i915_gem.c 127.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
51
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
52 53
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65
static int
66
insert_mappable_node(struct i915_ggtt *ggtt,
67 68 69
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
70 71 72
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
						   size, 0, -1,
						   0, ggtt->mappable_end,
73 74 75 76 77 78 79 80 81 82
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85
				  u64 size)
86
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94
				     u64 size)
95
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107 108
	might_sleep();

109
	if (!i915_reset_in_progress(error))
110 111
		return 0;

112 113 114 115 116
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
117
	ret = wait_event_interruptible_timeout(error->reset_queue,
118
					       !i915_reset_in_progress(error),
119
					       I915_RESET_TIMEOUT);
120 121 122 123
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
124
		return ret;
125 126
	} else {
		return 0;
127
	}
128 129
}

130
int i915_mutex_lock_interruptible(struct drm_device *dev)
131
{
132
	struct drm_i915_private *dev_priv = to_i915(dev);
133 134
	int ret;

135
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
136 137 138 139 140 141 142 143 144
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172
static struct sg_table *
173
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175
	struct address_space *mapping = obj->base.filp->f_mapping;
176 177 178 179
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182
		return ERR_PTR(-EINVAL);
183 184 185 186 187 188 189

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
190
			return ERR_CAST(page);
191 192 193 194 195 196

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
205
		return ERR_PTR(-ENOMEM);
206 207 208

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
209
		return ERR_PTR(-ENOMEM);
210 211 212 213 214
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

219
	return st;
220 221 222
}

static void
223
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj)
224
{
C
Chris Wilson 已提交
225
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
226

C
Chris Wilson 已提交
227 228
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
229

230 231 232 233 234 235 236 237 238 239 240 241 242
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		i915_gem_clflush_object(obj, false);

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
	__i915_gem_object_release_shmem(obj);

C
Chris Wilson 已提交
243
	if (obj->mm.dirty) {
244
		struct address_space *mapping = obj->base.filp->f_mapping;
245
		char *vaddr = obj->phys_handle->vaddr;
246 247 248
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249 250 251 252 253 254 255 256 257 258 259 260 261
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
262
			if (obj->mm.madv == I915_MADV_WILLNEED)
263
				mark_page_accessed(page);
264
			put_page(page);
265 266
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
267
		obj->mm.dirty = false;
268 269
	}

270 271
	sg_free_table(pages);
	kfree(pages);
272 273 274 275 276 277
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
C
Chris Wilson 已提交
278
	i915_gem_object_unpin_pages(obj);
279 280 281 282 283 284 285 286
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

287
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
288 289 290
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
291 292 293
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
294

295 296 297 298
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
299
	 */
300 301 302 303 304 305
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
306 307 308 309 310
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

311 312 313 314 315 316 317 318 319 320 321 322 323
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

324 325 326 327 328
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
329
{
330
	struct drm_i915_gem_request *rq;
331

332
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
366 367
	}

368 369 370 371 372 373
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

374
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
404 405
		int ret;

406 407
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
408 409 410
		if (ret)
			return ret;

411 412 413 414 415 416
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
417

418 419 420 421 422 423 424 425
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
426 427
	}

428 429 430 431 432 433
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
434 435
}

436 437 438 439 440 441
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
442
 */
443 444 445 446 447
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
448
{
449 450 451 452 453 454 455
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
456

457 458 459
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
460
	return timeout < 0 ? timeout : 0;
461 462 463 464 465 466 467 468 469
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

470 471 472 473 474
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
475
	int ret;
476 477 478 479 480 481 482 483

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

C
Chris Wilson 已提交
484
	if (obj->mm.madv != I915_MADV_WILLNEED)
485 486 487 488 489
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
490 491 492 493
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

494
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
495 496
	if (obj->mm.pages)
		return -EBUSY;
497

498 499 500 501 502 503
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
504 505
	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
506
	return i915_gem_object_pin_pages(obj);
507 508 509 510 511
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
512
		     struct drm_file *file)
513 514 515
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
516
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
517
	int ret;
518 519 520 521

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
522 523 524 525 526 527
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
528
				   to_rps_client(file));
529 530
	if (ret)
		return ret;
531

532
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
533 534 535 536 537 538 539 540 541 542
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
543 544 545 546
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
547 548
	}

549
	drm_clflush_virt_range(vaddr, args->size);
550
	i915_gem_chipset_flush(to_i915(dev));
551 552

out:
553
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
554
	return ret;
555 556
}

557 558
void *i915_gem_object_alloc(struct drm_device *dev)
{
559
	struct drm_i915_private *dev_priv = to_i915(dev);
560
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
561 562 563 564
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
565
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
566
	kmem_cache_free(dev_priv->objects, obj);
567 568
}

569 570 571 572 573
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
574
{
575
	struct drm_i915_gem_object *obj;
576 577
	int ret;
	u32 handle;
578

579
	size = roundup(size, PAGE_SIZE);
580 581
	if (size == 0)
		return -EINVAL;
582 583

	/* Allocate the new object */
584
	obj = i915_gem_object_create(dev, size);
585 586
	if (IS_ERR(obj))
		return PTR_ERR(obj);
587

588
	ret = drm_gem_handle_create(file, &obj->base, &handle);
589
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
590
	i915_gem_object_put(obj);
591 592
	if (ret)
		return ret;
593

594
	*handle_p = handle;
595 596 597
	return 0;
}

598 599 600 601 602 603
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
604
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
605 606
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
607
			       args->size, &args->handle);
608 609 610 611
}

/**
 * Creates a new mm object and returns a handle to it.
612 613 614
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
615 616 617 618 619 620
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
621

622 623
	i915_gem_flush_free_objects(to_i915(dev));

624
	return i915_gem_create(file, dev,
625
			       args->size, &args->handle);
626 627
}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

654
static inline int
655 656
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

680 681 682 683 684 685
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
686
				    unsigned int *needs_clflush)
687 688 689
{
	int ret;

690
	lockdep_assert_held(&obj->base.dev->struct_mutex);
691

692
	*needs_clflush = 0;
693 694
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
695

696 697 698 699 700
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
701 702 703
	if (ret)
		return ret;

C
Chris Wilson 已提交
704
	ret = i915_gem_object_pin_pages(obj);
705 706 707
	if (ret)
		return ret;

708 709
	i915_gem_object_flush_gtt_write_domain(obj);

710 711 712 713 714 715
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
716 717
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
718 719 720

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
721 722 723
		if (ret)
			goto err_unpin;

724
		*needs_clflush = 0;
725 726
	}

727
	/* return with the pages pinned */
728
	return 0;
729 730 731 732

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
733 734 735 736 737 738 739
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

740 741
	lockdep_assert_held(&obj->base.dev->struct_mutex);

742 743 744 745
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

746 747 748 749 750 751
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
752 753 754
	if (ret)
		return ret;

C
Chris Wilson 已提交
755
	ret = i915_gem_object_pin_pages(obj);
756 757 758
	if (ret)
		return ret;

759 760
	i915_gem_object_flush_gtt_write_domain(obj);

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
778 779 780
		if (ret)
			goto err_unpin;

781 782 783 784 785 786 787
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
788
	obj->mm.dirty = true;
789
	/* return with the pages pinned */
790
	return 0;
791 792 793 794

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
795 796
}

797 798 799 800
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
801
	if (unlikely(swizzled)) {
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

819 820 821
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
822
shmem_pread_slow(struct page *page, int offset, int length,
823 824 825 826 827 828 829 830
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
831
		shmem_clflush_swizzled_range(vaddr + offset, length,
832
					     page_do_bit17_swizzling);
833 834

	if (page_do_bit17_swizzling)
835
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
836
	else
837
		ret = __copy_to_user(user_data, vaddr + offset, length);
838 839
	kunmap(page);

840
	return ret ? - EFAULT : 0;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
919 920
{
	void *vaddr;
921
	unsigned long unwritten;
922 923

	/* We can use the cpu mem copy function because this is X86. */
924 925 926 927 928 929 930 931 932
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
933 934 935 936
	return unwritten;
}

static int
937 938
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
939
{
940 941
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
942
	struct drm_mm_node node;
943 944 945
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
946 947
	int ret;

948 949 950 951 952 953 954
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
955 956 957
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
958
		ret = i915_vma_put_fence(vma);
959 960 961 962 963
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
964
	if (IS_ERR(vma)) {
965
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
966
		if (ret)
967 968
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
969 970 971 972 973 974
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

975
	mutex_unlock(&i915->drm.struct_mutex);
976

977 978 979
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
996
					       node.start, I915_CACHE_NONE, 0);
997 998 999 1000
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1001 1002 1003

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1004 1005 1006 1007 1008 1009 1010 1011 1012
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1013
	mutex_lock(&i915->drm.struct_mutex);
1014 1015 1016 1017
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1018
				       node.start, node.size);
1019 1020
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1021
		i915_vma_unpin(vma);
1022
	}
1023 1024 1025
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1026

1027 1028 1029
	return ret;
}

1030 1031
/**
 * Reads data from the object referenced by handle.
1032 1033 1034
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1035 1036 1037 1038 1039
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1040
		     struct drm_file *file)
1041 1042
{
	struct drm_i915_gem_pread *args = data;
1043
	struct drm_i915_gem_object *obj;
1044
	int ret;
1045

1046 1047 1048 1049
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1050
		       u64_to_user_ptr(args->data_ptr),
1051 1052 1053
		       args->size))
		return -EFAULT;

1054
	obj = i915_gem_object_lookup(file, args->handle);
1055 1056
	if (!obj)
		return -ENOENT;
1057

1058
	/* Bounds check source.  */
1059 1060
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1061
		ret = -EINVAL;
1062
		goto out;
C
Chris Wilson 已提交
1063 1064
	}

C
Chris Wilson 已提交
1065 1066
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1067 1068 1069 1070
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1071
	if (ret)
1072
		goto out;
1073

1074
	ret = i915_gem_object_pin_pages(obj);
1075
	if (ret)
1076
		goto out;
1077

1078
	ret = i915_gem_shmem_pread(obj, args);
1079
	if (ret == -EFAULT || ret == -ENODEV)
1080
		ret = i915_gem_gtt_pread(obj, args);
1081

1082 1083
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1084
	i915_gem_object_put(obj);
1085
	return ret;
1086 1087
}

1088 1089
/* This is the fast write path which cannot handle
 * page faults in the source data
1090
 */
1091

1092 1093 1094 1095
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1096
{
1097
	void *vaddr;
1098
	unsigned long unwritten;
1099

1100
	/* We can use the cpu mem copy function because this is X86. */
1101 1102
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1103
						      user_data, length);
1104 1105 1106 1107 1108 1109 1110
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1111 1112 1113 1114

	return unwritten;
}

1115 1116 1117
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1118
 * @obj: i915 GEM object
1119
 * @args: pwrite arguments structure
1120
 */
1121
static int
1122 1123
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1124
{
1125
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1126 1127
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1128 1129 1130
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1131
	int ret;
1132

1133 1134 1135
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1136

1137
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1138
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1139
				       PIN_MAPPABLE | PIN_NONBLOCK);
1140 1141 1142
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1143
		ret = i915_vma_put_fence(vma);
1144 1145 1146 1147 1148
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1149
	if (IS_ERR(vma)) {
1150
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1151
		if (ret)
1152 1153
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1154
	}
D
Daniel Vetter 已提交
1155 1156 1157 1158 1159

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1160 1161
	mutex_unlock(&i915->drm.struct_mutex);

1162
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1163

1164 1165 1166 1167
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1168 1169
		/* Operation in this page
		 *
1170 1171 1172
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1173
		 */
1174
		u32 page_base = node.start;
1175 1176
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1187
		/* If we get a fault while copying data, then (presumably) our
1188 1189
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1190 1191
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1192
		 */
1193 1194 1195 1196
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1197
		}
1198

1199 1200 1201
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1202
	}
1203
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1204 1205

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1206
out_unpin:
1207 1208 1209
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1210
				       node.start, node.size);
1211 1212
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1213
		i915_vma_unpin(vma);
1214
	}
1215
out_unlock:
1216
	intel_runtime_pm_put(i915);
1217
	mutex_unlock(&i915->drm.struct_mutex);
1218
	return ret;
1219 1220
}

1221
static int
1222
shmem_pwrite_slow(struct page *page, int offset, int length,
1223 1224 1225 1226
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1227
{
1228 1229
	char *vaddr;
	int ret;
1230

1231
	vaddr = kmap(page);
1232
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1233
		shmem_clflush_swizzled_range(vaddr + offset, length,
1234
					     page_do_bit17_swizzling);
1235
	if (page_do_bit17_swizzling)
1236 1237
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1238
	else
1239
		ret = __copy_from_user(vaddr + offset, user_data, length);
1240
	if (needs_clflush_after)
1241
		shmem_clflush_swizzled_range(vaddr + offset, length,
1242
					     page_do_bit17_swizzling);
1243
	kunmap(page);
1244

1245
	return ret ? -EFAULT : 0;
1246 1247
}

1248 1249 1250 1251 1252
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1253
static int
1254 1255 1256 1257
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1258
{
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1291
	unsigned int needs_clflush;
1292 1293
	unsigned int offset, idx;
	int ret;
1294

1295
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1296 1297 1298
	if (ret)
		return ret;

1299 1300 1301 1302
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1303

1304 1305 1306
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1307

1308 1309 1310 1311 1312 1313 1314
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1315

1316 1317 1318 1319 1320 1321
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1322

1323 1324 1325
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1326

1327 1328 1329 1330
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1331
		if (ret)
1332
			break;
1333

1334 1335 1336
		remain -= length;
		user_data += length;
		offset = 0;
1337
	}
1338

1339
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1340
	i915_gem_obj_finish_shmem_access(obj);
1341
	return ret;
1342 1343 1344 1345
}

/**
 * Writes data to the object referenced by handle.
1346 1347 1348
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1349 1350 1351 1352 1353
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1354
		      struct drm_file *file)
1355 1356
{
	struct drm_i915_gem_pwrite *args = data;
1357
	struct drm_i915_gem_object *obj;
1358 1359 1360 1361 1362 1363
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1364
		       u64_to_user_ptr(args->data_ptr),
1365 1366 1367
		       args->size))
		return -EFAULT;

1368
	obj = i915_gem_object_lookup(file, args->handle);
1369 1370
	if (!obj)
		return -ENOENT;
1371

1372
	/* Bounds check destination. */
1373 1374
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1375
		ret = -EINVAL;
1376
		goto err;
C
Chris Wilson 已提交
1377 1378
	}

C
Chris Wilson 已提交
1379 1380
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1381 1382 1383 1384 1385
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1386 1387 1388
	if (ret)
		goto err;

1389
	ret = i915_gem_object_pin_pages(obj);
1390
	if (ret)
1391
		goto err;
1392

D
Daniel Vetter 已提交
1393
	ret = -EFAULT;
1394 1395 1396 1397 1398 1399
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1400
	if (!i915_gem_object_has_struct_page(obj) ||
1401
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1402 1403
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1404 1405
		 * textures). Fallback to the shmem path in that case.
		 */
1406
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1407

1408
	if (ret == -EFAULT || ret == -ENOSPC) {
1409 1410
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1411
		else
1412
			ret = i915_gem_shmem_pwrite(obj, args);
1413
	}
1414

1415
	i915_gem_object_unpin_pages(obj);
1416
err:
C
Chris Wilson 已提交
1417
	i915_gem_object_put(obj);
1418
	return ret;
1419 1420
}

1421
static inline enum fb_op_origin
1422 1423
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1424 1425
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1449
	list_move_tail(&obj->global_link, list);
1450 1451
}

1452
/**
1453 1454
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1455 1456 1457
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1458 1459 1460
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1461
			  struct drm_file *file)
1462 1463
{
	struct drm_i915_gem_set_domain *args = data;
1464
	struct drm_i915_gem_object *obj;
1465 1466
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1467
	int err;
1468

1469
	/* Only handle setting domains to types used by the CPU. */
1470
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1471 1472 1473 1474 1475 1476 1477 1478
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1479
	obj = i915_gem_object_lookup(file, args->handle);
1480 1481
	if (!obj)
		return -ENOENT;
1482

1483 1484 1485 1486
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1487
	err = i915_gem_object_wait(obj,
1488 1489 1490 1491
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1492
	if (err)
C
Chris Wilson 已提交
1493
		goto out;
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1505
		goto out;
1506 1507 1508

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1509
		goto out_unpin;
1510

1511
	if (read_domains & I915_GEM_DOMAIN_GTT)
1512
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1513
	else
1514
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1515

1516 1517
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1518

1519
	mutex_unlock(&dev->struct_mutex);
1520

1521 1522 1523
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1524
out_unpin:
1525
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1526 1527
out:
	i915_gem_object_put(obj);
1528
	return err;
1529 1530 1531 1532
}

/**
 * Called when user space has done writes to this buffer
1533 1534 1535
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1536 1537 1538
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1539
			 struct drm_file *file)
1540 1541
{
	struct drm_i915_gem_sw_finish *args = data;
1542
	struct drm_i915_gem_object *obj;
1543
	int err = 0;
1544

1545
	obj = i915_gem_object_lookup(file, args->handle);
1546 1547
	if (!obj)
		return -ENOENT;
1548 1549

	/* Pinned buffers may be scanout, so flush the cache */
1550 1551 1552 1553 1554 1555 1556
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1557

C
Chris Wilson 已提交
1558
	i915_gem_object_put(obj);
1559
	return err;
1560 1561 1562
}

/**
1563 1564 1565 1566 1567
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1568 1569 1570
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1581 1582 1583
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1584
		    struct drm_file *file)
1585 1586
{
	struct drm_i915_gem_mmap *args = data;
1587
	struct drm_i915_gem_object *obj;
1588 1589
	unsigned long addr;

1590 1591 1592
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1593
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1594 1595
		return -ENODEV;

1596 1597
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1598
		return -ENOENT;
1599

1600 1601 1602
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1603
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1604
		i915_gem_object_put(obj);
1605 1606 1607
		return -EINVAL;
	}

1608
	addr = vm_mmap(obj->base.filp, 0, args->size,
1609 1610
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1611 1612 1613 1614
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1615
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1616
			i915_gem_object_put(obj);
1617 1618
			return -EINTR;
		}
1619 1620 1621 1622 1623 1624 1625
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1626 1627

		/* This may race, but that's ok, it only gets set */
1628
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1629
	}
C
Chris Wilson 已提交
1630
	i915_gem_object_put(obj);
1631 1632 1633 1634 1635 1636 1637 1638
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1699 1700
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1701
 * @area: CPU VMA in question
1702
 * @vmf: fault info
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1714 1715 1716
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1717
 */
C
Chris Wilson 已提交
1718
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1719
{
1720
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1721
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1722
	struct drm_device *dev = obj->base.dev;
1723 1724
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1725
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1726
	struct i915_vma *vma;
1727
	pgoff_t page_offset;
1728
	unsigned int flags;
1729
	int ret;
1730

1731
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1732
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1733 1734
		PAGE_SHIFT;

C
Chris Wilson 已提交
1735 1736
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1737
	/* Try to flush the object off the GPU first without holding the lock.
1738
	 * Upon acquiring the lock, we will perform our sanity checks and then
1739 1740 1741
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1742 1743 1744 1745
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1746
	if (ret)
1747 1748
		goto err;

1749 1750 1751 1752
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1753 1754 1755 1756 1757
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1758

1759
	/* Access to snoopable pages through the GTT is incoherent. */
1760
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1761
		ret = -EFAULT;
1762
		goto err_unlock;
1763 1764
	}

1765 1766 1767 1768 1769 1770 1771 1772
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1773
	/* Now pin it into the GTT as needed */
1774
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1775 1776
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1777 1778
		unsigned int chunk_size;

1779
		/* Use a partial view if it is bigger than available space */
1780 1781
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
1782
			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1783

1784 1785 1786 1787
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1788
			min_t(unsigned int, chunk_size,
1789
			      vma_pages(area) - view.params.partial.offset);
1790

1791 1792 1793 1794 1795 1796
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1797 1798 1799 1800 1801
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1802 1803
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1804 1805
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1806
		goto err_unlock;
C
Chris Wilson 已提交
1807
	}
1808

1809 1810
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1811
		goto err_unpin;
1812

1813
	ret = i915_vma_get_fence(vma);
1814
	if (ret)
1815
		goto err_unpin;
1816

1817
	/* Mark as being mmapped into userspace for later revocation */
1818
	assert_rpm_wakelock_held(dev_priv);
1819 1820 1821
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1822
	/* Finally, remap it using the new GTT offset */
1823 1824 1825 1826 1827
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1828

1829
err_unpin:
C
Chris Wilson 已提交
1830
	__i915_vma_unpin(vma);
1831
err_unlock:
1832
	mutex_unlock(&dev->struct_mutex);
1833 1834
err_rpm:
	intel_runtime_pm_put(dev_priv);
1835
	i915_gem_object_unpin_pages(obj);
1836
err:
1837
	switch (ret) {
1838
	case -EIO:
1839 1840 1841 1842 1843 1844 1845
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1846 1847 1848
			ret = VM_FAULT_SIGBUS;
			break;
		}
1849
	case -EAGAIN:
D
Daniel Vetter 已提交
1850 1851 1852 1853
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1854
		 */
1855 1856
	case 0:
	case -ERESTARTSYS:
1857
	case -EINTR:
1858 1859 1860 1861 1862
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1863 1864
		ret = VM_FAULT_NOPAGE;
		break;
1865
	case -ENOMEM:
1866 1867
		ret = VM_FAULT_OOM;
		break;
1868
	case -ENOSPC:
1869
	case -EFAULT:
1870 1871
		ret = VM_FAULT_SIGBUS;
		break;
1872
	default:
1873
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1874 1875
		ret = VM_FAULT_SIGBUS;
		break;
1876
	}
1877
	return ret;
1878 1879
}

1880 1881 1882 1883
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1884
 * Preserve the reservation of the mmapping with the DRM core code, but
1885 1886 1887 1888 1889 1890 1891 1892 1893
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1894
void
1895
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1896
{
1897 1898
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1899 1900 1901
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1902 1903 1904 1905
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1906
	 */
1907
	lockdep_assert_held(&i915->drm.struct_mutex);
1908
	intel_runtime_pm_get(i915);
1909

1910
	if (list_empty(&obj->userfault_link))
1911
		goto out;
1912

1913
	list_del_init(&obj->userfault_link);
1914 1915
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1916 1917 1918 1919 1920 1921 1922 1923 1924

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1925 1926 1927

out:
	intel_runtime_pm_put(i915);
1928 1929
}

1930
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1931
{
1932
	struct drm_i915_gem_object *obj, *on;
1933
	int i;
1934

1935 1936 1937 1938 1939 1940
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1941

1942 1943 1944
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
1945 1946 1947
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
1965 1966
}

1967 1968
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1969
 * @dev_priv: i915 device
1970 1971 1972 1973 1974 1975
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1976 1977
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1978
{
1979
	u64 ggtt_size;
1980

1981 1982
	GEM_BUG_ON(size == 0);

1983
	if (INTEL_GEN(dev_priv) >= 4 ||
1984 1985
	    tiling_mode == I915_TILING_NONE)
		return size;
1986 1987

	/* Previous chips need a power-of-two fence region when tiling */
1988
	if (IS_GEN3(dev_priv))
1989
		ggtt_size = 1024*1024;
1990
	else
1991
		ggtt_size = 512*1024;
1992

1993 1994
	while (ggtt_size < size)
		ggtt_size <<= 1;
1995

1996
	return ggtt_size;
1997 1998
}

1999
/**
2000
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2001
 * @dev_priv: i915 device
2002 2003
 * @size: object size
 * @tiling_mode: tiling mode
2004
 * @fenced: is fenced alignment required or not
2005
 *
2006
 * Return the required global GTT alignment for an object, taking into account
2007
 * potential fence register mapping.
2008
 */
2009
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2010
				int tiling_mode, bool fenced)
2011
{
2012 2013
	GEM_BUG_ON(size == 0);

2014 2015 2016 2017
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2018
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2019
	    tiling_mode == I915_TILING_NONE)
2020 2021
		return 4096;

2022 2023 2024 2025
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2026
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2027 2028
}

2029 2030
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2031
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2032
	int err;
2033

2034 2035 2036
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2037

2038 2039 2040
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2041
	 */
2042
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2043 2044 2045 2046 2047 2048 2049 2050 2051
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2052

2053
	return err;
2054 2055 2056 2057 2058 2059 2060
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2061
int
2062 2063
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2064
		  uint32_t handle,
2065
		  uint64_t *offset)
2066
{
2067
	struct drm_i915_gem_object *obj;
2068 2069
	int ret;

2070
	obj = i915_gem_object_lookup(file, handle);
2071 2072
	if (!obj)
		return -ENOENT;
2073

2074
	ret = i915_gem_object_create_mmap_offset(obj);
2075 2076
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2077

C
Chris Wilson 已提交
2078
	i915_gem_object_put(obj);
2079
	return ret;
2080 2081
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2103
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2104 2105
}

D
Daniel Vetter 已提交
2106 2107 2108
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2109
{
2110
	i915_gem_object_free_mmap_offset(obj);
2111

2112 2113
	if (obj->base.filp == NULL)
		return;
2114

D
Daniel Vetter 已提交
2115 2116 2117 2118 2119
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2120
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2121
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2122
}
2123

2124
/* Try to discard unwanted pages */
2125
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2126
{
2127 2128
	struct address_space *mapping;

2129 2130 2131
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2132
	switch (obj->mm.madv) {
2133 2134 2135 2136 2137 2138 2139 2140 2141
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2142
	mapping = obj->base.filp->f_mapping,
2143
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2144 2145
}

2146
static void
2147 2148
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2149
{
2150 2151
	struct sgt_iter sgt_iter;
	struct page *page;
2152

2153
	__i915_gem_object_release_shmem(obj);
2154

2155
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2156

2157
	if (i915_gem_object_needs_bit17_swizzle(obj))
2158
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2159

2160
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2161
		if (obj->mm.dirty)
2162
			set_page_dirty(page);
2163

C
Chris Wilson 已提交
2164
		if (obj->mm.madv == I915_MADV_WILLNEED)
2165
			mark_page_accessed(page);
2166

2167
		put_page(page);
2168
	}
C
Chris Wilson 已提交
2169
	obj->mm.dirty = false;
2170

2171 2172
	sg_free_table(pages);
	kfree(pages);
2173
}
C
Chris Wilson 已提交
2174

2175 2176 2177 2178 2179
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2180 2181
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2182 2183
}

2184 2185
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2186
{
2187
	struct sg_table *pages;
2188

C
Chris Wilson 已提交
2189
	if (i915_gem_object_has_pinned_pages(obj))
2190
		return;
2191

2192
	GEM_BUG_ON(obj->bind_count);
2193 2194 2195 2196
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2197
	mutex_lock_nested(&obj->mm.lock, subclass);
2198 2199
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2200

2201 2202 2203
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2204 2205
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2206

C
Chris Wilson 已提交
2207
	if (obj->mm.mapping) {
2208 2209
		void *ptr;

C
Chris Wilson 已提交
2210
		ptr = ptr_mask_bits(obj->mm.mapping);
2211 2212
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2213
		else
2214 2215
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2216
		obj->mm.mapping = NULL;
2217 2218
	}

2219 2220
	__i915_gem_object_reset_page_iter(obj);

2221
	obj->ops->put_pages(obj, pages);
2222 2223
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2224 2225
}

2226
static unsigned int swiotlb_max_size(void)
2227 2228 2229 2230 2231 2232 2233 2234
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2259
static struct sg_table *
C
Chris Wilson 已提交
2260
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2261
{
2262
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2263 2264
	int page_count, i;
	struct address_space *mapping;
2265 2266
	struct sg_table *st;
	struct scatterlist *sg;
2267
	struct sgt_iter sgt_iter;
2268
	struct page *page;
2269
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2270
	unsigned int max_segment;
I
Imre Deak 已提交
2271
	int ret;
C
Chris Wilson 已提交
2272
	gfp_t gfp;
2273

C
Chris Wilson 已提交
2274 2275 2276 2277
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2278 2279
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2280

2281 2282
	max_segment = swiotlb_max_size();
	if (!max_segment)
2283
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2284

2285 2286
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2287
		return ERR_PTR(-ENOMEM);
2288

2289
	page_count = obj->base.size / PAGE_SIZE;
2290 2291
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2292
		return ERR_PTR(-ENOMEM);
2293
	}
2294

2295 2296 2297 2298 2299
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2300
	mapping = obj->base.filp->f_mapping;
2301
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2302
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2303 2304 2305
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2306 2307
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2308 2309 2310 2311 2312
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2313 2314 2315 2316 2317 2318 2319
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2320
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2321 2322
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2323
				goto err_pages;
I
Imre Deak 已提交
2324
			}
C
Chris Wilson 已提交
2325
		}
2326 2327 2328
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2329 2330 2331 2332 2333 2334 2335 2336
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2337 2338 2339

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2340
	}
2341
	if (sg) /* loop terminated early; short sg table */
2342
		sg_mark_end(sg);
2343

2344 2345 2346
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2347
	ret = i915_gem_gtt_prepare_pages(obj, st);
I
Imre Deak 已提交
2348 2349 2350
	if (ret)
		goto err_pages;

2351
	if (i915_gem_object_needs_bit17_swizzle(obj))
2352
		i915_gem_object_do_bit_17_swizzle(obj, st);
2353

2354
	return st;
2355 2356

err_pages:
2357
	sg_mark_end(sg);
2358 2359
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2360 2361
	sg_free_table(st);
	kfree(st);
2362 2363 2364 2365 2366 2367 2368 2369 2370

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2371 2372 2373
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2374 2375 2376 2377 2378 2379
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2380
	lockdep_assert_held(&obj->mm.lock);
2381 2382 2383 2384 2385

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2386 2387 2388 2389 2390 2391 2392

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2393 2394 2395 2396 2397 2398
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2399 2400
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2412 2413
}

2414
/* Ensure that the associated pages are gathered from the backing storage
2415
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2416
 * multiple times before they are released by a single call to
2417
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2418 2419 2420
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2421
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2422
{
2423
	int err;
2424

2425 2426 2427
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2428

2429 2430 2431 2432
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2433

2434 2435 2436
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2437

2438 2439
unlock:
	mutex_unlock(&obj->mm.lock);
2440
	return err;
2441 2442
}

2443
/* The 'mapping' part of i915_gem_object_pin_map() below */
2444 2445
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2446 2447
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2448
	struct sg_table *sgt = obj->mm.pages;
2449 2450
	struct sgt_iter sgt_iter;
	struct page *page;
2451 2452
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2453
	unsigned long i = 0;
2454
	pgprot_t pgprot;
2455 2456 2457
	void *addr;

	/* A single page can always be kmapped */
2458
	if (n_pages == 1 && type == I915_MAP_WB)
2459 2460
		return kmap(sg_page(sgt->sgl));

2461 2462 2463 2464 2465 2466
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2467

2468 2469
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2470 2471 2472 2473

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2474 2475 2476 2477 2478 2479 2480 2481 2482
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2483

2484 2485
	if (pages != stack_pages)
		drm_free_large(pages);
2486 2487 2488 2489 2490

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2491 2492
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2493
{
2494 2495 2496
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2497 2498
	int ret;

2499
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2500

2501
	ret = mutex_lock_interruptible(&obj->mm.lock);
2502 2503 2504
	if (ret)
		return ERR_PTR(ret);

2505 2506
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2507 2508 2509 2510
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2511

2512 2513 2514
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2515 2516 2517
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2518

C
Chris Wilson 已提交
2519
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2520 2521 2522
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2523
			goto err_unpin;
2524
		}
2525 2526 2527 2528 2529 2530

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2531
		ptr = obj->mm.mapping = NULL;
2532 2533
	}

2534 2535 2536 2537
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2538
			goto err_unpin;
2539 2540
		}

C
Chris Wilson 已提交
2541
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2542 2543
	}

2544 2545
out_unlock:
	mutex_unlock(&obj->mm.lock);
2546 2547
	return ptr;

2548 2549 2550 2551 2552
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2553 2554
}

2555
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2556
{
2557
	unsigned long elapsed;
2558

2559
	if (ctx->hang_stats.banned)
2560 2561
		return true;

2562
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2563 2564
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2565 2566
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2567 2568 2569 2570 2571
	}

	return false;
}

2572
static void i915_set_reset_status(struct i915_gem_context *ctx,
2573
				  const bool guilty)
2574
{
2575
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2576 2577

	if (guilty) {
2578
		hs->banned = i915_context_is_banned(ctx);
2579 2580 2581 2582
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2583 2584 2585
	}
}

2586
struct drm_i915_gem_request *
2587
i915_gem_find_active_request(struct intel_engine_cs *engine)
2588
{
2589 2590
	struct drm_i915_gem_request *request;

2591 2592 2593 2594 2595 2596 2597 2598
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2599
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2600
		if (__i915_gem_request_completed(request))
2601
			continue;
2602

2603
		return request;
2604
	}
2605 2606 2607 2608

	return NULL;
}

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2627 2628
{
	struct drm_i915_gem_request *request;
2629
	struct i915_gem_context *incomplete_ctx;
C
Chris Wilson 已提交
2630
	struct intel_timeline *timeline;
2631 2632
	bool ring_hung;

2633 2634 2635
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2636
	request = i915_gem_find_active_request(engine);
2637
	if (!request)
2638 2639
		return;

2640
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2641 2642 2643
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2644
	i915_set_reset_status(request->ctx, ring_hung);
2645 2646 2647 2648
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2649
			 engine->name, request->global_seqno);
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2666
	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2667 2668
		if (request->ctx == incomplete_ctx)
			reset_request(request);
C
Chris Wilson 已提交
2669 2670 2671 2672

	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
	list_for_each_entry(request, &timeline->requests, link)
		reset_request(request);
2673
}
2674

2675
void i915_gem_reset(struct drm_i915_private *dev_priv)
2676
{
2677
	struct intel_engine_cs *engine;
2678
	enum intel_engine_id id;
2679

2680 2681
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2682 2683
	i915_gem_retire_requests(dev_priv);

2684
	for_each_engine(engine, dev_priv, id)
2685 2686 2687
		i915_gem_reset_engine(engine);

	i915_gem_restore_fences(&dev_priv->drm);
2688 2689 2690 2691 2692 2693 2694

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2695 2696 2697 2698 2699 2700 2701 2702 2703
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2704

2705 2706 2707 2708
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2709
	intel_engine_init_global_seqno(engine,
2710
				       intel_engine_last_submit(engine));
2711

2712 2713 2714 2715 2716 2717
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2718
	if (i915.enable_execlists) {
2719 2720 2721 2722 2723 2724
		spin_lock(&engine->execlist_lock);
		INIT_LIST_HEAD(&engine->execlist_queue);
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		spin_unlock(&engine->execlist_lock);
2725
	}
2726 2727
}

2728
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2729
{
2730
	struct intel_engine_cs *engine;
2731
	enum intel_engine_id id;
2732

2733 2734
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2735

2736
	i915_gem_context_lost(dev_priv);
2737
	for_each_engine(engine, dev_priv, id)
2738
		i915_gem_cleanup_engine(engine);
2739
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2740

2741
	i915_gem_retire_requests(dev_priv);
2742 2743
}

2744
static void
2745 2746
i915_gem_retire_work_handler(struct work_struct *work)
{
2747
	struct drm_i915_private *dev_priv =
2748
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2749
	struct drm_device *dev = &dev_priv->drm;
2750

2751
	/* Come back later if the device is busy... */
2752
	if (mutex_trylock(&dev->struct_mutex)) {
2753
		i915_gem_retire_requests(dev_priv);
2754
		mutex_unlock(&dev->struct_mutex);
2755
	}
2756 2757 2758 2759 2760

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2761 2762
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2763 2764
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2765
				   round_jiffies_up_relative(HZ));
2766
	}
2767
}
2768

2769 2770 2771 2772
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2773
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2774
	struct drm_device *dev = &dev_priv->drm;
2775
	struct intel_engine_cs *engine;
2776
	enum intel_engine_id id;
2777 2778 2779 2780 2781
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2782 2783 2784 2785 2786 2787 2788
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2789
	if (READ_ONCE(dev_priv->gt.active_requests))
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2803 2804 2805 2806 2807 2808 2809
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2810
	if (dev_priv->gt.active_requests)
2811
		goto out_unlock;
2812

2813 2814 2815
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2816
	for_each_engine(engine, dev_priv, id)
2817
		i915_gem_batch_pool_fini(&engine->batch_pool);
2818

2819 2820 2821
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2822

2823 2824 2825 2826 2827
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2828

2829 2830 2831 2832
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2833
	}
2834 2835
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2846 2847 2848 2849 2850 2851

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2852 2853 2854
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2866 2867
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2868 2869 2870
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2895 2896
	ktime_t start;
	long ret;
2897

2898 2899 2900
	if (args->flags != 0)
		return -EINVAL;

2901
	obj = i915_gem_object_lookup(file, args->bo_handle);
2902
	if (!obj)
2903 2904
		return -ENOENT;

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
2916 2917
	}

C
Chris Wilson 已提交
2918
	i915_gem_object_put(obj);
2919
	return ret;
2920 2921
}

2922
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
2923
{
2924
	int ret, i;
2925

2926 2927 2928 2929 2930
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
2931

2932 2933 2934 2935 2936 2937 2938
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
2951 2952 2953
		if (ret)
			return ret;
	}
2954

2955
	return 0;
2956 2957
}

2958 2959
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
2960 2961 2962 2963 2964
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
2965
	if (!obj->mm.pages)
2966
		return;
2967

2968 2969 2970 2971
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
2972
	if (obj->stolen || obj->phys_handle)
2973
		return;
2974

2975 2976 2977 2978 2979 2980 2981 2982
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
2983 2984
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
2985
		return;
2986
	}
2987

C
Chris Wilson 已提交
2988
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
2989
	drm_clflush_sg(obj->mm.pages);
2990
	obj->cache_dirty = false;
2991 2992 2993 2994
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2995
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2996
{
2997
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
2998

2999
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3000 3001
		return;

3002
	/* No actual flushing is required for the GTT write domain.  Writes
3003
	 * to it "immediately" go to main memory as far as we know, so there's
3004
	 * no chipset flush.  It also doesn't land in render cache.
3005 3006 3007 3008
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3009 3010 3011 3012 3013 3014 3015
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3016
	 */
3017
	wmb();
3018
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3019
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3020

3021
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3022

3023
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3024
	trace_i915_gem_object_change_domain(obj,
3025
					    obj->base.read_domains,
3026
					    I915_GEM_DOMAIN_GTT);
3027 3028 3029 3030
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3031
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3032
{
3033
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3034 3035
		return;

3036
	i915_gem_clflush_object(obj, obj->pin_display);
3037
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3038

3039
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3040
	trace_i915_gem_object_change_domain(obj,
3041
					    obj->base.read_domains,
3042
					    I915_GEM_DOMAIN_CPU);
3043 3044
}

3045 3046
/**
 * Moves a single object to the GTT read, and possibly write domain.
3047 3048
 * @obj: object to act on
 * @write: ask for write access or read only
3049 3050 3051 3052
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3053
int
3054
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3055
{
C
Chris Wilson 已提交
3056
	uint32_t old_write_domain, old_read_domains;
3057
	int ret;
3058

3059
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3060

3061 3062 3063 3064 3065 3066
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3067 3068 3069
	if (ret)
		return ret;

3070 3071 3072
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3073 3074 3075 3076 3077 3078 3079 3080
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3081
	ret = i915_gem_object_pin_pages(obj);
3082 3083 3084
	if (ret)
		return ret;

3085
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3086

3087 3088 3089 3090 3091 3092 3093
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3094 3095
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3096

3097 3098 3099
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3100
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3101
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3102
	if (write) {
3103 3104
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3105
		obj->mm.dirty = true;
3106 3107
	}

C
Chris Wilson 已提交
3108 3109 3110 3111
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3112
	i915_gem_object_unpin_pages(obj);
3113 3114 3115
	return 0;
}

3116 3117
/**
 * Changes the cache-level of an object across all VMA.
3118 3119
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3131 3132 3133
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3134
	struct i915_vma *vma;
3135
	int ret = 0;
3136

3137 3138
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3139
	if (obj->cache_level == cache_level)
3140
		goto out;
3141

3142 3143 3144 3145 3146
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3147 3148
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3149 3150 3151
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3152
		if (i915_vma_is_pinned(vma)) {
3153 3154 3155 3156
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3169 3170
	}

3171 3172 3173 3174 3175 3176 3177
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3178
	if (obj->bind_count) {
3179 3180 3181 3182
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3183 3184 3185 3186 3187 3188
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3189 3190 3191
		if (ret)
			return ret;

3192 3193
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3210 3211 3212 3213 3214
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3215 3216 3217 3218 3219 3220 3221 3222
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3223 3224
		}

3225
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3226 3227 3228 3229 3230 3231 3232
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3233 3234
	}

3235
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3236 3237 3238
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3239
out:
3240 3241 3242 3243
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3244 3245
	if (obj->cache_dirty && cpu_write_needs_clflush(obj))
		i915_gem_clflush_object(obj, true);
3246 3247 3248 3249

	return 0;
}

B
Ben Widawsky 已提交
3250 3251
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3252
{
B
Ben Widawsky 已提交
3253
	struct drm_i915_gem_caching *args = data;
3254
	struct drm_i915_gem_object *obj;
3255
	int err = 0;
3256

3257 3258 3259 3260 3261 3262
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3263

3264 3265 3266 3267 3268 3269
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3270 3271 3272 3273
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3274 3275 3276 3277
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3278 3279 3280
out:
	rcu_read_unlock();
	return err;
3281 3282
}

B
Ben Widawsky 已提交
3283 3284
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3285
{
3286
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3287
	struct drm_i915_gem_caching *args = data;
3288 3289 3290 3291
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3292 3293
	switch (args->caching) {
	case I915_CACHING_NONE:
3294 3295
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3296
	case I915_CACHING_CACHED:
3297 3298 3299 3300 3301 3302
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3303
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3304 3305
			return -ENODEV;

3306 3307
		level = I915_CACHE_LLC;
		break;
3308
	case I915_CACHING_DISPLAY:
3309
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3310
		break;
3311 3312 3313 3314
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3315 3316
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3317
		return ret;
B
Ben Widawsky 已提交
3318

3319 3320
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3321 3322 3323 3324 3325
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3326
	i915_gem_object_put(obj);
3327 3328 3329 3330 3331
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3332
/*
3333 3334 3335
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3336
 */
C
Chris Wilson 已提交
3337
struct i915_vma *
3338 3339
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3340
				     const struct i915_ggtt_view *view)
3341
{
C
Chris Wilson 已提交
3342
	struct i915_vma *vma;
3343
	u32 old_read_domains, old_write_domain;
3344 3345
	int ret;

3346 3347
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3348 3349 3350
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3351
	obj->pin_display++;
3352

3353 3354 3355 3356 3357 3358 3359 3360 3361
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3362
	ret = i915_gem_object_set_cache_level(obj,
3363 3364
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3365 3366
	if (ret) {
		vma = ERR_PTR(ret);
3367
		goto err_unpin_display;
C
Chris Wilson 已提交
3368
	}
3369

3370 3371
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3372 3373 3374 3375
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3376
	 */
3377 3378 3379 3380
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3397
	if (IS_ERR(vma))
3398
		goto err_unpin_display;
3399

3400 3401
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3402
	i915_gem_object_flush_cpu_write_domain(obj);
3403

3404
	old_write_domain = obj->base.write_domain;
3405
	old_read_domains = obj->base.read_domains;
3406 3407 3408 3409

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3410
	obj->base.write_domain = 0;
3411
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3412 3413 3414

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3415
					    old_write_domain);
3416

C
Chris Wilson 已提交
3417
	return vma;
3418 3419

err_unpin_display:
3420
	obj->pin_display--;
C
Chris Wilson 已提交
3421
	return vma;
3422 3423 3424
}

void
C
Chris Wilson 已提交
3425
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3426
{
3427 3428
	lockdep_assert_held(&vma->vm->dev->struct_mutex);

C
Chris Wilson 已提交
3429
	if (WARN_ON(vma->obj->pin_display == 0))
3430 3431
		return;

3432 3433
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3434

3435 3436 3437 3438
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3439
	i915_vma_unpin(vma);
3440 3441
}

3442 3443
/**
 * Moves a single object to the CPU read, and possibly write domain.
3444 3445
 * @obj: object to act on
 * @write: requesting write or read-only access
3446 3447 3448 3449
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3450
int
3451
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3452
{
C
Chris Wilson 已提交
3453
	uint32_t old_write_domain, old_read_domains;
3454 3455
	int ret;

3456
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3457

3458 3459 3460 3461 3462 3463
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3464 3465 3466
	if (ret)
		return ret;

3467 3468 3469
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3470
	i915_gem_object_flush_gtt_write_domain(obj);
3471

3472 3473
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3474

3475
	/* Flush the CPU cache if it's still invalid. */
3476
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3477
		i915_gem_clflush_object(obj, false);
3478

3479
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3480 3481 3482 3483 3484
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3485
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3486 3487 3488 3489 3490

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3491 3492
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3493
	}
3494

C
Chris Wilson 已提交
3495 3496 3497 3498
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3499 3500 3501
	return 0;
}

3502 3503 3504
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3505 3506 3507 3508
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3509 3510 3511
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3512
static int
3513
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3514
{
3515
	struct drm_i915_private *dev_priv = to_i915(dev);
3516
	struct drm_i915_file_private *file_priv = file->driver_priv;
3517
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3518
	struct drm_i915_gem_request *request, *target = NULL;
3519
	long ret;
3520

3521 3522 3523
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3524

3525
	spin_lock(&file_priv->mm.lock);
3526
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3527 3528
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3529

3530 3531 3532 3533 3534 3535 3536
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3537
		target = request;
3538
	}
3539
	if (target)
3540
		i915_gem_request_get(target);
3541
	spin_unlock(&file_priv->mm.lock);
3542

3543
	if (target == NULL)
3544
		return 0;
3545

3546 3547 3548
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3549
	i915_gem_request_put(target);
3550

3551
	return ret < 0 ? ret : 0;
3552 3553
}

C
Chris Wilson 已提交
3554
struct i915_vma *
3555 3556
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3557
			 u64 size,
3558 3559
			 u64 alignment,
			 u64 flags)
3560
{
3561 3562
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3563 3564
	struct i915_vma *vma;
	int ret;
3565

3566 3567
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
3568
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3569
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3570
		return vma;
3571 3572 3573 3574

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3575
			return ERR_PTR(-ENOSPC);
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

3612 3613
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3614 3615 3616
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3617
		     !!(flags & PIN_MAPPABLE),
3618
		     i915_vma_is_map_and_fenceable(vma));
3619 3620
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3621
			return ERR_PTR(ret);
3622 3623
	}

C
Chris Wilson 已提交
3624 3625 3626
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3627

C
Chris Wilson 已提交
3628
	return vma;
3629 3630
}

3631
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3646 3647 3648 3649 3650 3651 3652 3653 3654
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3655 3656
}

3657
static __always_inline unsigned int
3658
__busy_set_if_active(const struct dma_fence *fence,
3659 3660
		     unsigned int (*flag)(unsigned int id))
{
3661
	struct drm_i915_gem_request *rq;
3662

3663 3664 3665 3666
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3667
	 *
3668
	 * Note we only report on the status of native fences.
3669
	 */
3670 3671 3672 3673 3674 3675 3676 3677 3678
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3679 3680
}

3681
static __always_inline unsigned int
3682
busy_check_reader(const struct dma_fence *fence)
3683
{
3684
	return __busy_set_if_active(fence, __busy_read_flag);
3685 3686
}

3687
static __always_inline unsigned int
3688
busy_check_writer(const struct dma_fence *fence)
3689
{
3690 3691 3692 3693
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3694 3695
}

3696 3697
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3698
		    struct drm_file *file)
3699 3700
{
	struct drm_i915_gem_busy *args = data;
3701
	struct drm_i915_gem_object *obj;
3702 3703
	struct reservation_object_list *list;
	unsigned int seq;
3704
	int err;
3705

3706
	err = -ENOENT;
3707 3708
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3709
	if (!obj)
3710
		goto out;
3711

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3730

3731 3732
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3733

3734 3735 3736 3737
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3738

3739 3740 3741 3742 3743 3744
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3745
	}
3746

3747 3748 3749 3750
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3751 3752 3753
out:
	rcu_read_unlock();
	return err;
3754 3755 3756 3757 3758 3759
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3760
	return i915_gem_ring_throttle(dev, file_priv);
3761 3762
}

3763 3764 3765 3766
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3767
	struct drm_i915_private *dev_priv = to_i915(dev);
3768
	struct drm_i915_gem_madvise *args = data;
3769
	struct drm_i915_gem_object *obj;
3770
	int err;
3771 3772 3773 3774 3775 3776 3777 3778 3779

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3780
	obj = i915_gem_object_lookup(file_priv, args->handle);
3781 3782 3783 3784 3785 3786
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3787

C
Chris Wilson 已提交
3788
	if (obj->mm.pages &&
3789
	    i915_gem_object_is_tiled(obj) &&
3790
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3791 3792
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3793
			__i915_gem_object_unpin_pages(obj);
3794 3795 3796
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3797
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3798
			__i915_gem_object_pin_pages(obj);
3799 3800
			obj->mm.quirked = true;
		}
3801 3802
	}

C
Chris Wilson 已提交
3803 3804
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3805

C
Chris Wilson 已提交
3806
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3807
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3808 3809
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3810
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3811
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3812

3813
out:
3814
	i915_gem_object_put(obj);
3815
	return err;
3816 3817
}

3818 3819
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3820
{
3821 3822
	mutex_init(&obj->mm.lock);

3823
	INIT_LIST_HEAD(&obj->global_link);
3824
	INIT_LIST_HEAD(&obj->userfault_link);
3825
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3826
	INIT_LIST_HEAD(&obj->vma_list);
3827
	INIT_LIST_HEAD(&obj->batch_pool_link);
3828

3829 3830
	obj->ops = ops;

3831 3832 3833
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3834
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
C
Chris Wilson 已提交
3835 3836 3837 3838

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3839

3840
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3841 3842
}

3843
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3844 3845
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3846 3847 3848 3849
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3850 3851 3852 3853 3854 3855
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
i915_gem_object_create(struct drm_device *dev, u64 size)
3856
{
3857
	struct drm_i915_private *dev_priv = to_i915(dev);
3858
	struct drm_i915_gem_object *obj;
3859
	struct address_space *mapping;
D
Daniel Vetter 已提交
3860
	gfp_t mask;
3861
	int ret;
3862

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

3874
	obj = i915_gem_object_alloc(dev);
3875
	if (obj == NULL)
3876
		return ERR_PTR(-ENOMEM);
3877

3878 3879 3880
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
3881

3882
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3883
	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
3884 3885 3886 3887 3888
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3889
	mapping = obj->base.filp->f_mapping;
3890
	mapping_set_gfp_mask(mapping, mask);
3891

3892
	i915_gem_object_init(obj, &i915_gem_object_ops);
3893

3894 3895
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3896

3897
	if (HAS_LLC(dev_priv)) {
3898
		/* On some devices, we can have the GPU use the LLC (the CPU
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3914 3915
	trace_i915_gem_object_create(obj);

3916
	return obj;
3917 3918 3919 3920

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
3921 3922
}

3923 3924 3925 3926 3927 3928 3929 3930
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
3931
	if (obj->mm.madv != I915_MADV_WILLNEED)
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

3947 3948
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
3949
{
3950
	struct drm_i915_gem_object *obj, *on;
3951

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
3967 3968
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
3969

3970
		list_del(&obj->global_link);
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
3981

3982 3983
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
3984
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
3985 3986 3987 3988 3989
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

3990
		reservation_object_fini(&obj->__builtin_resv);
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4013

4014 4015 4016 4017 4018 4019 4020
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4021

4022 4023 4024
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4025

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4040

4041 4042 4043
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4044

4045 4046 4047
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4048
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4049
		obj->mm.madv = I915_MADV_DONTNEED;
4050

4051 4052 4053 4054 4055 4056
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4057 4058
}

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4070 4071 4072 4073 4074 4075 4076 4077 4078
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
}

4079
int i915_gem_suspend(struct drm_device *dev)
4080
{
4081
	struct drm_i915_private *dev_priv = to_i915(dev);
4082
	int ret;
4083

4084 4085
	intel_suspend_gt_powersave(dev_priv);

4086
	mutex_lock(&dev->struct_mutex);
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4100 4101 4102
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4103
	if (ret)
4104
		goto err;
4105

4106
	i915_gem_retire_requests(dev_priv);
4107
	GEM_BUG_ON(dev_priv->gt.active_requests);
4108

4109
	assert_kernel_context_is_current(dev_priv);
4110
	i915_gem_context_lost(dev_priv);
4111 4112
	mutex_unlock(&dev->struct_mutex);

4113
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4114 4115
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4116
	flush_work(&dev_priv->mm.free_work);
4117

4118 4119 4120
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4121
	WARN_ON(dev_priv->gt.awake);
4122
	WARN_ON(!intel_execlists_idle(dev_priv));
4123

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4143
	if (HAS_HW_CONTEXTS(dev_priv)) {
4144 4145 4146 4147
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4148
	return 0;
4149 4150 4151 4152

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4153 4154
}

4155 4156 4157 4158
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

4159 4160
	WARN_ON(dev_priv->gt.awake);

4161 4162 4163 4164 4165 4166 4167
	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4168
	dev_priv->gt.resume(dev_priv);
4169 4170 4171 4172

	mutex_unlock(&dev->struct_mutex);
}

4173 4174
void i915_gem_init_swizzling(struct drm_device *dev)
{
4175
	struct drm_i915_private *dev_priv = to_i915(dev);
4176

4177
	if (INTEL_INFO(dev)->gen < 5 ||
4178 4179 4180 4181 4182 4183
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4184
	if (IS_GEN5(dev_priv))
4185 4186
		return;

4187
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4188
	if (IS_GEN6(dev_priv))
4189
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4190
	else if (IS_GEN7(dev_priv))
4191
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4192
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4193
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4194 4195
	else
		BUG();
4196
}
D
Daniel Vetter 已提交
4197

4198
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4199 4200 4201 4202 4203 4204 4205
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4206
static void init_unused_rings(struct drm_i915_private *dev_priv)
4207
{
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4220 4221 4222
	}
}

4223 4224 4225
int
i915_gem_init_hw(struct drm_device *dev)
{
4226
	struct drm_i915_private *dev_priv = to_i915(dev);
4227
	struct intel_engine_cs *engine;
4228
	enum intel_engine_id id;
C
Chris Wilson 已提交
4229
	int ret;
4230

4231 4232
	dev_priv->gt.last_init_time = ktime_get();

4233 4234 4235
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4236
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4237
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4238

4239
	if (IS_HASWELL(dev_priv))
4240
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4241
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4242

4243
	if (HAS_PCH_NOP(dev_priv)) {
4244
		if (IS_IVYBRIDGE(dev_priv)) {
4245 4246 4247 4248 4249 4250 4251 4252
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4253 4254
	}

4255 4256
	i915_gem_init_swizzling(dev);

4257 4258 4259 4260 4261 4262
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4263
	init_unused_rings(dev_priv);
4264

4265
	BUG_ON(!dev_priv->kernel_context);
4266

4267 4268 4269 4270 4271 4272 4273
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4274
	for_each_engine(engine, dev_priv, id) {
4275
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4276
		if (ret)
4277
			goto out;
D
Daniel Vetter 已提交
4278
	}
4279

4280 4281
	intel_mocs_init_l3cc_table(dev);

4282
	/* We can't enable contexts until all firmware is loaded */
4283 4284 4285
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4286

4287 4288
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4289
	return ret;
4290 4291
}

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4313 4314
int i915_gem_init(struct drm_device *dev)
{
4315
	struct drm_i915_private *dev_priv = to_i915(dev);
4316 4317 4318
	int ret;

	mutex_lock(&dev->struct_mutex);
4319

4320
	if (!i915.enable_execlists) {
4321
		dev_priv->gt.resume = intel_legacy_submission_resume;
4322
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4323
	} else {
4324
		dev_priv->gt.resume = intel_lr_context_resume;
4325
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4326 4327
	}

4328 4329 4330 4331 4332 4333 4334 4335
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4336
	i915_gem_init_userptr(dev_priv);
4337 4338 4339 4340

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4341

4342
	ret = i915_gem_context_init(dev);
4343 4344
	if (ret)
		goto out_unlock;
4345

4346
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4347
	if (ret)
4348
		goto out_unlock;
4349

4350
	ret = i915_gem_init_hw(dev);
4351
	if (ret == -EIO) {
4352
		/* Allow engine initialisation to fail by marking the GPU as
4353 4354 4355 4356
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4357
		i915_gem_set_wedged(dev_priv);
4358
		ret = 0;
4359
	}
4360 4361

out_unlock:
4362
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4363
	mutex_unlock(&dev->struct_mutex);
4364

4365
	return ret;
4366 4367
}

4368
void
4369
i915_gem_cleanup_engines(struct drm_device *dev)
4370
{
4371
	struct drm_i915_private *dev_priv = to_i915(dev);
4372
	struct intel_engine_cs *engine;
4373
	enum intel_engine_id id;
4374

4375
	for_each_engine(engine, dev_priv, id)
4376
		dev_priv->gt.cleanup_engine(engine);
4377 4378
}

4379 4380 4381
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4382
	struct drm_device *dev = &dev_priv->drm;
4383
	int i;
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4394
	if (intel_vgpu_active(dev_priv))
4395 4396 4397 4398
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4399 4400 4401 4402 4403 4404 4405
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4406 4407 4408 4409 4410
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4411
int
4412
i915_gem_load_init(struct drm_device *dev)
4413
{
4414
	struct drm_i915_private *dev_priv = to_i915(dev);
4415
	int err = -ENOMEM;
4416

4417 4418
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4419 4420
		goto err_out;

4421 4422
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4423 4424
		goto err_objects;

4425 4426 4427 4428 4429
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
		goto err_vmas;

	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
	err = i915_gem_timeline_init(dev_priv,
				     &dev_priv->gt.global_timeline,
				     "[execution]");
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
		goto err_requests;
4440

4441
	INIT_LIST_HEAD(&dev_priv->context_list);
4442 4443
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4444 4445
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4446
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4447
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4448
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4449
			  i915_gem_retire_work_handler);
4450
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4451
			  i915_gem_idle_work_handler);
4452
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4453
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4454

4455 4456
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4457
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4458

4459 4460
	dev_priv->mm.interruptible = true;

4461 4462
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4463
	spin_lock_init(&dev_priv->fb_tracking.lock);
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474

	return 0;

err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4475
}
4476

4477 4478 4479 4480
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

4481 4482
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4483 4484 4485
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4486 4487 4488

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4489 4490
}

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4504 4505 4506
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4507 4508 4509 4510 4511
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4522 4523 4524
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4525 4526
	 */

4527 4528
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4529

4530
	for (p = phases; *p; p++) {
4531
		list_for_each_entry(obj, *p, global_link) {
4532 4533 4534
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4535
	}
4536
	mutex_unlock(&dev_priv->drm.struct_mutex);
4537 4538 4539 4540

	return 0;
}

4541
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4542
{
4543
	struct drm_i915_file_private *file_priv = file->driver_priv;
4544
	struct drm_i915_gem_request *request;
4545 4546 4547 4548 4549

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4550
	spin_lock(&file_priv->mm.lock);
4551
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4552
		request->file_priv = NULL;
4553
	spin_unlock(&file_priv->mm.lock);
4554

4555
	if (!list_empty(&file_priv->rps.link)) {
4556
		spin_lock(&to_i915(dev)->rps.client_lock);
4557
		list_del(&file_priv->rps.link);
4558
		spin_unlock(&to_i915(dev)->rps.client_lock);
4559
	}
4560 4561 4562 4563 4564
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4565
	int ret;
4566 4567 4568 4569 4570 4571 4572 4573

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4574
	file_priv->dev_priv = to_i915(dev);
4575
	file_priv->file = file;
4576
	INIT_LIST_HEAD(&file_priv->rps.link);
4577 4578 4579 4580

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4581
	file_priv->bsd_engine = -1;
4582

4583 4584 4585
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4586

4587
	return ret;
4588 4589
}

4590 4591
/**
 * i915_gem_track_fb - update frontbuffer tracking
4592 4593 4594
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4595 4596 4597 4598
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4599 4600 4601 4602
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4603 4604 4605 4606 4607 4608 4609 4610 4611
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4612
	if (old) {
4613 4614
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4615 4616 4617
	}

	if (new) {
4618 4619
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4620 4621 4622
	}
}

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4633
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4634
	if (IS_ERR(obj))
4635 4636 4637 4638 4639 4640
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4641
	ret = i915_gem_object_pin_pages(obj);
4642 4643 4644
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4645
	sg = obj->mm.pages;
4646
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4647
	obj->mm.dirty = true; /* Backing store is now out of date */
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4659
	i915_gem_object_put(obj);
4660 4661
	return ERR_PTR(ret);
}
4662 4663 4664 4665 4666 4667

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4668
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4669 4670 4671 4672 4673
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4674
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4799
	if (!obj->mm.dirty)
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}