i915_gem.c 130.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54
				       unsigned alignment, bool mappable);
55
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

65

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
82
				  struct drm_gem_object *obj)
83
{
84
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
85
	dev_priv->mm.gtt_count++;
86 87 88 89 90 91 92
	dev_priv->mm.gtt_memory += obj->size;
	if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
		dev_priv->mm.mappable_gtt_used +=
			min_t(size_t, obj->size,
			      dev_priv->mm.gtt_mappable_end
					- obj_priv->gtt_offset);
	}
93 94 95
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
96
				     struct drm_gem_object *obj)
97
{
98
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
99
	dev_priv->mm.gtt_count--;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	dev_priv->mm.gtt_memory -= obj->size;
	if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
		dev_priv->mm.mappable_gtt_used -=
			min_t(size_t, obj->size,
			      dev_priv->mm.gtt_mappable_end
					- obj_priv->gtt_offset);
	}
}

/**
 * Update the mappable working set counters. Call _only_ when there is a change
 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
 * @mappable: new state the changed mappable flag (either pin_ or fault_).
 */
static void
i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
			      struct drm_gem_object *obj,
			      bool mappable)
{
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	if (mappable) {
		if (obj_priv->pin_mappable && obj_priv->fault_mappable)
			/* Combined state was already mappable. */
			return;
		dev_priv->mm.gtt_mappable_count++;
		dev_priv->mm.gtt_mappable_memory += obj->size;
	} else {
		if (obj_priv->pin_mappable || obj_priv->fault_mappable)
			/* Combined state still mappable. */
			return;
		dev_priv->mm.gtt_mappable_count--;
		dev_priv->mm.gtt_mappable_memory -= obj->size;
	}
134 135 136
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
137 138
				  struct drm_gem_object *obj,
				  bool mappable)
139
{
140
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
141
	dev_priv->mm.pin_count++;
142 143 144 145 146
	dev_priv->mm.pin_memory += obj->size;
	if (mappable) {
		obj_priv->pin_mappable = true;
		i915_gem_info_update_mappable(dev_priv, obj, true);
	}
147 148 149
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
150
				     struct drm_gem_object *obj)
151
{
152
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
153
	dev_priv->mm.pin_count--;
154 155 156 157 158
	dev_priv->mm.pin_memory -= obj->size;
	if (obj_priv->pin_mappable) {
		obj_priv->pin_mappable = false;
		i915_gem_info_update_mappable(dev_priv, obj, false);
	}
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

209
	WARN_ON(i915_verify_lists(dev));
210 211
	return 0;
}
212

213 214 215 216 217 218 219 220
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

221 222
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
D
Daniel Vetter 已提交
223
		     unsigned long mappable_end,
J
Jesse Barnes 已提交
224
		     unsigned long end)
225 226 227
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
228 229 230
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
231 232 233
		return -EINVAL;
	}

J
Jesse Barnes 已提交
234 235
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
236

237
	dev_priv->mm.gtt_total = end - start;
238
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
D
Daniel Vetter 已提交
239
	dev_priv->mm.gtt_mappable_end = mappable_end;
J
Jesse Barnes 已提交
240 241 242

	return 0;
}
243

J
Jesse Barnes 已提交
244 245 246 247 248 249 250 251
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
252
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
253 254
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
255
	return ret;
256 257
}

258 259 260 261
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
262
	struct drm_i915_private *dev_priv = dev->dev_private;
263 264 265 266 267
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

268 269 270 271
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
272 273 274 275

	return 0;
}

276 277 278 279 280 281 282 283 284 285

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
286 287
	int ret;
	u32 handle;
288 289 290 291

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
292
	obj = i915_gem_alloc_object(dev, args->size);
293 294 295 296
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
297
	if (ret) {
298 299 300
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
301
		return ret;
302
	}
303

304 305 306 307
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

308
	args->handle = handle;
309 310 311
	return 0;
}

312 313 314 315 316 317 318 319 320 321
static bool
i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	return obj->gtt_space == NULL ||
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
}

322 323 324
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
325
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
326 327 328 329 330

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

331
static inline void
332 333 334 335 336 337 338 339
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

340 341
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
342 343 344

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

345 346
	kunmap(src_page);
	kunmap(dst_page);
347 348
}

349
static inline void
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

369 370
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

394 395
	kunmap(cpu_page);
	kunmap(gpu_page);
396 397
}

398 399 400 401 402 403 404 405 406 407
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
408
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
409
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
410
	ssize_t remain;
411
	loff_t offset;
412 413 414 415 416 417
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

418
	obj_priv = to_intel_bo(obj);
419 420 421
	offset = args->offset;

	while (remain > 0) {
422 423 424 425
		struct page *page;
		char *vaddr;
		int ret;

426 427 428 429 430 431 432 433 434 435
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

436 437 438 439 440 441 442 443 444 445 446 447 448 449
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
450
			return -EFAULT;
451 452 453 454 455 456

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

457
	return 0;
458 459 460 461 462 463 464 465 466 467 468 469 470
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
471
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
472
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
473 474 475 476 477
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
478 479
	int shmem_page_offset;
	int data_page_index, data_page_offset;
480 481 482
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
483
	int do_bit17_swizzling;
484 485 486 487 488 489 490 491 492 493 494

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

495
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
496 497 498
	if (user_pages == NULL)
		return -ENOMEM;

499
	mutex_unlock(&dev->struct_mutex);
500 501
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
502
				      num_pages, 1, 0, user_pages, NULL);
503
	up_read(&mm->mmap_sem);
504
	mutex_lock(&dev->struct_mutex);
505 506
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
507
		goto out;
508 509
	}

510 511 512
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
513
	if (ret)
514
		goto out;
515

516
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
517

518
	obj_priv = to_intel_bo(obj);
519 520 521
	offset = args->offset;

	while (remain > 0) {
522 523
		struct page *page;

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

541 542 543 544 545
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

546
		if (do_bit17_swizzling) {
547
			slow_shmem_bit17_copy(page,
548
					      shmem_page_offset,
549 550 551 552 553 554 555
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
556
					page,
557 558
					shmem_page_offset,
					page_length);
559
		}
560

561 562 563
		mark_page_accessed(page);
		page_cache_release(page);

564 565 566 567 568
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

569
out:
570 571
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
572
		mark_page_accessed(user_pages[i]);
573 574
		page_cache_release(user_pages[i]);
	}
575
	drm_free_large(user_pages);
576 577 578 579

	return ret;
}

580 581 582 583 584 585 586 587 588 589 590 591
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
592
	int ret = 0;
593

594
	ret = i915_mutex_lock_interruptible(dev);
595
	if (ret)
596
		return ret;
597 598

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
599 600 601
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
602
	}
603
	obj_priv = to_intel_bo(obj);
604

605 606
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
607
		ret = -EINVAL;
608
		goto out;
C
Chris Wilson 已提交
609 610
	}

611 612 613
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
614 615 616 617
	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
618
		goto out;
619 620
	}

621 622 623 624 625
	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
626
	}
627

628 629 630 631
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
632
		goto out;
633 634 635

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
636
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
637 638
	if (ret == -EFAULT)
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
639

640
out:
641
	drm_gem_object_unreference(obj);
642
unlock:
643
	mutex_unlock(&dev->struct_mutex);
644
	return ret;
645 646
}

647 648
/* This is the fast write path which cannot handle
 * page faults in the source data
649
 */
650 651 652 653 654 655

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
656 657
{
	char *vaddr_atomic;
658
	unsigned long unwritten;
659

P
Peter Zijlstra 已提交
660
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
661 662
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
663
	io_mapping_unmap_atomic(vaddr_atomic);
664
	return unwritten;
665 666 667 668 669 670
}

/* Here's the write path which can sleep for
 * page faults
 */

671
static inline void
672 673 674 675
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
676
{
677 678
	char __iomem *dst_vaddr;
	char *src_vaddr;
679

680 681 682 683 684 685 686 687 688
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
689 690
}

691 692 693 694
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
695
static int
696 697 698
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
699
{
700
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
701
	drm_i915_private_t *dev_priv = dev->dev_private;
702
	ssize_t remain;
703
	loff_t offset, page_base;
704
	char __user *user_data;
705
	int page_offset, page_length;
706 707 708 709

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

710
	obj_priv = to_intel_bo(obj);
711 712 713 714 715
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
716 717 718
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
719
		 */
720 721 722 723 724 725 726
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
727 728
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
729
		 */
730 731 732 733
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
734

735 736 737
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
738 739
	}

740
	return 0;
741 742
}

743 744 745 746 747 748 749
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
750
static int
751 752 753
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
754
{
755
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
756 757 758 759 760 761 762 763
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
764
	int ret;
765 766 767 768 769 770 771 772 773 774 775 776
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

777
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
778 779 780
	if (user_pages == NULL)
		return -ENOMEM;

781
	mutex_unlock(&dev->struct_mutex);
782 783 784 785
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
786
	mutex_lock(&dev->struct_mutex);
787 788 789 790
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
791

792 793
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
794
		goto out_unpin_pages;
795

796
	obj_priv = to_intel_bo(obj);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

819 820 821 822 823
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
824 825 826 827 828 829 830 831 832

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
833
	drm_free_large(user_pages);
834 835 836 837

	return ret;
}

838 839 840 841
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
842
static int
843 844 845
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
846
{
847
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
848
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
849
	ssize_t remain;
850
	loff_t offset;
851 852 853 854 855
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
856

857
	obj_priv = to_intel_bo(obj);
858 859 860 861
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
862 863 864 865
		struct page *page;
		char *vaddr;
		int ret;

866 867 868 869 870 871 872 873 874 875
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
896
			return -EFAULT;
897 898 899 900 901 902

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

903
	return 0;
904 905 906 907 908 909 910 911 912 913 914 915 916 917
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
918
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
919
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
920 921 922 923 924
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
925
	int shmem_page_offset;
926 927 928 929
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
930
	int do_bit17_swizzling;
931 932 933 934 935 936 937 938 939 940 941

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

942
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
943 944 945
	if (user_pages == NULL)
		return -ENOMEM;

946
	mutex_unlock(&dev->struct_mutex);
947 948 949 950
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
951
	mutex_lock(&dev->struct_mutex);
952 953
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
954
		goto out;
955 956
	}

957
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
958
	if (ret)
959
		goto out;
960

961
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
962

963
	obj_priv = to_intel_bo(obj);
964
	offset = args->offset;
965
	obj_priv->dirty = 1;
966

967
	while (remain > 0) {
968 969
		struct page *page;

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

987 988 989 990 991 992 993
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

994
		if (do_bit17_swizzling) {
995
			slow_shmem_bit17_copy(page,
996 997 998
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
999 1000 1001
					      page_length,
					      0);
		} else {
1002
			slow_shmem_copy(page,
1003 1004 1005 1006
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
1007
		}
1008

1009 1010 1011 1012
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

1013 1014 1015
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
1016 1017
	}

1018
out:
1019 1020
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
1021
	drm_free_large(user_pages);
1022

1023
	return ret;
1024 1025 1026 1027 1028 1029 1030 1031 1032
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1033
		      struct drm_file *file)
1034 1035 1036 1037 1038 1039
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

1040
	ret = i915_mutex_lock_interruptible(dev);
1041
	if (ret)
1042
		return ret;
1043 1044 1045 1046 1047

	obj = drm_gem_object_lookup(dev, file, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1048
	}
1049
	obj_priv = to_intel_bo(obj);
1050

1051

1052 1053
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1054
		ret = -EINVAL;
1055
		goto out;
C
Chris Wilson 已提交
1056 1057
	}

1058 1059 1060
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
1061 1062 1063 1064
	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
1065
		goto out;
1066 1067
	}

1068 1069 1070 1071 1072
	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
1073 1074 1075 1076 1077 1078 1079 1080
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1081
	if (obj_priv->phys_obj)
1082
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1083
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1084
		 obj_priv->gtt_space &&
1085
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1086
		ret = i915_gem_object_pin(obj, 0, true);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		if (ret)
			goto out;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1100
	} else {
1101 1102
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1103
			goto out;
1104

1105 1106 1107 1108 1109 1110
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1111

1112
out:
1113
	drm_gem_object_unreference(obj);
1114
unlock:
1115
	mutex_unlock(&dev->struct_mutex);
1116 1117 1118 1119
	return ret;
}

/**
1120 1121
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1122 1123 1124 1125 1126
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1127
	struct drm_i915_private *dev_priv = dev->dev_private;
1128 1129
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1130
	struct drm_i915_gem_object *obj_priv;
1131 1132
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1133 1134 1135 1136 1137
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1138
	/* Only handle setting domains to types used by the CPU. */
1139
	if (write_domain & I915_GEM_GPU_DOMAINS)
1140 1141
		return -EINVAL;

1142
	if (read_domains & I915_GEM_GPU_DOMAINS)
1143 1144 1145 1146 1147 1148 1149 1150
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1151
	ret = i915_mutex_lock_interruptible(dev);
1152
	if (ret)
1153
		return ret;
1154

1155
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1156 1157 1158
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1159
	}
1160
	obj_priv = to_intel_bo(obj);
1161

1162 1163
	intel_mark_busy(dev, obj);

1164 1165
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1166

1167 1168 1169 1170
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1171 1172 1173
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1174 1175 1176
				       &dev_priv->mm.fence_list);
		}

1177 1178 1179 1180 1181 1182
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1183
	} else {
1184
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1185 1186
	}

1187 1188
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1189
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1190

1191
	drm_gem_object_unreference(obj);
1192
unlock:
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1211
	ret = i915_mutex_lock_interruptible(dev);
1212
	if (ret)
1213
		return ret;
1214

1215 1216
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
1217 1218
		ret = -ENOENT;
		goto unlock;
1219 1220 1221
	}

	/* Pinned buffers may be scanout, so flush the cache */
1222
	if (to_intel_bo(obj)->pin_count)
1223 1224
		i915_gem_object_flush_cpu_write_domain(obj);

1225
	drm_gem_object_unreference(obj);
1226
unlock:
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
1242
	struct drm_i915_private *dev_priv = dev->dev_private;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1253
		return -ENOENT;
1254

1255 1256 1257 1258 1259
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1260 1261 1262 1263 1264 1265 1266
	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1267
	drm_gem_object_unreference_unlocked(obj);
1268 1269 1270 1271 1272 1273 1274 1275
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1296
	drm_i915_private_t *dev_priv = dev->dev_private;
1297
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1298 1299 1300
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1301
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1302 1303 1304 1305 1306 1307 1308

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
1309
	BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1310 1311 1312
	if (!i915_gem_object_cpu_accessible(obj_priv))
		i915_gem_object_unbind(obj);

1313
	if (!obj_priv->gtt_space) {
1314
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1315 1316
		if (ret)
			goto unlock;
1317 1318

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1319 1320
		if (ret)
			goto unlock;
1321 1322
	}

1323 1324 1325 1326 1327
	if (!obj_priv->fault_mappable) {
		obj_priv->fault_mappable = true;
		i915_gem_info_update_mappable(dev_priv, obj, true);
	}

1328
	/* Need a new fence register? */
1329
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1330
		ret = i915_gem_object_get_fence_reg(obj, true);
1331 1332
		if (ret)
			goto unlock;
1333
	}
1334

1335
	if (i915_gem_object_is_inactive(obj_priv))
1336
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1337

1338 1339 1340 1341 1342
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1343
unlock:
1344 1345 1346
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1347 1348 1349
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1350 1351 1352 1353
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1354
		return VM_FAULT_SIGBUS;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1375
	struct drm_local_map *map;
1376 1377 1378 1379
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1380
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1394
		ret = -ENOSPC;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1406 1407
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1408 1409 1410 1411 1412 1413 1414 1415 1416
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1417
	kfree(list->map);
C
Chris Wilson 已提交
1418
	list->map = NULL;
1419 1420 1421 1422

	return ret;
}

1423 1424 1425 1426
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1427
 * Preserve the reservation of the mmapping with the DRM core code, but
1428 1429 1430 1431 1432 1433 1434 1435 1436
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1437
void
1438 1439 1440
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1441
	struct drm_i915_private *dev_priv = dev->dev_private;
1442
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1443

C
Chris Wilson 已提交
1444
	if (unlikely(obj->map_list.map && dev->dev_mapping))
1445
		unmap_mapping_range(dev->dev_mapping,
C
Chris Wilson 已提交
1446 1447
				    (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
				    obj->size, 1);
1448 1449 1450 1451 1452

	if (obj_priv->fault_mappable) {
		obj_priv->fault_mappable = false;
		i915_gem_info_update_mappable(dev_priv, obj, false);
	}
1453 1454
}

1455 1456 1457 1458 1459
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
C
Chris Wilson 已提交
1460
	struct drm_map_list *list = &obj->map_list;
1461 1462

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1463 1464 1465
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1466 1467
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1479
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1480 1481 1482 1483 1484 1485
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1486
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1487 1488 1489 1490 1491 1492
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1493
	if (INTEL_INFO(dev)->gen == 3)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
1523
	struct drm_i915_private *dev_priv = dev->dev_private;
1524 1525 1526 1527 1528 1529 1530 1531
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1532
	ret = i915_mutex_lock_interruptible(dev);
1533
	if (ret)
1534
		return ret;
1535

1536 1537 1538 1539 1540
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1541
	obj_priv = to_intel_bo(obj);
1542

1543 1544 1545 1546 1547
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		ret = -E2BIG;
		goto unlock;
	}

1548 1549
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1550 1551
		ret = -EINVAL;
		goto out;
1552 1553
	}

C
Chris Wilson 已提交
1554
	if (!obj->map_list.map) {
1555
		ret = i915_gem_create_mmap_offset(obj);
1556 1557
		if (ret)
			goto out;
1558 1559
	}

C
Chris Wilson 已提交
1560
	args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1561

1562
out:
1563
	drm_gem_object_unreference(obj);
1564
unlock:
1565
	mutex_unlock(&dev->struct_mutex);
1566
	return ret;
1567 1568
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static int
i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
			      gfp_t gfpmask)
{
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
	BUG_ON(obj_priv->pages != NULL);
	obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj_priv->pages == NULL)
		return -ENOMEM;

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

		obj_priv->pages[i] = page;
	}

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	return PTR_ERR(page);
}

1616
static void
1617
i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1618
{
1619
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1620 1621 1622
	int page_count = obj->size / PAGE_SIZE;
	int i;

C
Chris Wilson 已提交
1623
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1624

1625 1626 1627
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1628
	if (obj_priv->madv == I915_MADV_DONTNEED)
1629
		obj_priv->dirty = 0;
1630 1631 1632 1633 1634 1635

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1636
			mark_page_accessed(obj_priv->pages[i]);
1637 1638 1639

		page_cache_release(obj_priv->pages[i]);
	}
1640 1641
	obj_priv->dirty = 0;

1642
	drm_free_large(obj_priv->pages);
1643
	obj_priv->pages = NULL;
1644 1645
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1656
static void
1657
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1658
			       struct intel_ring_buffer *ring)
1659 1660
{
	struct drm_device *dev = obj->dev;
1661
	struct drm_i915_private *dev_priv = dev->dev_private;
1662
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1663
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1664

1665 1666
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1667 1668 1669 1670 1671 1672

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1673

1674
	/* Move from whatever list we were on to the tail of execution. */
1675 1676
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj_priv->ring_list, &ring->active_list);
1677
	obj_priv->last_rendering_seqno = seqno;
1678 1679
}

1680 1681 1682 1683 1684
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1685
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1686 1687

	BUG_ON(!obj_priv->active);
1688 1689
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
	list_del_init(&obj_priv->ring_list);
1690 1691
	obj_priv->last_rendering_seqno = 0;
}
1692

1693 1694 1695 1696
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1697
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1698
	struct inode *inode;
1699

1700 1701 1702 1703 1704 1705
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1706
	inode = obj->filp->f_path.dentry->d_inode;
1707 1708 1709
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1710 1711

	obj_priv->madv = __I915_MADV_PURGED;
1712 1713 1714 1715 1716 1717 1718 1719
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1720 1721 1722 1723 1724
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1725
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1726 1727

	if (obj_priv->pin_count != 0)
1728
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1729
	else
1730 1731
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
	list_del_init(&obj_priv->ring_list);
1732

1733 1734
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1735
	obj_priv->last_rendering_seqno = 0;
1736
	obj_priv->ring = NULL;
1737 1738 1739 1740
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1741
	WARN_ON(i915_verify_lists(dev));
1742 1743
}

1744 1745
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1746
			       uint32_t flush_domains,
1747
			       struct intel_ring_buffer *ring)
1748 1749 1750 1751 1752
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
1753
				 &ring->gpu_write_list,
1754
				 gpu_write_list) {
1755
		struct drm_gem_object *obj = &obj_priv->base;
1756

1757
		if (obj->write_domain & flush_domains) {
1758 1759 1760 1761
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1762
			i915_gem_object_move_to_active(obj, ring);
1763 1764

			/* update the fence lru list */
1765 1766 1767 1768
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1769
						&dev_priv->mm.fence_list);
1770
			}
1771 1772 1773 1774 1775 1776 1777

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1778

1779
int
1780
i915_add_request(struct drm_device *dev,
1781
		 struct drm_file *file,
C
Chris Wilson 已提交
1782
		 struct drm_i915_gem_request *request,
1783
		 struct intel_ring_buffer *ring)
1784 1785
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1786
	struct drm_i915_file_private *file_priv = NULL;
1787 1788
	uint32_t seqno;
	int was_empty;
1789 1790 1791
	int ret;

	BUG_ON(request == NULL);
1792

1793 1794
	if (file != NULL)
		file_priv = file->driver_priv;
1795

1796 1797 1798
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1799

1800
	ring->outstanding_lazy_request = false;
1801 1802

	request->seqno = seqno;
1803
	request->ring = ring;
1804
	request->emitted_jiffies = jiffies;
1805 1806 1807
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1808
	if (file_priv) {
1809
		spin_lock(&file_priv->mm.lock);
1810
		request->file_priv = file_priv;
1811
		list_add_tail(&request->client_list,
1812
			      &file_priv->mm.request_list);
1813
		spin_unlock(&file_priv->mm.lock);
1814
	}
1815

B
Ben Gamari 已提交
1816
	if (!dev_priv->mm.suspended) {
1817 1818
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1819
		if (was_empty)
1820 1821
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1822
	}
1823
	return 0;
1824 1825 1826 1827 1828 1829 1830 1831
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1832
static void
1833
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1834 1835 1836 1837
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1838
	if (INTEL_INFO(dev)->gen >= 4)
1839
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1840

1841
	ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1842 1843
}

1844 1845
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1846
{
1847
	struct drm_i915_file_private *file_priv = request->file_priv;
1848

1849 1850
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1851

1852 1853 1854 1855
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1856 1857
}

1858 1859
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1860
{
1861 1862
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1863

1864 1865 1866
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1867

1868
		list_del(&request->list);
1869
		i915_gem_request_remove_from_client(request);
1870 1871
		kfree(request);
	}
1872

1873
	while (!list_empty(&ring->active_list)) {
1874 1875
		struct drm_i915_gem_object *obj_priv;

1876
		obj_priv = list_first_entry(&ring->active_list,
1877
					    struct drm_i915_gem_object,
1878
					    ring_list);
1879 1880

		obj_priv->base.write_domain = 0;
1881
		list_del_init(&obj_priv->gpu_write_list);
1882
		i915_gem_object_move_to_inactive(&obj_priv->base);
1883 1884 1885
	}
}

1886
void i915_gem_reset(struct drm_device *dev)
1887
{
1888 1889
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1890
	int i;
1891

1892
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1893
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1894
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1895 1896 1897 1898 1899 1900 1901 1902

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
1903
					    mm_list);
1904 1905 1906 1907 1908 1909 1910 1911 1912

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1913 1914
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
1915
			    mm_list)
1916 1917 1918
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1930 1931 1932 1933 1934
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1935 1936 1937
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1938 1939 1940 1941
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1942 1943
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1944 1945
		return;

1946
	WARN_ON(i915_verify_lists(dev));
1947

1948
	seqno = ring->get_seqno(ring);
1949
	while (!list_empty(&ring->request_list)) {
1950 1951
		struct drm_i915_gem_request *request;

1952
		request = list_first_entry(&ring->request_list,
1953 1954 1955
					   struct drm_i915_gem_request,
					   list);

1956
		if (!i915_seqno_passed(seqno, request->seqno))
1957 1958 1959 1960 1961
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1962
		i915_gem_request_remove_from_client(request);
1963 1964
		kfree(request);
	}
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
1975
					    ring_list);
1976

1977
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1978
			break;
1979 1980 1981 1982 1983 1984

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1985
	}
1986 1987 1988

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1989
		ring->user_irq_put(ring);
1990 1991
		dev_priv->trace_irq_seqno = 0;
	}
1992 1993

	WARN_ON(i915_verify_lists(dev));
1994 1995
}

1996 1997 1998 1999 2000
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
2011
				     mm_list)
2012 2013 2014
		    i915_gem_free_object_tail(&obj_priv->base);
	}

2015
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2016
	i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2017
	i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2018 2019
}

2020
static void
2021 2022 2023 2024 2025 2026 2027 2028 2029
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

2030 2031 2032 2033 2034 2035
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2036
	i915_gem_retire_requests(dev);
2037

2038
	if (!dev_priv->mm.suspended &&
2039
		(!list_empty(&dev_priv->render_ring.request_list) ||
2040 2041
		 !list_empty(&dev_priv->bsd_ring.request_list) ||
		 !list_empty(&dev_priv->blt_ring.request_list)))
2042
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2043 2044 2045
	mutex_unlock(&dev->struct_mutex);
}

2046
int
2047
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2048
		     bool interruptible, struct intel_ring_buffer *ring)
2049 2050
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2051
	u32 ier;
2052 2053 2054 2055
	int ret = 0;

	BUG_ON(seqno == 0);

2056
	if (atomic_read(&dev_priv->mm.wedged))
2057 2058
		return -EAGAIN;

2059
	if (ring->outstanding_lazy_request) {
2060 2061 2062 2063
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
2064
			return -ENOMEM;
2065 2066 2067 2068 2069 2070 2071 2072

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2073
	}
2074
	BUG_ON(seqno == dev_priv->next_seqno);
2075

2076
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2077
		if (HAS_PCH_SPLIT(dev))
2078 2079 2080
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2081 2082 2083 2084 2085 2086 2087
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2088 2089
		trace_i915_gem_request_wait_begin(dev, seqno);

2090
		ring->waiting_seqno = seqno;
2091
		ring->user_irq_get(ring);
2092
		if (interruptible)
2093
			ret = wait_event_interruptible(ring->irq_queue,
2094
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2095
				|| atomic_read(&dev_priv->mm.wedged));
2096
		else
2097
			wait_event(ring->irq_queue,
2098
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2099
				|| atomic_read(&dev_priv->mm.wedged));
2100

2101
		ring->user_irq_put(ring);
2102
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2103 2104

		trace_i915_gem_request_wait_end(dev, seqno);
2105
	}
2106
	if (atomic_read(&dev_priv->mm.wedged))
2107
		ret = -EAGAIN;
2108 2109

	if (ret && ret != -ERESTARTSYS)
2110
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2111
			  __func__, ret, seqno, ring->get_seqno(ring),
2112
			  dev_priv->next_seqno);
2113 2114 2115 2116 2117 2118 2119

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2120
		i915_gem_retire_requests_ring(dev, ring);
2121 2122 2123 2124

	return ret;
}

2125 2126 2127 2128 2129
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2130
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2131
		  struct intel_ring_buffer *ring)
2132
{
2133
	return i915_do_wait_request(dev, seqno, 1, ring);
2134 2135
}

2136
static void
2137
i915_gem_flush_ring(struct drm_device *dev,
2138
		    struct drm_file *file_priv,
2139 2140 2141 2142
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2143
	ring->flush(ring, invalidate_domains, flush_domains);
2144 2145 2146
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2147 2148
static void
i915_gem_flush(struct drm_device *dev,
2149
	       struct drm_file *file_priv,
2150
	       uint32_t invalidate_domains,
2151 2152
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2153 2154
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2155

2156 2157
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2158

2159 2160
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2161
			i915_gem_flush_ring(dev, file_priv,
2162 2163 2164
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2165
			i915_gem_flush_ring(dev, file_priv,
2166 2167
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
2168 2169 2170 2171
		if (flush_rings & RING_BLT)
			i915_gem_flush_ring(dev, file_priv,
					    &dev_priv->blt_ring,
					    invalidate_domains, flush_domains);
2172
	}
2173 2174
}

2175 2176 2177 2178 2179
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2180 2181
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2182 2183
{
	struct drm_device *dev = obj->dev;
2184
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2185 2186
	int ret;

2187 2188
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2189
	 */
2190
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2191 2192 2193 2194 2195

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2196 2197 2198 2199 2200
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2201 2202 2203 2204 2205 2206 2207 2208 2209
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2210
int
2211 2212 2213
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2214
	struct drm_i915_private *dev_priv = dev->dev_private;
2215
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2226 2227 2228
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2229 2230 2231 2232 2233 2234
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2235
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2236
	if (ret == -ERESTARTSYS)
2237
		return ret;
2238 2239 2240 2241
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2242 2243 2244 2245
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2246

2247 2248 2249 2250
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2251 2252
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2253

2254
	i915_gem_object_put_pages_gtt(obj);
2255

2256
	i915_gem_info_remove_gtt(dev_priv, obj);
2257
	list_del_init(&obj_priv->mm_list);
2258

2259 2260
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;
2261
	obj_priv->gtt_offset = 0;
2262

2263 2264 2265
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2266 2267
	trace_i915_gem_object_unbind(obj);

2268
	return ret;
2269 2270
}

2271 2272 2273
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2274 2275 2276
	if (list_empty(&ring->gpu_write_list))
		return 0;

2277 2278 2279 2280 2281 2282 2283
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2284
int
2285 2286 2287 2288
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2289
	int ret;
2290

2291 2292
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
2293 2294
		       list_empty(&dev_priv->bsd_ring.active_list) &&
		       list_empty(&dev_priv->blt_ring.active_list));
2295 2296 2297 2298
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2299
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2300 2301
	if (ret)
		return ret;
2302

2303 2304 2305
	ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
	if (ret)
		return ret;
2306

2307 2308 2309
	ret = i915_ring_idle(dev, &dev_priv->blt_ring);
	if (ret)
		return ret;
2310

2311
	return 0;
2312 2313
}

2314 2315 2316 2317 2318
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2319
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2336 2337 2338 2339 2340
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2341
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2361
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2362
	int regnum = obj_priv->fence_reg;
2363
	int tile_width;
2364
	uint32_t fence_reg, val;
2365 2366 2367 2368
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2369
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2370
		     __func__, obj_priv->gtt_offset, obj->size);
2371 2372 2373
		return;
	}

2374 2375 2376
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2377
	else
2378 2379 2380 2381 2382
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2383

2384 2385 2386 2387 2388 2389
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2390 2391 2392 2393 2394 2395 2396
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2397 2398 2399 2400 2401
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2402 2403 2404 2405 2406 2407 2408
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2409
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2410 2411 2412
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2413
	uint32_t fence_size_bits;
2414

2415
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2416
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2417
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2418
		     __func__, obj_priv->gtt_offset);
2419 2420 2421
		return;
	}

2422 2423 2424 2425
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2426 2427 2428
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2429 2430 2431
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2432 2433 2434 2435 2436 2437
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2438 2439
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2454
		obj_priv = to_intel_bo(reg->obj);
2455 2456 2457 2458 2459 2460 2461 2462 2463
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2464 2465 2466 2467
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2484
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2485 2486 2487 2488 2489 2490 2491
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2505
int
2506 2507
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2508 2509
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2510
	struct drm_i915_private *dev_priv = dev->dev_private;
2511
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2512
	struct drm_i915_fence_reg *reg = NULL;
2513
	int ret;
2514

2515 2516
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2517 2518
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2519 2520 2521
		return 0;
	}

2522 2523 2524 2525 2526
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2527 2528 2529 2530 2531
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2532 2533
		break;
	case I915_TILING_Y:
2534 2535 2536 2537 2538
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2539 2540 2541
		break;
	}

2542
	ret = i915_find_fence_reg(dev, interruptible);
2543 2544
	if (ret < 0)
		return ret;
2545

2546 2547
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2548
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2549

2550 2551
	reg->obj = obj;

2552 2553
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2554
		sandybridge_write_fence_reg(reg);
2555 2556 2557
		break;
	case 5:
	case 4:
2558
		i965_write_fence_reg(reg);
2559 2560
		break;
	case 3:
2561
		i915_write_fence_reg(reg);
2562 2563
		break;
	case 2:
2564
		i830_write_fence_reg(reg);
2565 2566
		break;
	}
2567

2568 2569
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2570

2571
	return 0;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2585
	drm_i915_private_t *dev_priv = dev->dev_private;
2586
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2587 2588
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2589
	uint32_t fence_reg;
2590

2591 2592
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2593 2594
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2595 2596 2597
		break;
	case 5:
	case 4:
2598
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2599 2600
		break;
	case 3:
2601
		if (obj_priv->fence_reg >= 8)
2602
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2603
		else
2604 2605
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2606 2607

		I915_WRITE(fence_reg, 0);
2608
		break;
2609
	}
2610

2611
	reg->obj = NULL;
2612
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2613
	list_del_init(&reg->lru_list);
2614 2615
}

2616 2617 2618 2619
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2620
 * @bool: whether the wait upon the fence is interruptible
2621 2622 2623 2624 2625
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2626 2627
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2628 2629
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2630
	struct drm_i915_private *dev_priv = dev->dev_private;
2631
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2632
	struct drm_i915_fence_reg *reg;
2633 2634 2635 2636

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2637 2638 2639 2640 2641 2642
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2643 2644 2645 2646
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2647 2648
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2649 2650
		int ret;

2651
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2652
		if (ret)
2653 2654
			return ret;

2655
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2656
		if (ret)
2657
			return ret;
C
Chris Wilson 已提交
2658 2659

		reg->gpu = false;
2660 2661
	}

2662
	i915_gem_object_flush_gtt_write_domain(obj);
2663
	i915_gem_clear_fence_reg(obj);
2664 2665 2666 2667

	return 0;
}

2668 2669 2670 2671
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2672 2673 2674
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
			    unsigned alignment,
			    bool mappable)
2675 2676 2677
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2678
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2679
	struct drm_mm_node *free_space;
2680
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2681
	int ret;
2682

C
Chris Wilson 已提交
2683
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2684 2685 2686 2687
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2688
	if (alignment == 0)
2689
		alignment = i915_gem_get_gtt_alignment(obj);
2690
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2691 2692 2693 2694
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2695 2696 2697
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2698 2699
	if (obj->size >
	    (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2700 2701 2702 2703
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2704
 search_free:
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	if (mappable)
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
						    obj->size, alignment, 0,
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
						obj->size, alignment, 0);

	if (free_space != NULL) {
		if (mappable)
			obj_priv->gtt_space =
				drm_mm_get_block_range_generic(free_space,
							       obj->size,
							       alignment, 0,
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
			obj_priv->gtt_space =
				drm_mm_get_block(free_space, obj->size,
						 alignment);
	}
2728 2729 2730 2731
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2732 2733
		ret = i915_gem_evict_something(dev, obj->size, alignment,
					       mappable);
2734
		if (ret)
2735
			return ret;
2736

2737 2738 2739
		goto search_free;
	}

2740
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2741 2742 2743
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2744 2745 2746

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2747
			ret = i915_gem_evict_something(dev, obj->size,
2748
						       alignment, mappable);
2749 2750
			if (ret) {
				/* now try to shrink everyone else */
2751 2752 2753
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2754 2755 2756 2757 2758 2759 2760 2761
				}

				return ret;
			}

			goto search_free;
		}

2762 2763 2764 2765 2766 2767 2768
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2769
					       obj_priv->pages,
2770
					       obj->size >> PAGE_SHIFT,
2771
					       obj_priv->gtt_space->start,
2772
					       obj_priv->agp_type);
2773
	if (obj_priv->agp_mem == NULL) {
2774
		i915_gem_object_put_pages_gtt(obj);
2775 2776
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2777

2778 2779
		ret = i915_gem_evict_something(dev, obj->size, alignment,
					       mappable);
2780
		if (ret)
2781 2782 2783
			return ret;

		goto search_free;
2784 2785
	}

2786 2787
	obj_priv->gtt_offset = obj_priv->gtt_space->start;

2788
	/* keep track of bounds object by adding it to the inactive list */
2789
	list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2790
	i915_gem_info_add_gtt(dev_priv, obj);
2791

2792 2793 2794 2795
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2796 2797
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2798

2799
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
C
Chris Wilson 已提交
2800

2801 2802 2803 2804 2805 2806
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2807
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2808 2809 2810 2811 2812

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2813
	if (obj_priv->pages == NULL)
2814 2815
		return;

C
Chris Wilson 已提交
2816
	trace_i915_gem_object_clflush(obj);
2817

2818
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2819 2820
}

2821
/** Flushes any GPU write domain for the object if it's dirty. */
2822
static int
2823 2824
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2825 2826
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2827
	uint32_t old_write_domain;
2828 2829

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2830
		return 0;
2831 2832

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2833
	old_write_domain = obj->write_domain;
2834
	i915_gem_flush_ring(dev, NULL,
2835 2836
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2837
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2838 2839 2840 2841

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2842 2843 2844 2845

	if (pipelined)
		return 0;

2846
	return i915_gem_object_wait_rendering(obj, true);
2847 2848 2849 2850 2851 2852
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2853 2854
	uint32_t old_write_domain;

2855 2856 2857 2858 2859 2860 2861
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2862
	old_write_domain = obj->write_domain;
2863
	obj->write_domain = 0;
C
Chris Wilson 已提交
2864 2865 2866 2867

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2868 2869 2870 2871 2872 2873 2874
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2875
	uint32_t old_write_domain;
2876 2877 2878 2879 2880 2881

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2882
	old_write_domain = obj->write_domain;
2883
	obj->write_domain = 0;
C
Chris Wilson 已提交
2884 2885 2886 2887

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2888 2889
}

2890 2891 2892 2893 2894 2895
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2896
int
2897 2898
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2899
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2900
	uint32_t old_write_domain, old_read_domains;
2901
	int ret;
2902

2903 2904 2905 2906
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2907
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2908 2909 2910
	if (ret != 0)
		return ret;

2911
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2912

2913
	if (write) {
2914
		ret = i915_gem_object_wait_rendering(obj, true);
2915 2916 2917
		if (ret)
			return ret;
	}
2918

C
Chris Wilson 已提交
2919 2920 2921
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2922 2923 2924 2925 2926 2927
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2928
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2929 2930
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2931 2932
	}

C
Chris Wilson 已提交
2933 2934 2935 2936
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2937 2938 2939
	return 0;
}

2940 2941 2942 2943 2944
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2945 2946
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2947
{
2948
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2949
	uint32_t old_read_domains;
2950 2951 2952 2953 2954 2955
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2956
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2957 2958
	if (ret)
		return ret;
2959

2960 2961 2962 2963
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
2964 2965 2966
			return ret;
	}

2967 2968
	i915_gem_object_flush_cpu_write_domain(obj);

2969
	old_read_domains = obj->read_domains;
2970
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2971 2972 2973

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2974
					    obj->write_domain);
2975 2976 2977 2978

	return 0;
}

2979 2980 2981 2982 2983 2984 2985 2986 2987
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2988
	uint32_t old_write_domain, old_read_domains;
2989 2990
	int ret;

2991
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2992 2993
	if (ret != 0)
		return ret;
2994

2995
	i915_gem_object_flush_gtt_write_domain(obj);
2996

2997 2998
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2999
	 */
3000
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3001

3002
	if (write) {
3003
		ret = i915_gem_object_wait_rendering(obj, true);
3004 3005 3006 3007
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
3008 3009 3010
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

3011 3012
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3013 3014
		i915_gem_clflush_object(obj);

3015
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3016 3017 3018 3019 3020
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3021 3022 3023 3024 3025 3026
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3027
		obj->read_domains = I915_GEM_DOMAIN_CPU;
3028 3029
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
3030

C
Chris Wilson 已提交
3031 3032 3033 3034
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3035 3036 3037
	return 0;
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3149
static void
3150 3151
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
				  struct intel_ring_buffer *ring)
3152 3153
{
	struct drm_device		*dev = obj->dev;
3154
	struct drm_i915_private		*dev_priv = dev->dev_private;
3155
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3156 3157
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
3158

3159 3160 3161 3162
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3163 3164
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3165 3166 3167 3168 3169 3170 3171

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3172 3173
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3174
		flush_domains |= obj->write_domain;
3175 3176
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3177 3178 3179 3180 3181
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3182
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3183
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3184 3185
		i915_gem_clflush_object(obj);

3186 3187 3188 3189 3190 3191 3192 3193
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3194 3195 3196

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3197
	if (flush_domains & I915_GEM_GPU_DOMAINS)
3198
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
3199 3200
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
		dev_priv->mm.flush_rings |= ring->id;
3201 3202 3203
}

/**
3204
 * Moves the object from a partially CPU read to a full one.
3205
 *
3206 3207
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3208
 */
3209 3210
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3211
{
3212
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3213

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3225
			drm_clflush_pages(obj_priv->pages + i, 1);
3226 3227 3228 3229 3230 3231
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3232
	kfree(obj_priv->page_cpu_valid);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3252
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3253
	uint32_t old_read_domains;
3254
	int i, ret;
3255

3256 3257
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3258

3259
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3260
	if (ret != 0)
3261
		return ret;
3262 3263 3264 3265 3266 3267
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3268

3269 3270 3271
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3272
	if (obj_priv->page_cpu_valid == NULL) {
3273 3274
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3275 3276 3277 3278
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3279 3280 3281 3282

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3283 3284
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3285 3286 3287
		if (obj_priv->page_cpu_valid[i])
			continue;

3288
		drm_clflush_pages(obj_priv->pages + i, 1);
3289 3290 3291 3292

		obj_priv->page_cpu_valid[i] = 1;
	}

3293 3294 3295 3296 3297
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3298
	old_read_domains = obj->read_domains;
3299 3300
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3301 3302 3303 3304
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3305 3306 3307 3308 3309 3310 3311
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
3312 3313 3314
i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
			     struct drm_file *file_priv,
			     struct drm_i915_gem_exec_object2 *entry)
3315
{
3316
	struct drm_device *dev = obj->base.dev;
3317
	drm_i915_private_t *dev_priv = dev->dev_private;
3318
	struct drm_i915_gem_relocation_entry __user *user_relocs;
3319 3320 3321
	struct drm_gem_object *target_obj = NULL;
	uint32_t target_handle = 0;
	int i, ret = 0;
3322

3323
	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3324
	for (i = 0; i < entry->relocation_count; i++) {
3325
		struct drm_i915_gem_relocation_entry reloc;
3326
		uint32_t target_offset;
3327

3328 3329 3330 3331 3332
		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc))) {
			ret = -EFAULT;
			break;
J
Jesse Barnes 已提交
3333 3334
		}

3335 3336
		if (reloc.target_handle != target_handle) {
			drm_gem_object_unreference(target_obj);
3337

3338 3339 3340 3341 3342 3343 3344 3345
			target_obj = drm_gem_object_lookup(dev, file_priv,
							   reloc.target_handle);
			if (target_obj == NULL) {
				ret = -ENOENT;
				break;
			}

			target_handle = reloc.target_handle;
3346
		}
3347
		target_offset = to_intel_bo(target_obj)->gtt_offset;
3348

3349 3350 3351 3352 3353 3354
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3355 3356 3357 3358
			 (int) reloc.offset,
			 (int) reloc.target_handle,
			 (int) reloc.read_domains,
			 (int) reloc.write_domain,
3359
			 (int) target_offset,
3360 3361
			 (int) reloc.presumed_offset,
			 reloc.delta);
3362 3363
#endif

3364 3365 3366
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
3367
		if (target_offset == 0) {
3368
			DRM_ERROR("No GTT space found for object %d\n",
3369
				  reloc.target_handle);
3370 3371
			ret = -EINVAL;
			break;
3372 3373
		}

3374
		/* Validate that the target is in a valid r/w GPU domain */
3375
		if (reloc.write_domain & (reloc.write_domain - 1)) {
3376 3377 3378
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3379 3380 3381 3382
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3383 3384
			ret = -EINVAL;
			break;
3385
		}
3386 3387
		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3388 3389 3390
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3391 3392 3393 3394
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3395 3396
			ret = -EINVAL;
			break;
3397
		}
3398 3399
		if (reloc.write_domain && target_obj->pending_write_domain &&
		    reloc.write_domain != target_obj->pending_write_domain) {
3400 3401 3402
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3403 3404 3405
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.write_domain,
3406
				  target_obj->pending_write_domain);
3407 3408
			ret = -EINVAL;
			break;
3409 3410
		}

3411
		target_obj->pending_read_domains |= reloc.read_domains;
3412
		target_obj->pending_write_domain |= reloc.write_domain;
3413 3414 3415 3416

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3417
		if (target_offset == reloc.presumed_offset)
3418 3419
			continue;

3420
		/* Check that the relocation address is valid... */
3421
		if (reloc.offset > obj->base.size - 4) {
3422 3423
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3424
				  obj, reloc.target_handle,
3425 3426 3427
				  (int) reloc.offset, (int) obj->base.size);
			ret = -EINVAL;
			break;
3428
		}
3429
		if (reloc.offset & 3) {
3430 3431
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3432 3433
				  obj, reloc.target_handle,
				  (int) reloc.offset);
3434 3435
			ret = -EINVAL;
			break;
3436 3437 3438
		}

		/* and points to somewhere within the target object. */
3439
		if (reloc.delta >= target_obj->size) {
3440 3441
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
3442 3443
				  obj, reloc.target_handle,
				  (int) reloc.delta, (int) target_obj->size);
3444 3445
			ret = -EINVAL;
			break;
3446 3447
		}

3448 3449
		reloc.delta += target_offset;
		if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3450 3451
			uint32_t page_offset = reloc.offset & ~PAGE_MASK;
			char *vaddr;
3452

3453
			vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3454
			*(uint32_t *)(vaddr + page_offset) = reloc.delta;
3455
			kunmap_atomic(vaddr);
3456 3457 3458
		} else {
			uint32_t __iomem *reloc_entry;
			void __iomem *reloc_page;
3459

3460 3461 3462
			ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
			if (ret)
				break;
3463

3464
			/* Map the page containing the relocation we're going to perform.  */
3465
			reloc.offset += obj->gtt_offset;
3466
			reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3467
							      reloc.offset & PAGE_MASK);
3468 3469 3470
			reloc_entry = (uint32_t __iomem *)
				(reloc_page + (reloc.offset & ~PAGE_MASK));
			iowrite32(reloc.delta, reloc_entry);
3471
			io_mapping_unmap_atomic(reloc_page);
3472
		}
3473

3474 3475 3476 3477 3478 3479 3480 3481
		/* and update the user's relocation entry */
		reloc.presumed_offset = target_offset;
		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					      &reloc.presumed_offset,
					      sizeof(reloc.presumed_offset))) {
		    ret = -EFAULT;
		    break;
		}
3482 3483
	}

3484
	drm_gem_object_unreference(target_obj);
3485 3486 3487
	return ret;
}

3488
static int
3489 3490 3491 3492 3493
i915_gem_execbuffer_pin(struct drm_device *dev,
			struct drm_file *file,
			struct drm_gem_object **object_list,
			struct drm_i915_gem_exec_object2 *exec_list,
			int count)
3494
{
3495 3496
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret, i, retry;
3497

3498 3499 3500 3501 3502
	/* attempt to pin all of the buffers into the GTT */
	for (retry = 0; retry < 2; retry++) {
		ret = 0;
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3503
			struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3504 3505 3506 3507
			bool need_fence =
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

3508 3509 3510 3511
			/* g33/pnv can't fence buffers in the unmappable part */
			bool need_mappable =
				entry->relocation_count ? true : need_fence;

3512 3513 3514 3515 3516 3517 3518 3519
			/* Check fence reg constraints and rebind if necessary */
			if (need_fence &&
			    !i915_gem_object_fence_offset_ok(&obj->base,
							     obj->tiling_mode)) {
				ret = i915_gem_object_unbind(&obj->base);
				if (ret)
					break;
			}
3520

3521
			ret = i915_gem_object_pin(&obj->base,
3522 3523
						  entry->alignment,
						  need_mappable);
3524 3525
			if (ret)
				break;
3526

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
			/*
			 * Pre-965 chips need a fence register set up in order
			 * to properly handle blits to/from tiled surfaces.
			 */
			if (need_fence) {
				ret = i915_gem_object_get_fence_reg(&obj->base, true);
				if (ret) {
					i915_gem_object_unpin(&obj->base);
					break;
				}
3537

3538 3539
				dev_priv->fence_regs[obj->fence_reg].gpu = true;
			}
3540

3541
			entry->offset = obj->gtt_offset;
3542 3543
		}

3544 3545 3546 3547 3548
		while (i--)
			i915_gem_object_unpin(object_list[i]);

		if (ret == 0)
			break;
3549

3550 3551 3552 3553 3554 3555
		if (ret != -ENOSPC || retry)
			return ret;

		ret = i915_gem_evict_everything(dev);
		if (ret)
			return ret;
3556 3557
	}

3558
	return 0;
3559 3560
}

3561 3562 3563
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3564 3565 3566 3567
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3568 3569 3570
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3571
static int
3572
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3573
{
3574 3575
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3576
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3577 3578 3579 3580
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3581

3582
	spin_lock(&file_priv->mm.lock);
3583
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3584 3585
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3586

3587 3588
		ring = request->ring;
		seqno = request->seqno;
3589
	}
3590
	spin_unlock(&file_priv->mm.lock);
3591

3592 3593
	if (seqno == 0)
		return 0;
3594

3595
	ret = 0;
3596
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3597 3598 3599 3600 3601
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3602
		ring->user_irq_get(ring);
3603
		ret = wait_event_interruptible(ring->irq_queue,
3604
					       i915_seqno_passed(ring->get_seqno(ring), seqno)
3605
					       || atomic_read(&dev_priv->mm.wedged));
3606
		ring->user_irq_put(ring);
3607

3608 3609
		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
3610 3611
	}

3612 3613
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3614 3615 3616 3617

	return ret;
}

3618
static int
3619 3620
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3636
static int
3637 3638
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3639
{
3640
	int i;
3641

3642 3643 3644
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3645

3646 3647
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3648

3649 3650 3651 3652
		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

3653 3654
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3655 3656
	}

3657
	return 0;
3658 3659
}

C
Chris Wilson 已提交
3660
static int
J
Jesse Barnes 已提交
3661
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3662
		       struct drm_file *file,
J
Jesse Barnes 已提交
3663 3664
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3665 3666 3667 3668
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3669
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3670
	struct drm_i915_gem_request *request = NULL;
3671
	int ret, i, flips;
3672 3673
	uint64_t exec_offset;

3674 3675
	struct intel_ring_buffer *ring = NULL;

3676 3677 3678 3679
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3680 3681 3682 3683
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3684 3685 3686 3687
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3688 3689 3690 3691 3692 3693
	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
		ring = &dev_priv->render_ring;
		break;
	case I915_EXEC_BSD:
3694
		if (!HAS_BSD(dev)) {
3695
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
3696 3697 3698
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
		ring = &dev_priv->blt_ring;
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
3711 3712
	}

3713 3714 3715 3716
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3717
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3718 3719
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3720 3721 3722 3723 3724
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3725
	if (args->num_cliprects != 0) {
3726 3727
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3728 3729
		if (cliprects == NULL) {
			ret = -ENOMEM;
3730
			goto pre_mutex_err;
3731
		}
3732 3733 3734 3735 3736 3737 3738 3739

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3740
			ret = -EFAULT;
3741 3742 3743 3744
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3745 3746 3747
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
3748
		goto pre_mutex_err;
C
Chris Wilson 已提交
3749
	}
3750

3751 3752
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3753
		goto pre_mutex_err;
3754 3755 3756

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3757 3758
		ret = -EBUSY;
		goto pre_mutex_err;
3759 3760
	}

3761
	/* Look up object handles */
3762
	for (i = 0; i < args->buffer_count; i++) {
3763 3764
		struct drm_i915_gem_object *obj_priv;

3765
		object_list[i] = drm_gem_object_lookup(dev, file,
3766 3767 3768 3769
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3770 3771
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3772
			ret = -ENOENT;
3773 3774
			goto err;
		}
3775

3776
		obj_priv = to_intel_bo(object_list[i]);
3777 3778 3779
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3780 3781
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3782
			ret = -EINVAL;
3783 3784 3785
			goto err;
		}
		obj_priv->in_execbuffer = true;
3786
	}
3787

3788 3789 3790 3791 3792 3793
	/* Move the objects en-masse into the GTT, evicting if necessary. */
	ret = i915_gem_execbuffer_pin(dev, file,
				      object_list, exec_list,
				      args->buffer_count);
	if (ret)
		goto err;
3794

3795 3796 3797 3798 3799 3800 3801
	/* The objects are in their final locations, apply the relocations. */
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
		if (ret)
3802
			goto err;
3803 3804 3805 3806
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3807 3808 3809 3810 3811 3812
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3813

3814 3815 3816
	/* Sanity check the batch buffer */
	exec_offset = to_intel_bo(batch_obj)->gtt_offset;
	ret = i915_gem_check_execbuffer(args, exec_offset);
3817 3818 3819 3820 3821
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3822 3823 3824 3825 3826 3827
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3828
	dev_priv->mm.flush_rings = 0;
3829 3830
	for (i = 0; i < args->buffer_count; i++)
		i915_gem_object_set_to_gpu_domain(object_list[i], ring);
3831

3832 3833 3834 3835 3836 3837 3838
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3839
		i915_gem_flush(dev, file,
3840
			       dev->invalidate_domains,
3841 3842
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3843
	}
3844 3845 3846 3847 3848 3849 3850 3851 3852

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3853
	i915_gem_dump_object(batch_obj,
3854 3855 3856 3857 3858
			      args->batch_len,
			      __func__,
			      ~0);
#endif

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

3880 3881 3882 3883
			ret = intel_ring_begin(ring, 2);
			if (ret)
				goto err;

3884 3885 3886
			intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(ring, MI_NOOP);
			intel_ring_advance(ring);
3887 3888 3889
		}
	}

3890
	/* Exec the batchbuffer */
3891
	ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3892 3893 3894 3895 3896 3897 3898 3899
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3900 3901 3902
		obj->read_domains = obj->pending_read_domains;
		obj->write_domain = obj->pending_write_domain;

3903
		i915_gem_object_move_to_active(obj, ring);
3904 3905 3906 3907
		if (obj->write_domain) {
			struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
			obj_priv->dirty = 1;
			list_move_tail(&obj_priv->gpu_write_list,
3908
				       &ring->gpu_write_list);
3909 3910 3911 3912 3913 3914
			intel_mark_busy(dev, obj);
		}

		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    obj->write_domain);
3915 3916
	}

3917 3918 3919 3920 3921 3922
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	i915_retire_commands(dev, ring);

3923 3924 3925 3926
	if (i915_add_request(dev, file, request, ring))
		ring->outstanding_lazy_request = true;
	else
		request = NULL;
3927 3928

err:
3929
	for (i = 0; i < args->buffer_count; i++) {
3930 3931 3932 3933
		if (object_list[i] == NULL)
		    break;

		to_intel_bo(object_list[i])->in_execbuffer = false;
3934
		drm_gem_object_unreference(object_list[i]);
3935
	}
3936 3937 3938

	mutex_unlock(&dev->struct_mutex);

3939
pre_mutex_err:
3940
	drm_free_large(object_list);
3941
	kfree(cliprects);
C
Chris Wilson 已提交
3942
	kfree(request);
3943 3944 3945 3946

	return ret;
}

J
Jesse Barnes 已提交
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3999
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4013
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4092
int
4093 4094
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
		    bool mappable)
4095 4096
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4097
	struct drm_i915_private *dev_priv = dev->dev_private;
4098
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4099 4100
	int ret;

4101
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4102
	WARN_ON(i915_verify_lists(dev));
4103 4104 4105 4106

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
4107 4108
		if (obj_priv->gtt_offset & (alignment - 1) ||
		    (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
4109 4110 4111 4112
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4113 4114 4115 4116 4117 4118
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4119
	if (obj_priv->gtt_space == NULL) {
4120
		ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
4121
		if (ret)
4122
			return ret;
4123
	}
J
Jesse Barnes 已提交
4124

4125 4126 4127 4128 4129 4130
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
4131
		i915_gem_info_add_pin(dev_priv, obj, mappable);
C
Chris Wilson 已提交
4132
		if (!obj_priv->active)
4133
			list_move_tail(&obj_priv->mm_list,
C
Chris Wilson 已提交
4134
				       &dev_priv->mm.pinned_list);
4135
	}
4136
	BUG_ON(!obj_priv->pin_mappable && mappable);
4137

4138
	WARN_ON(i915_verify_lists(dev));
4139 4140 4141 4142 4143 4144 4145 4146
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4147
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4148

4149
	WARN_ON(i915_verify_lists(dev));
4150 4151 4152 4153 4154 4155 4156 4157 4158
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4159
		if (!obj_priv->active)
4160
			list_move_tail(&obj_priv->mm_list,
4161
				       &dev_priv->mm.inactive_list);
4162
		i915_gem_info_remove_pin(dev_priv, obj);
4163
	}
4164
	WARN_ON(i915_verify_lists(dev));
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4176 4177 4178
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4179 4180 4181

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4182 4183
		ret = -ENOENT;
		goto unlock;
4184
	}
4185
	obj_priv = to_intel_bo(obj);
4186

C
Chris Wilson 已提交
4187 4188
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4189 4190
		ret = -EINVAL;
		goto out;
4191 4192
	}

J
Jesse Barnes 已提交
4193 4194 4195
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4196 4197
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4198 4199 4200 4201 4202
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
4203
		ret = i915_gem_object_pin(obj, args->alignment, true);
4204 4205
		if (ret)
			goto out;
4206 4207 4208 4209 4210
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4211
	i915_gem_object_flush_cpu_write_domain(obj);
4212
	args->offset = obj_priv->gtt_offset;
4213
out:
4214
	drm_gem_object_unreference(obj);
4215
unlock:
4216
	mutex_unlock(&dev->struct_mutex);
4217
	return ret;
4218 4219 4220 4221 4222 4223 4224 4225
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4226
	struct drm_i915_gem_object *obj_priv;
4227
	int ret;
4228

4229 4230 4231
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4232 4233 4234

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4235 4236
		ret = -ENOENT;
		goto unlock;
4237
	}
4238
	obj_priv = to_intel_bo(obj);
4239

J
Jesse Barnes 已提交
4240 4241 4242
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4243 4244
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4245 4246 4247 4248 4249 4250
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4251

4252
out:
4253
	drm_gem_object_unreference(obj);
4254
unlock:
4255
	mutex_unlock(&dev->struct_mutex);
4256
	return ret;
4257 4258 4259 4260 4261 4262 4263 4264 4265
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4266 4267
	int ret;

4268
	ret = i915_mutex_lock_interruptible(dev);
4269
	if (ret)
4270
		return ret;
4271 4272 4273

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4274 4275
		ret = -ENOENT;
		goto unlock;
4276
	}
4277
	obj_priv = to_intel_bo(obj);
4278

4279 4280 4281 4282
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4283
	 */
4284 4285 4286 4287 4288 4289 4290
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4291 4292
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4293 4294
					    obj_priv->ring,
					    0, obj->write_domain);
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4305 4306

	drm_gem_object_unreference(obj);
4307
unlock:
4308
	mutex_unlock(&dev->struct_mutex);
4309
	return ret;
4310 4311 4312 4313 4314 4315 4316 4317 4318
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4319 4320 4321 4322 4323 4324 4325
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4326
	int ret;
4327 4328 4329 4330 4331 4332 4333 4334 4335

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4336 4337 4338 4339
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4340 4341
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4342 4343
		ret = -ENOENT;
		goto unlock;
4344
	}
4345
	obj_priv = to_intel_bo(obj);
4346 4347

	if (obj_priv->pin_count) {
4348 4349
		ret = -EINVAL;
		goto out;
4350 4351
	}

C
Chris Wilson 已提交
4352 4353
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4354

4355 4356 4357 4358 4359
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4360 4361
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4362
out:
4363
	drm_gem_object_unreference(obj);
4364
unlock:
4365
	mutex_unlock(&dev->struct_mutex);
4366
	return ret;
4367 4368
}

4369 4370 4371
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4372
	struct drm_i915_private *dev_priv = dev->dev_private;
4373
	struct drm_i915_gem_object *obj;
4374

4375 4376 4377
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4378

4379 4380 4381 4382
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4383

4384 4385
	i915_gem_info_add_obj(dev_priv, size);

4386 4387
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4388

4389
	obj->agp_type = AGP_USER_MEMORY;
4390
	obj->base.driver_private = NULL;
4391
	obj->fence_reg = I915_FENCE_REG_NONE;
4392 4393
	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->ring_list);
4394 4395
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4396

4397 4398 4399 4400 4401 4402
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4403

4404 4405 4406
	return 0;
}

4407
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4408
{
4409
	struct drm_device *dev = obj->dev;
4410
	drm_i915_private_t *dev_priv = dev->dev_private;
4411
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4412
	int ret;
4413

4414 4415
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
4416
		list_move(&obj_priv->mm_list,
4417 4418 4419
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4420

C
Chris Wilson 已提交
4421
	if (obj->map_list.map)
4422
		i915_gem_free_mmap_offset(obj);
4423

4424
	drm_gem_object_release(obj);
4425
	i915_gem_info_remove_obj(dev_priv, obj->size);
4426

4427
	kfree(obj_priv->page_cpu_valid);
4428
	kfree(obj_priv->bit_17);
4429
	kfree(obj_priv);
4430 4431
}

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4448 4449 4450 4451 4452
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4453

4454
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4455

4456
	if (dev_priv->mm.suspended) {
4457 4458
		mutex_unlock(&dev->struct_mutex);
		return 0;
4459 4460
	}

4461
	ret = i915_gpu_idle(dev);
4462 4463
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4464
		return ret;
4465
	}
4466

4467 4468
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4469
		ret = i915_gem_evict_inactive(dev);
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4481
	del_timer_sync(&dev_priv->hangcheck_timer);
4482 4483

	i915_kernel_lost_context(dev);
4484
	i915_gem_cleanup_ringbuffer(dev);
4485

4486 4487
	mutex_unlock(&dev->struct_mutex);

4488 4489 4490
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4491 4492 4493
	return 0;
}

4494 4495 4496 4497
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4498
static int
4499 4500 4501 4502 4503 4504 4505
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4506
	obj = i915_gem_alloc_object(dev, 4096);
4507 4508 4509 4510 4511 4512 4513 4514
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

4515
	ret = i915_gem_object_pin(obj, 4096, true);
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4537 4538

static void
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4553 4554
}

4555 4556 4557 4558 4559
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4560

4561 4562 4563 4564 4565
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4566

4567
	ret = intel_init_render_ring_buffer(dev);
4568 4569 4570 4571
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4572
		ret = intel_init_bsd_ring_buffer(dev);
4573 4574
		if (ret)
			goto cleanup_render_ring;
4575
	}
4576

4577 4578 4579 4580 4581 4582
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

4583 4584
	dev_priv->next_seqno = 1;

4585 4586
	return 0;

4587
cleanup_bsd_ring:
4588
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4589
cleanup_render_ring:
4590
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
4591 4592 4593
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4594 4595 4596 4597 4598 4599 4600 4601
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

4602 4603 4604
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
	intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4605 4606 4607 4608
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4609 4610 4611 4612 4613 4614 4615
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4616 4617 4618
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4619
	if (atomic_read(&dev_priv->mm.wedged)) {
4620
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4621
		atomic_set(&dev_priv->mm.wedged, 0);
4622 4623 4624
	}

	mutex_lock(&dev->struct_mutex);
4625 4626 4627
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4628 4629
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4630
		return ret;
4631
	}
4632

4633
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4634
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4635
	BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4636
	BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4637 4638
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4639
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4640
	BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4641
	BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4642
	mutex_unlock(&dev->struct_mutex);
4643

4644 4645 4646
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4647

4648
	return 0;
4649 4650 4651 4652 4653 4654 4655 4656

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4657 4658 4659 4660 4661 4662
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4663 4664 4665
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4666
	drm_irq_uninstall(dev);
4667
	return i915_gem_idle(dev);
4668 4669 4670 4671 4672 4673 4674
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4675 4676 4677
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4678 4679 4680
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4681 4682
}

4683 4684 4685 4686 4687 4688 4689 4690
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

4691 4692 4693
void
i915_gem_load(struct drm_device *dev)
{
4694
	int i;
4695 4696
	drm_i915_private_t *dev_priv = dev->dev_private;

4697
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4698 4699
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4700
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4701
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4702
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4703 4704 4705
	init_ring_lists(&dev_priv->render_ring);
	init_ring_lists(&dev_priv->bsd_ring);
	init_ring_lists(&dev_priv->blt_ring);
4706 4707
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4708 4709
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4710
	init_completion(&dev_priv->error_completion);
4711

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4722
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4723 4724
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4725

4726
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4727 4728 4729 4730
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4731
	/* Initialize fence registers to zero */
4732 4733 4734 4735 4736 4737 4738
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4739 4740
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4741 4742
		break;
	case 3:
4743 4744 4745
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4746 4747 4748 4749
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4750
	}
4751
	i915_gem_detect_bit_6_swizzle(dev);
4752
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4753 4754 4755 4756

	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
4757
}
4758 4759 4760 4761 4762

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4763 4764
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4765 4766 4767 4768 4769 4770 4771 4772
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4773
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4774 4775 4776 4777 4778
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4779
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4792
	kfree(phys_obj);
4793 4794 4795
	return ret;
}

4796
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4821
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4822 4823 4824 4825 4826 4827
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
4828 4829 4830
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
	char *vaddr;
4831 4832 4833 4834 4835
	int i;
	int page_count;

	if (!obj_priv->phys_obj)
		return;
4836
	vaddr = obj_priv->phys_obj->handle->vaddr;
4837 4838 4839 4840

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4854 4855
	}
	drm_agp_chipset_flush(dev);
4856

4857 4858 4859 4860 4861 4862
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4863 4864 4865
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4866
{
4867
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4868 4869 4870 4871 4872 4873 4874 4875 4876
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4877
	obj_priv = to_intel_bo(obj);
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4888
						obj->size, align);
4889
		if (ret) {
4890
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4891
			return ret;
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4902 4903 4904 4905 4906 4907 4908
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
4909

4910 4911
		src = kmap_atomic(obj_priv->pages[i]);
		dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4912
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4913
		kunmap_atomic(src);
4914

4915 4916 4917
		mark_page_accessed(page);
		page_cache_release(page);
	}
4918

4919 4920 4921 4922 4923 4924 4925 4926
	return 0;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4927
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4928 4929 4930 4931 4932 4933 4934
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4935
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4936 4937 4938 4939 4940 4941 4942
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4943

4944
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4945
{
4946
	struct drm_i915_file_private *file_priv = file->driver_priv;
4947 4948 4949 4950 4951

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4952
	spin_lock(&file_priv->mm.lock);
4953 4954 4955 4956 4957 4958 4959 4960 4961
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4962
	spin_unlock(&file_priv->mm.lock);
4963
}
4964

4965 4966 4967 4968 4969 4970 4971
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4972
		      list_empty(&dev_priv->mm.active_list);
4973 4974 4975 4976

	return !lists_empty;
}

4977
static int
4978 4979 4980
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
4981
{
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
		return nr_to_scan ? 0 : -1;
4992 4993 4994

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4995 4996 4997 4998 4999 5000 5001
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
5002 5003
	}

5004
rescan:
5005
	/* first scan for clean buffers */
5006
	i915_gem_retire_requests(dev);
5007

5008 5009 5010 5011 5012 5013 5014
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
			i915_gem_object_unbind(&obj->base);
			if (--nr_to_scan == 0)
				break;
5015 5016 5017 5018
		}
	}

	/* second pass, evict/count anything still on the inactive list */
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (nr_to_scan) {
			i915_gem_object_unbind(&obj->base);
			nr_to_scan--;
		} else
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
5031 5032 5033 5034 5035 5036
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
5037
		if (i915_gpu_idle(dev) == 0)
5038 5039
			goto rescan;
	}
5040 5041
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
5042
}