obj);
4748

4749 4750
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4751
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4752
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4753 4754 4755 4756

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4757
		reservation_object_fini(&obj->__builtin_resv);
4758 4759 4760 4761 4762
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4763

4764 4765 4766
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4767 4768
		if (on)
			cond_resched();
4769
	}
4770
	intel_runtime_pm_put(i915);
4771 4772 4773 4774 4775 4776
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4787
		__i915_gem_free_objects(i915, freed);
4788
	}
4789 4790 4791 4792 4793 4794 4795
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4796

4797 4798
	/*
	 * All file-owned VMA should have been released by this point through
4799 4800 4801 4802 4803 4804
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4805

4806
	spin_lock(&i915->mm.free_lock);
4807
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4808 4809
		spin_unlock(&i915->mm.free_lock);

4810
		__i915_gem_free_objects(i915, freed);
4811
		if (need_resched())
4812 4813 4814
			return;

		spin_lock(&i915->mm.free_lock);
4815
	}
4816
	spin_unlock(&i915->mm.free_lock);
4817
}
4818

4819 4820 4821 4822 4823 4824
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4825 4826 4827 4828 4829 4830 4831 4832 4833
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4834 4835
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4836
		queue_work(i915->wq, &i915->mm.free_work);
4837
}
4838

4839 4840 4841
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4842

4843 4844 4845
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4846
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4847
		obj->mm.madv = I915_MADV_DONTNEED;
4848

4849 4850
	/*
	 * Before we free the object, make sure any pure RCU-only
4851 4852 4853 4854
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4855
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4856
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4857 4858
}

4859 4860 4861 4862
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4863 4864
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4865 4866 4867 4868 4869
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4870
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4871
{
4872
	struct i915_gem_context *kernel_context = i915->kernel_context;
4873 4874 4875
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

4876 4877 4878 4879
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
		GEM_BUG_ON(engine->last_retired_context != kernel_context);
	}
4880 4881
}

4882 4883
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4884 4885 4886 4887 4888 4889
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4890 4891 4892 4893 4894 4895
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4896
	 * of the reset, so this could be applied to even earlier gen.
4897
	 */
4898 4899
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4900 4901
}

4902
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4903
{
4904
	struct drm_device *dev = &dev_priv->drm;
4905
	int ret;
4906

4907
	intel_runtime_pm_get(dev_priv);
4908 4909
	intel_suspend_gt_powersave(dev_priv);

4910
	mutex_lock(&dev->struct_mutex);
4911 4912 4913 4914 4915 4916 4917 4918 4919

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4920 4921 4922 4923
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
4924

4925 4926 4927 4928 4929
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
					     I915_WAIT_LOCKED);
		if (ret && ret != -EIO)
			goto err_unlock;
4930

4931 4932
		assert_kernel_context_is_current(dev_priv);
	}
4933
	i915_gem_contexts_lost(dev_priv);
4934 4935
	mutex_unlock(&dev->struct_mutex);

4936
	intel_uc_suspend(dev_priv);
4937

4938
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4939
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4940 4941 4942 4943

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
4944
	drain_delayed_work(&dev_priv->gt.idle_work);
4945

4946 4947 4948
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4949
	WARN_ON(dev_priv->gt.awake);
4950 4951
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4952

4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4972
	intel_uc_sanitize(dev_priv);
4973
	i915_gem_sanitize(dev_priv);
4974 4975 4976

	intel_runtime_pm_put(dev_priv);
	return 0;
4977

4978
err_unlock:
4979
	mutex_unlock(&dev->struct_mutex);
4980
	intel_runtime_pm_put(dev_priv);
4981
	return ret;
4982 4983
}

4984
void i915_gem_resume(struct drm_i915_private *i915)
4985
{
4986
	WARN_ON(i915->gt.awake);
4987

4988 4989
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4990

4991 4992
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4993

4994 4995
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4996 4997 4998
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4999
	i915->gt.resume(i915);
5000

5001 5002 5003
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5004
	intel_uc_resume(i915);
5005

5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5016 5017 5018 5019
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5020
	goto out_unlock;
5021 5022
}

5023
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5024
{
5025
	if (INTEL_GEN(dev_priv) < 5 ||
5026 5027 5028 5029 5030 5031
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5032
	if (IS_GEN5(dev_priv))
5033 5034
		return;

5035
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5036
	if (IS_GEN6(dev_priv))
5037
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5038
	else if (IS_GEN7(dev_priv))
5039
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5040
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5041
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5042 5043
	else
		BUG();
5044
}
D
Daniel Vetter 已提交
5045

5046
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5047 5048 5049 5050 5051 5052 5053
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5054
static void init_unused_rings(struct drm_i915_private *dev_priv)
5055
{
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5068 5069 5070
	}
}

5071
static int __i915_gem_restart_engines(void *data)
5072
{
5073
	struct drm_i915_private *i915 = data;
5074
	struct intel_engine_cs *engine;
5075
	enum intel_engine_id id;
5076 5077 5078 5079
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5080 5081 5082
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5083
			return err;
5084
		}
5085 5086 5087 5088 5089 5090 5091
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5092
	int ret;
5093

5094 5095
	dev_priv->gt.last_init_time = ktime_get();

5096 5097 5098
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5099
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5100
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5101

5102
	if (IS_HASWELL(dev_priv))
5103
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5104
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5105

5106
	if (HAS_PCH_NOP(dev_priv)) {
5107
		if (IS_IVYBRIDGE(dev_priv)) {
5108 5109 5110
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5111
		} else if (INTEL_GEN(dev_priv) >= 7) {
5112 5113 5114 5115
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5116 5117
	}

5118
	i915_gem_init_swizzling(dev_priv);
5119

5120 5121 5122 5123 5124 5125
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5126
	init_unused_rings(dev_priv);
5127

5128
	BUG_ON(!dev_priv->kernel_context);
5129 5130 5131 5132
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5133

5134
	ret = i915_ppgtt_init_hw(dev_priv);
5135
	if (ret) {
5136
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5137 5138 5139
		goto out;
	}

5140 5141
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5142 5143
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5144
		goto out;
5145
	}
5146

5147
	intel_mocs_init_l3cc_table(dev_priv);
5148

5149 5150
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5151 5152
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5153
	return ret;
5154 5155
}

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5177
		struct i915_request *rq;
5178

5179
		rq = i915_request_alloc(engine, ctx);
5180 5181 5182 5183 5184
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5185
		err = 0;
5186 5187 5188
		if (engine->init_context)
			err = engine->init_context(rq);

5189
		__i915_request_add(rq, true);
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

		state = ctx->engine[id].state;
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5270
int i915_gem_init(struct drm_i915_private *dev_priv)
5271 5272 5273
{
	int ret;

5274 5275 5276 5277 5278 5279 5280 5281 5282
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5283
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5284

5285
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5286
		dev_priv->gt.resume = intel_lr_context_resume;
5287
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5288 5289 5290
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5291 5292
	}

5293 5294 5295 5296
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5297 5298 5299 5300
	ret = intel_wopcm_init(&dev_priv->wopcm);
	if (ret)
		return ret;

5301
	ret = intel_uc_init_misc(dev_priv);
5302 5303 5304
	if (ret)
		return ret;

5305 5306 5307 5308 5309 5310
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5311
	mutex_lock(&dev_priv->drm.struct_mutex);
5312 5313
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5314
	ret = i915_gem_init_ggtt(dev_priv);
5315 5316 5317 5318
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5319

5320
	ret = i915_gem_contexts_init(dev_priv);
5321 5322 5323 5324
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5325

5326
	ret = intel_engines_init(dev_priv);
5327 5328 5329 5330
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5331

5332 5333
	intel_init_gt_powersave(dev_priv);

5334
	ret = intel_uc_init(dev_priv);
5335
	if (ret)
5336
		goto err_pm;
5337

5338 5339 5340 5341
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5353
	ret = __intel_engines_record_defaults(dev_priv);
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
	i915_gem_contexts_lost(dev_priv);
	intel_uc_fini_hw(dev_priv);
5382 5383
err_uc_init:
	intel_uc_fini(dev_priv);
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5397
	intel_uc_fini_misc(dev_priv);
5398

5399 5400 5401
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5402
	if (ret == -EIO) {
5403 5404
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5405 5406 5407
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5408 5409 5410 5411
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5412
		ret = 0;
5413 5414
	}

5415
	i915_gem_drain_freed_objects(dev_priv);
5416
	return ret;
5417 5418
}

5419 5420 5421 5422 5423
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5424
void
5425
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5426
{
5427
	struct intel_engine_cs *engine;
5428
	enum intel_engine_id id;
5429

5430
	for_each_engine(engine, dev_priv, id)
5431
		dev_priv->gt.cleanup_engine(engine);
5432 5433
}

5434 5435 5436
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5437
	int i;
5438

5439
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5440 5441
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5442
	else if (INTEL_GEN(dev_priv) >= 4 ||
5443 5444
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5445 5446 5447 5448
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5449
	if (intel_vgpu_active(dev_priv))
5450 5451 5452 5453
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5454 5455 5456 5457 5458 5459 5460
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5461
	i915_gem_restore_fences(dev_priv);
5462

5463
	i915_gem_detect_bit_6_swizzle(dev_priv);
5464 5465
}

5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5482
int
5483
i915_gem_load_init(struct drm_i915_private *dev_priv)
5484
{
5485
	int err = -ENOMEM;
5486

5487 5488
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5489 5490
		goto err_out;

5491 5492
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5493 5494
		goto err_objects;

5495 5496 5497 5498
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5499
	dev_priv->requests = KMEM_CACHE(i915_request,
5500 5501
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5502
					SLAB_TYPESAFE_BY_RCU);
5503
	if (!dev_priv->requests)
5504
		goto err_luts;
5505

5506 5507 5508 5509 5510 5511
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5512 5513 5514 5515
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5516 5517
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5518
	err = i915_gem_timeline_init__global(dev_priv);
5519 5520
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
5521
		goto err_priorities;
5522

5523
	i915_gem_init__mm(dev_priv);
5524

5525
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5526
			  i915_gem_retire_work_handler);
5527
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5528
			  i915_gem_idle_work_handler);
5529
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5530
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5531

5532 5533
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5534
	spin_lock_init(&dev_priv->fb_tracking.lock);
5535

M
Matthew Auld 已提交
5536 5537 5538 5539
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5540 5541
	return 0;

5542 5543
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
5544 5545
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5546 5547
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5548 5549
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5550 5551 5552 5553 5554 5555
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5556
}
5557

5558
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5559
{
5560
	i915_gem_drain_freed_objects(dev_priv);
5561 5562
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5563
	WARN_ON(dev_priv->mm.object_count);
5564

5565 5566 5567 5568 5569
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

5570
	kmem_cache_destroy(dev_priv->priorities);
5571
	kmem_cache_destroy(dev_priv->dependencies);
5572
	kmem_cache_destroy(dev_priv->requests);
5573
	kmem_cache_destroy(dev_priv->luts);
5574 5575
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5576 5577 5578

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5579 5580

	i915_gemfs_fini(dev_priv);
5581 5582
}

5583 5584
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5585 5586 5587
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5588 5589 5590 5591 5592
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5593 5594 5595
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5596 5597 5598 5599 5600
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5611 5612
	 *
	 * To try and reduce the hibernation image, we manually shrink
5613
	 * the objects as well, see i915_gem_freeze()
5614 5615
	 */

5616
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5617
	i915_gem_drain_freed_objects(dev_priv);
5618

5619
	spin_lock(&dev_priv->mm.obj_lock);
5620
	for (p = phases; *p; p++) {
5621
		list_for_each_entry(obj, *p, mm.link)
5622
			__start_cpu_write(obj);
5623
	}
5624
	spin_unlock(&dev_priv->mm.obj_lock);
5625 5626 5627 5628

	return 0;
}

5629
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5630
{
5631
	struct drm_i915_file_private *file_priv = file->driver_priv;
5632
	struct i915_request *request;
5633 5634 5635 5636 5637

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5638
	spin_lock(&file_priv->mm.lock);
5639
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5640
		request->file_priv = NULL;
5641
	spin_unlock(&file_priv->mm.lock);
5642 5643
}

5644
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5645 5646
{
	struct drm_i915_file_private *file_priv;
5647
	int ret;
5648

5649
	DRM_DEBUG("\n");
5650 5651 5652 5653 5654 5655

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5656
	file_priv->dev_priv = i915;
5657
	file_priv->file = file;
5658 5659 5660 5661

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5662
	file_priv->bsd_engine = -1;
5663

5664
	ret = i915_gem_context_open(i915, file);
5665 5666
	if (ret)
		kfree(file_priv);
5667

5668
	return ret;
5669 5670
}

5671 5672
/**
 * i915_gem_track_fb - update frontbuffer tracking
5673 5674 5675
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5676 5677 5678 5679
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5680 5681 5682 5683
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5684 5685 5686 5687 5688 5689 5690 5691 5692
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5693
	if (old) {
5694 5695
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5696 5697 5698
	}

	if (new) {
5699 5700
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5701 5702 5703
	}
}

5704 5705
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5706
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5707 5708 5709
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5710 5711 5712
	struct file *file;
	size_t offset;
	int err;
5713

5714
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5715
	if (IS_ERR(obj))
5716 5717
		return obj;

5718
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5719

5720 5721 5722 5723 5724 5725
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5726

5727 5728 5729 5730 5731
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5732

5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5747 5748 5749 5750

	return obj;

fail:
5751
	i915_gem_object_put(obj);
5752
	return ERR_PTR(err);
5753
}
5754 5755 5756 5757 5758 5759

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5760
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5761 5762 5763 5764 5765
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5766
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5891
	if (!obj->mm.dirty)
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5907

5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

5954 5955
	obj->ops = &i915_gem_phys_ops;

5956
	err = ____i915_gem_object_get_pages(obj);
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5976 5977
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5978
#include "selftests/mock_gem_device.c"
5979
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5980
#include "selftests/huge_pages.c"
5981
#include "selftests/i915_gem_object.c"
5982
#include "selftests/i915_gem_coherency.c"
5983
#endif