i915_gem.c 128.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

301 302 303 304 305 306 307 308 309 310 311 312 313
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

361 362 363
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
364 365
 */
static __must_check int
366 367 368
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
369 370 371
{
	struct i915_gem_active *active;
	unsigned long active_mask;
372
	int idx;
373

374
	active_mask = __I915_BO_ACTIVE(obj);
375 376 377 378 379 380 381 382 383 384
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

385 386
	for_each_active(active_mask, idx) {
		int ret;
387

388
		ret = i915_gem_active_wait_unlocked(&active[idx],
389 390
						    I915_WAIT_INTERRUPTIBLE,
						    NULL, rps);
391 392
		if (ret)
			return ret;
393 394
	}

395
	return 0;
396 397 398 399 400 401 402 403 404
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

405 406 407 408 409
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
410
	int ret;
411 412 413 414 415 416 417 418 419 420 421 422 423 424

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
425 426 427 428 429
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
430 431 432
	if (ret)
		return ret;

433 434 435 436 437 438
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
439 440 441
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
442 443 444 445 446 447 448 449 450
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
451
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
452
	int ret = 0;
453 454 455 456 457 458 459

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
460

461
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
462 463 464 465 466 467 468 469 470 471
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
472 473 474 475
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
476 477
	}

478
	drm_clflush_virt_range(vaddr, args->size);
479
	i915_gem_chipset_flush(to_i915(dev));
480 481

out:
482
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
483
	return ret;
484 485
}

486 487
void *i915_gem_object_alloc(struct drm_device *dev)
{
488
	struct drm_i915_private *dev_priv = to_i915(dev);
489
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
490 491 492 493
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
494
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
495
	kmem_cache_free(dev_priv->objects, obj);
496 497
}

498 499 500 501 502
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
503
{
504
	struct drm_i915_gem_object *obj;
505 506
	int ret;
	u32 handle;
507

508
	size = roundup(size, PAGE_SIZE);
509 510
	if (size == 0)
		return -EINVAL;
511 512

	/* Allocate the new object */
513
	obj = i915_gem_object_create(dev, size);
514 515
	if (IS_ERR(obj))
		return PTR_ERR(obj);
516

517
	ret = drm_gem_handle_create(file, &obj->base, &handle);
518
	/* drop reference from allocate - handle holds it now */
519
	i915_gem_object_put_unlocked(obj);
520 521
	if (ret)
		return ret;
522

523
	*handle_p = handle;
524 525 526
	return 0;
}

527 528 529 530 531 532
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
533
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
534 535
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
536
			       args->size, &args->handle);
537 538 539 540
}

/**
 * Creates a new mm object and returns a handle to it.
541 542 543
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
544 545 546 547 548 549
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
550

551
	return i915_gem_create(file, dev,
552
			       args->size, &args->handle);
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

581
static inline int
582 583
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

607 608 609 610 611 612
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
613
				    unsigned int *needs_clflush)
614 615 616 617 618
{
	int ret;

	*needs_clflush = 0;

619 620
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
621

622 623 624 625
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

626 627 628 629 630 631
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

632 633
	i915_gem_object_flush_gtt_write_domain(obj);

634 635 636 637 638 639
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
640 641
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
642 643 644

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
645 646 647
		if (ret)
			goto err_unpin;

648
		*needs_clflush = 0;
649 650
	}

651
	/* return with the pages pinned */
652
	return 0;
653 654 655 656

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

672 673 674 675 676 677
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

678 679
	i915_gem_object_flush_gtt_write_domain(obj);

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
697 698 699
		if (ret)
			goto err_unpin;

700 701 702 703 704 705 706 707
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
	obj->dirty = 1;
708
	/* return with the pages pinned */
709
	return 0;
710 711 712 713

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
714 715
}

716 717 718
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
719
static int
720 721 722 723 724 725 726
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

727
	if (unlikely(page_do_bit17_swizzling))
728 729 730 731 732 733 734 735 736 737 738
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

739
	return ret ? -EFAULT : 0;
740 741
}

742 743 744 745
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
746
	if (unlikely(swizzled)) {
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

764 765 766 767 768 769 770 771 772 773 774 775
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
776 777 778
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
779 780 781 782 783 784 785 786 787 788 789

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

790
	return ret ? - EFAULT : 0;
791 792
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
820
	struct drm_i915_private *dev_priv = to_i915(dev);
821
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
822
	struct i915_vma *vma;
823 824 825 826 827 828
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

C
Chris Wilson 已提交
829
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
830 831 832
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
833
		ret = i915_vma_put_fence(vma);
834 835 836 837 838
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
839
	if (IS_ERR(vma)) {
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
895
		if (slow_user_access(&ggtt->mappable, page_base,
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
922
				       node.start, node.size);
923 924 925
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
926
		i915_vma_unpin(vma);
927 928 929 930 931
	}
out:
	return ret;
}

932
static int
933 934 935 936
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
937
{
938
	char __user *user_data;
939
	ssize_t remain;
940
	loff_t offset;
941
	int shmem_page_offset, page_length, ret = 0;
942
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
943
	int prefaulted = 0;
944
	int needs_clflush = 0;
945
	struct sg_page_iter sg_iter;
946

947
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
948 949 950
	if (ret)
		return ret;

951 952
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
953
	offset = args->offset;
954
	remain = args->size;
955

956 957
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
958
		struct page *page = sg_page_iter_page(&sg_iter);
959 960 961 962

		if (remain <= 0)
			break;

963 964 965 966 967
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
968
		shmem_page_offset = offset_in_page(offset);
969 970 971 972
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

973 974 975
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

976 977 978 979 980
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
981 982 983

		mutex_unlock(&dev->struct_mutex);

984
		if (likely(!i915.prefault_disable) && !prefaulted) {
985
			ret = fault_in_multipages_writeable(user_data, remain);
986 987 988 989 990 991 992
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
993

994 995 996
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
997

998
		mutex_lock(&dev->struct_mutex);
999 1000

		if (ret)
1001 1002
			goto out;

1003
next_page:
1004
		remain -= page_length;
1005
		user_data += page_length;
1006 1007 1008
		offset += page_length;
	}

1009
out:
1010
	i915_gem_obj_finish_shmem_access(obj);
1011

1012 1013 1014
	return ret;
}

1015 1016
/**
 * Reads data from the object referenced by handle.
1017 1018 1019
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1020 1021 1022 1023 1024
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1025
		     struct drm_file *file)
1026 1027
{
	struct drm_i915_gem_pread *args = data;
1028
	struct drm_i915_gem_object *obj;
1029
	int ret = 0;
1030

1031 1032 1033 1034
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1035
		       u64_to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	obj = i915_gem_object_lookup(file, args->handle);
1040 1041
	if (!obj)
		return -ENOENT;
1042

1043
	/* Bounds check source.  */
1044 1045
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1046
		ret = -EINVAL;
1047
		goto err;
C
Chris Wilson 已提交
1048 1049
	}

C
Chris Wilson 已提交
1050 1051
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1052 1053 1054 1055 1056 1057 1058 1059
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1060
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1061

1062
	/* pread for non shmem backed objects */
1063 1064
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
1065 1066
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
1067 1068
		intel_runtime_pm_put(to_i915(dev));
	}
1069

1070
	i915_gem_object_put(obj);
1071
	mutex_unlock(&dev->struct_mutex);
1072 1073 1074 1075 1076

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1077
	return ret;
1078 1079
}

1080 1081
/* This is the fast write path which cannot handle
 * page faults in the source data
1082
 */
1083 1084 1085 1086 1087 1088

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1089
{
1090 1091
	void __iomem *vaddr_atomic;
	void *vaddr;
1092
	unsigned long unwritten;
1093

P
Peter Zijlstra 已提交
1094
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1095 1096 1097
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1098
						      user_data, length);
P
Peter Zijlstra 已提交
1099
	io_mapping_unmap_atomic(vaddr_atomic);
1100
	return unwritten;
1101 1102
}

1103 1104 1105
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1106
 * @i915: i915 device private data
1107 1108 1109
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1110
 */
1111
static int
1112
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1113
			 struct drm_i915_gem_object *obj,
1114
			 struct drm_i915_gem_pwrite *args,
1115
			 struct drm_file *file)
1116
{
1117
	struct i915_ggtt *ggtt = &i915->ggtt;
1118
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1119
	struct i915_vma *vma;
1120 1121
	struct drm_mm_node node;
	uint64_t remain, offset;
1122
	char __user *user_data;
1123
	int ret;
1124 1125
	bool hit_slow_path = false;

1126
	if (i915_gem_object_is_tiled(obj))
1127
		return -EFAULT;
D
Daniel Vetter 已提交
1128

C
Chris Wilson 已提交
1129
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1130
				       PIN_MAPPABLE | PIN_NONBLOCK);
1131 1132 1133
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1134
		ret = i915_vma_put_fence(vma);
1135 1136 1137 1138 1139
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1140
	if (IS_ERR(vma)) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}
D
Daniel Vetter 已提交
1153 1154 1155 1156 1157

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1158
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159
	obj->dirty = true;
1160

1161 1162 1163 1164
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1165 1166
		/* Operation in this page
		 *
1167 1168 1169
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1170
		 */
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1184
		/* If we get a fault while copying data, then (presumably) our
1185 1186
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1187 1188
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1189
		 */
1190
		if (fast_user_write(&ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1191
				    page_offset, user_data, page_length)) {
1192 1193
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
1194
			if (slow_user_access(&ggtt->mappable,
1195 1196 1197 1198 1199 1200 1201 1202 1203
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1204
		}
1205

1206 1207 1208
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1209 1210
	}

1211
out_flush:
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1225
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1226
out_unpin:
1227 1228 1229
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1230
				       node.start, node.size);
1231 1232 1233
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1234
		i915_vma_unpin(vma);
1235
	}
D
Daniel Vetter 已提交
1236
out:
1237
	return ret;
1238 1239
}

1240 1241 1242 1243
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1244
static int
1245 1246 1247 1248 1249
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1250
{
1251
	char *vaddr;
1252
	int ret;
1253

1254
	if (unlikely(page_do_bit17_swizzling))
1255
		return -EINVAL;
1256

1257 1258 1259 1260
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1261 1262
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1263 1264 1265 1266
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1267

1268
	return ret ? -EFAULT : 0;
1269 1270
}

1271 1272
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1273
static int
1274 1275 1276 1277 1278
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1279
{
1280 1281
	char *vaddr;
	int ret;
1282

1283
	vaddr = kmap(page);
1284
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1285 1286 1287
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1288 1289
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1290 1291
						user_data,
						page_length);
1292 1293 1294 1295 1296
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1297 1298 1299
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1300
	kunmap(page);
1301

1302
	return ret ? -EFAULT : 0;
1303 1304 1305
}

static int
1306 1307 1308 1309
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1310 1311
{
	ssize_t remain;
1312 1313
	loff_t offset;
	char __user *user_data;
1314
	int shmem_page_offset, page_length, ret = 0;
1315
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1316
	int hit_slowpath = 0;
1317
	unsigned int needs_clflush;
1318
	struct sg_page_iter sg_iter;
1319

1320
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1321 1322 1323
	if (ret)
		return ret;

1324 1325
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1326
	offset = args->offset;
1327
	remain = args->size;
1328

1329 1330
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1331
		struct page *page = sg_page_iter_page(&sg_iter);
1332
		int partial_cacheline_write;
1333

1334 1335 1336
		if (remain <= 0)
			break;

1337 1338 1339 1340 1341
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1342
		shmem_page_offset = offset_in_page(offset);
1343 1344 1345 1346 1347

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1348 1349 1350
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1351
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1352 1353 1354
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1355 1356 1357
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1358 1359 1360
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1361
					needs_clflush & CLFLUSH_AFTER);
1362 1363
		if (ret == 0)
			goto next_page;
1364 1365 1366

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1367 1368 1369
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1370
					needs_clflush & CLFLUSH_AFTER);
1371

1372
		mutex_lock(&dev->struct_mutex);
1373 1374

		if (ret)
1375 1376
			goto out;

1377
next_page:
1378
		remain -= page_length;
1379
		user_data += page_length;
1380
		offset += page_length;
1381 1382
	}

1383
out:
1384
	i915_gem_obj_finish_shmem_access(obj);
1385

1386
	if (hit_slowpath) {
1387 1388 1389 1390 1391
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1392
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1393
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1394
			if (i915_gem_clflush_object(obj, obj->pin_display))
1395
				needs_clflush |= CLFLUSH_AFTER;
1396
		}
1397
	}
1398

1399
	if (needs_clflush & CLFLUSH_AFTER)
1400
		i915_gem_chipset_flush(to_i915(dev));
1401

1402
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1403
	return ret;
1404 1405 1406 1407
}

/**
 * Writes data to the object referenced by handle.
1408 1409 1410
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1411 1412 1413 1414 1415
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1416
		      struct drm_file *file)
1417
{
1418
	struct drm_i915_private *dev_priv = to_i915(dev);
1419
	struct drm_i915_gem_pwrite *args = data;
1420
	struct drm_i915_gem_object *obj;
1421 1422 1423 1424 1425 1426
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1427
		       u64_to_user_ptr(args->data_ptr),
1428 1429 1430
		       args->size))
		return -EFAULT;

1431
	if (likely(!i915.prefault_disable)) {
1432
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1433 1434 1435 1436
						   args->size);
		if (ret)
			return -EFAULT;
	}
1437

1438
	obj = i915_gem_object_lookup(file, args->handle);
1439 1440
	if (!obj)
		return -ENOENT;
1441

1442
	/* Bounds check destination. */
1443 1444
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1445
		ret = -EINVAL;
1446
		goto err;
C
Chris Wilson 已提交
1447 1448
	}

C
Chris Wilson 已提交
1449 1450
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1461
	ret = -EFAULT;
1462 1463 1464 1465 1466 1467
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1468 1469
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1470
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1471 1472 1473
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1474
	}
1475

1476
	if (ret == -EFAULT || ret == -ENOSPC) {
1477 1478
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1479
		else
1480
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1481
	}
1482

1483
	i915_gem_object_put(obj);
1484
	mutex_unlock(&dev->struct_mutex);
1485 1486
	intel_runtime_pm_put(dev_priv);

1487
	return ret;
1488 1489 1490 1491 1492 1493

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1494 1495
}

1496
static inline enum fb_op_origin
1497 1498
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1499 1500
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1501 1502
}

1503
/**
1504 1505
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1506 1507 1508
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1509 1510 1511
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1512
			  struct drm_file *file)
1513 1514
{
	struct drm_i915_gem_set_domain *args = data;
1515
	struct drm_i915_gem_object *obj;
1516 1517
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1518 1519
	int ret;

1520
	/* Only handle setting domains to types used by the CPU. */
1521
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1522 1523 1524 1525 1526 1527 1528 1529
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1530
	obj = i915_gem_object_lookup(file, args->handle);
1531 1532
	if (!obj)
		return -ENOENT;
1533

1534 1535 1536 1537
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1538 1539 1540 1541 1542
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1543
	if (ret)
1544
		goto err;
1545

1546
	if (read_domains & I915_GEM_DOMAIN_GTT)
1547
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1548
	else
1549
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1550

1551
	if (write_domain != 0)
1552
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1553

1554
	i915_gem_object_put(obj);
1555 1556
	mutex_unlock(&dev->struct_mutex);
	return ret;
1557 1558 1559 1560

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1561 1562 1563 1564
}

/**
 * Called when user space has done writes to this buffer
1565 1566 1567
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1568 1569 1570
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1571
			 struct drm_file *file)
1572 1573
{
	struct drm_i915_gem_sw_finish *args = data;
1574
	struct drm_i915_gem_object *obj;
1575
	int err = 0;
1576

1577
	obj = i915_gem_object_lookup(file, args->handle);
1578 1579
	if (!obj)
		return -ENOENT;
1580 1581

	/* Pinned buffers may be scanout, so flush the cache */
1582 1583 1584 1585 1586 1587 1588
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1589

1590 1591
	i915_gem_object_put_unlocked(obj);
	return err;
1592 1593 1594
}

/**
1595 1596 1597 1598 1599
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1600 1601 1602
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1613 1614 1615
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1616
		    struct drm_file *file)
1617 1618
{
	struct drm_i915_gem_mmap *args = data;
1619
	struct drm_i915_gem_object *obj;
1620 1621
	unsigned long addr;

1622 1623 1624
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1625
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1626 1627
		return -ENODEV;

1628 1629
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1630
		return -ENOENT;
1631

1632 1633 1634
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1635
	if (!obj->base.filp) {
1636
		i915_gem_object_put_unlocked(obj);
1637 1638 1639
		return -EINVAL;
	}

1640
	addr = vm_mmap(obj->base.filp, 0, args->size,
1641 1642
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1643 1644 1645 1646
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1647
		if (down_write_killable(&mm->mmap_sem)) {
1648
			i915_gem_object_put_unlocked(obj);
1649 1650
			return -EINTR;
		}
1651 1652 1653 1654 1655 1656 1657
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1658 1659

		/* This may race, but that's ok, it only gets set */
1660
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1661
	}
1662
	i915_gem_object_put_unlocked(obj);
1663 1664 1665 1666 1667 1668 1669 1670
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1731 1732
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1733
 * @area: CPU VMA in question
1734
 * @vmf: fault info
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1746 1747 1748
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1749
 */
C
Chris Wilson 已提交
1750
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1751
{
1752
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1753
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1754
	struct drm_device *dev = obj->base.dev;
1755 1756
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1757
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1758
	struct i915_vma *vma;
1759
	pgoff_t page_offset;
1760
	unsigned int flags;
1761
	int ret;
1762

1763
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1764
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1765 1766
		PAGE_SHIFT;

C
Chris Wilson 已提交
1767 1768
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1769
	/* Try to flush the object off the GPU first without holding the lock.
1770
	 * Upon acquiring the lock, we will perform our sanity checks and then
1771 1772 1773
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1774
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1775
	if (ret)
1776 1777 1778 1779 1780 1781 1782
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1783

1784 1785
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1786
		ret = -EFAULT;
1787
		goto err_unlock;
1788 1789
	}

1790 1791 1792 1793 1794 1795 1796 1797
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1798
	/* Now pin it into the GTT as needed */
1799
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1800 1801
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1802 1803
		unsigned int chunk_size;

1804
		/* Use a partial view if it is bigger than available space */
1805 1806 1807
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
			chunk_size = max(chunk_size, tile_row_pages(obj));
1808

1809 1810 1811 1812
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1813
			min_t(unsigned int, chunk_size,
1814
			      vma_pages(area) - view.params.partial.offset);
1815

1816 1817 1818 1819 1820 1821
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1822 1823 1824 1825 1826
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1827 1828
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1829 1830
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1831
		goto err_unlock;
C
Chris Wilson 已提交
1832
	}
1833

1834 1835
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1836
		goto err_unpin;
1837

1838
	ret = i915_vma_get_fence(vma);
1839
	if (ret)
1840
		goto err_unpin;
1841

1842
	/* Finally, remap it using the new GTT offset */
1843 1844 1845 1846 1847 1848 1849
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
	if (ret)
		goto err_unpin;
1850 1851

	obj->fault_mappable = true;
1852
err_unpin:
C
Chris Wilson 已提交
1853
	__i915_vma_unpin(vma);
1854
err_unlock:
1855
	mutex_unlock(&dev->struct_mutex);
1856 1857 1858
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1859
	switch (ret) {
1860
	case -EIO:
1861 1862 1863 1864 1865 1866 1867
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1868 1869 1870
			ret = VM_FAULT_SIGBUS;
			break;
		}
1871
	case -EAGAIN:
D
Daniel Vetter 已提交
1872 1873 1874 1875
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1876
		 */
1877 1878
	case 0:
	case -ERESTARTSYS:
1879
	case -EINTR:
1880 1881 1882 1883 1884
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1885 1886
		ret = VM_FAULT_NOPAGE;
		break;
1887
	case -ENOMEM:
1888 1889
		ret = VM_FAULT_OOM;
		break;
1890
	case -ENOSPC:
1891
	case -EFAULT:
1892 1893
		ret = VM_FAULT_SIGBUS;
		break;
1894
	default:
1895
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1896 1897
		ret = VM_FAULT_SIGBUS;
		break;
1898
	}
1899
	return ret;
1900 1901
}

1902 1903 1904 1905
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1906
 * Preserve the reservation of the mmapping with the DRM core code, but
1907 1908 1909 1910 1911 1912 1913 1914 1915
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1916
void
1917
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1918
{
1919 1920 1921 1922 1923 1924
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1925 1926
	if (!obj->fault_mappable)
		return;
1927

1928 1929
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1940
	obj->fault_mappable = false;
1941 1942
}

1943 1944 1945 1946 1947 1948 1949 1950 1951
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1952 1953
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1954
 * @dev_priv: i915 device
1955 1956 1957 1958 1959 1960
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1961 1962
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1963
{
1964
	u64 ggtt_size;
1965

1966 1967
	GEM_BUG_ON(size == 0);

1968
	if (INTEL_GEN(dev_priv) >= 4 ||
1969 1970
	    tiling_mode == I915_TILING_NONE)
		return size;
1971 1972

	/* Previous chips need a power-of-two fence region when tiling */
1973
	if (IS_GEN3(dev_priv))
1974
		ggtt_size = 1024*1024;
1975
	else
1976
		ggtt_size = 512*1024;
1977

1978 1979
	while (ggtt_size < size)
		ggtt_size <<= 1;
1980

1981
	return ggtt_size;
1982 1983
}

1984
/**
1985
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1986
 * @dev_priv: i915 device
1987 1988
 * @size: object size
 * @tiling_mode: tiling mode
1989
 * @fenced: is fenced alignment required or not
1990
 *
1991
 * Return the required global GTT alignment for an object, taking into account
1992
 * potential fence register mapping.
1993
 */
1994
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1995
				int tiling_mode, bool fenced)
1996
{
1997 1998
	GEM_BUG_ON(size == 0);

1999 2000 2001 2002
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2003
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2004
	    tiling_mode == I915_TILING_NONE)
2005 2006
		return 4096;

2007 2008 2009 2010
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2011
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2012 2013
}

2014 2015
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2016
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2017
	int err;
2018

2019 2020 2021
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2022

2023 2024 2025
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2026
	 */
2027
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2028 2029 2030 2031 2032 2033 2034 2035 2036
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2037

2038
	return err;
2039 2040 2041 2042 2043 2044 2045
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2046
int
2047 2048
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2049
		  uint32_t handle,
2050
		  uint64_t *offset)
2051
{
2052
	struct drm_i915_gem_object *obj;
2053 2054
	int ret;

2055
	obj = i915_gem_object_lookup(file, handle);
2056 2057
	if (!obj)
		return -ENOENT;
2058

2059
	ret = i915_gem_object_create_mmap_offset(obj);
2060 2061
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2062

2063
	i915_gem_object_put_unlocked(obj);
2064
	return ret;
2065 2066
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2088
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2089 2090
}

D
Daniel Vetter 已提交
2091 2092 2093
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2094
{
2095
	i915_gem_object_free_mmap_offset(obj);
2096

2097 2098
	if (obj->base.filp == NULL)
		return;
2099

D
Daniel Vetter 已提交
2100 2101 2102 2103 2104
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2105
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2106 2107
	obj->madv = __I915_MADV_PURGED;
}
2108

2109 2110 2111
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2112
{
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2125
	mapping = obj->base.filp->f_mapping,
2126
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2127 2128
}

2129
static void
2130
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2131
{
2132 2133
	struct sgt_iter sgt_iter;
	struct page *page;
2134
	int ret;
2135

2136
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2137

C
Chris Wilson 已提交
2138
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2139
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2140 2141 2142
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2143
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2144 2145 2146
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2147 2148
	i915_gem_gtt_finish_object(obj);

2149
	if (i915_gem_object_needs_bit17_swizzle(obj))
2150 2151
		i915_gem_object_save_bit_17_swizzle(obj);

2152 2153
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2154

2155
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2156
		if (obj->dirty)
2157
			set_page_dirty(page);
2158

2159
		if (obj->madv == I915_MADV_WILLNEED)
2160
			mark_page_accessed(page);
2161

2162
		put_page(page);
2163
	}
2164
	obj->dirty = 0;
2165

2166 2167
	sg_free_table(obj->pages);
	kfree(obj->pages);
2168
}
C
Chris Wilson 已提交
2169

2170
int
2171 2172 2173 2174
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2175
	if (obj->pages == NULL)
2176 2177
		return 0;

2178 2179 2180
	if (obj->pages_pin_count)
		return -EBUSY;

2181
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2182

2183 2184 2185
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2186
	list_del(&obj->global_list);
2187

2188
	if (obj->mapping) {
2189 2190 2191 2192 2193
		void *ptr;

		ptr = ptr_mask_bits(obj->mapping);
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2194
		else
2195 2196
			kunmap(kmap_to_page(ptr));

2197 2198 2199
		obj->mapping = NULL;
	}

2200
	ops->put_pages(obj);
2201
	obj->pages = NULL;
2202

2203
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2204 2205 2206 2207

	return 0;
}

2208 2209 2210 2211 2212 2213 2214 2215 2216
static unsigned long swiotlb_max_size(void)
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2217
static int
C
Chris Wilson 已提交
2218
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2219
{
2220
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2221 2222
	int page_count, i;
	struct address_space *mapping;
2223 2224
	struct sg_table *st;
	struct scatterlist *sg;
2225
	struct sgt_iter sgt_iter;
2226
	struct page *page;
2227
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2228
	unsigned long max_segment;
I
Imre Deak 已提交
2229
	int ret;
C
Chris Wilson 已提交
2230
	gfp_t gfp;
2231

C
Chris Wilson 已提交
2232 2233 2234 2235 2236 2237 2238
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2239 2240 2241 2242
	max_segment = swiotlb_max_size();
	if (!max_segment)
		max_segment = obj->base.size;

2243 2244 2245 2246
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2247
	page_count = obj->base.size / PAGE_SIZE;
2248 2249
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2250
		return -ENOMEM;
2251
	}
2252

2253 2254 2255 2256 2257
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2258
	mapping = obj->base.filp->f_mapping;
2259
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2260
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2261 2262 2263
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2264 2265
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2266 2267 2268 2269 2270
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2271 2272 2273 2274 2275 2276 2277
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2278
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2279 2280
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2281
				goto err_pages;
I
Imre Deak 已提交
2282
			}
C
Chris Wilson 已提交
2283
		}
2284 2285 2286
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2287 2288 2289 2290 2291 2292 2293 2294
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2295 2296 2297

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2298
	}
2299
	if (sg) /* loop terminated early; short sg table */
2300
		sg_mark_end(sg);
2301 2302
	obj->pages = st;

I
Imre Deak 已提交
2303 2304 2305 2306
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2307
	if (i915_gem_object_needs_bit17_swizzle(obj))
2308 2309
		i915_gem_object_do_bit_17_swizzle(obj);

2310
	if (i915_gem_object_is_tiled(obj) &&
2311 2312 2313
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2314 2315 2316
	return 0;

err_pages:
2317
	sg_mark_end(sg);
2318 2319
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2320 2321
	sg_free_table(st);
	kfree(st);
2322 2323 2324 2325 2326 2327 2328 2329 2330

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2331 2332 2333 2334
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2335 2336
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2347
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2348 2349 2350
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2351
	if (obj->pages)
2352 2353
		return 0;

2354
	if (obj->madv != I915_MADV_WILLNEED) {
2355
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2356
		return -EFAULT;
2357 2358
	}

2359 2360
	BUG_ON(obj->pages_pin_count);

2361 2362 2363 2364
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2365
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2366 2367 2368 2369

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2370
	return 0;
2371 2372
}

2373
/* The 'mapping' part of i915_gem_object_pin_map() below */
2374 2375
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2376 2377 2378
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2379 2380
	struct sgt_iter sgt_iter;
	struct page *page;
2381 2382
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2383
	unsigned long i = 0;
2384
	pgprot_t pgprot;
2385 2386 2387
	void *addr;

	/* A single page can always be kmapped */
2388
	if (n_pages == 1 && type == I915_MAP_WB)
2389 2390
		return kmap(sg_page(sgt->sgl));

2391 2392 2393 2394 2395 2396
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2397

2398 2399
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2400 2401 2402 2403

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2404 2405 2406 2407 2408 2409 2410 2411 2412
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2413

2414 2415
	if (pages != stack_pages)
		drm_free_large(pages);
2416 2417 2418 2419 2420

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2421 2422
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2423
{
2424 2425 2426
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2427 2428 2429
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2430
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2431 2432 2433 2434 2435 2436

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2437
	pinned = obj->pages_pin_count > 1;
2438

2439 2440 2441 2442 2443
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2444
		}
2445 2446 2447 2448 2449 2450 2451

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2452 2453
	}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2469 2470
}

2471
static void
2472 2473
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2474
{
2475 2476
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2477

2478
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2479 2480
}

2481
static void
2482 2483
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2484
{
2485 2486 2487
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2488

2489
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2490

2491 2492
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2493
		return;
2494

2495 2496 2497 2498
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2499 2500 2501
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2502

2503
	i915_gem_object_put(obj);
2504 2505
}

2506
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2507
{
2508
	unsigned long elapsed;
2509

2510
	if (ctx->hang_stats.banned)
2511 2512
		return true;

2513
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2514 2515
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2516 2517
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2518 2519 2520 2521 2522
	}

	return false;
}

2523
static void i915_set_reset_status(struct i915_gem_context *ctx,
2524
				  const bool guilty)
2525
{
2526
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2527 2528

	if (guilty) {
2529
		hs->banned = i915_context_is_banned(ctx);
2530 2531 2532 2533
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2534 2535 2536
	}
}

2537
struct drm_i915_gem_request *
2538
i915_gem_find_active_request(struct intel_engine_cs *engine)
2539
{
2540 2541
	struct drm_i915_gem_request *request;

2542 2543 2544 2545 2546 2547 2548 2549
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2550
	list_for_each_entry(request, &engine->request_list, link) {
2551
		if (i915_gem_request_completed(request))
2552
			continue;
2553

2554 2555 2556
		if (!i915_sw_fence_done(&request->submit))
			break;

2557
		return request;
2558
	}
2559 2560 2561 2562

	return NULL;
}

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2581 2582
{
	struct drm_i915_gem_request *request;
2583
	struct i915_gem_context *incomplete_ctx;
2584 2585
	bool ring_hung;

2586 2587 2588
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2589
	request = i915_gem_find_active_request(engine);
2590
	if (!request)
2591 2592
		return;

2593
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2594 2595 2596
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2597
	i915_set_reset_status(request->ctx, ring_hung);
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
			 engine->name, request->fence.seqno);

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2619
	list_for_each_entry_continue(request, &engine->request_list, link)
2620 2621
		if (request->ctx == incomplete_ctx)
			reset_request(request);
2622
}
2623

2624
void i915_gem_reset(struct drm_i915_private *dev_priv)
2625
{
2626
	struct intel_engine_cs *engine;
2627
	enum intel_engine_id id;
2628

2629 2630
	i915_gem_retire_requests(dev_priv);

2631
	for_each_engine(engine, dev_priv, id)
2632 2633 2634
		i915_gem_reset_engine(engine);

	i915_gem_restore_fences(&dev_priv->drm);
2635 2636 2637 2638 2639 2640 2641

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2642 2643 2644 2645 2646 2647 2648 2649 2650
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2651

2652 2653 2654 2655
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2656
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2657

2658 2659 2660 2661 2662 2663
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2664
	if (i915.enable_execlists) {
2665 2666 2667 2668 2669 2670
		spin_lock(&engine->execlist_lock);
		INIT_LIST_HEAD(&engine->execlist_queue);
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		spin_unlock(&engine->execlist_lock);
2671 2672
	}

2673
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2674 2675
}

2676
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2677
{
2678
	struct intel_engine_cs *engine;
2679
	enum intel_engine_id id;
2680

2681 2682
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2683

2684
	i915_gem_context_lost(dev_priv);
2685
	for_each_engine(engine, dev_priv, id)
2686
		i915_gem_cleanup_engine(engine);
2687
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2688

2689
	i915_gem_retire_requests(dev_priv);
2690 2691
}

2692
static void
2693 2694
i915_gem_retire_work_handler(struct work_struct *work)
{
2695
	struct drm_i915_private *dev_priv =
2696
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2697
	struct drm_device *dev = &dev_priv->drm;
2698

2699
	/* Come back later if the device is busy... */
2700
	if (mutex_trylock(&dev->struct_mutex)) {
2701
		i915_gem_retire_requests(dev_priv);
2702
		mutex_unlock(&dev->struct_mutex);
2703
	}
2704 2705 2706 2707 2708

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2709 2710
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2711 2712
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2713
				   round_jiffies_up_relative(HZ));
2714
	}
2715
}
2716

2717 2718 2719 2720
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2721
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2722
	struct drm_device *dev = &dev_priv->drm;
2723
	struct intel_engine_cs *engine;
2724
	enum intel_engine_id id;
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2746

2747
	for_each_engine(engine, dev_priv, id)
2748
		i915_gem_batch_pool_fini(&engine->batch_pool);
2749

2750 2751 2752
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2753

2754 2755 2756 2757 2758
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2759

2760 2761 2762 2763
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2764
	}
2765 2766
}

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2780 2781
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2782 2783 2784
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2808
	struct intel_rps_client *rps = to_rps_client(file);
2809
	struct drm_i915_gem_object *obj;
2810 2811
	unsigned long active;
	int idx, ret = 0;
2812

2813 2814 2815
	if (args->flags != 0)
		return -EINVAL;

2816
	obj = i915_gem_object_lookup(file, args->bo_handle);
2817
	if (!obj)
2818 2819
		return -ENOENT;

2820 2821 2822
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2823 2824
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
						    I915_WAIT_INTERRUPTIBLE,
2825 2826 2827
						    timeout, rps);
		if (ret)
			break;
2828 2829
	}

2830
	i915_gem_object_put_unlocked(obj);
2831
	return ret;
2832 2833
}

2834 2835
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2836
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2837 2838 2839 2840 2841 2842 2843 2844

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2845
int i915_vma_unbind(struct i915_vma *vma)
2846
{
2847
	struct drm_i915_gem_object *obj = vma->obj;
2848
	unsigned long active;
2849
	int ret;
2850

2851 2852 2853 2854
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2855
	if (active) {
2856 2857
		int idx;

2858 2859 2860 2861 2862
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2863
		__i915_vma_pin(vma);
2864

2865 2866 2867 2868
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2869
				break;
2870 2871
		}

2872
		__i915_vma_unpin(vma);
2873 2874 2875
		if (ret)
			return ret;

2876 2877 2878
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2879
	if (i915_vma_is_pinned(vma))
2880 2881
		return -EBUSY;

2882 2883
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2884

2885 2886
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2887

2888
	if (i915_vma_is_map_and_fenceable(vma)) {
2889
		/* release the fence reg _after_ flushing */
2890
		ret = i915_vma_put_fence(vma);
2891 2892
		if (ret)
			return ret;
2893

2894 2895 2896
		/* Force a pagefault for domain tracking on next user access */
		i915_gem_release_mmap(obj);

2897
		__i915_vma_iounmap(vma);
2898
		vma->flags &= ~I915_VMA_CAN_FENCE;
2899
	}
2900

2901 2902 2903 2904
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2905
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2906

2907 2908 2909
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2910 2911 2912 2913
	if (vma->pages != obj->pages) {
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
2914
	}
2915
	vma->pages = NULL;
2916

B
Ben Widawsky 已提交
2917
	/* Since the unbound list is global, only move to that list if
2918
	 * no more VMAs exist. */
2919 2920 2921
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2922

2923 2924 2925 2926 2927 2928
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2929
destroy:
2930
	if (unlikely(i915_vma_is_closed(vma)))
2931 2932
		i915_vma_destroy(vma);

2933
	return 0;
2934 2935
}

2936
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2937
			   unsigned int flags)
2938
{
2939
	struct intel_engine_cs *engine;
2940
	enum intel_engine_id id;
2941
	int ret;
2942

2943
	for_each_engine(engine, dev_priv, id) {
2944 2945 2946
		if (engine->last_context == NULL)
			continue;

2947
		ret = intel_engine_idle(engine, flags);
2948 2949 2950
		if (ret)
			return ret;
	}
2951

2952
	return 0;
2953 2954
}

2955
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2956 2957
				     unsigned long cache_level)
{
2958
	struct drm_mm_node *gtt_space = &vma->node;
2959 2960
	struct drm_mm_node *other;

2961 2962 2963 2964 2965 2966
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2967
	 */
2968
	if (vma->vm->mm.color_adjust == NULL)
2969 2970
		return true;

2971
	if (!drm_mm_node_allocated(gtt_space))
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2988
/**
2989 2990
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2991
 * @size: requested size in bytes (can be larger than the VMA)
2992
 * @alignment: required alignment
2993
 * @flags: mask of PIN_* flags to use
2994 2995 2996 2997 2998 2999 3000
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3001
 */
3002 3003
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3004
{
3005 3006
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3007
	u64 start, end;
3008
	int ret;
3009

3010
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3011
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3012 3013 3014

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3015 3016
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3017

3018 3019 3020 3021
	alignment = max(max(alignment, vma->display_alignment),
			i915_gem_get_ggtt_alignment(dev_priv, size,
						    i915_gem_object_get_tiling(obj),
						    flags & PIN_MAPPABLE));
3022

3023
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3024 3025

	end = vma->vm->total;
3026
	if (flags & PIN_MAPPABLE)
3027
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3028
	if (flags & PIN_ZONE_4G)
3029
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3030

3031 3032 3033
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3034
	 */
3035
	if (size > end) {
3036
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3037
			  size, obj->base.size,
3038
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3039
			  end);
3040
		return -E2BIG;
3041 3042
	}

3043
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3044
	if (ret)
3045
		return ret;
C
Chris Wilson 已提交
3046

3047 3048
	i915_gem_object_pin_pages(obj);

3049
	if (flags & PIN_OFFSET_FIXED) {
3050
		u64 offset = flags & PIN_OFFSET_MASK;
3051
		if (offset & (alignment - 1) || offset > end - size) {
3052
			ret = -EINVAL;
3053
			goto err_unpin;
3054
		}
3055

3056 3057 3058
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3059
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3060 3061 3062
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3063 3064 3065
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3066
		}
3067
	} else {
3068 3069
		u32 search_flag, alloc_flag;

3070 3071 3072 3073 3074 3075 3076
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3087
search_free:
3088 3089
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3090 3091 3092 3093 3094 3095
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3096
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3097 3098 3099 3100 3101
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3102

3103
			goto err_unpin;
3104
		}
3105 3106 3107

		GEM_BUG_ON(vma->node.start < start);
		GEM_BUG_ON(vma->node.start + vma->node.size > end);
3108
	}
3109
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3110

3111
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3112
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3113
	obj->bind_count++;
3114

3115
	return 0;
B
Ben Widawsky 已提交
3116

3117
err_unpin:
B
Ben Widawsky 已提交
3118
	i915_gem_object_unpin_pages(obj);
3119
	return ret;
3120 3121
}

3122
bool
3123 3124
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3125 3126 3127 3128 3129
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3130
	if (obj->pages == NULL)
3131
		return false;
3132

3133 3134 3135 3136
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3137
	if (obj->stolen || obj->phys_handle)
3138
		return false;
3139

3140 3141 3142 3143 3144 3145 3146 3147
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3148 3149
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3150
		return false;
3151
	}
3152

C
Chris Wilson 已提交
3153
	trace_i915_gem_object_clflush(obj);
3154
	drm_clflush_sg(obj->pages);
3155
	obj->cache_dirty = false;
3156 3157

	return true;
3158 3159 3160 3161
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3162
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3163
{
3164
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3165

3166
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3167 3168
		return;

3169
	/* No actual flushing is required for the GTT write domain.  Writes
3170
	 * to it "immediately" go to main memory as far as we know, so there's
3171
	 * no chipset flush.  It also doesn't land in render cache.
3172 3173 3174 3175
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3176 3177 3178 3179 3180 3181 3182
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3183
	 */
3184
	wmb();
3185
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3186
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3187

3188
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3189

3190
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3191
	trace_i915_gem_object_change_domain(obj,
3192
					    obj->base.read_domains,
3193
					    I915_GEM_DOMAIN_GTT);
3194 3195 3196 3197
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3198
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3199
{
3200
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3201 3202
		return;

3203
	if (i915_gem_clflush_object(obj, obj->pin_display))
3204
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3205

3206
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3207

3208
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3209
	trace_i915_gem_object_change_domain(obj,
3210
					    obj->base.read_domains,
3211
					    I915_GEM_DOMAIN_CPU);
3212 3213
}

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}
}

3232 3233
/**
 * Moves a single object to the GTT read, and possibly write domain.
3234 3235
 * @obj: object to act on
 * @write: ask for write access or read only
3236 3237 3238 3239
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3240
int
3241
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3242
{
C
Chris Wilson 已提交
3243
	uint32_t old_write_domain, old_read_domains;
3244
	int ret;
3245

3246
	ret = i915_gem_object_wait_rendering(obj, !write);
3247 3248 3249
	if (ret)
		return ret;

3250 3251 3252
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3265
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3266

3267 3268 3269 3270 3271 3272 3273
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3274 3275
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3276

3277 3278 3279
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3280 3281
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3282
	if (write) {
3283 3284 3285
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3286 3287
	}

C
Chris Wilson 已提交
3288 3289 3290 3291
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3292
	/* And bump the LRU for this access */
3293
	i915_gem_object_bump_inactive_ggtt(obj);
3294

3295 3296 3297
	return 0;
}

3298 3299
/**
 * Changes the cache-level of an object across all VMA.
3300 3301
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3313 3314 3315
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3316
	struct i915_vma *vma;
3317
	int ret = 0;
3318 3319

	if (obj->cache_level == cache_level)
3320
		goto out;
3321

3322 3323 3324 3325 3326
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3327 3328
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3329 3330 3331
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3332
		if (i915_vma_is_pinned(vma)) {
3333 3334 3335 3336
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3349 3350
	}

3351 3352 3353 3354 3355 3356 3357
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3358
	if (obj->bind_count) {
3359 3360 3361 3362
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3363
		ret = i915_gem_object_wait_rendering(obj, false);
3364 3365 3366
		if (ret)
			return ret;

3367
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3384 3385 3386 3387 3388
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3389 3390 3391 3392 3393 3394 3395 3396
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3397 3398
		}

3399
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3400 3401 3402 3403 3404 3405 3406
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3407 3408
	}

3409
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3410 3411 3412
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3413
out:
3414 3415 3416 3417
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3418
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3419
		if (i915_gem_clflush_object(obj, true))
3420
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3421 3422 3423 3424 3425
	}

	return 0;
}

B
Ben Widawsky 已提交
3426 3427
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3428
{
B
Ben Widawsky 已提交
3429
	struct drm_i915_gem_caching *args = data;
3430 3431
	struct drm_i915_gem_object *obj;

3432 3433
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3434
		return -ENOENT;
3435

3436 3437 3438 3439 3440 3441
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3442 3443 3444 3445
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3446 3447 3448 3449
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3450

3451
	i915_gem_object_put_unlocked(obj);
3452
	return 0;
3453 3454
}

B
Ben Widawsky 已提交
3455 3456
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3457
{
3458
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3459
	struct drm_i915_gem_caching *args = data;
3460 3461 3462 3463
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3464 3465
	switch (args->caching) {
	case I915_CACHING_NONE:
3466 3467
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3468
	case I915_CACHING_CACHED:
3469 3470 3471 3472 3473 3474
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3475
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3476 3477
			return -ENODEV;

3478 3479
		level = I915_CACHE_LLC;
		break;
3480
	case I915_CACHING_DISPLAY:
3481
		level = HAS_WT(dev_priv) ? I915_CACHE_WT : I915_CACHE_NONE;
3482
		break;
3483 3484 3485 3486
	default:
		return -EINVAL;
	}

3487 3488
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3489 3490
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3491
		goto rpm_put;
B
Ben Widawsky 已提交
3492

3493 3494
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3495 3496 3497 3498 3499 3500
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3501
	i915_gem_object_put(obj);
3502 3503
unlock:
	mutex_unlock(&dev->struct_mutex);
3504 3505 3506
rpm_put:
	intel_runtime_pm_put(dev_priv);

3507 3508 3509
	return ret;
}

3510
/*
3511 3512 3513
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3514
 */
C
Chris Wilson 已提交
3515
struct i915_vma *
3516 3517
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3518
				     const struct i915_ggtt_view *view)
3519
{
C
Chris Wilson 已提交
3520
	struct i915_vma *vma;
3521
	u32 old_read_domains, old_write_domain;
3522 3523
	int ret;

3524 3525 3526
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3527
	obj->pin_display++;
3528

3529 3530 3531 3532 3533 3534 3535 3536 3537
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3538
	ret = i915_gem_object_set_cache_level(obj,
3539 3540
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3541 3542
	if (ret) {
		vma = ERR_PTR(ret);
3543
		goto err_unpin_display;
C
Chris Wilson 已提交
3544
	}
3545

3546 3547
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3548 3549 3550 3551
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3552
	 */
3553 3554 3555 3556 3557 3558
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
	if (IS_ERR(vma))
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
C
Chris Wilson 已提交
3559
	if (IS_ERR(vma))
3560
		goto err_unpin_display;
3561

3562 3563
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

C
Chris Wilson 已提交
3564 3565
	WARN_ON(obj->pin_display > i915_vma_pin_count(vma));

3566
	i915_gem_object_flush_cpu_write_domain(obj);
3567

3568
	old_write_domain = obj->base.write_domain;
3569
	old_read_domains = obj->base.read_domains;
3570 3571 3572 3573

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3574
	obj->base.write_domain = 0;
3575
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3576 3577 3578

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3579
					    old_write_domain);
3580

C
Chris Wilson 已提交
3581
	return vma;
3582 3583

err_unpin_display:
3584
	obj->pin_display--;
C
Chris Wilson 已提交
3585
	return vma;
3586 3587 3588
}

void
C
Chris Wilson 已提交
3589
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3590
{
C
Chris Wilson 已提交
3591
	if (WARN_ON(vma->obj->pin_display == 0))
3592 3593
		return;

3594 3595
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3596

3597 3598 3599 3600
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3601 3602
	i915_vma_unpin(vma);
	WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3603 3604
}

3605 3606
/**
 * Moves a single object to the CPU read, and possibly write domain.
3607 3608
 * @obj: object to act on
 * @write: requesting write or read-only access
3609 3610 3611 3612
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3613
int
3614
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3615
{
C
Chris Wilson 已提交
3616
	uint32_t old_write_domain, old_read_domains;
3617 3618
	int ret;

3619
	ret = i915_gem_object_wait_rendering(obj, !write);
3620 3621 3622
	if (ret)
		return ret;

3623 3624 3625
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3626
	i915_gem_object_flush_gtt_write_domain(obj);
3627

3628 3629
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3630

3631
	/* Flush the CPU cache if it's still invalid. */
3632
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3633
		i915_gem_clflush_object(obj, false);
3634

3635
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3636 3637 3638 3639 3640
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3641
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3642 3643 3644 3645 3646

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3647 3648
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3649
	}
3650

C
Chris Wilson 已提交
3651 3652 3653 3654
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3655 3656 3657
	return 0;
}

3658 3659 3660
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3661 3662 3663 3664
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3665 3666 3667
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3668
static int
3669
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3670
{
3671
	struct drm_i915_private *dev_priv = to_i915(dev);
3672
	struct drm_i915_file_private *file_priv = file->driver_priv;
3673
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3674
	struct drm_i915_gem_request *request, *target = NULL;
3675
	int ret;
3676

3677 3678 3679 3680
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3681 3682 3683
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3684

3685
	spin_lock(&file_priv->mm.lock);
3686
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3687 3688
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3689

3690 3691 3692 3693 3694 3695 3696
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3697
		target = request;
3698
	}
3699
	if (target)
3700
		i915_gem_request_get(target);
3701
	spin_unlock(&file_priv->mm.lock);
3702

3703
	if (target == NULL)
3704
		return 0;
3705

3706
	ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
3707
	i915_gem_request_put(target);
3708

3709 3710 3711
	return ret;
}

3712
static bool
3713
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3714
{
3715 3716 3717
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3718 3719 3720 3721
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3722 3723
		return true;

3724
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3725 3726 3727 3728 3729 3730
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3731 3732 3733 3734
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3735 3736 3737
	return false;
}

3738 3739 3740
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3741
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3742 3743 3744
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3745
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3746
					    vma->size,
3747
					    i915_gem_object_get_tiling(obj));
3748
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3749
						      vma->size,
3750
						      i915_gem_object_get_tiling(obj),
3751
						      true);
3752 3753 3754 3755 3756

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3757
		    dev_priv->ggtt.mappable_end);
3758

3759 3760 3761 3762
	if (mappable && fenceable)
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3763 3764
}

3765 3766
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3767
{
3768
	unsigned int bound = vma->flags;
3769 3770
	int ret;

3771
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3772
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3773

3774 3775 3776 3777
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3778

3779
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3780 3781 3782
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3783
	}
3784

3785
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3786
	if (ret)
3787
		goto err;
3788

3789
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3790
		__i915_vma_set_map_and_fenceable(vma);
3791

3792
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3793 3794
	return 0;

3795 3796 3797
err:
	__i915_vma_unpin(vma);
	return ret;
3798 3799
}

C
Chris Wilson 已提交
3800
struct i915_vma *
3801 3802
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3803
			 u64 size,
3804 3805
			 u64 alignment,
			 u64 flags)
3806
{
3807 3808
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3809 3810
	struct i915_vma *vma;
	int ret;
3811

C
Chris Wilson 已提交
3812
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3813
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3814
		return vma;
3815 3816 3817 3818

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3819
			return ERR_PTR(-ENOSPC);
3820

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

3856 3857
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3858 3859 3860
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3861
		     !!(flags & PIN_MAPPABLE),
3862
		     i915_vma_is_map_and_fenceable(vma));
3863 3864
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3865
			return ERR_PTR(ret);
3866 3867
	}

C
Chris Wilson 已提交
3868 3869 3870
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3871

C
Chris Wilson 已提交
3872
	return vma;
3873 3874
}

3875
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3890 3891 3892 3893 3894 3895 3896 3897 3898
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3899 3900
}

3901
static __always_inline unsigned int
3902 3903 3904
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
3905
	struct drm_i915_gem_request *request;
3906

3907 3908 3909
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
3910

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
3967 3968
}

3969
static __always_inline unsigned int
3970 3971 3972 3973 3974
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3975
static __always_inline unsigned int
3976 3977 3978 3979 3980
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3981 3982
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3983
		    struct drm_file *file)
3984 3985
{
	struct drm_i915_gem_busy *args = data;
3986
	struct drm_i915_gem_object *obj;
3987
	unsigned long active;
3988

3989
	obj = i915_gem_object_lookup(file, args->handle);
3990 3991
	if (!obj)
		return -ENOENT;
3992

3993
	args->busy = 0;
3994 3995 3996
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
3997

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
4014 4015 4016 4017 4018 4019
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
4020 4021 4022 4023 4024 4025 4026
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
4027 4028 4029 4030 4031
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
4032 4033 4034 4035 4036 4037 4038 4039 4040
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
4041
	}
4042

4043 4044
	i915_gem_object_put_unlocked(obj);
	return 0;
4045 4046 4047 4048 4049 4050
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4051
	return i915_gem_ring_throttle(dev, file_priv);
4052 4053
}

4054 4055 4056 4057
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4058
	struct drm_i915_private *dev_priv = to_i915(dev);
4059
	struct drm_i915_gem_madvise *args = data;
4060
	struct drm_i915_gem_object *obj;
4061
	int ret;
4062 4063 4064 4065 4066 4067 4068 4069 4070

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4071 4072 4073 4074
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4075 4076
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4077 4078
		ret = -ENOENT;
		goto unlock;
4079 4080
	}

4081
	if (obj->pages &&
4082
	    i915_gem_object_is_tiled(obj) &&
4083 4084 4085 4086 4087 4088 4089
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4090 4091
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4092

C
Chris Wilson 已提交
4093
	/* if the object is no longer attached, discard its backing storage */
4094
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4095 4096
		i915_gem_object_truncate(obj);

4097
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4098

4099
	i915_gem_object_put(obj);
4100
unlock:
4101
	mutex_unlock(&dev->struct_mutex);
4102
	return ret;
4103 4104
}

4105 4106
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4107
{
4108 4109
	int i;

4110
	INIT_LIST_HEAD(&obj->global_list);
4111
	for (i = 0; i < I915_NUM_ENGINES; i++)
4112 4113 4114 4115
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
4116
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4117
	INIT_LIST_HEAD(&obj->vma_list);
4118
	INIT_LIST_HEAD(&obj->batch_pool_link);
4119

4120 4121
	obj->ops = ops;

4122
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4123 4124
	obj->madv = I915_MADV_WILLNEED;

4125
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4126 4127
}

4128
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4129
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4130 4131 4132 4133
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4134
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4135
						  size_t size)
4136
{
4137
	struct drm_i915_gem_object *obj;
4138
	struct address_space *mapping;
D
Daniel Vetter 已提交
4139
	gfp_t mask;
4140
	int ret;
4141

4142
	obj = i915_gem_object_alloc(dev);
4143
	if (obj == NULL)
4144
		return ERR_PTR(-ENOMEM);
4145

4146 4147 4148
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4149

4150 4151 4152 4153 4154 4155 4156
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4157
	mapping = obj->base.filp->f_mapping;
4158
	mapping_set_gfp_mask(mapping, mask);
4159

4160
	i915_gem_object_init(obj, &i915_gem_object_ops);
4161

4162 4163
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4164

4165 4166
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4182 4183
	trace_i915_gem_object_create(obj);

4184
	return obj;
4185 4186 4187 4188 4189

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4190 4191
}

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4216
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4217
{
4218
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4219
	struct drm_device *dev = obj->base.dev;
4220
	struct drm_i915_private *dev_priv = to_i915(dev);
4221
	struct i915_vma *vma, *next;
4222

4223 4224
	intel_runtime_pm_get(dev_priv);

4225 4226
	trace_i915_gem_object_destroy(obj);

4227 4228 4229 4230 4231 4232 4233
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4234
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4235
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4236
		GEM_BUG_ON(i915_vma_is_active(vma));
4237
		vma->flags &= ~I915_VMA_PIN_MASK;
4238
		i915_vma_close(vma);
4239
	}
4240
	GEM_BUG_ON(obj->bind_count);
4241

B
Ben Widawsky 已提交
4242 4243 4244 4245 4246
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4247
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4248

4249 4250
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4251
	    i915_gem_object_is_tiled(obj))
4252 4253
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4254 4255
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4256
	if (discard_backing_storage(obj))
4257
		obj->madv = I915_MADV_DONTNEED;
4258
	i915_gem_object_put_pages(obj);
4259

4260 4261
	BUG_ON(obj->pages);

4262 4263
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4264

4265 4266 4267
	if (obj->ops->release)
		obj->ops->release(obj);

4268 4269
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4270

4271
	kfree(obj->bit_17);
4272
	i915_gem_object_free(obj);
4273 4274

	intel_runtime_pm_put(dev_priv);
4275 4276
}

4277
int i915_gem_suspend(struct drm_device *dev)
4278
{
4279
	struct drm_i915_private *dev_priv = to_i915(dev);
4280
	int ret;
4281

4282 4283
	intel_suspend_gt_powersave(dev_priv);

4284
	mutex_lock(&dev->struct_mutex);
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4298 4299 4300
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4301
	if (ret)
4302
		goto err;
4303

4304
	i915_gem_retire_requests(dev_priv);
4305

4306
	i915_gem_context_lost(dev_priv);
4307 4308
	mutex_unlock(&dev->struct_mutex);

4309
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4310 4311
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4312

4313 4314 4315
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4316
	WARN_ON(dev_priv->gt.awake);
4317

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
	if (HAS_HW_CONTEXTS(dev)) {
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4342
	return 0;
4343 4344 4345 4346

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4347 4348
}

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4360
	dev_priv->gt.resume(dev_priv);
4361 4362 4363 4364

	mutex_unlock(&dev->struct_mutex);
}

4365 4366
void i915_gem_init_swizzling(struct drm_device *dev)
{
4367
	struct drm_i915_private *dev_priv = to_i915(dev);
4368

4369
	if (INTEL_INFO(dev)->gen < 5 ||
4370 4371 4372 4373 4374 4375
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4376
	if (IS_GEN5(dev_priv))
4377 4378
		return;

4379
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4380
	if (IS_GEN6(dev_priv))
4381
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4382
	else if (IS_GEN7(dev_priv))
4383
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4384
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4385
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4386 4387
	else
		BUG();
4388
}
D
Daniel Vetter 已提交
4389

4390
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4391 4392 4393 4394 4395 4396 4397
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4398
static void init_unused_rings(struct drm_i915_private *dev_priv)
4399
{
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4412 4413 4414
	}
}

4415 4416 4417
int
i915_gem_init_hw(struct drm_device *dev)
{
4418
	struct drm_i915_private *dev_priv = to_i915(dev);
4419
	struct intel_engine_cs *engine;
4420
	enum intel_engine_id id;
C
Chris Wilson 已提交
4421
	int ret;
4422

4423 4424 4425
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4426
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4427
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4428

4429
	if (IS_HASWELL(dev_priv))
4430
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4431
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4432

4433
	if (HAS_PCH_NOP(dev_priv)) {
4434
		if (IS_IVYBRIDGE(dev_priv)) {
4435 4436 4437 4438 4439 4440 4441 4442
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4443 4444
	}

4445 4446
	i915_gem_init_swizzling(dev);

4447 4448 4449 4450 4451 4452
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4453
	init_unused_rings(dev_priv);
4454

4455
	BUG_ON(!dev_priv->kernel_context);
4456

4457 4458 4459 4460 4461 4462 4463
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4464
	for_each_engine(engine, dev_priv, id) {
4465
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4466
		if (ret)
4467
			goto out;
D
Daniel Vetter 已提交
4468
	}
4469

4470 4471
	intel_mocs_init_l3cc_table(dev);

4472
	/* We can't enable contexts until all firmware is loaded */
4473 4474 4475
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4476

4477 4478
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4479
	return ret;
4480 4481
}

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4503 4504
int i915_gem_init(struct drm_device *dev)
{
4505
	struct drm_i915_private *dev_priv = to_i915(dev);
4506 4507 4508
	int ret;

	mutex_lock(&dev->struct_mutex);
4509

4510
	if (!i915.enable_execlists) {
4511
		dev_priv->gt.resume = intel_legacy_submission_resume;
4512
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4513
	} else {
4514
		dev_priv->gt.resume = intel_lr_context_resume;
4515
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4516 4517
	}

4518 4519 4520 4521 4522 4523 4524 4525
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4526
	i915_gem_init_userptr(dev_priv);
4527 4528 4529 4530

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4531

4532
	ret = i915_gem_context_init(dev);
4533 4534
	if (ret)
		goto out_unlock;
4535

4536
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4537
	if (ret)
4538
		goto out_unlock;
4539

4540
	ret = i915_gem_init_hw(dev);
4541
	if (ret == -EIO) {
4542
		/* Allow engine initialisation to fail by marking the GPU as
4543 4544 4545 4546
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4547
		i915_gem_set_wedged(dev_priv);
4548
		ret = 0;
4549
	}
4550 4551

out_unlock:
4552
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4553
	mutex_unlock(&dev->struct_mutex);
4554

4555
	return ret;
4556 4557
}

4558
void
4559
i915_gem_cleanup_engines(struct drm_device *dev)
4560
{
4561
	struct drm_i915_private *dev_priv = to_i915(dev);
4562
	struct intel_engine_cs *engine;
4563
	enum intel_engine_id id;
4564

4565
	for_each_engine(engine, dev_priv, id)
4566
		dev_priv->gt.cleanup_engine(engine);
4567 4568
}

4569 4570 4571
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4572
	struct drm_device *dev = &dev_priv->drm;
4573
	int i;
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4584
	if (intel_vgpu_active(dev_priv))
4585 4586 4587 4588
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4589 4590 4591 4592 4593 4594 4595
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4596 4597 4598 4599 4600
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4601
void
4602
i915_gem_load_init(struct drm_device *dev)
4603
{
4604
	struct drm_i915_private *dev_priv = to_i915(dev);
4605

4606
	dev_priv->objects =
4607 4608 4609 4610
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4611 4612 4613 4614 4615
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4616 4617 4618
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4619 4620 4621
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4622
				  NULL);
4623

4624
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4625 4626
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4627
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4628
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4629
			  i915_gem_retire_work_handler);
4630
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4631
			  i915_gem_idle_work_handler);
4632
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4633
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4634

4635 4636
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4637
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4638

4639 4640
	dev_priv->mm.interruptible = true;

4641 4642
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4643
	spin_lock_init(&dev_priv->fb_tracking.lock);
4644
}
4645

4646 4647 4648 4649 4650 4651 4652
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4653 4654 4655

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4656 4657
}

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4671 4672 4673
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4674 4675 4676 4677 4678
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4689 4690 4691
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4692 4693
	 */

4694 4695
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4696

4697 4698 4699 4700 4701
	for (p = phases; *p; p++) {
		list_for_each_entry(obj, *p, global_list) {
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4702
	}
4703
	mutex_unlock(&dev_priv->drm.struct_mutex);
4704 4705 4706 4707

	return 0;
}

4708
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4709
{
4710
	struct drm_i915_file_private *file_priv = file->driver_priv;
4711
	struct drm_i915_gem_request *request;
4712 4713 4714 4715 4716

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4717
	spin_lock(&file_priv->mm.lock);
4718
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4719
		request->file_priv = NULL;
4720
	spin_unlock(&file_priv->mm.lock);
4721

4722
	if (!list_empty(&file_priv->rps.link)) {
4723
		spin_lock(&to_i915(dev)->rps.client_lock);
4724
		list_del(&file_priv->rps.link);
4725
		spin_unlock(&to_i915(dev)->rps.client_lock);
4726
	}
4727 4728 4729 4730 4731
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4732
	int ret;
4733 4734 4735 4736 4737 4738 4739 4740

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4741
	file_priv->dev_priv = to_i915(dev);
4742
	file_priv->file = file;
4743
	INIT_LIST_HEAD(&file_priv->rps.link);
4744 4745 4746 4747

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4748
	file_priv->bsd_engine = -1;
4749

4750 4751 4752
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4753

4754
	return ret;
4755 4756
}

4757 4758
/**
 * i915_gem_track_fb - update frontbuffer tracking
4759 4760 4761
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4762 4763 4764 4765
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4766 4767 4768 4769
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4770 4771 4772 4773 4774 4775 4776 4777 4778
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4779
	if (old) {
4780 4781
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4782 4783 4784
	}

	if (new) {
4785 4786
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4787 4788 4789
	}
}

4790 4791 4792 4793 4794 4795 4796
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4797
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4798 4799 4800 4801 4802 4803 4804
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4815
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4816
	if (IS_ERR(obj))
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4830
	obj->dirty = 1;		/* Backing store is now out of date */
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4842
	i915_gem_object_put(obj);
4843 4844
	return ERR_PTR(ret);
}