i915_gem.c 141.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49

50 51
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
52 53 54
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

55
	if (!i915_gem_object_is_coherent(obj))
56 57 58 59 60
		return true;

	return obj->pin_display;
}

61
static int
62
insert_mappable_node(struct i915_ggtt *ggtt,
63 64 65
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
66 67 68 69
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
70 71 72 73 74 75 76 77
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

78 79
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80
				  u64 size)
81
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89
				     u64 size)
90
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
	might_sleep();

104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
109
	ret = wait_event_interruptible_timeout(error->reset_queue,
110
					       !i915_reset_backoff(error),
111
					       I915_RESET_TIMEOUT);
112 113 114 115
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
116
		return ret;
117 118
	} else {
		return 0;
119
	}
120 121
}

122
int i915_mutex_lock_interruptible(struct drm_device *dev)
123
{
124
	struct drm_i915_private *dev_priv = to_i915(dev);
125 126
	int ret;

127
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 129 130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
137

138 139
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140
			    struct drm_file *file)
141
{
142
	struct drm_i915_private *dev_priv = to_i915(dev);
143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144
	struct drm_i915_gem_get_aperture *args = data;
145
	struct i915_vma *vma;
146
	u64 pinned;
147

148
	pinned = ggtt->base.reserved;
149
	mutex_lock(&dev->struct_mutex);
150
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151
		if (i915_vma_is_pinned(vma))
152
			pinned += vma->node.size;
153
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154
		if (i915_vma_is_pinned(vma))
155
			pinned += vma->node.size;
156
	mutex_unlock(&dev->struct_mutex);
157

158
	args->aper_size = ggtt->base.total;
159
	args->aper_available_size = args->aper_size - pinned;
160

161 162 163
	return 0;
}

164
static struct sg_table *
165
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173

174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175
		return ERR_PTR(-EINVAL);
176

177 178 179 180 181 182 183 184 185 186 187
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
188 189 190 191 192
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
193 194 195 196
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
197 198 199 200 201 202

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

203
		put_page(page);
204 205 206
		vaddr += PAGE_SIZE;
	}

207
	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 209

	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 211 212 213
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
214 215 216

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
217 218
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
219 220 221 222 223
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
224

225
	sg_dma_address(sg) = phys->busaddr;
226 227
	sg_dma_len(sg) = obj->base.size;

228 229 230 231 232
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
233
	return st;
234 235 236
}

static void
237
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
238 239
				struct sg_table *pages,
				bool needs_clflush)
240
{
C
Chris Wilson 已提交
241
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
242

C
Chris Wilson 已提交
243 244
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
245

246 247
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
248
	    !i915_gem_object_is_coherent(obj))
249
		drm_clflush_sg(pages);
250 251 252 253 254 255 256 257 258

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
259
	__i915_gem_object_release_shmem(obj, pages, false);
260

C
Chris Wilson 已提交
261
	if (obj->mm.dirty) {
262
		struct address_space *mapping = obj->base.filp->f_mapping;
263
		char *vaddr = obj->phys_handle->vaddr;
264 265 266
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
267 268 269 270 271 272 273 274 275 276 277 278 279
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
280
			if (obj->mm.madv == I915_MADV_WILLNEED)
281
				mark_page_accessed(page);
282
			put_page(page);
283 284
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
285
		obj->mm.dirty = false;
286 287
	}

288 289
	sg_free_table(pages);
	kfree(pages);
290 291

	drm_pci_free(obj->base.dev, obj->phys_handle);
292 293 294 295 296
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
297
	i915_gem_object_unpin_pages(obj);
298 299 300 301 302 303 304 305
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

306 307
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

308
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
309 310 311
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
312 313 314
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
315

316 317 318 319
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
320
	 */
321 322 323 324 325 326
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
327 328 329 330 331
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

332 333 334 335 336 337 338 339 340 341 342 343 344
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

345 346 347 348 349
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
350
{
351
	struct drm_i915_gem_request *rq;
352

353
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
387 388
	}

389 390 391 392 393 394
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

395
	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
420
	unsigned int seq = __read_seqcount_begin(&resv->seq);
421
	struct dma_fence *excl;
422
	bool prune_fences = false;
423 424 425 426

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
427 428
		int ret;

429 430
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
431 432 433
		if (ret)
			return ret;

434 435 436 437
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
438
			if (timeout < 0)
439
				break;
440

441 442 443 444 445 446
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
447 448

		prune_fences = count && timeout >= 0;
449 450
	} else {
		excl = reservation_object_get_excl_rcu(resv);
451 452
	}

453
	if (excl && timeout >= 0) {
454
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
455 456
		prune_fences = timeout >= 0;
	}
457 458 459

	dma_fence_put(excl);

460 461 462 463
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
464
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
465 466 467 468 469
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
470 471
	}

472
	return timeout;
473 474
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

539 540 541 542 543 544
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
545
 */
546 547 548 549 550
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
551
{
552 553 554 555 556 557 558
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
559

560 561 562
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
563
	return timeout < 0 ? timeout : 0;
564 565 566 567 568 569 570 571 572
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

573 574 575 576
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
577
	int ret;
578

579 580
	if (align > obj->base.size)
		return -EINVAL;
581

582
	if (obj->ops == &i915_gem_phys_ops)
583 584
		return 0;

C
Chris Wilson 已提交
585
	if (obj->mm.madv != I915_MADV_WILLNEED)
586 587 588 589 590
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
591 592 593 594
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

595
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
596 597
	if (obj->mm.pages)
		return -EBUSY;
598

599
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
600 601
	obj->ops = &i915_gem_phys_ops;

602 603 604 605 606 607 608 609 610
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
611 612 613 614 615
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
616
		     struct drm_file *file)
617 618
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
619
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
620 621 622 623

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
624
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
625 626
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
627

628
	drm_clflush_virt_range(vaddr, args->size);
629
	i915_gem_chipset_flush(to_i915(obj->base.dev));
630

631
	intel_fb_obj_flush(obj, ORIGIN_CPU);
632
	return 0;
633 634
}

635
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
636
{
637
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
638 639 640 641
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
642
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
643
	kmem_cache_free(dev_priv->objects, obj);
644 645
}

646 647
static int
i915_gem_create(struct drm_file *file,
648
		struct drm_i915_private *dev_priv,
649 650
		uint64_t size,
		uint32_t *handle_p)
651
{
652
	struct drm_i915_gem_object *obj;
653 654
	int ret;
	u32 handle;
655

656
	size = roundup(size, PAGE_SIZE);
657 658
	if (size == 0)
		return -EINVAL;
659 660

	/* Allocate the new object */
661
	obj = i915_gem_object_create(dev_priv, size);
662 663
	if (IS_ERR(obj))
		return PTR_ERR(obj);
664

665
	ret = drm_gem_handle_create(file, &obj->base, &handle);
666
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
667
	i915_gem_object_put(obj);
668 669
	if (ret)
		return ret;
670

671
	*handle_p = handle;
672 673 674
	return 0;
}

675 676 677 678 679 680
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
681
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
682
	args->size = args->pitch * args->height;
683
	return i915_gem_create(file, to_i915(dev),
684
			       args->size, &args->handle);
685 686 687 688
}

/**
 * Creates a new mm object and returns a handle to it.
689 690 691
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
692 693 694 695 696
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
697
	struct drm_i915_private *dev_priv = to_i915(dev);
698
	struct drm_i915_gem_create *args = data;
699

700
	i915_gem_flush_free_objects(dev_priv);
701

702
	return i915_gem_create(file, dev_priv,
703
			       args->size, &args->handle);
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
			if (intel_runtime_pm_get_if_in_use(dev_priv)) {
				spin_lock_irq(&dev_priv->uncore.lock);
				POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
				spin_unlock_irq(&dev_priv->uncore.lock);
				intel_runtime_pm_put(dev_priv);
			}
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
	}

	obj->base.write_domain = 0;
}

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

787
static inline int
788 789
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

813 814 815 816 817 818
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
819
				    unsigned int *needs_clflush)
820 821 822
{
	int ret;

823
	lockdep_assert_held(&obj->base.dev->struct_mutex);
824

825
	*needs_clflush = 0;
826 827
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
828

829 830 831 832 833
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
834 835 836
	if (ret)
		return ret;

C
Chris Wilson 已提交
837
	ret = i915_gem_object_pin_pages(obj);
838 839 840
	if (ret)
		return ret;

841 842 843 844 845 846 847 848 849
	if (i915_gem_object_is_coherent(obj) ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

850
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
851

852 853 854 855 856 857
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
858
		*needs_clflush = CLFLUSH_BEFORE;
859

860
out:
861
	/* return with the pages pinned */
862
	return 0;
863 864 865 866

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
867 868 869 870 871 872 873
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

874 875
	lockdep_assert_held(&obj->base.dev->struct_mutex);

876 877 878 879
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

880 881 882 883 884 885
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
886 887 888
	if (ret)
		return ret;

C
Chris Wilson 已提交
889
	ret = i915_gem_object_pin_pages(obj);
890 891 892
	if (ret)
		return ret;

893 894 895 896 897 898 899 900 901
	if (i915_gem_object_is_coherent(obj) ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

902
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
903

904 905 906 907 908 909
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
910
		*needs_clflush |= CLFLUSH_AFTER;
911 912 913 914 915

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
916
		*needs_clflush |= CLFLUSH_BEFORE;
917

918
out:
919
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
920
	obj->mm.dirty = true;
921
	/* return with the pages pinned */
922
	return 0;
923 924 925 926

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
927 928
}

929 930 931 932
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
933
	if (unlikely(swizzled)) {
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

951 952 953
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
954
shmem_pread_slow(struct page *page, int offset, int length,
955 956 957 958 959 960 961 962
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
963
		shmem_clflush_swizzled_range(vaddr + offset, length,
964
					     page_do_bit17_swizzling);
965 966

	if (page_do_bit17_swizzling)
967
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
968
	else
969
		ret = __copy_to_user(user_data, vaddr + offset, length);
970 971
	kunmap(page);

972
	return ret ? - EFAULT : 0;
973 974
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1051 1052
{
	void *vaddr;
1053
	unsigned long unwritten;
1054 1055

	/* We can use the cpu mem copy function because this is X86. */
1056 1057 1058 1059 1060 1061 1062 1063 1064
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1065 1066 1067 1068
	return unwritten;
}

static int
1069 1070
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1071
{
1072 1073
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1074
	struct drm_mm_node node;
1075 1076 1077
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1078 1079
	int ret;

1080 1081 1082 1083 1084 1085 1086
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1087 1088 1089
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1090
		ret = i915_vma_put_fence(vma);
1091 1092 1093 1094 1095
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1096
	if (IS_ERR(vma)) {
1097
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1098
		if (ret)
1099 1100
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1101 1102 1103 1104 1105 1106
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1107
	mutex_unlock(&i915->drm.struct_mutex);
1108

1109 1110 1111
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1128
					       node.start, I915_CACHE_NONE, 0);
1129 1130 1131 1132
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1133 1134 1135

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1136 1137 1138 1139 1140 1141 1142 1143 1144
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1145
	mutex_lock(&i915->drm.struct_mutex);
1146 1147 1148 1149
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1150
				       node.start, node.size);
1151 1152
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1153
		i915_vma_unpin(vma);
1154
	}
1155 1156 1157
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1158

1159 1160 1161
	return ret;
}

1162 1163
/**
 * Reads data from the object referenced by handle.
1164 1165 1166
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1167 1168 1169 1170 1171
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1172
		     struct drm_file *file)
1173 1174
{
	struct drm_i915_gem_pread *args = data;
1175
	struct drm_i915_gem_object *obj;
1176
	int ret;
1177

1178 1179 1180 1181
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1182
		       u64_to_user_ptr(args->data_ptr),
1183 1184 1185
		       args->size))
		return -EFAULT;

1186
	obj = i915_gem_object_lookup(file, args->handle);
1187 1188
	if (!obj)
		return -ENOENT;
1189

1190
	/* Bounds check source.  */
1191
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1192
		ret = -EINVAL;
1193
		goto out;
C
Chris Wilson 已提交
1194 1195
	}

C
Chris Wilson 已提交
1196 1197
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1198 1199 1200 1201
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1202
	if (ret)
1203
		goto out;
1204

1205
	ret = i915_gem_object_pin_pages(obj);
1206
	if (ret)
1207
		goto out;
1208

1209
	ret = i915_gem_shmem_pread(obj, args);
1210
	if (ret == -EFAULT || ret == -ENODEV)
1211
		ret = i915_gem_gtt_pread(obj, args);
1212

1213 1214
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1215
	i915_gem_object_put(obj);
1216
	return ret;
1217 1218
}

1219 1220
/* This is the fast write path which cannot handle
 * page faults in the source data
1221
 */
1222

1223 1224 1225 1226
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1227
{
1228
	void *vaddr;
1229
	unsigned long unwritten;
1230

1231
	/* We can use the cpu mem copy function because this is X86. */
1232 1233
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1234
						      user_data, length);
1235 1236 1237 1238 1239 1240 1241
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1242 1243 1244 1245

	return unwritten;
}

1246 1247 1248
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1249
 * @obj: i915 GEM object
1250
 * @args: pwrite arguments structure
1251
 */
1252
static int
1253 1254
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1255
{
1256
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1257 1258
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1259 1260 1261
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1262
	int ret;
1263

1264 1265 1266
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1267

1268
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1269
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1270
				       PIN_MAPPABLE | PIN_NONBLOCK);
1271 1272 1273
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1274
		ret = i915_vma_put_fence(vma);
1275 1276 1277 1278 1279
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1280
	if (IS_ERR(vma)) {
1281
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1282
		if (ret)
1283 1284
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1285
	}
D
Daniel Vetter 已提交
1286 1287 1288 1289 1290

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1291 1292
	mutex_unlock(&i915->drm.struct_mutex);

1293
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1294

1295 1296 1297 1298
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1299 1300
		/* Operation in this page
		 *
1301 1302 1303
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1304
		 */
1305
		u32 page_base = node.start;
1306 1307
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1318
		/* If we get a fault while copying data, then (presumably) our
1319 1320
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1321 1322
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1323
		 */
1324 1325 1326 1327
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1328
		}
1329

1330 1331 1332
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1333
	}
1334
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1335 1336

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1337
out_unpin:
1338 1339 1340
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1341
				       node.start, node.size);
1342 1343
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1344
		i915_vma_unpin(vma);
1345
	}
1346
out_unlock:
1347
	intel_runtime_pm_put(i915);
1348
	mutex_unlock(&i915->drm.struct_mutex);
1349
	return ret;
1350 1351
}

1352
static int
1353
shmem_pwrite_slow(struct page *page, int offset, int length,
1354 1355 1356 1357
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1358
{
1359 1360
	char *vaddr;
	int ret;
1361

1362
	vaddr = kmap(page);
1363
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1364
		shmem_clflush_swizzled_range(vaddr + offset, length,
1365
					     page_do_bit17_swizzling);
1366
	if (page_do_bit17_swizzling)
1367 1368
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1369
	else
1370
		ret = __copy_from_user(vaddr + offset, user_data, length);
1371
	if (needs_clflush_after)
1372
		shmem_clflush_swizzled_range(vaddr + offset, length,
1373
					     page_do_bit17_swizzling);
1374
	kunmap(page);
1375

1376
	return ret ? -EFAULT : 0;
1377 1378
}

1379 1380 1381 1382 1383
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1384
static int
1385 1386 1387 1388
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1389
{
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1422
	unsigned int needs_clflush;
1423 1424
	unsigned int offset, idx;
	int ret;
1425

1426
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1427 1428 1429
	if (ret)
		return ret;

1430 1431 1432 1433
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1434

1435 1436 1437
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1438

1439 1440 1441 1442 1443 1444 1445
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1446

1447 1448 1449 1450 1451 1452
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1453

1454 1455 1456
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1457

1458 1459 1460 1461
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1462
		if (ret)
1463
			break;
1464

1465 1466 1467
		remain -= length;
		user_data += length;
		offset = 0;
1468
	}
1469

1470
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1471
	i915_gem_obj_finish_shmem_access(obj);
1472
	return ret;
1473 1474 1475 1476
}

/**
 * Writes data to the object referenced by handle.
1477 1478 1479
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1480 1481 1482 1483 1484
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1485
		      struct drm_file *file)
1486 1487
{
	struct drm_i915_gem_pwrite *args = data;
1488
	struct drm_i915_gem_object *obj;
1489 1490 1491 1492 1493 1494
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1495
		       u64_to_user_ptr(args->data_ptr),
1496 1497 1498
		       args->size))
		return -EFAULT;

1499
	obj = i915_gem_object_lookup(file, args->handle);
1500 1501
	if (!obj)
		return -ENOENT;
1502

1503
	/* Bounds check destination. */
1504
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1505
		ret = -EINVAL;
1506
		goto err;
C
Chris Wilson 已提交
1507 1508
	}

C
Chris Wilson 已提交
1509 1510
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1511 1512 1513 1514 1515 1516
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1517 1518 1519 1520 1521
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1522 1523 1524
	if (ret)
		goto err;

1525
	ret = i915_gem_object_pin_pages(obj);
1526
	if (ret)
1527
		goto err;
1528

D
Daniel Vetter 已提交
1529
	ret = -EFAULT;
1530 1531 1532 1533 1534 1535
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1536
	if (!i915_gem_object_has_struct_page(obj) ||
1537
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1538 1539
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1540 1541
		 * textures). Fallback to the shmem path in that case.
		 */
1542
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1543

1544
	if (ret == -EFAULT || ret == -ENOSPC) {
1545 1546
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1547
		else
1548
			ret = i915_gem_shmem_pwrite(obj, args);
1549
	}
1550

1551
	i915_gem_object_unpin_pages(obj);
1552
err:
C
Chris Wilson 已提交
1553
	i915_gem_object_put(obj);
1554
	return ret;
1555 1556
}

1557 1558 1559 1560 1561 1562 1563 1564
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1565
			break;
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1578
	list_move_tail(&obj->global_link, list);
1579 1580
}

1581
/**
1582 1583
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1584 1585 1586
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1587 1588 1589
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1590
			  struct drm_file *file)
1591 1592
{
	struct drm_i915_gem_set_domain *args = data;
1593
	struct drm_i915_gem_object *obj;
1594 1595
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1596
	int err;
1597

1598
	/* Only handle setting domains to types used by the CPU. */
1599
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1600 1601 1602 1603 1604 1605 1606 1607
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1608
	obj = i915_gem_object_lookup(file, args->handle);
1609 1610
	if (!obj)
		return -ENOENT;
1611

1612 1613 1614 1615
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1616
	err = i915_gem_object_wait(obj,
1617 1618 1619 1620
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1621
	if (err)
C
Chris Wilson 已提交
1622
		goto out;
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1634
		goto out;
1635 1636 1637

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1638
		goto out_unpin;
1639

1640 1641 1642 1643
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1644
	else
1645
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1646

1647 1648
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1649

1650
	mutex_unlock(&dev->struct_mutex);
1651

1652
	if (write_domain != 0)
1653 1654
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1655

C
Chris Wilson 已提交
1656
out_unpin:
1657
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1658 1659
out:
	i915_gem_object_put(obj);
1660
	return err;
1661 1662 1663 1664
}

/**
 * Called when user space has done writes to this buffer
1665 1666 1667
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1668 1669 1670
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1671
			 struct drm_file *file)
1672 1673
{
	struct drm_i915_gem_sw_finish *args = data;
1674
	struct drm_i915_gem_object *obj;
1675

1676
	obj = i915_gem_object_lookup(file, args->handle);
1677 1678
	if (!obj)
		return -ENOENT;
1679 1680

	/* Pinned buffers may be scanout, so flush the cache */
1681
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1682
	i915_gem_object_put(obj);
1683 1684

	return 0;
1685 1686 1687
}

/**
1688 1689 1690 1691 1692
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1693 1694 1695
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1706 1707 1708
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1709
		    struct drm_file *file)
1710 1711
{
	struct drm_i915_gem_mmap *args = data;
1712
	struct drm_i915_gem_object *obj;
1713 1714
	unsigned long addr;

1715 1716 1717
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1718
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1719 1720
		return -ENODEV;

1721 1722
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1723
		return -ENOENT;
1724

1725 1726 1727
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1728
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1729
		i915_gem_object_put(obj);
1730 1731 1732
		return -EINVAL;
	}

1733
	addr = vm_mmap(obj->base.filp, 0, args->size,
1734 1735
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1736 1737 1738 1739
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1740
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1741
			i915_gem_object_put(obj);
1742 1743
			return -EINTR;
		}
1744 1745 1746 1747 1748 1749 1750
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1751 1752

		/* This may race, but that's ok, it only gets set */
1753
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1754
	}
C
Chris Wilson 已提交
1755
	i915_gem_object_put(obj);
1756 1757 1758 1759 1760 1761 1762 1763
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1764 1765
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1766
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1789 1790 1791
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1819
	return 2;
1820 1821
}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1833 1834
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1835
		min_t(unsigned int, chunk,
1836
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1837 1838 1839 1840 1841 1842 1843 1844

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1845 1846
/**
 * i915_gem_fault - fault a page into the GTT
1847
 * @vmf: fault info
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1859 1860 1861
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1862
 */
1863
int i915_gem_fault(struct vm_fault *vmf)
1864
{
1865
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1866
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1867
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1868
	struct drm_device *dev = obj->base.dev;
1869 1870
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1871
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1872
	struct i915_vma *vma;
1873
	pgoff_t page_offset;
1874
	unsigned int flags;
1875
	int ret;
1876

1877
	/* We don't use vmf->pgoff since that has the fake offset */
1878
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1879

C
Chris Wilson 已提交
1880 1881
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1882
	/* Try to flush the object off the GPU first without holding the lock.
1883
	 * Upon acquiring the lock, we will perform our sanity checks and then
1884 1885 1886
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1887 1888 1889 1890
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1891
	if (ret)
1892 1893
		goto err;

1894 1895 1896 1897
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1898 1899 1900 1901 1902
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1903

1904
	/* Access to snoopable pages through the GTT is incoherent. */
1905
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1906
		ret = -EFAULT;
1907
		goto err_unlock;
1908 1909
	}

1910 1911 1912 1913 1914 1915 1916 1917
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1918
	/* Now pin it into the GTT as needed */
1919
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1920 1921
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1922
		struct i915_ggtt_view view =
1923
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1924

1925 1926 1927 1928 1929
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1930 1931
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1932 1933
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1934
		goto err_unlock;
C
Chris Wilson 已提交
1935
	}
1936

1937 1938
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1939
		goto err_unpin;
1940

1941
	ret = i915_vma_get_fence(vma);
1942
	if (ret)
1943
		goto err_unpin;
1944

1945
	/* Mark as being mmapped into userspace for later revocation */
1946
	assert_rpm_wakelock_held(dev_priv);
1947 1948 1949
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1950
	/* Finally, remap it using the new GTT offset */
1951
	ret = remap_io_mapping(area,
1952
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1953 1954 1955
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1956

1957
err_unpin:
C
Chris Wilson 已提交
1958
	__i915_vma_unpin(vma);
1959
err_unlock:
1960
	mutex_unlock(&dev->struct_mutex);
1961 1962
err_rpm:
	intel_runtime_pm_put(dev_priv);
1963
	i915_gem_object_unpin_pages(obj);
1964
err:
1965
	switch (ret) {
1966
	case -EIO:
1967 1968 1969 1970 1971 1972 1973
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1974 1975 1976
			ret = VM_FAULT_SIGBUS;
			break;
		}
1977
	case -EAGAIN:
D
Daniel Vetter 已提交
1978 1979 1980 1981
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1982
		 */
1983 1984
	case 0:
	case -ERESTARTSYS:
1985
	case -EINTR:
1986 1987 1988 1989 1990
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1991 1992
		ret = VM_FAULT_NOPAGE;
		break;
1993
	case -ENOMEM:
1994 1995
		ret = VM_FAULT_OOM;
		break;
1996
	case -ENOSPC:
1997
	case -EFAULT:
1998 1999
		ret = VM_FAULT_SIGBUS;
		break;
2000
	default:
2001
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2002 2003
		ret = VM_FAULT_SIGBUS;
		break;
2004
	}
2005
	return ret;
2006 2007
}

2008 2009 2010 2011
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2012
 * Preserve the reservation of the mmapping with the DRM core code, but
2013 2014 2015 2016 2017 2018 2019 2020 2021
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2022
void
2023
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2024
{
2025 2026
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2027 2028 2029
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2030 2031 2032 2033
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2034
	 */
2035
	lockdep_assert_held(&i915->drm.struct_mutex);
2036
	intel_runtime_pm_get(i915);
2037

2038
	if (list_empty(&obj->userfault_link))
2039
		goto out;
2040

2041
	list_del_init(&obj->userfault_link);
2042 2043
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2044 2045 2046 2047 2048 2049 2050 2051 2052

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2053 2054 2055

out:
	intel_runtime_pm_put(i915);
2056 2057
}

2058
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2059
{
2060
	struct drm_i915_gem_object *obj, *on;
2061
	int i;
2062

2063 2064 2065 2066 2067 2068
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2069

2070 2071 2072
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2073 2074 2075
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2076 2077 2078 2079 2080 2081 2082 2083

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2094 2095 2096 2097 2098 2099 2100

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2101 2102
}

2103 2104
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2105
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2106
	int err;
2107

2108
	err = drm_gem_create_mmap_offset(&obj->base);
2109
	if (likely(!err))
2110
		return 0;
2111

2112 2113 2114 2115 2116
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2117

2118
		i915_gem_drain_freed_objects(dev_priv);
2119
		err = drm_gem_create_mmap_offset(&obj->base);
2120 2121 2122 2123
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2124

2125
	return err;
2126 2127 2128 2129 2130 2131 2132
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2133
int
2134 2135
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2136
		  uint32_t handle,
2137
		  uint64_t *offset)
2138
{
2139
	struct drm_i915_gem_object *obj;
2140 2141
	int ret;

2142
	obj = i915_gem_object_lookup(file, handle);
2143 2144
	if (!obj)
		return -ENOENT;
2145

2146
	ret = i915_gem_object_create_mmap_offset(obj);
2147 2148
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2149

C
Chris Wilson 已提交
2150
	i915_gem_object_put(obj);
2151
	return ret;
2152 2153
}

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2175
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2176 2177
}

D
Daniel Vetter 已提交
2178 2179 2180
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2181
{
2182
	i915_gem_object_free_mmap_offset(obj);
2183

2184 2185
	if (obj->base.filp == NULL)
		return;
2186

D
Daniel Vetter 已提交
2187 2188 2189 2190 2191
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2192
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2193
	obj->mm.madv = __I915_MADV_PURGED;
2194
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2195
}
2196

2197
/* Try to discard unwanted pages */
2198
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2199
{
2200 2201
	struct address_space *mapping;

2202 2203 2204
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2205
	switch (obj->mm.madv) {
2206 2207 2208 2209 2210 2211 2212 2213 2214
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2215
	mapping = obj->base.filp->f_mapping,
2216
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2217 2218
}

2219
static void
2220 2221
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2222
{
2223 2224
	struct sgt_iter sgt_iter;
	struct page *page;
2225

2226
	__i915_gem_object_release_shmem(obj, pages, true);
2227

2228
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2229

2230
	if (i915_gem_object_needs_bit17_swizzle(obj))
2231
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2232

2233
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2234
		if (obj->mm.dirty)
2235
			set_page_dirty(page);
2236

C
Chris Wilson 已提交
2237
		if (obj->mm.madv == I915_MADV_WILLNEED)
2238
			mark_page_accessed(page);
2239

2240
		put_page(page);
2241
	}
C
Chris Wilson 已提交
2242
	obj->mm.dirty = false;
2243

2244 2245
	sg_free_table(pages);
	kfree(pages);
2246
}
C
Chris Wilson 已提交
2247

2248 2249 2250 2251 2252
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2253 2254
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2255 2256
}

2257 2258
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2259
{
2260
	struct sg_table *pages;
2261

C
Chris Wilson 已提交
2262
	if (i915_gem_object_has_pinned_pages(obj))
2263
		return;
2264

2265
	GEM_BUG_ON(obj->bind_count);
2266 2267 2268 2269
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2270
	mutex_lock_nested(&obj->mm.lock, subclass);
2271 2272
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2273

2274 2275 2276
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2277 2278
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2279

C
Chris Wilson 已提交
2280
	if (obj->mm.mapping) {
2281 2282
		void *ptr;

2283
		ptr = page_mask_bits(obj->mm.mapping);
2284 2285
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2286
		else
2287 2288
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2289
		obj->mm.mapping = NULL;
2290 2291
	}

2292 2293
	__i915_gem_object_reset_page_iter(obj);

2294 2295 2296
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2297 2298
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2299 2300
}

2301
static bool i915_sg_trim(struct sg_table *orig_st)
2302 2303 2304 2305 2306 2307
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2308
		return false;
2309

2310
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2311
		return false;
2312 2313 2314 2315 2316 2317 2318

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2319
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2320 2321 2322 2323

	sg_free_table(orig_st);

	*orig_st = new_st;
2324
	return true;
2325 2326
}

2327
static struct sg_table *
C
Chris Wilson 已提交
2328
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2329
{
2330
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2331 2332
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2333
	struct address_space *mapping;
2334 2335
	struct sg_table *st;
	struct scatterlist *sg;
2336
	struct sgt_iter sgt_iter;
2337
	struct page *page;
2338
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2339
	unsigned int max_segment;
2340
	gfp_t noreclaim;
I
Imre Deak 已提交
2341
	int ret;
2342

C
Chris Wilson 已提交
2343 2344 2345 2346
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2347 2348
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2349

2350
	max_segment = swiotlb_max_segment();
2351
	if (!max_segment)
2352
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2353

2354 2355
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2356
		return ERR_PTR(-ENOMEM);
2357

2358
rebuild_st:
2359 2360
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2361
		return ERR_PTR(-ENOMEM);
2362
	}
2363

2364 2365 2366 2367 2368
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2369
	mapping = obj->base.filp->f_mapping;
2370
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2371 2372
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2373 2374 2375
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
2376 2377 2378 2379 2380 2381 2382
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2383
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
			cond_resched();
2394

C
Chris Wilson 已提交
2395 2396 2397
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2398 2399 2400 2401
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2402
			 */
2403 2404 2405
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
				 * this we want the future __GFP_MAYFAIL.
				 */
I
Imre Deak 已提交
2420
			}
2421 2422
		} while (1);

2423 2424 2425
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2426 2427 2428 2429 2430 2431 2432 2433
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2434 2435 2436

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2437
	}
2438
	if (sg) /* loop terminated early; short sg table */
2439
		sg_mark_end(sg);
2440

2441 2442 2443
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2444
	ret = i915_gem_gtt_prepare_pages(obj, st);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2464

2465
	if (i915_gem_object_needs_bit17_swizzle(obj))
2466
		i915_gem_object_do_bit_17_swizzle(obj, st);
2467

2468
	return st;
2469

2470
err_sg:
2471
	sg_mark_end(sg);
2472
err_pages:
2473 2474
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2475 2476
	sg_free_table(st);
	kfree(st);
2477 2478 2479 2480 2481 2482 2483 2484 2485

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2486 2487 2488
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2489 2490 2491 2492 2493 2494
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2495
	lockdep_assert_held(&obj->mm.lock);
2496 2497 2498 2499 2500

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2501 2502 2503 2504 2505 2506 2507

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2508 2509 2510 2511 2512 2513
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2514 2515
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2527 2528
}

2529
/* Ensure that the associated pages are gathered from the backing storage
2530
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2531
 * multiple times before they are released by a single call to
2532
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2533 2534 2535
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2536
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2537
{
2538
	int err;
2539

2540 2541 2542
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2543

2544
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2545 2546 2547
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2548

2549 2550 2551
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2552

2553 2554
unlock:
	mutex_unlock(&obj->mm.lock);
2555
	return err;
2556 2557
}

2558
/* The 'mapping' part of i915_gem_object_pin_map() below */
2559 2560
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2561 2562
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2563
	struct sg_table *sgt = obj->mm.pages;
2564 2565
	struct sgt_iter sgt_iter;
	struct page *page;
2566 2567
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2568
	unsigned long i = 0;
2569
	pgprot_t pgprot;
2570 2571 2572
	void *addr;

	/* A single page can always be kmapped */
2573
	if (n_pages == 1 && type == I915_MAP_WB)
2574 2575
		return kmap(sg_page(sgt->sgl));

2576 2577
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
M
Michal Hocko 已提交
2578
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2579 2580 2581
		if (!pages)
			return NULL;
	}
2582

2583 2584
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2585 2586 2587 2588

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2589 2590 2591 2592 2593 2594 2595 2596 2597
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2598

2599
	if (pages != stack_pages)
M
Michal Hocko 已提交
2600
		kvfree(pages);
2601 2602 2603 2604 2605

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2606 2607
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2608
{
2609 2610 2611
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2612 2613
	int ret;

2614
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2615

2616
	ret = mutex_lock_interruptible(&obj->mm.lock);
2617 2618 2619
	if (ret)
		return ERR_PTR(ret);

2620 2621
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2622
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2623 2624 2625
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2626

2627 2628 2629
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2630 2631 2632
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2633

2634
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2635 2636 2637
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2638
			goto err_unpin;
2639
		}
2640 2641 2642 2643 2644 2645

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2646
		ptr = obj->mm.mapping = NULL;
2647 2648
	}

2649 2650 2651 2652
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2653
			goto err_unpin;
2654 2655
		}

2656
		obj->mm.mapping = page_pack_bits(ptr, type);
2657 2658
	}

2659 2660
out_unlock:
	mutex_unlock(&obj->mm.lock);
2661 2662
	return ptr;

2663 2664 2665 2666 2667
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2668 2669
}

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2739
static bool ban_context(const struct i915_gem_context *ctx)
2740
{
2741 2742
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2743 2744
}

2745
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2746
{
2747
	ctx->guilty_count++;
2748 2749 2750
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2751 2752

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2753
			 ctx->name, ctx->ban_score,
2754
			 yesno(i915_gem_context_is_banned(ctx)));
2755

2756
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2757 2758
		return;

2759 2760 2761
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2762 2763 2764 2765
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2766
	ctx->active_count++;
2767 2768
}

2769
struct drm_i915_gem_request *
2770
i915_gem_find_active_request(struct intel_engine_cs *engine)
2771
{
2772 2773
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2774

2775 2776 2777 2778 2779 2780 2781 2782
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2783
	spin_lock_irqsave(&engine->timeline->lock, flags);
2784
	list_for_each_entry(request, &engine->timeline->requests, link) {
2785 2786
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2787
			continue;
2788

2789
		GEM_BUG_ON(request->engine != engine);
2790 2791
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2792 2793 2794

		active = request;
		break;
2795
	}
2796
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2797

2798
	return active;
2799 2800
}

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2815
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2816 2817 2818
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2819
	int err = 0;
2820 2821

	/* Ensure irq handler finishes, and not run again. */
2822 2823 2824
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2836 2837 2838 2839 2840 2841 2842 2843
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2844
		tasklet_kill(&engine->irq_tasklet);
2845
		tasklet_disable(&engine->irq_tasklet);
2846

2847 2848 2849
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2850 2851 2852 2853 2854 2855 2856
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2857
	i915_gem_revoke_fences(dev_priv);
2858 2859

	return err;
2860 2861
}

2862
static void skip_request(struct drm_i915_gem_request *request)
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2877 2878

	dma_fence_set_error(&request->fence, -EIO);
2879 2880
}

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2904 2905 2906 2907 2908 2909
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2942
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2943 2944 2945
{
	struct drm_i915_gem_request *request;

2946
	request = i915_gem_find_active_request(engine);
2947 2948 2949
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2950

2951 2952 2953 2954
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2955 2956 2957

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2958
}
2959

2960
void i915_gem_reset(struct drm_i915_private *dev_priv)
2961
{
2962
	struct intel_engine_cs *engine;
2963
	enum intel_engine_id id;
2964

2965 2966
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2967 2968
	i915_gem_retire_requests(dev_priv);

2969 2970 2971
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2972
		i915_gem_reset_engine(engine);
2973 2974 2975 2976
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2977

2978
	i915_gem_restore_fences(dev_priv);
2979 2980 2981 2982 2983 2984 2985

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2986 2987
}

2988 2989
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2990 2991 2992
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2993
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2994

2995
	for_each_engine(engine, dev_priv, id) {
2996
		tasklet_enable(&engine->irq_tasklet);
2997 2998
		kthread_unpark(engine->breadcrumbs.signaler);
	}
2999 3000
}

3001 3002
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3003
	dma_fence_set_error(&request->fence, -EIO);
3004 3005
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3006 3007
}

3008
static void engine_set_wedged(struct intel_engine_cs *engine)
3009
{
3010 3011 3012
	struct drm_i915_gem_request *request;
	unsigned long flags;

3013 3014 3015 3016 3017 3018
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3019
	engine->submit_request = nop_submit_request;
3020

3021 3022 3023 3024 3025 3026
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

3027 3028 3029 3030
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
3031
	intel_engine_init_global_seqno(engine,
3032
				       intel_engine_last_submit(engine));
3033

3034 3035 3036 3037 3038 3039
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3040
	if (i915.enable_execlists) {
3041
		struct execlist_port *port = engine->execlist_port;
3042
		unsigned long flags;
3043
		unsigned int n;
3044 3045 3046

		spin_lock_irqsave(&engine->timeline->lock, flags);

3047 3048
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
3049
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3050 3051
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
3052 3053

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3054
	}
3055 3056
}

3057
static int __i915_gem_set_wedged_BKL(void *data)
3058
{
3059
	struct drm_i915_private *i915 = data;
3060
	struct intel_engine_cs *engine;
3061
	enum intel_engine_id id;
3062

3063
	for_each_engine(engine, i915, id)
3064
		engine_set_wedged(engine);
3065 3066 3067 3068 3069 3070

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
3071 3072
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3073

3074 3075 3076 3077 3078 3079
	/* Retire completed requests first so the list of inflight/incomplete
	 * requests is accurate and we don't try and mark successful requests
	 * as in error during __i915_gem_set_wedged_BKL().
	 */
	i915_gem_retire_requests(dev_priv);

3080
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3081

3082 3083 3084
	i915_gem_context_lost(dev_priv);

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3085 3086
}

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3146
static void
3147 3148
i915_gem_retire_work_handler(struct work_struct *work)
{
3149
	struct drm_i915_private *dev_priv =
3150
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3151
	struct drm_device *dev = &dev_priv->drm;
3152

3153
	/* Come back later if the device is busy... */
3154
	if (mutex_trylock(&dev->struct_mutex)) {
3155
		i915_gem_retire_requests(dev_priv);
3156
		mutex_unlock(&dev->struct_mutex);
3157
	}
3158 3159 3160 3161 3162

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3163 3164
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3165 3166
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3167
				   round_jiffies_up_relative(HZ));
3168
	}
3169
}
3170

3171 3172 3173 3174
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3175
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3176
	struct drm_device *dev = &dev_priv->drm;
3177 3178 3179 3180 3181
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3182 3183 3184 3185
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3186
	wait_for(intel_engines_are_idle(dev_priv), 10);
3187
	if (READ_ONCE(dev_priv->gt.active_requests))
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3201 3202 3203 3204 3205 3206 3207
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3208
	if (dev_priv->gt.active_requests)
3209
		goto out_unlock;
3210

3211
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3212 3213
		DRM_ERROR("Timeout waiting for engines to idle\n");

3214
	intel_engines_mark_idle(dev_priv);
3215
	i915_gem_timelines_mark_idle(dev_priv);
3216

3217 3218 3219
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3220

3221 3222 3223 3224 3225
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3226

3227 3228 3229 3230
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3231
	}
3232 3233
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3244 3245 3246 3247 3248 3249

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3250 3251 3252
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3264 3265
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3266 3267 3268
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3293 3294
	ktime_t start;
	long ret;
3295

3296 3297 3298
	if (args->flags != 0)
		return -EINVAL;

3299
	obj = i915_gem_object_lookup(file, args->bo_handle);
3300
	if (!obj)
3301 3302
		return -ENOENT;

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3324 3325
	}

C
Chris Wilson 已提交
3326
	i915_gem_object_put(obj);
3327
	return ret;
3328 3329
}

3330
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3331
{
3332
	int ret, i;
3333

3334 3335 3336 3337 3338
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3339

3340 3341 3342
	return 0;
}

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
{
	return wait_for(intel_engine_is_idle(engine), timeout_ms);
}

static int wait_for_engines(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
			i915_gem_set_wedged(i915);
			return -EIO;
		}

		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
			   intel_engine_last_submit(engine));
	}

	return 0;
}

3366 3367 3368 3369
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3370 3371 3372 3373
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3384 3385 3386

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3387 3388

		ret = wait_for_engines(i915);
3389 3390
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3391
	}
3392

3393
	return ret;
3394 3395
}

3396 3397 3398 3399 3400
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
		return;

3401
	i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3478 3479
/**
 * Moves a single object to the GTT read, and possibly write domain.
3480 3481
 * @obj: object to act on
 * @write: ask for write access or read only
3482 3483 3484 3485
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3486
int
3487
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3488
{
3489
	int ret;
3490

3491
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3492

3493 3494 3495 3496 3497 3498
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3499 3500 3501
	if (ret)
		return ret;

3502 3503 3504
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3505 3506 3507 3508 3509 3510 3511 3512
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3513
	ret = i915_gem_object_pin_pages(obj);
3514 3515 3516
	if (ret)
		return ret;

3517
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3518

3519 3520 3521 3522 3523 3524 3525
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3526 3527 3528
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3529
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3530
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3531
	if (write) {
3532 3533
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3534
		obj->mm.dirty = true;
3535 3536
	}

C
Chris Wilson 已提交
3537
	i915_gem_object_unpin_pages(obj);
3538 3539 3540
	return 0;
}

3541 3542
/**
 * Changes the cache-level of an object across all VMA.
3543 3544
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3556 3557 3558
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3559
	struct i915_vma *vma;
3560
	int ret;
3561

3562 3563
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3564
	if (obj->cache_level == cache_level)
3565
		return 0;
3566

3567 3568 3569 3570 3571
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3572 3573
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3574 3575 3576
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3577
		if (i915_vma_is_pinned(vma)) {
3578 3579 3580 3581
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3594 3595
	}

3596 3597 3598 3599 3600 3601 3602
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3603
	if (obj->bind_count) {
3604 3605 3606 3607
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3608 3609 3610 3611 3612 3613
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3614 3615 3616
		if (ret)
			return ret;

3617 3618
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3635 3636 3637 3638 3639
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3640 3641 3642 3643 3644 3645 3646 3647
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3648 3649
		}

3650
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3651 3652 3653 3654 3655 3656 3657
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3658 3659
	}

3660
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3661
	    i915_gem_object_is_coherent(obj))
3662 3663
		obj->cache_dirty = true;

3664
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3665 3666 3667
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3668 3669 3670
	return 0;
}

B
Ben Widawsky 已提交
3671 3672
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3673
{
B
Ben Widawsky 已提交
3674
	struct drm_i915_gem_caching *args = data;
3675
	struct drm_i915_gem_object *obj;
3676
	int err = 0;
3677

3678 3679 3680 3681 3682 3683
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3684

3685 3686 3687 3688 3689 3690
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3691 3692 3693 3694
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3695 3696 3697 3698
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3699 3700 3701
out:
	rcu_read_unlock();
	return err;
3702 3703
}

B
Ben Widawsky 已提交
3704 3705
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3706
{
3707
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3708
	struct drm_i915_gem_caching *args = data;
3709 3710
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3711
	int ret = 0;
3712

B
Ben Widawsky 已提交
3713 3714
	switch (args->caching) {
	case I915_CACHING_NONE:
3715 3716
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3717
	case I915_CACHING_CACHED:
3718 3719 3720 3721 3722 3723
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3724
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3725 3726
			return -ENODEV;

3727 3728
		level = I915_CACHE_LLC;
		break;
3729
	case I915_CACHING_DISPLAY:
3730
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3731
		break;
3732 3733 3734 3735
	default:
		return -EINVAL;
	}

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3747
	if (ret)
3748
		goto out;
B
Ben Widawsky 已提交
3749

3750 3751 3752
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3753 3754 3755

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3756 3757 3758

out:
	i915_gem_object_put(obj);
3759 3760 3761
	return ret;
}

3762
/*
3763 3764 3765
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3766
 */
C
Chris Wilson 已提交
3767
struct i915_vma *
3768 3769
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3770
				     const struct i915_ggtt_view *view)
3771
{
C
Chris Wilson 已提交
3772
	struct i915_vma *vma;
3773 3774
	int ret;

3775 3776
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3777 3778 3779
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3780
	obj->pin_display++;
3781

3782 3783 3784 3785 3786 3787 3788 3789 3790
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3791
	ret = i915_gem_object_set_cache_level(obj,
3792 3793
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3794 3795
	if (ret) {
		vma = ERR_PTR(ret);
3796
		goto err_unpin_display;
C
Chris Wilson 已提交
3797
	}
3798

3799 3800
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3801 3802 3803 3804
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3805
	 */
3806
	vma = ERR_PTR(-ENOSPC);
3807
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3808 3809
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3826
	if (IS_ERR(vma))
3827
		goto err_unpin_display;
3828

3829 3830
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3831
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3832
	__i915_gem_object_flush_for_display(obj);
3833
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3834

3835 3836 3837
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3838
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3839

C
Chris Wilson 已提交
3840
	return vma;
3841 3842

err_unpin_display:
3843
	obj->pin_display--;
C
Chris Wilson 已提交
3844
	return vma;
3845 3846 3847
}

void
C
Chris Wilson 已提交
3848
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3849
{
3850
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3851

C
Chris Wilson 已提交
3852
	if (WARN_ON(vma->obj->pin_display == 0))
3853 3854
		return;

3855
	if (--vma->obj->pin_display == 0)
3856
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3857

3858
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3859
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3860

C
Chris Wilson 已提交
3861
	i915_vma_unpin(vma);
3862 3863
}

3864 3865
/**
 * Moves a single object to the CPU read, and possibly write domain.
3866 3867
 * @obj: object to act on
 * @write: requesting write or read-only access
3868 3869 3870 3871
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3872
int
3873
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3874 3875 3876
{
	int ret;

3877
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3878

3879 3880 3881 3882 3883 3884
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3885 3886 3887
	if (ret)
		return ret;

3888 3889 3890
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3891
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3892

3893
	/* Flush the CPU cache if it's still invalid. */
3894
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3895
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3896
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3897 3898 3899 3900 3901
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3902
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3903 3904 3905 3906 3907

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3908 3909
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3910
	}
3911 3912 3913 3914

	return 0;
}

3915 3916 3917
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3918 3919 3920 3921
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3922 3923 3924
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3925
static int
3926
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3927
{
3928
	struct drm_i915_private *dev_priv = to_i915(dev);
3929
	struct drm_i915_file_private *file_priv = file->driver_priv;
3930
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3931
	struct drm_i915_gem_request *request, *target = NULL;
3932
	long ret;
3933

3934 3935 3936
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3937

3938
	spin_lock(&file_priv->mm.lock);
3939
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3940 3941
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3942

3943 3944 3945 3946
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3947

3948
		target = request;
3949
	}
3950
	if (target)
3951
		i915_gem_request_get(target);
3952
	spin_unlock(&file_priv->mm.lock);
3953

3954
	if (target == NULL)
3955
		return 0;
3956

3957 3958 3959
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3960
	i915_gem_request_put(target);
3961

3962
	return ret < 0 ? ret : 0;
3963 3964
}

C
Chris Wilson 已提交
3965
struct i915_vma *
3966 3967
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3968
			 u64 size,
3969 3970
			 u64 alignment,
			 u64 flags)
3971
{
3972 3973
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3974 3975
	struct i915_vma *vma;
	int ret;
3976

3977 3978
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3979
	vma = i915_vma_instance(obj, vm, view);
3980
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3981
		return vma;
3982 3983 3984 3985

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3986
			return ERR_PTR(-ENOSPC);
3987

3988 3989 3990 3991 3992 3993 3994 3995
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3996
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
4015
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4016 4017 4018
				return ERR_PTR(-ENOSPC);
		}

4019 4020
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4021 4022 4023
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4024
		     !!(flags & PIN_MAPPABLE),
4025
		     i915_vma_is_map_and_fenceable(vma));
4026 4027
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4028
			return ERR_PTR(ret);
4029 4030
	}

C
Chris Wilson 已提交
4031 4032 4033
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4034

C
Chris Wilson 已提交
4035
	return vma;
4036 4037
}

4038
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4053 4054 4055 4056 4057 4058 4059 4060 4061
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4062 4063
}

4064
static __always_inline unsigned int
4065
__busy_set_if_active(const struct dma_fence *fence,
4066 4067
		     unsigned int (*flag)(unsigned int id))
{
4068
	struct drm_i915_gem_request *rq;
4069

4070 4071 4072 4073
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4074
	 *
4075
	 * Note we only report on the status of native fences.
4076
	 */
4077 4078 4079 4080 4081 4082 4083 4084
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4085
	return flag(rq->engine->uabi_id);
4086 4087
}

4088
static __always_inline unsigned int
4089
busy_check_reader(const struct dma_fence *fence)
4090
{
4091
	return __busy_set_if_active(fence, __busy_read_flag);
4092 4093
}

4094
static __always_inline unsigned int
4095
busy_check_writer(const struct dma_fence *fence)
4096
{
4097 4098 4099 4100
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4101 4102
}

4103 4104
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4105
		    struct drm_file *file)
4106 4107
{
	struct drm_i915_gem_busy *args = data;
4108
	struct drm_i915_gem_object *obj;
4109 4110
	struct reservation_object_list *list;
	unsigned int seq;
4111
	int err;
4112

4113
	err = -ENOENT;
4114 4115
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4116
	if (!obj)
4117
		goto out;
4118

4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4137

4138 4139
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4140

4141 4142 4143 4144
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4145

4146 4147 4148 4149 4150 4151
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4152
	}
4153

4154 4155 4156 4157
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4158 4159 4160
out:
	rcu_read_unlock();
	return err;
4161 4162 4163 4164 4165 4166
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4167
	return i915_gem_ring_throttle(dev, file_priv);
4168 4169
}

4170 4171 4172 4173
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4174
	struct drm_i915_private *dev_priv = to_i915(dev);
4175
	struct drm_i915_gem_madvise *args = data;
4176
	struct drm_i915_gem_object *obj;
4177
	int err;
4178 4179 4180 4181 4182 4183 4184 4185 4186

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4187
	obj = i915_gem_object_lookup(file_priv, args->handle);
4188 4189 4190 4191 4192 4193
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4194

C
Chris Wilson 已提交
4195
	if (obj->mm.pages &&
4196
	    i915_gem_object_is_tiled(obj) &&
4197
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4198 4199
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4200
			__i915_gem_object_unpin_pages(obj);
4201 4202 4203
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4204
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4205
			__i915_gem_object_pin_pages(obj);
4206 4207
			obj->mm.quirked = true;
		}
4208 4209
	}

C
Chris Wilson 已提交
4210 4211
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4212

C
Chris Wilson 已提交
4213
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4214
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4215 4216
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4217
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4218
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4219

4220
out:
4221
	i915_gem_object_put(obj);
4222
	return err;
4223 4224
}

4225 4226 4227 4228 4229 4230 4231
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4232
	intel_fb_obj_flush(obj, ORIGIN_CS);
4233 4234
}

4235 4236
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4237
{
4238 4239
	mutex_init(&obj->mm.lock);

4240
	INIT_LIST_HEAD(&obj->global_link);
4241
	INIT_LIST_HEAD(&obj->userfault_link);
4242
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4243
	INIT_LIST_HEAD(&obj->vma_list);
4244
	INIT_LIST_HEAD(&obj->batch_pool_link);
4245

4246 4247
	obj->ops = ops;

4248 4249 4250
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4251
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4252
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4253 4254 4255 4256

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4257

4258
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4259 4260
}

4261
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4262 4263
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4264

4265 4266
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4267 4268

	.pwrite = i915_gem_object_pwrite_gtt,
4269 4270
};

4271
struct drm_i915_gem_object *
4272
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4273
{
4274
	struct drm_i915_gem_object *obj;
4275
	struct address_space *mapping;
D
Daniel Vetter 已提交
4276
	gfp_t mask;
4277
	int ret;
4278

4279 4280 4281 4282 4283
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4284
	if (size >> PAGE_SHIFT > INT_MAX)
4285 4286 4287 4288 4289
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4290
	obj = i915_gem_object_alloc(dev_priv);
4291
	if (obj == NULL)
4292
		return ERR_PTR(-ENOMEM);
4293

4294
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4295 4296
	if (ret)
		goto fail;
4297

4298
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4299
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4300 4301 4302 4303 4304
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4305
	mapping = obj->base.filp->f_mapping;
4306
	mapping_set_gfp_mask(mapping, mask);
4307
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4308

4309
	i915_gem_object_init(obj, &i915_gem_object_ops);
4310

4311 4312
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4313

4314
	if (HAS_LLC(dev_priv)) {
4315
		/* On some devices, we can have the GPU use the LLC (the CPU
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4331 4332
	trace_i915_gem_object_create(obj);

4333
	return obj;
4334 4335 4336 4337

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4338 4339
}

4340 4341 4342 4343 4344 4345 4346 4347
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4348
	if (obj->mm.madv != I915_MADV_WILLNEED)
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4364 4365
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4366
{
4367
	struct drm_i915_gem_object *obj, *on;
4368

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4384 4385
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4386

4387
		list_del(&obj->global_link);
4388 4389 4390 4391
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4392 4393
	cond_resched();

4394 4395 4396 4397 4398 4399
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4400

4401 4402
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4403
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4404 4405 4406 4407 4408
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4409
		reservation_object_fini(&obj->__builtin_resv);
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4432

4433 4434 4435 4436 4437 4438 4439
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4440

4441
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4442
		__i915_gem_free_objects(i915, freed);
4443 4444 4445
		if (need_resched())
			break;
	}
4446
}
4447

4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4462

4463 4464 4465
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4466

4467 4468 4469
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4470
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4471
		obj->mm.madv = I915_MADV_DONTNEED;
4472

4473 4474 4475 4476 4477 4478
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4479 4480
}

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4492 4493 4494 4495 4496 4497
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4498 4499
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4500 4501
}

4502 4503 4504 4505 4506 4507 4508 4509
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4510
	 * of the reset, so this could be applied to even earlier gen.
4511
	 */
4512
	if (INTEL_GEN(i915) >= 5) {
4513 4514 4515 4516 4517
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4518
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4519
{
4520
	struct drm_device *dev = &dev_priv->drm;
4521
	int ret;
4522

4523
	intel_runtime_pm_get(dev_priv);
4524 4525
	intel_suspend_gt_powersave(dev_priv);

4526
	mutex_lock(&dev->struct_mutex);
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4538
		goto err_unlock;
4539

4540 4541 4542
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4543
	if (ret)
4544
		goto err_unlock;
4545

4546
	assert_kernel_context_is_current(dev_priv);
4547
	i915_gem_context_lost(dev_priv);
4548 4549
	mutex_unlock(&dev->struct_mutex);

4550 4551
	intel_guc_suspend(dev_priv);

4552
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4553
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4554 4555 4556 4557 4558 4559 4560 4561

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4562

4563 4564 4565
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4566
	WARN_ON(dev_priv->gt.awake);
4567
	WARN_ON(!intel_engines_are_idle(dev_priv));
4568

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4588
	i915_gem_sanitize(dev_priv);
4589
	goto out_rpm_put;
4590

4591
err_unlock:
4592
	mutex_unlock(&dev->struct_mutex);
4593 4594
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4595
	return ret;
4596 4597
}

4598
void i915_gem_resume(struct drm_i915_private *dev_priv)
4599
{
4600
	struct drm_device *dev = &dev_priv->drm;
4601

4602 4603
	WARN_ON(dev_priv->gt.awake);

4604
	mutex_lock(&dev->struct_mutex);
4605
	i915_gem_restore_gtt_mappings(dev_priv);
4606 4607 4608 4609 4610

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4611
	dev_priv->gt.resume(dev_priv);
4612 4613 4614 4615

	mutex_unlock(&dev->struct_mutex);
}

4616
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4617
{
4618
	if (INTEL_GEN(dev_priv) < 5 ||
4619 4620 4621 4622 4623 4624
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4625
	if (IS_GEN5(dev_priv))
4626 4627
		return;

4628
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4629
	if (IS_GEN6(dev_priv))
4630
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4631
	else if (IS_GEN7(dev_priv))
4632
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4633
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4634
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4635 4636
	else
		BUG();
4637
}
D
Daniel Vetter 已提交
4638

4639
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4640 4641 4642 4643 4644 4645 4646
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4647
static void init_unused_rings(struct drm_i915_private *dev_priv)
4648
{
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4661 4662 4663
	}
}

4664
static int __i915_gem_restart_engines(void *data)
4665
{
4666
	struct drm_i915_private *i915 = data;
4667
	struct intel_engine_cs *engine;
4668
	enum intel_engine_id id;
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4682
	int ret;
4683

4684 4685
	dev_priv->gt.last_init_time = ktime_get();

4686 4687 4688
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4689
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4690
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4691

4692
	if (IS_HASWELL(dev_priv))
4693
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4694
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4695

4696
	if (HAS_PCH_NOP(dev_priv)) {
4697
		if (IS_IVYBRIDGE(dev_priv)) {
4698 4699 4700
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4701
		} else if (INTEL_GEN(dev_priv) >= 7) {
4702 4703 4704 4705
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4706 4707
	}

4708
	i915_gem_init_swizzling(dev_priv);
4709

4710 4711 4712 4713 4714 4715
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4716
	init_unused_rings(dev_priv);
4717

4718
	BUG_ON(!dev_priv->kernel_context);
4719

4720
	ret = i915_ppgtt_init_hw(dev_priv);
4721 4722 4723 4724 4725 4726
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4727 4728 4729
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4730

4731
	intel_mocs_init_l3cc_table(dev_priv);
4732

4733 4734 4735 4736
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4737

4738 4739
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4740
	return ret;
4741 4742
}

4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4756
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4757 4758 4759 4760 4761
		return false;

	return true;
}

4762
int i915_gem_init(struct drm_i915_private *dev_priv)
4763 4764 4765
{
	int ret;

4766
	mutex_lock(&dev_priv->drm.struct_mutex);
4767

4768
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4769

4770
	if (!i915.enable_execlists) {
4771
		dev_priv->gt.resume = intel_legacy_submission_resume;
4772
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4773
	} else {
4774
		dev_priv->gt.resume = intel_lr_context_resume;
4775
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4776 4777
	}

4778 4779 4780 4781 4782 4783 4784 4785
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4786
	i915_gem_init_userptr(dev_priv);
4787 4788 4789 4790

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4791

4792
	ret = i915_gem_context_init(dev_priv);
4793 4794
	if (ret)
		goto out_unlock;
4795

4796
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4797
	if (ret)
4798
		goto out_unlock;
4799

4800
	ret = i915_gem_init_hw(dev_priv);
4801
	if (ret == -EIO) {
4802
		/* Allow engine initialisation to fail by marking the GPU as
4803 4804 4805 4806
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4807
		i915_gem_set_wedged(dev_priv);
4808
		ret = 0;
4809
	}
4810 4811

out_unlock:
4812
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4813
	mutex_unlock(&dev_priv->drm.struct_mutex);
4814

4815
	return ret;
4816 4817
}

4818 4819 4820 4821 4822
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4823
void
4824
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4825
{
4826
	struct intel_engine_cs *engine;
4827
	enum intel_engine_id id;
4828

4829
	for_each_engine(engine, dev_priv, id)
4830
		dev_priv->gt.cleanup_engine(engine);
4831 4832
}

4833 4834 4835
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4836
	int i;
4837 4838 4839 4840

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4841 4842 4843
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4844 4845 4846 4847
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4848
	if (intel_vgpu_active(dev_priv))
4849 4850 4851 4852
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4853 4854 4855 4856 4857 4858 4859
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4860
	i915_gem_restore_fences(dev_priv);
4861

4862
	i915_gem_detect_bit_6_swizzle(dev_priv);
4863 4864
}

4865
int
4866
i915_gem_load_init(struct drm_i915_private *dev_priv)
4867
{
4868
	int err = -ENOMEM;
4869

4870 4871
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4872 4873
		goto err_out;

4874 4875
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4876 4877
		goto err_objects;

4878 4879 4880
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4881
					SLAB_TYPESAFE_BY_RCU);
4882
	if (!dev_priv->requests)
4883 4884
		goto err_vmas;

4885 4886 4887 4888 4889 4890
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4891 4892 4893 4894
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4895 4896
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4897
	err = i915_gem_timeline_init__global(dev_priv);
4898 4899
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4900
		goto err_priorities;
4901

4902
	INIT_LIST_HEAD(&dev_priv->context_list);
4903 4904
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4905 4906
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4907
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4908
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4909
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4910
			  i915_gem_retire_work_handler);
4911
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4912
			  i915_gem_idle_work_handler);
4913
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4914
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4915

4916
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4917

4918 4919
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4920
	spin_lock_init(&dev_priv->fb_tracking.lock);
4921 4922 4923

	return 0;

4924 4925
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
4926 4927
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4928 4929 4930 4931 4932 4933 4934 4935
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4936
}
4937

4938
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4939
{
4940
	i915_gem_drain_freed_objects(dev_priv);
4941
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4942
	WARN_ON(dev_priv->mm.object_count);
4943

4944 4945 4946 4947 4948
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4949
	kmem_cache_destroy(dev_priv->priorities);
4950
	kmem_cache_destroy(dev_priv->dependencies);
4951 4952 4953
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4954 4955 4956

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4957 4958
}

4959 4960
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4961 4962 4963
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
4964 4965 4966 4967 4968
	i915_gem_shrink_all(dev_priv);

	return 0;
}

4969 4970 4971
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4972 4973 4974 4975 4976
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4987 4988
	 *
	 * To try and reduce the hibernation image, we manually shrink
4989
	 * the objects as well, see i915_gem_freeze()
4990 4991
	 */

4992
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4993
	i915_gem_drain_freed_objects(dev_priv);
4994

4995
	mutex_lock(&dev_priv->drm.struct_mutex);
4996
	for (p = phases; *p; p++) {
4997
		list_for_each_entry(obj, *p, global_link) {
4998 4999 5000
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
5001
	}
5002
	mutex_unlock(&dev_priv->drm.struct_mutex);
5003 5004 5005 5006

	return 0;
}

5007
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5008
{
5009
	struct drm_i915_file_private *file_priv = file->driver_priv;
5010
	struct drm_i915_gem_request *request;
5011 5012 5013 5014 5015

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5016
	spin_lock(&file_priv->mm.lock);
5017
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5018
		request->file_priv = NULL;
5019
	spin_unlock(&file_priv->mm.lock);
5020

5021
	if (!list_empty(&file_priv->rps.link)) {
5022
		spin_lock(&to_i915(dev)->rps.client_lock);
5023
		list_del(&file_priv->rps.link);
5024
		spin_unlock(&to_i915(dev)->rps.client_lock);
5025
	}
5026 5027 5028 5029 5030
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5031
	int ret;
5032

5033
	DRM_DEBUG("\n");
5034 5035 5036 5037 5038 5039

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5040
	file_priv->dev_priv = to_i915(dev);
5041
	file_priv->file = file;
5042
	INIT_LIST_HEAD(&file_priv->rps.link);
5043 5044 5045 5046

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5047
	file_priv->bsd_engine = -1;
5048

5049 5050 5051
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5052

5053
	return ret;
5054 5055
}

5056 5057
/**
 * i915_gem_track_fb - update frontbuffer tracking
5058 5059 5060
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5061 5062 5063 5064
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5065 5066 5067 5068
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5069 5070 5071 5072 5073 5074 5075 5076 5077
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5078
	if (old) {
5079 5080
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5081 5082 5083
	}

	if (new) {
5084 5085
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5086 5087 5088
	}
}

5089 5090
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5091
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5092 5093 5094
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5095 5096 5097
	struct file *file;
	size_t offset;
	int err;
5098

5099
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5100
	if (IS_ERR(obj))
5101 5102
		return obj;

5103
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5104

5105 5106 5107 5108 5109 5110
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5111

5112 5113 5114 5115 5116
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5117

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5132 5133 5134 5135

	return obj;

fail:
5136
	i915_gem_object_put(obj);
5137
	return ERR_PTR(err);
5138
}
5139 5140 5141 5142 5143 5144

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5145
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5146 5147 5148 5149 5150
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5151
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5276
	if (!obj->mm.dirty)
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5292 5293 5294

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5295
#include "selftests/mock_gem_device.c"
5296
#include "selftests/huge_gem_object.c"
5297
#include "selftests/i915_gem_object.c"
5298
#include "selftests/i915_gem_coherency.c"
5299
#endif