i915_gem.c 131.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/stop_machine.h>
42
#include <linux/swap.h>
J
Jesse Barnes 已提交
43
#include <linux/pci.h>
44
#include <linux/dma-buf.h>
45

46
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49

50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
53
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 55
}

56 57
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
58 59 60
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

61 62 63 64 65 66
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

67
static int
68
insert_mappable_node(struct i915_ggtt *ggtt,
69 70 71
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
72
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
73 74
						   size, 0,
						   I915_COLOR_UNEVICTABLE,
75
						   0, ggtt->mappable_end,
76 77 78 79 80 81 82 83 84 85
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88
				  u64 size)
89
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97
				     u64 size)
98
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static int
106
i915_gem_wait_for_error(struct i915_gpu_error *error)
107 108 109
{
	int ret;

110 111
	might_sleep();

112
	if (!i915_reset_in_progress(error))
113 114
		return 0;

115 116 117 118 119
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
120
	ret = wait_event_interruptible_timeout(error->reset_queue,
121
					       !i915_reset_in_progress(error),
122
					       I915_RESET_TIMEOUT);
123 124 125 126
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
127
		return ret;
128 129
	} else {
		return 0;
130
	}
131 132
}

133
int i915_mutex_lock_interruptible(struct drm_device *dev)
134
{
135
	struct drm_i915_private *dev_priv = to_i915(dev);
136 137
	int ret;

138
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
139 140 141 142 143 144 145 146 147
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
148

149 150
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
151
			    struct drm_file *file)
152
{
153
	struct drm_i915_private *dev_priv = to_i915(dev);
154
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
155
	struct drm_i915_gem_get_aperture *args = data;
156
	struct i915_vma *vma;
157
	size_t pinned;
158

159
	pinned = 0;
160
	mutex_lock(&dev->struct_mutex);
161
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
165
		if (i915_vma_is_pinned(vma))
166
			pinned += vma->node.size;
167
	mutex_unlock(&dev->struct_mutex);
168

169
	args->aper_size = ggtt->base.total;
170
	args->aper_available_size = args->aper_size - pinned;
171

172 173 174
	return 0;
}

175
static struct sg_table *
176
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
177
{
178
	struct address_space *mapping = obj->base.filp->f_mapping;
179
	drm_dma_handle_t *phys;
180 181
	struct sg_table *st;
	struct scatterlist *sg;
182
	char *vaddr;
183
	int i;
184

185
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
186
		return ERR_PTR(-EINVAL);
187

188 189 190 191 192 193 194 195 196 197 198
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
199 200 201 202 203
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
204 205 206 207
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
208 209 210 211 212 213

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

214
		put_page(page);
215 216 217
		vaddr += PAGE_SIZE;
	}

218
	i915_gem_chipset_flush(to_i915(obj->base.dev));
219 220

	st = kmalloc(sizeof(*st), GFP_KERNEL);
221 222 223 224
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
225 226 227

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
228 229
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
230 231 232 233 234
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
235

236
	sg_dma_address(sg) = phys->busaddr;
237 238
	sg_dma_len(sg) = obj->base.size;

239 240 241 242 243
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
244
	return st;
245 246 247
}

static void
248 249
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
				struct sg_table *pages)
250
{
C
Chris Wilson 已提交
251
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
252

C
Chris Wilson 已提交
253 254
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
255

256 257
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258
		drm_clflush_sg(pages);
259 260 261 262 263 264 265 266 267

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
268
	__i915_gem_object_release_shmem(obj, pages);
269

C
Chris Wilson 已提交
270
	if (obj->mm.dirty) {
271
		struct address_space *mapping = obj->base.filp->f_mapping;
272
		char *vaddr = obj->phys_handle->vaddr;
273 274 275
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 277 278 279 280 281 282 283 284 285 286 287 288
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
289
			if (obj->mm.madv == I915_MADV_WILLNEED)
290
				mark_page_accessed(page);
291
			put_page(page);
292 293
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
294
		obj->mm.dirty = false;
295 296
	}

297 298
	sg_free_table(pages);
	kfree(pages);
299 300

	drm_pci_free(obj->base.dev, obj->phys_handle);
301 302 303 304 305
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
306
	i915_gem_object_unpin_pages(obj);
307 308 309 310 311 312 313 314
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

402
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
432 433
		int ret;

434 435
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
436 437 438
		if (ret)
			return ret;

439 440 441 442 443 444
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
445

446 447 448 449 450 451 452 453
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
454 455
	}

456 457 458 459 460 461
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

528 529 530 531 532 533
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
534
 */
535 536 537 538 539
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
540
{
541 542 543 544 545 546 547
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
548

549 550 551
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
552
	return timeout < 0 ? timeout : 0;
553 554 555 556 557 558 559 560 561
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

562 563 564 565
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
566
	int ret;
567

568 569
	if (align > obj->base.size)
		return -EINVAL;
570

571
	if (obj->ops == &i915_gem_phys_ops)
572 573
		return 0;

C
Chris Wilson 已提交
574
	if (obj->mm.madv != I915_MADV_WILLNEED)
575 576 577 578 579
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
580 581 582 583
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

584
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 586
	if (obj->mm.pages)
		return -EBUSY;
587 588 589

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
590
	return i915_gem_object_pin_pages(obj);
591 592 593 594 595
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
596
		     struct drm_file *file)
597 598 599
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
600
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
601
	int ret;
602 603 604 605

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
606 607 608 609 610 611
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
612
				   to_rps_client(file));
613 614
	if (ret)
		return ret;
615

616
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
617 618 619 620 621 622 623 624 625 626
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
627 628 629 630
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
631 632
	}

633
	drm_clflush_virt_range(vaddr, args->size);
634
	i915_gem_chipset_flush(to_i915(dev));
635 636

out:
637
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
638
	return ret;
639 640
}

641
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
642
{
643
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
644 645 646 647
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
648
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
649
	kmem_cache_free(dev_priv->objects, obj);
650 651
}

652 653
static int
i915_gem_create(struct drm_file *file,
654
		struct drm_i915_private *dev_priv,
655 656
		uint64_t size,
		uint32_t *handle_p)
657
{
658
	struct drm_i915_gem_object *obj;
659 660
	int ret;
	u32 handle;
661

662
	size = roundup(size, PAGE_SIZE);
663 664
	if (size == 0)
		return -EINVAL;
665 666

	/* Allocate the new object */
667
	obj = i915_gem_object_create(dev_priv, size);
668 669
	if (IS_ERR(obj))
		return PTR_ERR(obj);
670

671
	ret = drm_gem_handle_create(file, &obj->base, &handle);
672
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
673
	i915_gem_object_put(obj);
674 675
	if (ret)
		return ret;
676

677
	*handle_p = handle;
678 679 680
	return 0;
}

681 682 683 684 685 686
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
687
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
688
	args->size = args->pitch * args->height;
689
	return i915_gem_create(file, to_i915(dev),
690
			       args->size, &args->handle);
691 692 693 694
}

/**
 * Creates a new mm object and returns a handle to it.
695 696 697
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
698 699 700 701 702
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
703
	struct drm_i915_private *dev_priv = to_i915(dev);
704
	struct drm_i915_gem_create *args = data;
705

706
	i915_gem_flush_free_objects(dev_priv);
707

708
	return i915_gem_create(file, dev_priv,
709
			       args->size, &args->handle);
710 711
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

738
static inline int
739 740
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

764 765 766 767 768 769
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
770
				    unsigned int *needs_clflush)
771 772 773
{
	int ret;

774
	lockdep_assert_held(&obj->base.dev->struct_mutex);
775

776
	*needs_clflush = 0;
777 778
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
779

780 781 782 783 784
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
785 786 787
	if (ret)
		return ret;

C
Chris Wilson 已提交
788
	ret = i915_gem_object_pin_pages(obj);
789 790 791
	if (ret)
		return ret;

792 793
	i915_gem_object_flush_gtt_write_domain(obj);

794 795 796 797 798 799
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
800 801
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
802 803 804

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
805 806 807
		if (ret)
			goto err_unpin;

808
		*needs_clflush = 0;
809 810
	}

811
	/* return with the pages pinned */
812
	return 0;
813 814 815 816

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
817 818 819 820 821 822 823
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

824 825
	lockdep_assert_held(&obj->base.dev->struct_mutex);

826 827 828 829
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

830 831 832 833 834 835
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
836 837 838
	if (ret)
		return ret;

C
Chris Wilson 已提交
839
	ret = i915_gem_object_pin_pages(obj);
840 841 842
	if (ret)
		return ret;

843 844
	i915_gem_object_flush_gtt_write_domain(obj);

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
862 863 864
		if (ret)
			goto err_unpin;

865 866 867 868 869 870 871
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
872
	obj->mm.dirty = true;
873
	/* return with the pages pinned */
874
	return 0;
875 876 877 878

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
879 880
}

881 882 883 884
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
885
	if (unlikely(swizzled)) {
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

903 904 905
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
906
shmem_pread_slow(struct page *page, int offset, int length,
907 908 909 910 911 912 913 914
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
915
		shmem_clflush_swizzled_range(vaddr + offset, length,
916
					     page_do_bit17_swizzling);
917 918

	if (page_do_bit17_swizzling)
919
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
920
	else
921
		ret = __copy_to_user(user_data, vaddr + offset, length);
922 923
	kunmap(page);

924
	return ret ? - EFAULT : 0;
925 926
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1003 1004
{
	void *vaddr;
1005
	unsigned long unwritten;
1006 1007

	/* We can use the cpu mem copy function because this is X86. */
1008 1009 1010 1011 1012 1013 1014 1015 1016
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1017 1018 1019 1020
	return unwritten;
}

static int
1021 1022
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1023
{
1024 1025
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1026
	struct drm_mm_node node;
1027 1028 1029
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1030 1031
	int ret;

1032 1033 1034 1035 1036 1037 1038
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1039 1040 1041
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1042
		ret = i915_vma_put_fence(vma);
1043 1044 1045 1046 1047
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1048
	if (IS_ERR(vma)) {
1049
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1050
		if (ret)
1051 1052
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1053 1054 1055 1056 1057 1058
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1059
	mutex_unlock(&i915->drm.struct_mutex);
1060

1061 1062 1063
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1080
					       node.start, I915_CACHE_NONE, 0);
1081 1082 1083 1084
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1085 1086 1087

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1088 1089 1090 1091 1092 1093 1094 1095 1096
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1097
	mutex_lock(&i915->drm.struct_mutex);
1098 1099 1100 1101
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1102
				       node.start, node.size);
1103 1104
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1105
		i915_vma_unpin(vma);
1106
	}
1107 1108 1109
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1110

1111 1112 1113
	return ret;
}

1114 1115
/**
 * Reads data from the object referenced by handle.
1116 1117 1118
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1119 1120 1121 1122 1123
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1124
		     struct drm_file *file)
1125 1126
{
	struct drm_i915_gem_pread *args = data;
1127
	struct drm_i915_gem_object *obj;
1128
	int ret;
1129

1130 1131 1132 1133
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1134
		       u64_to_user_ptr(args->data_ptr),
1135 1136 1137
		       args->size))
		return -EFAULT;

1138
	obj = i915_gem_object_lookup(file, args->handle);
1139 1140
	if (!obj)
		return -ENOENT;
1141

1142
	/* Bounds check source.  */
1143
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1144
		ret = -EINVAL;
1145
		goto out;
C
Chris Wilson 已提交
1146 1147
	}

C
Chris Wilson 已提交
1148 1149
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1150 1151 1152 1153
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1154
	if (ret)
1155
		goto out;
1156

1157
	ret = i915_gem_object_pin_pages(obj);
1158
	if (ret)
1159
		goto out;
1160

1161
	ret = i915_gem_shmem_pread(obj, args);
1162
	if (ret == -EFAULT || ret == -ENODEV)
1163
		ret = i915_gem_gtt_pread(obj, args);
1164

1165 1166
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1167
	i915_gem_object_put(obj);
1168
	return ret;
1169 1170
}

1171 1172
/* This is the fast write path which cannot handle
 * page faults in the source data
1173
 */
1174

1175 1176 1177 1178
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1179
{
1180
	void *vaddr;
1181
	unsigned long unwritten;
1182

1183
	/* We can use the cpu mem copy function because this is X86. */
1184 1185
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1186
						      user_data, length);
1187 1188 1189 1190 1191 1192 1193
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1194 1195 1196 1197

	return unwritten;
}

1198 1199 1200
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1201
 * @obj: i915 GEM object
1202
 * @args: pwrite arguments structure
1203
 */
1204
static int
1205 1206
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1207
{
1208
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1209 1210
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1211 1212 1213
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1214
	int ret;
1215

1216 1217 1218
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1219

1220
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1221
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1222
				       PIN_MAPPABLE | PIN_NONBLOCK);
1223 1224 1225
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1226
		ret = i915_vma_put_fence(vma);
1227 1228 1229 1230 1231
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1232
	if (IS_ERR(vma)) {
1233
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1234
		if (ret)
1235 1236
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1237
	}
D
Daniel Vetter 已提交
1238 1239 1240 1241 1242

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1243 1244
	mutex_unlock(&i915->drm.struct_mutex);

1245
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1246

1247 1248 1249 1250
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1251 1252
		/* Operation in this page
		 *
1253 1254 1255
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1256
		 */
1257
		u32 page_base = node.start;
1258 1259
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1270
		/* If we get a fault while copying data, then (presumably) our
1271 1272
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1273 1274
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1275
		 */
1276 1277 1278 1279
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1280
		}
1281

1282 1283 1284
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1285
	}
1286
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1287 1288

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1289
out_unpin:
1290 1291 1292
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1293
				       node.start, node.size);
1294 1295
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1296
		i915_vma_unpin(vma);
1297
	}
1298
out_unlock:
1299
	intel_runtime_pm_put(i915);
1300
	mutex_unlock(&i915->drm.struct_mutex);
1301
	return ret;
1302 1303
}

1304
static int
1305
shmem_pwrite_slow(struct page *page, int offset, int length,
1306 1307 1308 1309
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1310
{
1311 1312
	char *vaddr;
	int ret;
1313

1314
	vaddr = kmap(page);
1315
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1316
		shmem_clflush_swizzled_range(vaddr + offset, length,
1317
					     page_do_bit17_swizzling);
1318
	if (page_do_bit17_swizzling)
1319 1320
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1321
	else
1322
		ret = __copy_from_user(vaddr + offset, user_data, length);
1323
	if (needs_clflush_after)
1324
		shmem_clflush_swizzled_range(vaddr + offset, length,
1325
					     page_do_bit17_swizzling);
1326
	kunmap(page);
1327

1328
	return ret ? -EFAULT : 0;
1329 1330
}

1331 1332 1333 1334 1335
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1336
static int
1337 1338 1339 1340
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1341
{
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1374
	unsigned int needs_clflush;
1375 1376
	unsigned int offset, idx;
	int ret;
1377

1378
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1379 1380 1381
	if (ret)
		return ret;

1382 1383 1384 1385
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1386

1387 1388 1389
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1390

1391 1392 1393 1394 1395 1396 1397
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1398

1399 1400 1401 1402 1403 1404
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1405

1406 1407 1408
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1409

1410 1411 1412 1413
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1414
		if (ret)
1415
			break;
1416

1417 1418 1419
		remain -= length;
		user_data += length;
		offset = 0;
1420
	}
1421

1422
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1423
	i915_gem_obj_finish_shmem_access(obj);
1424
	return ret;
1425 1426 1427 1428
}

/**
 * Writes data to the object referenced by handle.
1429 1430 1431
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1432 1433 1434 1435 1436
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1437
		      struct drm_file *file)
1438 1439
{
	struct drm_i915_gem_pwrite *args = data;
1440
	struct drm_i915_gem_object *obj;
1441 1442 1443 1444 1445 1446
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1447
		       u64_to_user_ptr(args->data_ptr),
1448 1449 1450
		       args->size))
		return -EFAULT;

1451
	obj = i915_gem_object_lookup(file, args->handle);
1452 1453
	if (!obj)
		return -ENOENT;
1454

1455
	/* Bounds check destination. */
1456
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1457
		ret = -EINVAL;
1458
		goto err;
C
Chris Wilson 已提交
1459 1460
	}

C
Chris Wilson 已提交
1461 1462
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1463 1464 1465 1466 1467
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1468 1469 1470
	if (ret)
		goto err;

1471
	ret = i915_gem_object_pin_pages(obj);
1472
	if (ret)
1473
		goto err;
1474

D
Daniel Vetter 已提交
1475
	ret = -EFAULT;
1476 1477 1478 1479 1480 1481
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1482
	if (!i915_gem_object_has_struct_page(obj) ||
1483
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1484 1485
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1486 1487
		 * textures). Fallback to the shmem path in that case.
		 */
1488
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1489

1490
	if (ret == -EFAULT || ret == -ENOSPC) {
1491 1492
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1493
		else
1494
			ret = i915_gem_shmem_pwrite(obj, args);
1495
	}
1496

1497
	i915_gem_object_unpin_pages(obj);
1498
err:
C
Chris Wilson 已提交
1499
	i915_gem_object_put(obj);
1500
	return ret;
1501 1502
}

1503
static inline enum fb_op_origin
1504 1505
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1506 1507
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1508 1509
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1531
	list_move_tail(&obj->global_link, list);
1532 1533
}

1534
/**
1535 1536
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1537 1538 1539
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1540 1541 1542
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1543
			  struct drm_file *file)
1544 1545
{
	struct drm_i915_gem_set_domain *args = data;
1546
	struct drm_i915_gem_object *obj;
1547 1548
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1549
	int err;
1550

1551
	/* Only handle setting domains to types used by the CPU. */
1552
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1553 1554 1555 1556 1557 1558 1559 1560
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1561
	obj = i915_gem_object_lookup(file, args->handle);
1562 1563
	if (!obj)
		return -ENOENT;
1564

1565 1566 1567 1568
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1569
	err = i915_gem_object_wait(obj,
1570 1571 1572 1573
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1574
	if (err)
C
Chris Wilson 已提交
1575
		goto out;
1576

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1587
		goto out;
1588 1589 1590

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1591
		goto out_unpin;
1592

1593
	if (read_domains & I915_GEM_DOMAIN_GTT)
1594
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1595
	else
1596
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1597

1598 1599
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1600

1601
	mutex_unlock(&dev->struct_mutex);
1602

1603 1604 1605
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1606
out_unpin:
1607
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1608 1609
out:
	i915_gem_object_put(obj);
1610
	return err;
1611 1612 1613 1614
}

/**
 * Called when user space has done writes to this buffer
1615 1616 1617
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1618 1619 1620
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1621
			 struct drm_file *file)
1622 1623
{
	struct drm_i915_gem_sw_finish *args = data;
1624
	struct drm_i915_gem_object *obj;
1625
	int err = 0;
1626

1627
	obj = i915_gem_object_lookup(file, args->handle);
1628 1629
	if (!obj)
		return -ENOENT;
1630 1631

	/* Pinned buffers may be scanout, so flush the cache */
1632 1633 1634 1635 1636 1637 1638
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1639

C
Chris Wilson 已提交
1640
	i915_gem_object_put(obj);
1641
	return err;
1642 1643 1644
}

/**
1645 1646 1647 1648 1649
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1650 1651 1652
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1663 1664 1665
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1666
		    struct drm_file *file)
1667 1668
{
	struct drm_i915_gem_mmap *args = data;
1669
	struct drm_i915_gem_object *obj;
1670 1671
	unsigned long addr;

1672 1673 1674
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1675
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1676 1677
		return -ENODEV;

1678 1679
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1680
		return -ENOENT;
1681

1682 1683 1684
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1685
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1686
		i915_gem_object_put(obj);
1687 1688 1689
		return -EINVAL;
	}

1690
	addr = vm_mmap(obj->base.filp, 0, args->size,
1691 1692
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1693 1694 1695 1696
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1697
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1698
			i915_gem_object_put(obj);
1699 1700
			return -EINTR;
		}
1701 1702 1703 1704 1705 1706 1707
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1708 1709

		/* This may race, but that's ok, it only gets set */
1710
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1711
	}
C
Chris Wilson 已提交
1712
	i915_gem_object_put(obj);
1713 1714 1715 1716 1717 1718 1719 1720
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1781 1782
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1783
 * @area: CPU VMA in question
1784
 * @vmf: fault info
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1796 1797 1798
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1799
 */
C
Chris Wilson 已提交
1800
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1801
{
1802
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1803
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1804
	struct drm_device *dev = obj->base.dev;
1805 1806
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1807
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1808
	struct i915_vma *vma;
1809
	pgoff_t page_offset;
1810
	unsigned int flags;
1811
	int ret;
1812

1813
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1814
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1815 1816
		PAGE_SHIFT;

C
Chris Wilson 已提交
1817 1818
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1819
	/* Try to flush the object off the GPU first without holding the lock.
1820
	 * Upon acquiring the lock, we will perform our sanity checks and then
1821 1822 1823
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1824 1825 1826 1827
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1828
	if (ret)
1829 1830
		goto err;

1831 1832 1833 1834
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1835 1836 1837 1838 1839
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1840

1841
	/* Access to snoopable pages through the GTT is incoherent. */
1842
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1843
		ret = -EFAULT;
1844
		goto err_unlock;
1845 1846
	}

1847 1848 1849 1850 1851 1852 1853 1854
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1855
	/* Now pin it into the GTT as needed */
1856
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1857 1858
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1859 1860
		unsigned int chunk_size;

1861
		/* Use a partial view if it is bigger than available space */
1862 1863
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
1864
			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1865

1866 1867 1868 1869
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1870
			min_t(unsigned int, chunk_size,
1871
			      vma_pages(area) - view.params.partial.offset);
1872

1873 1874 1875 1876 1877 1878
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1879 1880 1881 1882 1883
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1884 1885
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1886 1887
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1888
		goto err_unlock;
C
Chris Wilson 已提交
1889
	}
1890

1891 1892
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1893
		goto err_unpin;
1894

1895
	ret = i915_vma_get_fence(vma);
1896
	if (ret)
1897
		goto err_unpin;
1898

1899
	/* Mark as being mmapped into userspace for later revocation */
1900
	assert_rpm_wakelock_held(dev_priv);
1901 1902 1903
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1904
	/* Finally, remap it using the new GTT offset */
1905 1906 1907 1908 1909
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1910

1911
err_unpin:
C
Chris Wilson 已提交
1912
	__i915_vma_unpin(vma);
1913
err_unlock:
1914
	mutex_unlock(&dev->struct_mutex);
1915 1916
err_rpm:
	intel_runtime_pm_put(dev_priv);
1917
	i915_gem_object_unpin_pages(obj);
1918
err:
1919
	switch (ret) {
1920
	case -EIO:
1921 1922 1923 1924 1925 1926 1927
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1928 1929 1930
			ret = VM_FAULT_SIGBUS;
			break;
		}
1931
	case -EAGAIN:
D
Daniel Vetter 已提交
1932 1933 1934 1935
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1936
		 */
1937 1938
	case 0:
	case -ERESTARTSYS:
1939
	case -EINTR:
1940 1941 1942 1943 1944
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1945 1946
		ret = VM_FAULT_NOPAGE;
		break;
1947
	case -ENOMEM:
1948 1949
		ret = VM_FAULT_OOM;
		break;
1950
	case -ENOSPC:
1951
	case -EFAULT:
1952 1953
		ret = VM_FAULT_SIGBUS;
		break;
1954
	default:
1955
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1956 1957
		ret = VM_FAULT_SIGBUS;
		break;
1958
	}
1959
	return ret;
1960 1961
}

1962 1963 1964 1965
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1966
 * Preserve the reservation of the mmapping with the DRM core code, but
1967 1968 1969 1970 1971 1972 1973 1974 1975
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1976
void
1977
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1978
{
1979 1980
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1981 1982 1983
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1984 1985 1986 1987
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1988
	 */
1989
	lockdep_assert_held(&i915->drm.struct_mutex);
1990
	intel_runtime_pm_get(i915);
1991

1992
	if (list_empty(&obj->userfault_link))
1993
		goto out;
1994

1995
	list_del_init(&obj->userfault_link);
1996 1997
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1998 1999 2000 2001 2002 2003 2004 2005 2006

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2007 2008 2009

out:
	intel_runtime_pm_put(i915);
2010 2011
}

2012
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2013
{
2014
	struct drm_i915_gem_object *obj, *on;
2015
	int i;
2016

2017 2018 2019 2020 2021 2022
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2023

2024 2025 2026
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2027 2028 2029
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2047 2048
}

2049 2050
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
2051
 * @dev_priv: i915 device
2052 2053 2054 2055 2056 2057
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
2058 2059
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
2060
{
2061
	u64 ggtt_size;
2062

2063 2064
	GEM_BUG_ON(size == 0);

2065
	if (INTEL_GEN(dev_priv) >= 4 ||
2066 2067
	    tiling_mode == I915_TILING_NONE)
		return size;
2068 2069

	/* Previous chips need a power-of-two fence region when tiling */
2070
	if (IS_GEN3(dev_priv))
2071
		ggtt_size = 1024*1024;
2072
	else
2073
		ggtt_size = 512*1024;
2074

2075 2076
	while (ggtt_size < size)
		ggtt_size <<= 1;
2077

2078
	return ggtt_size;
2079 2080
}

2081
/**
2082
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2083
 * @dev_priv: i915 device
2084 2085
 * @size: object size
 * @tiling_mode: tiling mode
2086
 * @fenced: is fenced alignment required or not
2087
 *
2088
 * Return the required global GTT alignment for an object, taking into account
2089
 * potential fence register mapping.
2090
 */
2091
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2092
				int tiling_mode, bool fenced)
2093
{
2094 2095
	GEM_BUG_ON(size == 0);

2096 2097 2098 2099
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2100 2101
	if (INTEL_GEN(dev_priv) >= 4 ||
	    (!fenced && (IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))) ||
2102
	    tiling_mode == I915_TILING_NONE)
2103 2104
		return 4096;

2105 2106 2107 2108
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2109
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2110 2111
}

2112 2113
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2114
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2115
	int err;
2116

2117 2118 2119
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2120

2121 2122 2123
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2124
	 */
2125
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2126 2127 2128 2129 2130 2131 2132 2133 2134
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2135

2136
	return err;
2137 2138 2139 2140 2141 2142 2143
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2144
int
2145 2146
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2147
		  uint32_t handle,
2148
		  uint64_t *offset)
2149
{
2150
	struct drm_i915_gem_object *obj;
2151 2152
	int ret;

2153
	obj = i915_gem_object_lookup(file, handle);
2154 2155
	if (!obj)
		return -ENOENT;
2156

2157
	ret = i915_gem_object_create_mmap_offset(obj);
2158 2159
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2160

C
Chris Wilson 已提交
2161
	i915_gem_object_put(obj);
2162
	return ret;
2163 2164
}

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2186
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2187 2188
}

D
Daniel Vetter 已提交
2189 2190 2191
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2192
{
2193
	i915_gem_object_free_mmap_offset(obj);
2194

2195 2196
	if (obj->base.filp == NULL)
		return;
2197

D
Daniel Vetter 已提交
2198 2199 2200 2201 2202
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2203
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2204
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2205
}
2206

2207
/* Try to discard unwanted pages */
2208
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2209
{
2210 2211
	struct address_space *mapping;

2212 2213 2214
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2215
	switch (obj->mm.madv) {
2216 2217 2218 2219 2220 2221 2222 2223 2224
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2225
	mapping = obj->base.filp->f_mapping,
2226
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2227 2228
}

2229
static void
2230 2231
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2232
{
2233 2234
	struct sgt_iter sgt_iter;
	struct page *page;
2235

2236
	__i915_gem_object_release_shmem(obj, pages);
2237

2238
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2239

2240
	if (i915_gem_object_needs_bit17_swizzle(obj))
2241
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2242

2243
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2244
		if (obj->mm.dirty)
2245
			set_page_dirty(page);
2246

C
Chris Wilson 已提交
2247
		if (obj->mm.madv == I915_MADV_WILLNEED)
2248
			mark_page_accessed(page);
2249

2250
		put_page(page);
2251
	}
C
Chris Wilson 已提交
2252
	obj->mm.dirty = false;
2253

2254 2255
	sg_free_table(pages);
	kfree(pages);
2256
}
C
Chris Wilson 已提交
2257

2258 2259 2260 2261 2262
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2263 2264
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2265 2266
}

2267 2268
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2269
{
2270
	struct sg_table *pages;
2271

C
Chris Wilson 已提交
2272
	if (i915_gem_object_has_pinned_pages(obj))
2273
		return;
2274

2275
	GEM_BUG_ON(obj->bind_count);
2276 2277 2278 2279
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2280
	mutex_lock_nested(&obj->mm.lock, subclass);
2281 2282
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2283

2284 2285 2286
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2287 2288
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2289

C
Chris Wilson 已提交
2290
	if (obj->mm.mapping) {
2291 2292
		void *ptr;

C
Chris Wilson 已提交
2293
		ptr = ptr_mask_bits(obj->mm.mapping);
2294 2295
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2296
		else
2297 2298
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2299
		obj->mm.mapping = NULL;
2300 2301
	}

2302 2303
	__i915_gem_object_reset_page_iter(obj);

2304
	obj->ops->put_pages(obj, pages);
2305 2306
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2307 2308
}

2309
static unsigned int swiotlb_max_size(void)
2310 2311 2312 2313 2314 2315 2316 2317
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2342
static struct sg_table *
C
Chris Wilson 已提交
2343
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2344
{
2345
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2346 2347
	int page_count, i;
	struct address_space *mapping;
2348 2349
	struct sg_table *st;
	struct scatterlist *sg;
2350
	struct sgt_iter sgt_iter;
2351
	struct page *page;
2352
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2353
	unsigned int max_segment;
I
Imre Deak 已提交
2354
	int ret;
C
Chris Wilson 已提交
2355
	gfp_t gfp;
2356

C
Chris Wilson 已提交
2357 2358 2359 2360
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2361 2362
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2363

2364 2365
	max_segment = swiotlb_max_size();
	if (!max_segment)
2366
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2367

2368 2369
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2370
		return ERR_PTR(-ENOMEM);
2371

2372
	page_count = obj->base.size / PAGE_SIZE;
2373 2374
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2375
		return ERR_PTR(-ENOMEM);
2376
	}
2377

2378 2379 2380 2381 2382
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2383
	mapping = obj->base.filp->f_mapping;
2384
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2385
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2386 2387 2388
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2389 2390
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2391 2392 2393 2394 2395
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2396 2397 2398 2399 2400 2401 2402
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2403
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2404 2405
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2406
				goto err_sg;
I
Imre Deak 已提交
2407
			}
C
Chris Wilson 已提交
2408
		}
2409 2410 2411
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2412 2413 2414 2415 2416 2417 2418 2419
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2420 2421 2422

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2423
	}
2424
	if (sg) /* loop terminated early; short sg table */
2425
		sg_mark_end(sg);
2426

2427 2428 2429
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2430
	ret = i915_gem_gtt_prepare_pages(obj, st);
I
Imre Deak 已提交
2431 2432 2433
	if (ret)
		goto err_pages;

2434
	if (i915_gem_object_needs_bit17_swizzle(obj))
2435
		i915_gem_object_do_bit_17_swizzle(obj, st);
2436

2437
	return st;
2438

2439
err_sg:
2440
	sg_mark_end(sg);
2441
err_pages:
2442 2443
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2444 2445
	sg_free_table(st);
	kfree(st);
2446 2447 2448 2449 2450 2451 2452 2453 2454

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2455 2456 2457
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2458 2459 2460 2461 2462 2463
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2464
	lockdep_assert_held(&obj->mm.lock);
2465 2466 2467 2468 2469

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2470 2471 2472 2473 2474 2475 2476

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2477 2478 2479 2480 2481 2482
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2483 2484
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2496 2497
}

2498
/* Ensure that the associated pages are gathered from the backing storage
2499
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2500
 * multiple times before they are released by a single call to
2501
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2502 2503 2504
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2505
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2506
{
2507
	int err;
2508

2509 2510 2511
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2512

2513 2514 2515 2516
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2517

2518 2519 2520
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2521

2522 2523
unlock:
	mutex_unlock(&obj->mm.lock);
2524
	return err;
2525 2526
}

2527
/* The 'mapping' part of i915_gem_object_pin_map() below */
2528 2529
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2530 2531
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2532
	struct sg_table *sgt = obj->mm.pages;
2533 2534
	struct sgt_iter sgt_iter;
	struct page *page;
2535 2536
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2537
	unsigned long i = 0;
2538
	pgprot_t pgprot;
2539 2540 2541
	void *addr;

	/* A single page can always be kmapped */
2542
	if (n_pages == 1 && type == I915_MAP_WB)
2543 2544
		return kmap(sg_page(sgt->sgl));

2545 2546 2547 2548 2549 2550
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2551

2552 2553
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2554 2555 2556 2557

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2558 2559 2560 2561 2562 2563 2564 2565 2566
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2567

2568 2569
	if (pages != stack_pages)
		drm_free_large(pages);
2570 2571 2572 2573 2574

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2575 2576
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2577
{
2578 2579 2580
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2581 2582
	int ret;

2583
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2584

2585
	ret = mutex_lock_interruptible(&obj->mm.lock);
2586 2587 2588
	if (ret)
		return ERR_PTR(ret);

2589 2590
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2591 2592 2593 2594
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2595

2596 2597 2598
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2599 2600 2601
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2602

C
Chris Wilson 已提交
2603
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2604 2605 2606
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2607
			goto err_unpin;
2608
		}
2609 2610 2611 2612 2613 2614

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2615
		ptr = obj->mm.mapping = NULL;
2616 2617
	}

2618 2619 2620 2621
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2622
			goto err_unpin;
2623 2624
		}

C
Chris Wilson 已提交
2625
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2626 2627
	}

2628 2629
out_unlock:
	mutex_unlock(&obj->mm.lock);
2630 2631
	return ptr;

2632 2633 2634 2635 2636
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2637 2638
}

2639
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2640
{
2641
	if (ctx->banned)
2642 2643
		return true;

2644
	if (!ctx->bannable)
2645 2646
		return false;

2647
	if (ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD) {
2648 2649 2650 2651
		DRM_DEBUG("context hanging too often, banning!\n");
		return true;
	}

2652 2653 2654
	return false;
}

2655
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2656
{
2657
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
2658

2659 2660
	ctx->banned = i915_context_is_banned(ctx);
	ctx->guilty_count++;
2661 2662

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2663 2664
			 ctx->name, ctx->ban_score,
			 yesno(ctx->banned));
2665

2666
	if (!ctx->banned || IS_ERR_OR_NULL(ctx->file_priv))
2667 2668
		return;

2669 2670 2671
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2672 2673 2674 2675
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2676
	ctx->active_count++;
2677 2678
}

2679
struct drm_i915_gem_request *
2680
i915_gem_find_active_request(struct intel_engine_cs *engine)
2681
{
2682 2683
	struct drm_i915_gem_request *request;

2684 2685 2686 2687 2688 2689 2690 2691
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2692
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2693
		if (__i915_gem_request_completed(request))
2694
			continue;
2695

2696
		return request;
2697
	}
2698 2699 2700 2701

	return NULL;
}

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2720 2721
{
	struct drm_i915_gem_request *request;
2722
	struct i915_gem_context *incomplete_ctx;
C
Chris Wilson 已提交
2723
	struct intel_timeline *timeline;
2724 2725
	bool ring_hung;

2726 2727 2728
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2729
	request = i915_gem_find_active_request(engine);
2730
	if (!request)
2731 2732
		return;

2733 2734 2735 2736 2737
	ring_hung = engine->hangcheck.stalled;
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n",
				 engine->name,
				 yesno(ring_hung));
2738
		ring_hung = false;
2739
	}
2740

2741 2742 2743 2744 2745
	if (ring_hung)
		i915_gem_context_mark_guilty(request->ctx);
	else
		i915_gem_context_mark_innocent(request->ctx);

2746 2747 2748 2749
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2750
			 engine->name, request->global_seqno);
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2767
	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2768 2769
		if (request->ctx == incomplete_ctx)
			reset_request(request);
C
Chris Wilson 已提交
2770 2771 2772 2773

	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
	list_for_each_entry(request, &timeline->requests, link)
		reset_request(request);
2774
}
2775

2776
void i915_gem_reset(struct drm_i915_private *dev_priv)
2777
{
2778
	struct intel_engine_cs *engine;
2779
	enum intel_engine_id id;
2780

2781 2782
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2783 2784
	i915_gem_retire_requests(dev_priv);

2785
	for_each_engine(engine, dev_priv, id)
2786 2787
		i915_gem_reset_engine(engine);

2788
	i915_gem_restore_fences(dev_priv);
2789 2790 2791 2792 2793 2794 2795

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2796 2797 2798 2799
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
2800 2801
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2802 2803 2804 2805
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
2806 2807 2808 2809 2810 2811
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2812
	engine->submit_request = nop_submit_request;
2813

2814 2815 2816 2817
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2818
	intel_engine_init_global_seqno(engine,
2819
				       intel_engine_last_submit(engine));
2820

2821 2822 2823 2824 2825 2826
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2827
	if (i915.enable_execlists) {
2828 2829 2830 2831
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2832 2833 2834
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2835 2836
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2837 2838

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2839
	}
2840 2841
}

2842
static int __i915_gem_set_wedged_BKL(void *data)
2843
{
2844
	struct drm_i915_private *i915 = data;
2845
	struct intel_engine_cs *engine;
2846
	enum intel_engine_id id;
2847

2848 2849 2850 2851 2852 2853 2854 2855
	for_each_engine(engine, i915, id)
		i915_gem_cleanup_engine(engine);

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2856 2857
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2858

2859
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2860

2861
	i915_gem_context_lost(dev_priv);
2862
	i915_gem_retire_requests(dev_priv);
2863 2864

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2865 2866
}

2867
static void
2868 2869
i915_gem_retire_work_handler(struct work_struct *work)
{
2870
	struct drm_i915_private *dev_priv =
2871
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2872
	struct drm_device *dev = &dev_priv->drm;
2873

2874
	/* Come back later if the device is busy... */
2875
	if (mutex_trylock(&dev->struct_mutex)) {
2876
		i915_gem_retire_requests(dev_priv);
2877
		mutex_unlock(&dev->struct_mutex);
2878
	}
2879 2880 2881 2882 2883

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2884 2885
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2886 2887
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2888
				   round_jiffies_up_relative(HZ));
2889
	}
2890
}
2891

2892 2893 2894 2895
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2896
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2897
	struct drm_device *dev = &dev_priv->drm;
2898
	struct intel_engine_cs *engine;
2899
	enum intel_engine_id id;
2900 2901 2902 2903 2904
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2905 2906 2907 2908 2909 2910 2911
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2912
	if (READ_ONCE(dev_priv->gt.active_requests))
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2926 2927 2928 2929 2930 2931 2932
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2933
	if (dev_priv->gt.active_requests)
2934
		goto out_unlock;
2935

2936 2937 2938
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2939
	for_each_engine(engine, dev_priv, id)
2940
		i915_gem_batch_pool_fini(&engine->batch_pool);
2941

2942 2943 2944
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2945

2946 2947 2948 2949 2950
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2951

2952 2953 2954 2955
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2956
	}
2957 2958
}

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2969 2970 2971 2972 2973 2974

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2975 2976 2977
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2989 2990
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2991 2992 2993
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3018 3019
	ktime_t start;
	long ret;
3020

3021 3022 3023
	if (args->flags != 0)
		return -EINVAL;

3024
	obj = i915_gem_object_lookup(file, args->bo_handle);
3025
	if (!obj)
3026 3027
		return -ENOENT;

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3039 3040
	}

C
Chris Wilson 已提交
3041
	i915_gem_object_put(obj);
3042
	return ret;
3043 3044
}

3045
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3046
{
3047
	int ret, i;
3048

3049 3050 3051 3052 3053
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3054

3055 3056 3057 3058 3059 3060 3061
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3074 3075 3076
		if (ret)
			return ret;
	}
3077

3078
	return 0;
3079 3080
}

3081 3082
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3083 3084 3085 3086 3087
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3088
	if (!obj->mm.pages)
3089
		return;
3090

3091 3092 3093 3094
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3095
	if (obj->stolen || obj->phys_handle)
3096
		return;
3097

3098 3099 3100 3101 3102 3103 3104 3105
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3106 3107
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3108
		return;
3109
	}
3110

C
Chris Wilson 已提交
3111
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3112
	drm_clflush_sg(obj->mm.pages);
3113
	obj->cache_dirty = false;
3114 3115 3116 3117
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3118
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3119
{
3120
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3121

3122
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3123 3124
		return;

3125
	/* No actual flushing is required for the GTT write domain.  Writes
3126
	 * to it "immediately" go to main memory as far as we know, so there's
3127
	 * no chipset flush.  It also doesn't land in render cache.
3128 3129 3130 3131
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3132 3133 3134 3135 3136 3137 3138
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3139
	 */
3140
	wmb();
3141
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3142
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3143

3144
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3145

3146
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3147
	trace_i915_gem_object_change_domain(obj,
3148
					    obj->base.read_domains,
3149
					    I915_GEM_DOMAIN_GTT);
3150 3151 3152 3153
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3154
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3155
{
3156
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3157 3158
		return;

3159
	i915_gem_clflush_object(obj, obj->pin_display);
3160
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3161

3162
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3163
	trace_i915_gem_object_change_domain(obj,
3164
					    obj->base.read_domains,
3165
					    I915_GEM_DOMAIN_CPU);
3166 3167
}

3168 3169
/**
 * Moves a single object to the GTT read, and possibly write domain.
3170 3171
 * @obj: object to act on
 * @write: ask for write access or read only
3172 3173 3174 3175
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3176
int
3177
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3178
{
C
Chris Wilson 已提交
3179
	uint32_t old_write_domain, old_read_domains;
3180
	int ret;
3181

3182
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3183

3184 3185 3186 3187 3188 3189
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3190 3191 3192
	if (ret)
		return ret;

3193 3194 3195
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3196 3197 3198 3199 3200 3201 3202 3203
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3204
	ret = i915_gem_object_pin_pages(obj);
3205 3206 3207
	if (ret)
		return ret;

3208
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3209

3210 3211 3212 3213 3214 3215 3216
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3217 3218
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3219

3220 3221 3222
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3223
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3224
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3225
	if (write) {
3226 3227
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3228
		obj->mm.dirty = true;
3229 3230
	}

C
Chris Wilson 已提交
3231 3232 3233 3234
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3235
	i915_gem_object_unpin_pages(obj);
3236 3237 3238
	return 0;
}

3239 3240
/**
 * Changes the cache-level of an object across all VMA.
3241 3242
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3254 3255 3256
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3257
	struct i915_vma *vma;
3258
	int ret;
3259

3260 3261
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3262
	if (obj->cache_level == cache_level)
3263
		return 0;
3264

3265 3266 3267 3268 3269
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3270 3271
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3272 3273 3274
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3275
		if (i915_vma_is_pinned(vma)) {
3276 3277 3278 3279
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3292 3293
	}

3294 3295 3296 3297 3298 3299 3300
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3301
	if (obj->bind_count) {
3302 3303 3304 3305
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3306 3307 3308 3309 3310 3311
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3312 3313 3314
		if (ret)
			return ret;

3315 3316
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3333 3334 3335 3336 3337
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3338 3339 3340 3341 3342 3343 3344 3345
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3346 3347
		}

3348
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3349 3350 3351 3352 3353 3354 3355
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3356 3357
	}

3358 3359 3360 3361
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3362
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3363 3364 3365
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3366 3367 3368
	return 0;
}

B
Ben Widawsky 已提交
3369 3370
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3371
{
B
Ben Widawsky 已提交
3372
	struct drm_i915_gem_caching *args = data;
3373
	struct drm_i915_gem_object *obj;
3374
	int err = 0;
3375

3376 3377 3378 3379 3380 3381
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3382

3383 3384 3385 3386 3387 3388
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3389 3390 3391 3392
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3393 3394 3395 3396
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3397 3398 3399
out:
	rcu_read_unlock();
	return err;
3400 3401
}

B
Ben Widawsky 已提交
3402 3403
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3404
{
3405
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3406
	struct drm_i915_gem_caching *args = data;
3407 3408 3409 3410
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3411 3412
	switch (args->caching) {
	case I915_CACHING_NONE:
3413 3414
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3415
	case I915_CACHING_CACHED:
3416 3417 3418 3419 3420 3421
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3422
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3423 3424
			return -ENODEV;

3425 3426
		level = I915_CACHE_LLC;
		break;
3427
	case I915_CACHING_DISPLAY:
3428
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3429
		break;
3430 3431 3432 3433
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3434 3435
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3436
		return ret;
B
Ben Widawsky 已提交
3437

3438 3439
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3440 3441 3442 3443 3444
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3445
	i915_gem_object_put(obj);
3446 3447 3448 3449 3450
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3451
/*
3452 3453 3454
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3455
 */
C
Chris Wilson 已提交
3456
struct i915_vma *
3457 3458
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3459
				     const struct i915_ggtt_view *view)
3460
{
C
Chris Wilson 已提交
3461
	struct i915_vma *vma;
3462
	u32 old_read_domains, old_write_domain;
3463 3464
	int ret;

3465 3466
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3467 3468 3469
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3470
	obj->pin_display++;
3471

3472 3473 3474 3475 3476 3477 3478 3479 3480
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3481
	ret = i915_gem_object_set_cache_level(obj,
3482 3483
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3484 3485
	if (ret) {
		vma = ERR_PTR(ret);
3486
		goto err_unpin_display;
C
Chris Wilson 已提交
3487
	}
3488

3489 3490
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3491 3492 3493 3494
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3495
	 */
3496 3497 3498 3499
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3516
	if (IS_ERR(vma))
3517
		goto err_unpin_display;
3518

3519 3520
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3521 3522 3523 3524 3525
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
	if (obj->cache_dirty) {
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3526

3527
	old_write_domain = obj->base.write_domain;
3528
	old_read_domains = obj->base.read_domains;
3529 3530 3531 3532

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3533
	obj->base.write_domain = 0;
3534
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3535 3536 3537

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3538
					    old_write_domain);
3539

C
Chris Wilson 已提交
3540
	return vma;
3541 3542

err_unpin_display:
3543
	obj->pin_display--;
C
Chris Wilson 已提交
3544
	return vma;
3545 3546 3547
}

void
C
Chris Wilson 已提交
3548
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3549
{
3550
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3551

C
Chris Wilson 已提交
3552
	if (WARN_ON(vma->obj->pin_display == 0))
3553 3554
		return;

3555 3556
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3557

3558 3559 3560 3561
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3562
	i915_vma_unpin(vma);
3563 3564
}

3565 3566
/**
 * Moves a single object to the CPU read, and possibly write domain.
3567 3568
 * @obj: object to act on
 * @write: requesting write or read-only access
3569 3570 3571 3572
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3573
int
3574
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3575
{
C
Chris Wilson 已提交
3576
	uint32_t old_write_domain, old_read_domains;
3577 3578
	int ret;

3579
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3580

3581 3582 3583 3584 3585 3586
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3587 3588 3589
	if (ret)
		return ret;

3590 3591 3592
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3593
	i915_gem_object_flush_gtt_write_domain(obj);
3594

3595 3596
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3597

3598
	/* Flush the CPU cache if it's still invalid. */
3599
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3600
		i915_gem_clflush_object(obj, false);
3601

3602
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3603 3604 3605 3606 3607
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3608
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3609 3610 3611 3612 3613

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3614 3615
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3616
	}
3617

C
Chris Wilson 已提交
3618 3619 3620 3621
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3622 3623 3624
	return 0;
}

3625 3626 3627
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3628 3629 3630 3631
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3632 3633 3634
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3635
static int
3636
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3637
{
3638
	struct drm_i915_private *dev_priv = to_i915(dev);
3639
	struct drm_i915_file_private *file_priv = file->driver_priv;
3640
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3641
	struct drm_i915_gem_request *request, *target = NULL;
3642
	long ret;
3643

3644 3645 3646
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3647

3648
	spin_lock(&file_priv->mm.lock);
3649
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3650 3651
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3652

3653 3654 3655 3656 3657 3658 3659
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3660
		target = request;
3661
	}
3662
	if (target)
3663
		i915_gem_request_get(target);
3664
	spin_unlock(&file_priv->mm.lock);
3665

3666
	if (target == NULL)
3667
		return 0;
3668

3669 3670 3671
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3672
	i915_gem_request_put(target);
3673

3674
	return ret < 0 ? ret : 0;
3675 3676
}

C
Chris Wilson 已提交
3677
struct i915_vma *
3678 3679
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3680
			 u64 size,
3681 3682
			 u64 alignment,
			 u64 flags)
3683
{
3684 3685
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3686 3687
	struct i915_vma *vma;
	int ret;
3688

3689 3690
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
3691
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3692
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3693
		return vma;
3694 3695 3696 3697

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3698
			return ERR_PTR(-ENOSPC);
3699

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

3735 3736
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3737 3738 3739
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3740
		     !!(flags & PIN_MAPPABLE),
3741
		     i915_vma_is_map_and_fenceable(vma));
3742 3743
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3744
			return ERR_PTR(ret);
3745 3746
	}

C
Chris Wilson 已提交
3747 3748 3749
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3750

C
Chris Wilson 已提交
3751
	return vma;
3752 3753
}

3754
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3769 3770 3771 3772 3773 3774 3775 3776 3777
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3778 3779
}

3780
static __always_inline unsigned int
3781
__busy_set_if_active(const struct dma_fence *fence,
3782 3783
		     unsigned int (*flag)(unsigned int id))
{
3784
	struct drm_i915_gem_request *rq;
3785

3786 3787 3788 3789
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3790
	 *
3791
	 * Note we only report on the status of native fences.
3792
	 */
3793 3794 3795 3796 3797 3798 3799 3800 3801
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3802 3803
}

3804
static __always_inline unsigned int
3805
busy_check_reader(const struct dma_fence *fence)
3806
{
3807
	return __busy_set_if_active(fence, __busy_read_flag);
3808 3809
}

3810
static __always_inline unsigned int
3811
busy_check_writer(const struct dma_fence *fence)
3812
{
3813 3814 3815 3816
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3817 3818
}

3819 3820
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3821
		    struct drm_file *file)
3822 3823
{
	struct drm_i915_gem_busy *args = data;
3824
	struct drm_i915_gem_object *obj;
3825 3826
	struct reservation_object_list *list;
	unsigned int seq;
3827
	int err;
3828

3829
	err = -ENOENT;
3830 3831
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3832
	if (!obj)
3833
		goto out;
3834

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3853

3854 3855
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3856

3857 3858 3859 3860
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3861

3862 3863 3864 3865 3866 3867
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3868
	}
3869

3870 3871 3872 3873
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3874 3875 3876
out:
	rcu_read_unlock();
	return err;
3877 3878 3879 3880 3881 3882
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3883
	return i915_gem_ring_throttle(dev, file_priv);
3884 3885
}

3886 3887 3888 3889
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3890
	struct drm_i915_private *dev_priv = to_i915(dev);
3891
	struct drm_i915_gem_madvise *args = data;
3892
	struct drm_i915_gem_object *obj;
3893
	int err;
3894 3895 3896 3897 3898 3899 3900 3901 3902

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3903
	obj = i915_gem_object_lookup(file_priv, args->handle);
3904 3905 3906 3907 3908 3909
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3910

C
Chris Wilson 已提交
3911
	if (obj->mm.pages &&
3912
	    i915_gem_object_is_tiled(obj) &&
3913
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3914 3915
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3916
			__i915_gem_object_unpin_pages(obj);
3917 3918 3919
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3920
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3921
			__i915_gem_object_pin_pages(obj);
3922 3923
			obj->mm.quirked = true;
		}
3924 3925
	}

C
Chris Wilson 已提交
3926 3927
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3928

C
Chris Wilson 已提交
3929
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3930
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3931 3932
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3933
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3934
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3935

3936
out:
3937
	i915_gem_object_put(obj);
3938
	return err;
3939 3940
}

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3951 3952
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3953
{
3954 3955
	mutex_init(&obj->mm.lock);

3956
	INIT_LIST_HEAD(&obj->global_link);
3957
	INIT_LIST_HEAD(&obj->userfault_link);
3958
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3959
	INIT_LIST_HEAD(&obj->vma_list);
3960
	INIT_LIST_HEAD(&obj->batch_pool_link);
3961

3962 3963
	obj->ops = ops;

3964 3965 3966
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3967
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3968
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3969 3970 3971 3972

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3973

3974
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3975 3976
}

3977
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3978 3979
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3980 3981 3982 3983
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3984 3985 3986 3987 3988
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
3989
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3990
{
3991
	struct drm_i915_gem_object *obj;
3992
	struct address_space *mapping;
D
Daniel Vetter 已提交
3993
	gfp_t mask;
3994
	int ret;
3995

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4007
	obj = i915_gem_object_alloc(dev_priv);
4008
	if (obj == NULL)
4009
		return ERR_PTR(-ENOMEM);
4010

4011
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4012 4013
	if (ret)
		goto fail;
4014

4015
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4016
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4017 4018 4019 4020 4021
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4022
	mapping = obj->base.filp->f_mapping;
4023
	mapping_set_gfp_mask(mapping, mask);
4024

4025
	i915_gem_object_init(obj, &i915_gem_object_ops);
4026

4027 4028
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4029

4030
	if (HAS_LLC(dev_priv)) {
4031
		/* On some devices, we can have the GPU use the LLC (the CPU
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4047 4048
	trace_i915_gem_object_create(obj);

4049
	return obj;
4050 4051 4052 4053

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4054 4055
}

4056 4057 4058 4059 4060 4061 4062 4063
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4064
	if (obj->mm.madv != I915_MADV_WILLNEED)
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4080 4081
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4082
{
4083
	struct drm_i915_gem_object *obj, *on;
4084

4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4100 4101
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4102

4103
		list_del(&obj->global_link);
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4114

4115 4116
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4117
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4118 4119 4120 4121 4122
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4123
		reservation_object_fini(&obj->__builtin_resv);
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4146

4147 4148 4149 4150 4151 4152 4153
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4154

4155 4156 4157
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4158

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4173

4174 4175 4176
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4177

4178 4179 4180
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4181
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4182
		obj->mm.madv = I915_MADV_DONTNEED;
4183

4184 4185 4186 4187 4188 4189
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4190 4191
}

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4203 4204 4205 4206 4207 4208
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4209
		GEM_BUG_ON(engine->last_retired_context != dev_priv->kernel_context);
4210 4211
}

4212
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4213
{
4214
	struct drm_device *dev = &dev_priv->drm;
4215
	int ret;
4216

4217 4218
	intel_suspend_gt_powersave(dev_priv);

4219
	mutex_lock(&dev->struct_mutex);
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4233 4234 4235
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4236
	if (ret)
4237
		goto err;
4238

4239
	i915_gem_retire_requests(dev_priv);
4240
	GEM_BUG_ON(dev_priv->gt.active_requests);
4241

4242
	assert_kernel_context_is_current(dev_priv);
4243
	i915_gem_context_lost(dev_priv);
4244 4245
	mutex_unlock(&dev->struct_mutex);

4246
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4247 4248
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4249
	flush_work(&dev_priv->mm.free_work);
4250

4251 4252 4253
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4254
	WARN_ON(dev_priv->gt.awake);
4255
	WARN_ON(!intel_execlists_idle(dev_priv));
4256

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4276
	if (HAS_HW_CONTEXTS(dev_priv)) {
4277 4278 4279 4280
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4281
	return 0;
4282 4283 4284 4285

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4286 4287
}

4288
void i915_gem_resume(struct drm_i915_private *dev_priv)
4289
{
4290
	struct drm_device *dev = &dev_priv->drm;
4291

4292 4293
	WARN_ON(dev_priv->gt.awake);

4294
	mutex_lock(&dev->struct_mutex);
4295
	i915_gem_restore_gtt_mappings(dev_priv);
4296 4297 4298 4299 4300

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4301
	dev_priv->gt.resume(dev_priv);
4302 4303 4304 4305

	mutex_unlock(&dev->struct_mutex);
}

4306
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4307
{
4308
	if (INTEL_GEN(dev_priv) < 5 ||
4309 4310 4311 4312 4313 4314
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4315
	if (IS_GEN5(dev_priv))
4316 4317
		return;

4318
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4319
	if (IS_GEN6(dev_priv))
4320
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4321
	else if (IS_GEN7(dev_priv))
4322
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4323
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4324
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4325 4326
	else
		BUG();
4327
}
D
Daniel Vetter 已提交
4328

4329
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4330 4331 4332 4333 4334 4335 4336
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4337
static void init_unused_rings(struct drm_i915_private *dev_priv)
4338
{
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4351 4352 4353
	}
}

4354
int
4355
i915_gem_init_hw(struct drm_i915_private *dev_priv)
4356
{
4357
	struct intel_engine_cs *engine;
4358
	enum intel_engine_id id;
C
Chris Wilson 已提交
4359
	int ret;
4360

4361 4362
	dev_priv->gt.last_init_time = ktime_get();

4363 4364 4365
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4366
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4367
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4368

4369
	if (IS_HASWELL(dev_priv))
4370
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4371
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4372

4373
	if (HAS_PCH_NOP(dev_priv)) {
4374
		if (IS_IVYBRIDGE(dev_priv)) {
4375 4376 4377
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4378
		} else if (INTEL_GEN(dev_priv) >= 7) {
4379 4380 4381 4382
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4383 4384
	}

4385
	i915_gem_init_swizzling(dev_priv);
4386

4387 4388 4389 4390 4391 4392
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4393
	init_unused_rings(dev_priv);
4394

4395
	BUG_ON(!dev_priv->kernel_context);
4396

4397
	ret = i915_ppgtt_init_hw(dev_priv);
4398 4399 4400 4401 4402 4403
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4404
	for_each_engine(engine, dev_priv, id) {
4405
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4406
		if (ret)
4407
			goto out;
D
Daniel Vetter 已提交
4408
	}
4409

4410
	intel_mocs_init_l3cc_table(dev_priv);
4411

4412
	/* We can't enable contexts until all firmware is loaded */
4413
	ret = intel_guc_setup(dev_priv);
4414 4415
	if (ret)
		goto out;
4416

4417 4418
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4419
	return ret;
4420 4421
}

4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4443
int i915_gem_init(struct drm_i915_private *dev_priv)
4444 4445 4446
{
	int ret;

4447
	mutex_lock(&dev_priv->drm.struct_mutex);
4448

4449
	if (!i915.enable_execlists) {
4450
		dev_priv->gt.resume = intel_legacy_submission_resume;
4451
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4452
	} else {
4453
		dev_priv->gt.resume = intel_lr_context_resume;
4454
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4455 4456
	}

4457 4458 4459 4460 4461 4462 4463 4464
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4465
	i915_gem_init_userptr(dev_priv);
4466 4467 4468 4469

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4470

4471
	ret = i915_gem_context_init(dev_priv);
4472 4473
	if (ret)
		goto out_unlock;
4474

4475
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4476
	if (ret)
4477
		goto out_unlock;
4478

4479
	ret = i915_gem_init_hw(dev_priv);
4480
	if (ret == -EIO) {
4481
		/* Allow engine initialisation to fail by marking the GPU as
4482 4483 4484 4485
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4486
		i915_gem_set_wedged(dev_priv);
4487
		ret = 0;
4488
	}
4489 4490

out_unlock:
4491
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4492
	mutex_unlock(&dev_priv->drm.struct_mutex);
4493

4494
	return ret;
4495 4496
}

4497
void
4498
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4499
{
4500
	struct intel_engine_cs *engine;
4501
	enum intel_engine_id id;
4502

4503
	for_each_engine(engine, dev_priv, id)
4504
		dev_priv->gt.cleanup_engine(engine);
4505 4506
}

4507 4508 4509
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4510
	int i;
4511 4512 4513 4514

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4515 4516 4517
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4518 4519 4520 4521
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4522
	if (intel_vgpu_active(dev_priv))
4523 4524 4525 4526
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4527 4528 4529 4530 4531 4532 4533
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4534
	i915_gem_restore_fences(dev_priv);
4535

4536
	i915_gem_detect_bit_6_swizzle(dev_priv);
4537 4538
}

4539
int
4540
i915_gem_load_init(struct drm_i915_private *dev_priv)
4541
{
4542
	int err = -ENOMEM;
4543

4544 4545
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4546 4547
		goto err_out;

4548 4549
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4550 4551
		goto err_objects;

4552 4553 4554 4555 4556
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4557 4558
		goto err_vmas;

4559 4560 4561 4562 4563 4564
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4565 4566
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4567
	err = i915_gem_timeline_init__global(dev_priv);
4568 4569
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4570
		goto err_dependencies;
4571

4572
	INIT_LIST_HEAD(&dev_priv->context_list);
4573 4574
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4575 4576
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4577
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4578
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4579
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4580
			  i915_gem_retire_work_handler);
4581
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4582
			  i915_gem_idle_work_handler);
4583
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4584
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4585

4586 4587
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4588
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4589

4590 4591
	dev_priv->mm.interruptible = true;

4592 4593
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4594
	spin_lock_init(&dev_priv->fb_tracking.lock);
4595 4596 4597

	return 0;

4598 4599
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4600 4601 4602 4603 4604 4605 4606 4607
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4608
}
4609

4610
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4611
{
4612 4613
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4614 4615 4616 4617 4618
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4619
	kmem_cache_destroy(dev_priv->dependencies);
4620 4621 4622
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4623 4624 4625

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4626 4627
}

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4641 4642 4643
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4644 4645 4646 4647 4648
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4659 4660 4661
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4662 4663
	 */

4664 4665
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4666

4667
	for (p = phases; *p; p++) {
4668
		list_for_each_entry(obj, *p, global_link) {
4669 4670 4671
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4672
	}
4673
	mutex_unlock(&dev_priv->drm.struct_mutex);
4674 4675 4676 4677

	return 0;
}

4678
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4679
{
4680
	struct drm_i915_file_private *file_priv = file->driver_priv;
4681
	struct drm_i915_gem_request *request;
4682 4683 4684 4685 4686

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4687
	spin_lock(&file_priv->mm.lock);
4688
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4689
		request->file_priv = NULL;
4690
	spin_unlock(&file_priv->mm.lock);
4691

4692
	if (!list_empty(&file_priv->rps.link)) {
4693
		spin_lock(&to_i915(dev)->rps.client_lock);
4694
		list_del(&file_priv->rps.link);
4695
		spin_unlock(&to_i915(dev)->rps.client_lock);
4696
	}
4697 4698 4699 4700 4701
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4702
	int ret;
4703

4704
	DRM_DEBUG("\n");
4705 4706 4707 4708 4709 4710

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4711
	file_priv->dev_priv = to_i915(dev);
4712
	file_priv->file = file;
4713
	INIT_LIST_HEAD(&file_priv->rps.link);
4714 4715 4716 4717

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4718
	file_priv->bsd_engine = -1;
4719

4720 4721 4722
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4723

4724
	return ret;
4725 4726
}

4727 4728
/**
 * i915_gem_track_fb - update frontbuffer tracking
4729 4730 4731
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4732 4733 4734 4735
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4736 4737 4738 4739
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4740 4741 4742 4743 4744 4745 4746 4747 4748
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4749
	if (old) {
4750 4751
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4752 4753 4754
	}

	if (new) {
4755 4756
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4757 4758 4759
	}
}

4760 4761
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4762
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4763 4764 4765 4766 4767 4768 4769
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4770
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4771
	if (IS_ERR(obj))
4772 4773 4774 4775 4776 4777
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4778
	ret = i915_gem_object_pin_pages(obj);
4779 4780 4781
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4782
	sg = obj->mm.pages;
4783
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4784
	obj->mm.dirty = true; /* Backing store is now out of date */
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4796
	i915_gem_object_put(obj);
4797 4798
	return ERR_PTR(ret);
}
4799 4800 4801 4802 4803 4804

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4805
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4806 4807 4808 4809 4810
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4811
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4936
	if (!obj->mm.dirty)
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}