i915_gem.c 135.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

532 533 534
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
535
static int
536 537 538 539 540 541 542
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

543
	if (unlikely(page_do_bit17_swizzling))
544 545 546 547 548 549 550 551 552 553 554
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

555
	return ret ? -EFAULT : 0;
556 557
}

558 559 560 561
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
562
	if (unlikely(swizzled)) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

580 581 582 583 584 585 586 587 588 589 590 591
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
592 593 594
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
595 596 597 598 599 600 601 602 603 604 605

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

606
	return ret ? - EFAULT : 0;
607 608
}

609
static int
610 611 612 613
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
614
{
615
	char __user *user_data;
616
	ssize_t remain;
617
	loff_t offset;
618
	int shmem_page_offset, page_length, ret = 0;
619
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620
	int prefaulted = 0;
621
	int needs_clflush = 0;
622
	struct sg_page_iter sg_iter;
623

V
Ville Syrjälä 已提交
624
	user_data = to_user_ptr(args->data_ptr);
625 626
	remain = args->size;

627
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628

629
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 631 632
	if (ret)
		return ret;

633
	offset = args->offset;
634

635 636
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
637
		struct page *page = sg_page_iter_page(&sg_iter);
638 639 640 641

		if (remain <= 0)
			break;

642 643 644 645 646
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
647
		shmem_page_offset = offset_in_page(offset);
648 649 650 651
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

652 653 654
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

655 656 657 658 659
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
660 661 662

		mutex_unlock(&dev->struct_mutex);

663
		if (likely(!i915.prefault_disable) && !prefaulted) {
664
			ret = fault_in_multipages_writeable(user_data, remain);
665 666 667 668 669 670 671
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
672

673 674 675
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
676

677
		mutex_lock(&dev->struct_mutex);
678 679

		if (ret)
680 681
			goto out;

682
next_page:
683
		remain -= page_length;
684
		user_data += page_length;
685 686 687
		offset += page_length;
	}

688
out:
689 690
	i915_gem_object_unpin_pages(obj);

691 692 693
	return ret;
}

694 695 696 697 698 699 700
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701
		     struct drm_file *file)
702 703
{
	struct drm_i915_gem_pread *args = data;
704
	struct drm_i915_gem_object *obj;
705
	int ret = 0;
706

707 708 709 710
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
711
		       to_user_ptr(args->data_ptr),
712 713 714
		       args->size))
		return -EFAULT;

715
	ret = i915_mutex_lock_interruptible(dev);
716
	if (ret)
717
		return ret;
718

719
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720
	if (&obj->base == NULL) {
721 722
		ret = -ENOENT;
		goto unlock;
723
	}
724

725
	/* Bounds check source.  */
726 727
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
728
		ret = -EINVAL;
729
		goto out;
C
Chris Wilson 已提交
730 731
	}

732 733 734 735 736 737 738 739
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
740 741
	trace_i915_gem_object_pread(obj, args->offset, args->size);

742
	ret = i915_gem_shmem_pread(dev, obj, args, file);
743

744
out:
745
	drm_gem_object_unreference(&obj->base);
746
unlock:
747
	mutex_unlock(&dev->struct_mutex);
748
	return ret;
749 750
}

751 752
/* This is the fast write path which cannot handle
 * page faults in the source data
753
 */
754 755 756 757 758 759

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
760
{
761 762
	void __iomem *vaddr_atomic;
	void *vaddr;
763
	unsigned long unwritten;
764

P
Peter Zijlstra 已提交
765
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 767 768
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
769
						      user_data, length);
P
Peter Zijlstra 已提交
770
	io_mapping_unmap_atomic(vaddr_atomic);
771
	return unwritten;
772 773
}

774 775 776 777
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
778
static int
779 780
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
781
			 struct drm_i915_gem_pwrite *args,
782
			 struct drm_file *file)
783
{
784
	struct drm_i915_private *dev_priv = dev->dev_private;
785
	ssize_t remain;
786
	loff_t offset, page_base;
787
	char __user *user_data;
D
Daniel Vetter 已提交
788 789
	int page_offset, page_length, ret;

790
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
791 792 793 794 795 796 797 798 799 800
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
801

V
Ville Syrjälä 已提交
802
	user_data = to_user_ptr(args->data_ptr);
803 804
	remain = args->size;

805
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806

807 808
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

809 810 811
	while (remain > 0) {
		/* Operation in this page
		 *
812 813 814
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
815
		 */
816 817
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
818 819 820 821 822
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
823 824
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
825
		 */
B
Ben Widawsky 已提交
826
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
827 828
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
829
			goto out_flush;
D
Daniel Vetter 已提交
830
		}
831

832 833 834
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
835 836
	}

837 838
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
839
out_unpin:
B
Ben Widawsky 已提交
840
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
841
out:
842
	return ret;
843 844
}

845 846 847 848
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
849
static int
850 851 852 853 854
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
855
{
856
	char *vaddr;
857
	int ret;
858

859
	if (unlikely(page_do_bit17_swizzling))
860
		return -EINVAL;
861

862 863 864 865
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
866 867
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
868 869 870 871
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
872

873
	return ret ? -EFAULT : 0;
874 875
}

876 877
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
878
static int
879 880 881 882 883
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
884
{
885 886
	char *vaddr;
	int ret;
887

888
	vaddr = kmap(page);
889
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 891 892
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
893 894
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 896
						user_data,
						page_length);
897 898 899 900 901
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
902 903 904
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
905
	kunmap(page);
906

907
	return ret ? -EFAULT : 0;
908 909 910
}

static int
911 912 913 914
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
915 916
{
	ssize_t remain;
917 918
	loff_t offset;
	char __user *user_data;
919
	int shmem_page_offset, page_length, ret = 0;
920
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921
	int hit_slowpath = 0;
922 923
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
924
	struct sg_page_iter sg_iter;
925

V
Ville Syrjälä 已提交
926
	user_data = to_user_ptr(args->data_ptr);
927 928
	remain = args->size;

929
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930

931 932 933 934 935
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
936
		needs_clflush_after = cpu_write_needs_clflush(obj);
937 938 939
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
940
	}
941 942 943 944 945
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
946

947 948 949 950
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

951 952
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

953 954
	i915_gem_object_pin_pages(obj);

955
	offset = args->offset;
956
	obj->dirty = 1;
957

958 959
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
960
		struct page *page = sg_page_iter_page(&sg_iter);
961
		int partial_cacheline_write;
962

963 964 965
		if (remain <= 0)
			break;

966 967 968 969 970
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
971
		shmem_page_offset = offset_in_page(offset);
972 973 974 975 976

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

977 978 979 980 981 982 983
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

984 985 986
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

987 988 989 990 991 992
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
993 994 995

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
996 997 998 999
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1000

1001
		mutex_lock(&dev->struct_mutex);
1002 1003

		if (ret)
1004 1005
			goto out;

1006
next_page:
1007
		remain -= page_length;
1008
		user_data += page_length;
1009
		offset += page_length;
1010 1011
	}

1012
out:
1013 1014
	i915_gem_object_unpin_pages(obj);

1015
	if (hit_slowpath) {
1016 1017 1018 1019 1020 1021 1022
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 1024
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1025
		}
1026
	}
1027

1028
	if (needs_clflush_after)
1029
		i915_gem_chipset_flush(dev);
1030

1031
	intel_fb_obj_flush(obj, false);
1032
	return ret;
1033 1034 1035 1036 1037 1038 1039 1040 1041
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042
		      struct drm_file *file)
1043
{
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	struct drm_i915_gem_pwrite *args = data;
1046
	struct drm_i915_gem_object *obj;
1047 1048 1049 1050 1051 1052
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1053
		       to_user_ptr(args->data_ptr),
1054 1055 1056
		       args->size))
		return -EFAULT;

1057
	if (likely(!i915.prefault_disable)) {
1058 1059 1060 1061 1062
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1063

1064 1065
	intel_runtime_pm_get(dev_priv);

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		goto put_rpm;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
put_rpm:
	intel_runtime_pm_put(dev_priv);

1123 1124 1125
	return ret;
}

1126
int
1127
i915_gem_check_wedge(struct i915_gpu_error *error,
1128 1129
		     bool interruptible)
{
1130
	if (i915_reset_in_progress(error)) {
1131 1132 1133 1134 1135
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1136 1137
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1138 1139
			return -EIO;

1140 1141 1142 1143 1144 1145 1146
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1147 1148 1149 1150 1151 1152
	}

	return 0;
}

/*
1153
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154
 */
1155
int
1156
i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 1158 1159
{
	int ret;

1160
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161 1162

	ret = 0;
1163
	if (req == req->ring->outstanding_lazy_request)
1164
		ret = i915_add_request(req->ring);
1165 1166 1167 1168

	return ret;
}

1169 1170 1171 1172 1173 1174
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1175
		       struct intel_engine_cs *ring)
1176 1177 1178 1179
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1180
static int __i915_spin_request(struct drm_i915_gem_request *req)
1181
{
1182 1183
	unsigned long timeout;

D
Daniel Vetter 已提交
1184
	if (i915_gem_request_get_ring(req)->irq_refcount)
1185 1186 1187 1188
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1189
		if (i915_gem_request_completed(req, true))
1190 1191 1192 1193
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1194

1195 1196
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1197
	if (i915_gem_request_completed(req, false))
1198 1199 1200
		return 0;

	return -EAGAIN;
1201 1202
}

1203
/**
1204 1205 1206
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1207 1208 1209
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1210 1211 1212 1213 1214 1215 1216
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1217
 * Returns 0 if the request was found within the alloted time. Else returns the
1218 1219
 * errno with remaining time filled in timeout argument.
 */
1220
int __i915_wait_request(struct drm_i915_gem_request *req,
1221
			unsigned reset_counter,
1222
			bool interruptible,
1223
			s64 *timeout,
1224
			struct intel_rps_client *rps)
1225
{
1226
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1227
	struct drm_device *dev = ring->dev;
1228
	struct drm_i915_private *dev_priv = dev->dev_private;
1229 1230
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1231
	DEFINE_WAIT(wait);
1232
	unsigned long timeout_expire;
1233
	s64 before, now;
1234 1235
	int ret;

1236
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1237

1238 1239 1240
	if (list_empty(&req->list))
		return 0;

1241
	if (i915_gem_request_completed(req, true))
1242 1243
		return 0;

1244 1245
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1246

1247
	if (INTEL_INFO(dev_priv)->gen >= 6)
1248
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1249

1250
	/* Record current time in case interrupted by signal, or wedged */
1251
	trace_i915_gem_request_wait_begin(req);
1252
	before = ktime_get_raw_ns();
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1264 1265
	for (;;) {
		struct timer_list timer;
1266

1267 1268
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1269

1270 1271
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1272 1273 1274 1275 1276 1277 1278 1279
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1280

1281
		if (i915_gem_request_completed(req, false)) {
1282 1283 1284
			ret = 0;
			break;
		}
1285

1286 1287 1288 1289 1290
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1291
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1292 1293 1294 1295 1296 1297
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1298 1299
			unsigned long expire;

1300
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1301
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1302 1303 1304
			mod_timer(&timer, expire);
		}

1305
		io_schedule();
1306 1307 1308 1309 1310 1311

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1312 1313
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1314 1315

	finish_wait(&ring->irq_queue, &wait);
1316

1317 1318 1319 1320
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1321
	if (timeout) {
1322 1323 1324
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1335 1336
	}

1337
	return ret;
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	put_pid(request->pid);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1397
/**
1398
 * Waits for a request to be signaled, and cleans up the
1399 1400 1401
 * request and object lists appropriately for that event.
 */
int
1402
i915_wait_request(struct drm_i915_gem_request *req)
1403
{
1404 1405 1406
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1407 1408
	int ret;

1409 1410 1411 1412 1413 1414
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1415 1416
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1417
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1418 1419 1420
	if (ret)
		return ret;

1421
	ret = i915_gem_check_olr(req);
1422 1423 1424
	if (ret)
		return ret;

1425 1426
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1427
				  interruptible, NULL, NULL);
1428 1429
	if (ret)
		return ret;
1430

1431
	__i915_gem_request_retire__upto(req);
1432 1433 1434
	return 0;
}

1435 1436 1437 1438
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1439
int
1440 1441 1442
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1443
	int ret, i;
1444

1445
	if (!obj->active)
1446 1447
		return 0;

1448 1449 1450 1451 1452
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1489 1490
}

1491 1492 1493 1494 1495
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1496
					    struct intel_rps_client *rps,
1497 1498 1499 1500
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1501
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1502
	unsigned reset_counter;
1503
	int ret, i, n = 0;
1504 1505 1506 1507

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1508
	if (!obj->active)
1509 1510
		return 0;

1511
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1512 1513 1514
	if (ret)
		return ret;

1515
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		ret = i915_gem_check_olr(req);
		if (ret)
			goto err;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			ret = i915_gem_check_olr(req);
			if (ret)
				goto err;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1545
	mutex_unlock(&dev->struct_mutex);
1546 1547
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1548
					  NULL, rps);
1549 1550
	mutex_lock(&dev->struct_mutex);

1551 1552 1553 1554 1555 1556 1557 1558
err:
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1559 1560
}

1561 1562 1563 1564 1565 1566
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1567
/**
1568 1569
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1570 1571 1572
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1573
			  struct drm_file *file)
1574 1575
{
	struct drm_i915_gem_set_domain *args = data;
1576
	struct drm_i915_gem_object *obj;
1577 1578
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1579 1580
	int ret;

1581
	/* Only handle setting domains to types used by the CPU. */
1582
	if (write_domain & I915_GEM_GPU_DOMAINS)
1583 1584
		return -EINVAL;

1585
	if (read_domains & I915_GEM_GPU_DOMAINS)
1586 1587 1588 1589 1590 1591 1592 1593
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1594
	ret = i915_mutex_lock_interruptible(dev);
1595
	if (ret)
1596
		return ret;
1597

1598
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1599
	if (&obj->base == NULL) {
1600 1601
		ret = -ENOENT;
		goto unlock;
1602
	}
1603

1604 1605 1606 1607
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1608
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1609
							  to_rps_client(file),
1610
							  !write_domain);
1611 1612 1613
	if (ret)
		goto unref;

1614
	if (read_domains & I915_GEM_DOMAIN_GTT)
1615
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1616
	else
1617
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1618

1619
unref:
1620
	drm_gem_object_unreference(&obj->base);
1621
unlock:
1622 1623 1624 1625 1626 1627 1628 1629 1630
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1631
			 struct drm_file *file)
1632 1633
{
	struct drm_i915_gem_sw_finish *args = data;
1634
	struct drm_i915_gem_object *obj;
1635 1636
	int ret = 0;

1637
	ret = i915_mutex_lock_interruptible(dev);
1638
	if (ret)
1639
		return ret;
1640

1641
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642
	if (&obj->base == NULL) {
1643 1644
		ret = -ENOENT;
		goto unlock;
1645 1646 1647
	}

	/* Pinned buffers may be scanout, so flush the cache */
1648
	if (obj->pin_display)
1649
		i915_gem_object_flush_cpu_write_domain(obj);
1650

1651
	drm_gem_object_unreference(&obj->base);
1652
unlock:
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1673 1674 1675
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676
		    struct drm_file *file)
1677 1678 1679 1680 1681
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1682 1683 1684 1685 1686 1687
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1688
	obj = drm_gem_object_lookup(dev, file, args->handle);
1689
	if (obj == NULL)
1690
		return -ENOENT;
1691

1692 1693 1694 1695 1696 1697 1698 1699
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1700
	addr = vm_mmap(obj->filp, 0, args->size,
1701 1702
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1716
	drm_gem_object_unreference_unlocked(obj);
1717 1718 1719 1720 1721 1722 1723 1724
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1743 1744
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1745
	struct drm_i915_private *dev_priv = dev->dev_private;
1746
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1747 1748 1749
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1750
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1751

1752 1753
	intel_runtime_pm_get(dev_priv);

1754 1755 1756 1757
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1758 1759 1760
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1761

C
Chris Wilson 已提交
1762 1763
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1764 1765 1766 1767 1768 1769 1770 1771 1772
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1773 1774
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1775
		ret = -EFAULT;
1776 1777 1778
		goto unlock;
	}

1779
	/* Use a partial view if the object is bigger than the aperture. */
1780 1781
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1782
		static const unsigned int chunk_size = 256; // 1 MiB
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1796 1797
	if (ret)
		goto unlock;
1798

1799 1800 1801
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1802

1803
	ret = i915_gem_object_get_fence(obj);
1804
	if (ret)
1805
		goto unpin;
1806

1807
	/* Finally, remap it using the new GTT offset */
1808 1809
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1810
	pfn >>= PAGE_SHIFT;
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1821

1822 1823
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1824 1825 1826 1827 1828
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1850
unpin:
1851
	i915_gem_object_ggtt_unpin_view(obj, &view);
1852
unlock:
1853
	mutex_unlock(&dev->struct_mutex);
1854
out:
1855
	switch (ret) {
1856
	case -EIO:
1857 1858 1859 1860 1861 1862 1863
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1864 1865 1866
			ret = VM_FAULT_SIGBUS;
			break;
		}
1867
	case -EAGAIN:
D
Daniel Vetter 已提交
1868 1869 1870 1871
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1872
		 */
1873 1874
	case 0:
	case -ERESTARTSYS:
1875
	case -EINTR:
1876 1877 1878 1879 1880
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1881 1882
		ret = VM_FAULT_NOPAGE;
		break;
1883
	case -ENOMEM:
1884 1885
		ret = VM_FAULT_OOM;
		break;
1886
	case -ENOSPC:
1887
	case -EFAULT:
1888 1889
		ret = VM_FAULT_SIGBUS;
		break;
1890
	default:
1891
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1892 1893
		ret = VM_FAULT_SIGBUS;
		break;
1894
	}
1895 1896 1897

	intel_runtime_pm_put(dev_priv);
	return ret;
1898 1899
}

1900 1901 1902 1903
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1904
 * Preserve the reservation of the mmapping with the DRM core code, but
1905 1906 1907 1908 1909 1910 1911 1912 1913
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1914
void
1915
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1916
{
1917 1918
	if (!obj->fault_mappable)
		return;
1919

1920 1921
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1922
	obj->fault_mappable = false;
1923 1924
}

1925 1926 1927 1928 1929 1930 1931 1932 1933
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1934
uint32_t
1935
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1936
{
1937
	uint32_t gtt_size;
1938 1939

	if (INTEL_INFO(dev)->gen >= 4 ||
1940 1941
	    tiling_mode == I915_TILING_NONE)
		return size;
1942 1943 1944

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1945
		gtt_size = 1024*1024;
1946
	else
1947
		gtt_size = 512*1024;
1948

1949 1950
	while (gtt_size < size)
		gtt_size <<= 1;
1951

1952
	return gtt_size;
1953 1954
}

1955 1956 1957 1958 1959
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1960
 * potential fence register mapping.
1961
 */
1962 1963 1964
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1965 1966 1967 1968 1969
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1970
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1971
	    tiling_mode == I915_TILING_NONE)
1972 1973
		return 4096;

1974 1975 1976 1977
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1978
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1979 1980
}

1981 1982 1983 1984 1985
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1986
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1987 1988
		return 0;

1989 1990
	dev_priv->mm.shrinker_no_lock_stealing = true;

1991 1992
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1993
		goto out;
1994 1995 1996 1997 1998 1999 2000 2001

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2002 2003 2004 2005 2006
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2007 2008
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2009
		goto out;
2010 2011

	i915_gem_shrink_all(dev_priv);
2012 2013 2014 2015 2016
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2017 2018 2019 2020 2021 2022 2023
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2024
int
2025 2026
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2027
		  uint32_t handle,
2028
		  uint64_t *offset)
2029
{
2030
	struct drm_i915_gem_object *obj;
2031 2032
	int ret;

2033
	ret = i915_mutex_lock_interruptible(dev);
2034
	if (ret)
2035
		return ret;
2036

2037
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2038
	if (&obj->base == NULL) {
2039 2040 2041
		ret = -ENOENT;
		goto unlock;
	}
2042

2043
	if (obj->madv != I915_MADV_WILLNEED) {
2044
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2045
		ret = -EFAULT;
2046
		goto out;
2047 2048
	}

2049 2050 2051
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2052

2053
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2054

2055
out:
2056
	drm_gem_object_unreference(&obj->base);
2057
unlock:
2058
	mutex_unlock(&dev->struct_mutex);
2059
	return ret;
2060 2061
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2083
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2084 2085
}

D
Daniel Vetter 已提交
2086 2087 2088
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2089
{
2090
	i915_gem_object_free_mmap_offset(obj);
2091

2092 2093
	if (obj->base.filp == NULL)
		return;
2094

D
Daniel Vetter 已提交
2095 2096 2097 2098 2099
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2100
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2101 2102
	obj->madv = __I915_MADV_PURGED;
}
2103

2104 2105 2106
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2107
{
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2122 2123
}

2124
static void
2125
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2126
{
2127 2128
	struct sg_page_iter sg_iter;
	int ret;
2129

2130
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2131

C
Chris Wilson 已提交
2132 2133 2134 2135 2136 2137
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2138
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2139 2140 2141
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2142
	if (i915_gem_object_needs_bit17_swizzle(obj))
2143 2144
		i915_gem_object_save_bit_17_swizzle(obj);

2145 2146
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2147

2148
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2149
		struct page *page = sg_page_iter_page(&sg_iter);
2150

2151
		if (obj->dirty)
2152
			set_page_dirty(page);
2153

2154
		if (obj->madv == I915_MADV_WILLNEED)
2155
			mark_page_accessed(page);
2156

2157
		page_cache_release(page);
2158
	}
2159
	obj->dirty = 0;
2160

2161 2162
	sg_free_table(obj->pages);
	kfree(obj->pages);
2163
}
C
Chris Wilson 已提交
2164

2165
int
2166 2167 2168 2169
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2170
	if (obj->pages == NULL)
2171 2172
		return 0;

2173 2174 2175
	if (obj->pages_pin_count)
		return -EBUSY;

2176
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2177

2178 2179 2180
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2181
	list_del(&obj->global_list);
2182

2183
	ops->put_pages(obj);
2184
	obj->pages = NULL;
2185

2186
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2187 2188 2189 2190

	return 0;
}

2191
static int
C
Chris Wilson 已提交
2192
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2193
{
C
Chris Wilson 已提交
2194
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2195 2196
	int page_count, i;
	struct address_space *mapping;
2197 2198
	struct sg_table *st;
	struct scatterlist *sg;
2199
	struct sg_page_iter sg_iter;
2200
	struct page *page;
2201
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2202
	gfp_t gfp;
2203

C
Chris Wilson 已提交
2204 2205 2206 2207 2208 2209 2210
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2211 2212 2213 2214
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2215
	page_count = obj->base.size / PAGE_SIZE;
2216 2217
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2218
		return -ENOMEM;
2219
	}
2220

2221 2222 2223 2224 2225
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2226
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2227
	gfp = mapping_gfp_mask(mapping);
2228
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2229
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2230 2231 2232
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2233 2234
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2235 2236 2237 2238 2239
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2240 2241 2242 2243 2244 2245 2246 2247
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2248
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2249 2250 2251
			if (IS_ERR(page))
				goto err_pages;
		}
2252 2253 2254 2255 2256 2257 2258 2259
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2260 2261 2262 2263 2264 2265 2266 2267 2268
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2269 2270 2271

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2272
	}
2273 2274 2275 2276
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2277 2278
	obj->pages = st;

2279
	if (i915_gem_object_needs_bit17_swizzle(obj))
2280 2281
		i915_gem_object_do_bit_17_swizzle(obj);

2282 2283 2284 2285
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2286 2287 2288
	return 0;

err_pages:
2289 2290
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2291
		page_cache_release(sg_page_iter_page(&sg_iter));
2292 2293
	sg_free_table(st);
	kfree(st);
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2307 2308
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2323
	if (obj->pages)
2324 2325
		return 0;

2326
	if (obj->madv != I915_MADV_WILLNEED) {
2327
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2328
		return -EFAULT;
2329 2330
	}

2331 2332
	BUG_ON(obj->pages_pin_count);

2333 2334 2335 2336
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2337
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2338 2339 2340 2341

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2342
	return 0;
2343 2344
}

2345 2346
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct intel_engine_cs *ring)
2347
{
2348
	struct drm_i915_gem_object *obj = vma->obj;
2349 2350

	/* Add a reference if we're newly entering the active list. */
2351
	if (obj->active == 0)
2352
		drm_gem_object_reference(&obj->base);
2353
	obj->active |= intel_ring_flag(ring);
2354

2355 2356 2357
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
	i915_gem_request_assign(&obj->last_read_req[ring->id],
				intel_ring_get_request(ring));
2358

2359
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2360 2361
}

2362 2363
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2364
{
2365 2366 2367 2368 2369
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
	intel_fb_obj_flush(obj, true);
B
Ben Widawsky 已提交
2370 2371
}

2372
static void
2373
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2374
{
2375
	struct i915_vma *vma;
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2389

2390 2391 2392
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2393
	}
2394

2395
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2396
	drm_gem_object_unreference(&obj->base);
2397 2398
}

2399
static int
2400
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2401
{
2402
	struct drm_i915_private *dev_priv = dev->dev_private;
2403
	struct intel_engine_cs *ring;
2404
	int ret, i, j;
2405

2406
	/* Carefully retire all requests without writing to the rings */
2407
	for_each_ring(ring, dev_priv, i) {
2408 2409 2410
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2411 2412
	}
	i915_gem_retire_requests(dev);
2413 2414

	/* Finally reset hw state */
2415
	for_each_ring(ring, dev_priv, i) {
2416
		intel_ring_init_seqno(ring, seqno);
2417

2418 2419
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2420
	}
2421

2422
	return 0;
2423 2424
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2451 2452
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2453
{
2454 2455 2456 2457
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2458
		int ret = i915_gem_init_seqno(dev, 0);
2459 2460
		if (ret)
			return ret;
2461

2462 2463
		dev_priv->next_seqno = 1;
	}
2464

2465
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2466
	return 0;
2467 2468
}

2469
int __i915_add_request(struct intel_engine_cs *ring,
2470
		       struct drm_file *file,
2471
		       struct drm_i915_gem_object *obj)
2472
{
2473
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2474
	struct drm_i915_gem_request *request;
2475
	struct intel_ringbuffer *ringbuf;
2476
	u32 request_start;
2477 2478
	int ret;

2479
	request = ring->outstanding_lazy_request;
2480 2481 2482 2483
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2484
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2485 2486 2487 2488
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2489 2490 2491 2492 2493 2494 2495
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2496
	if (i915.enable_execlists) {
2497
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2498 2499 2500 2501 2502 2503 2504
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2505

2506 2507 2508 2509 2510
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2511
	request->postfix = intel_ring_get_tail(ringbuf);
2512

2513
	if (i915.enable_execlists) {
2514
		ret = ring->emit_request(ringbuf, request);
2515 2516 2517 2518 2519 2520
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
2521 2522

		request->tail = intel_ring_get_tail(ringbuf);
2523
	}
2524

2525 2526 2527 2528 2529 2530 2531 2532
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2533
	request->batch_obj = obj;
2534

2535 2536 2537 2538 2539 2540 2541 2542
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2543

2544
	request->emitted_jiffies = jiffies;
2545
	list_add_tail(&request->list, &ring->request_list);
2546
	request->file_priv = NULL;
2547

C
Chris Wilson 已提交
2548 2549 2550
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2551
		spin_lock(&file_priv->mm.lock);
2552
		request->file_priv = file_priv;
2553
		list_add_tail(&request->client_list,
2554
			      &file_priv->mm.request_list);
2555
		spin_unlock(&file_priv->mm.lock);
2556 2557

		request->pid = get_pid(task_pid(current));
2558
	}
2559

2560
	trace_i915_gem_request_add(request);
2561
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2562

2563
	i915_queue_hangcheck(ring->dev);
2564

2565 2566 2567 2568
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2569

2570
	return 0;
2571 2572
}

2573
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2574
				   const struct intel_context *ctx)
2575
{
2576
	unsigned long elapsed;
2577

2578 2579 2580
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2581 2582
		return true;

2583 2584
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2585
		if (!i915_gem_context_is_default(ctx)) {
2586
			DRM_DEBUG("context hanging too fast, banning!\n");
2587
			return true;
2588 2589 2590
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2591
			return true;
2592
		}
2593 2594 2595 2596 2597
	}

	return false;
}

2598
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2599
				  struct intel_context *ctx,
2600
				  const bool guilty)
2601
{
2602 2603 2604 2605
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2606

2607 2608 2609
	hs = &ctx->hang_stats;

	if (guilty) {
2610
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2611 2612 2613 2614
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2615 2616 2617
	}
}

2618 2619 2620 2621 2622 2623
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2624 2625
	if (ctx) {
		if (i915.enable_execlists) {
2626
			struct intel_engine_cs *ring = req->ring;
2627

2628 2629 2630
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2631

2632 2633
		i915_gem_context_unreference(ctx);
	}
2634

2635
	kmem_cache_free(req->i915->requests, req);
2636 2637
}

2638 2639 2640
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
2641
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2642
	struct drm_i915_gem_request *req;
2643 2644 2645 2646 2647
	int ret;

	if (ring->outstanding_lazy_request)
		return 0;

D
Daniel Vetter 已提交
2648 2649
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2650 2651
		return -ENOMEM;

D
Daniel Vetter 已提交
2652 2653
	kref_init(&req->ref);
	req->i915 = dev_priv;
2654

D
Daniel Vetter 已提交
2655
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2656 2657
	if (ret)
		goto err;
2658

D
Daniel Vetter 已提交
2659
	req->ring = ring;
2660 2661

	if (i915.enable_execlists)
D
Daniel Vetter 已提交
2662
		ret = intel_logical_ring_alloc_request_extras(req, ctx);
2663
	else
D
Daniel Vetter 已提交
2664
		ret = intel_ring_alloc_request_extras(req);
2665 2666
	if (ret)
		goto err;
2667

D
Daniel Vetter 已提交
2668
	ring->outstanding_lazy_request = req;
2669
	return 0;
2670 2671 2672 2673

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2674 2675
}

2676
struct drm_i915_gem_request *
2677
i915_gem_find_active_request(struct intel_engine_cs *ring)
2678
{
2679 2680 2681
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2682
		if (i915_gem_request_completed(request, false))
2683
			continue;
2684

2685
		return request;
2686
	}
2687 2688 2689 2690 2691

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2692
				       struct intel_engine_cs *ring)
2693 2694 2695 2696
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2697
	request = i915_gem_find_active_request(ring);
2698 2699 2700 2701 2702 2703

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2704
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2705 2706

	list_for_each_entry_continue(request, &ring->request_list, list)
2707
		i915_set_reset_status(dev_priv, request->ctx, false);
2708
}
2709

2710
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2711
					struct intel_engine_cs *ring)
2712
{
2713
	while (!list_empty(&ring->active_list)) {
2714
		struct drm_i915_gem_object *obj;
2715

2716 2717
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2718
				       ring_list[ring->id]);
2719

2720
		i915_gem_object_retire__read(obj, ring->id);
2721
	}
2722

2723 2724 2725 2726 2727 2728
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2729
		struct drm_i915_gem_request *submit_req;
2730 2731

		submit_req = list_first_entry(&ring->execlist_queue,
2732
				struct drm_i915_gem_request,
2733 2734
				execlist_link);
		list_del(&submit_req->execlist_link);
2735 2736 2737 2738

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2739
		i915_gem_request_unreference(submit_req);
2740 2741
	}

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2756
		i915_gem_request_retire(request);
2757
	}
2758

2759 2760
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2761 2762
}

2763
void i915_gem_restore_fences(struct drm_device *dev)
2764 2765 2766 2767
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2768
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2769
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2770

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2781 2782 2783
	}
}

2784
void i915_gem_reset(struct drm_device *dev)
2785
{
2786
	struct drm_i915_private *dev_priv = dev->dev_private;
2787
	struct intel_engine_cs *ring;
2788
	int i;
2789

2790 2791 2792 2793 2794 2795 2796 2797
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2798
	for_each_ring(ring, dev_priv, i)
2799
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2800

2801 2802
	i915_gem_context_reset(dev);

2803
	i915_gem_restore_fences(dev);
2804 2805

	WARN_ON(i915_verify_lists(dev));
2806 2807 2808 2809 2810
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2811
void
2812
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2813
{
C
Chris Wilson 已提交
2814
	WARN_ON(i915_verify_lists(ring->dev));
2815

2816 2817 2818
	if (list_empty(&ring->active_list))
		return;

2819 2820 2821 2822
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2823
	 */
2824
	while (!list_empty(&ring->request_list)) {
2825 2826
		struct drm_i915_gem_request *request;

2827
		request = list_first_entry(&ring->request_list,
2828 2829 2830
					   struct drm_i915_gem_request,
					   list);

2831
		if (!i915_gem_request_completed(request, true))
2832 2833
			break;

2834
		i915_gem_request_retire(request);
2835
	}
2836

2837 2838 2839 2840 2841 2842 2843 2844 2845
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2846
				      ring_list[ring->id]);
2847

2848
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2849 2850
			break;

2851
		i915_gem_object_retire__read(obj, ring->id);
2852 2853
	}

2854 2855
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2856
		ring->irq_put(ring);
2857
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2858
	}
2859

C
Chris Wilson 已提交
2860
	WARN_ON(i915_verify_lists(ring->dev));
2861 2862
}

2863
bool
2864 2865
i915_gem_retire_requests(struct drm_device *dev)
{
2866
	struct drm_i915_private *dev_priv = dev->dev_private;
2867
	struct intel_engine_cs *ring;
2868
	bool idle = true;
2869
	int i;
2870

2871
	for_each_ring(ring, dev_priv, i) {
2872
		i915_gem_retire_requests_ring(ring);
2873
		idle &= list_empty(&ring->request_list);
2874 2875 2876 2877 2878 2879 2880 2881 2882
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2883 2884 2885 2886 2887 2888 2889 2890
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2891 2892
}

2893
static void
2894 2895
i915_gem_retire_work_handler(struct work_struct *work)
{
2896 2897 2898
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2899
	bool idle;
2900

2901
	/* Come back later if the device is busy... */
2902 2903 2904 2905
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2906
	}
2907
	if (!idle)
2908 2909
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2910
}
2911

2912 2913 2914 2915 2916
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2917
	struct drm_device *dev = dev_priv->dev;
2918 2919
	struct intel_engine_cs *ring;
	int i;
2920

2921 2922 2923
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2924 2925 2926 2927 2928 2929 2930 2931 2932

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2933

2934 2935
		mutex_unlock(&dev->struct_mutex);
	}
2936 2937
}

2938 2939 2940 2941 2942 2943 2944 2945
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2946 2947 2948 2949
	int ret, i;

	if (!obj->active)
		return 0;
2950

2951 2952
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2953

2954 2955 2956 2957 2958 2959 2960 2961
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		ret = i915_gem_check_olr(req);
2962 2963 2964
		if (ret)
			return ret;

2965 2966 2967 2968 2969
		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
2970 2971 2972 2973 2974
	}

	return 0;
}

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3000
	struct drm_i915_private *dev_priv = dev->dev_private;
3001 3002
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3003
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3004
	unsigned reset_counter;
3005 3006
	int i, n = 0;
	int ret;
3007

3008 3009 3010
	if (args->flags != 0)
		return -EINVAL;

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3021 3022
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3023 3024 3025
	if (ret)
		goto out;

3026
	if (!obj->active)
3027
		goto out;
3028 3029

	/* Do this after OLR check to make sure we make forward progress polling
3030
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3031
	 */
3032
	if (args->timeout_ns == 0) {
3033 3034 3035 3036 3037
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3038
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3039 3040 3041 3042 3043 3044 3045 3046

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3047 3048
	mutex_unlock(&dev->struct_mutex);

3049 3050 3051 3052 3053 3054 3055
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3056
	return ret;
3057 3058 3059 3060 3061 3062 3063

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
		       struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *from;
	int ret;

	from = i915_gem_request_get_ring(req);
	if (to == from)
		return 0;

	if (i915_gem_request_completed(req, true))
		return 0;

	ret = i915_gem_check_olr(req);
	if (ret)
		return ret;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3084
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3085
		ret = __i915_wait_request(req,
3086 3087 3088 3089
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
		if (ret)
			return ret;

		i915_gem_object_retire_request(obj, req);
	} else {
		int idx = intel_ring_sync_index(from, to);
		u32 seqno = i915_gem_request_get_seqno(req);

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

		trace_i915_gem_ring_sync_to(from, to, req);
		ret = to->semaphore.sync_to(to, from, seqno);
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3117 3118 3119 3120 3121 3122 3123 3124
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
 * rather than a particular GPU ring. Conceptually we serialise writes
 * between engines inside the GPU. We only allow on engine to write
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3136 3137 3138
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3139 3140
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3141
		     struct intel_engine_cs *to)
3142
{
3143 3144 3145
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3146

3147
	if (!obj->active)
3148 3149
		return 0;

3150 3151
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3152

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
		ret = __i915_gem_object_sync(obj, to, req[i]);
		if (ret)
			return ret;
	}
3167

3168
	return 0;
3169 3170
}

3171 3172 3173 3174 3175 3176 3177
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3178 3179 3180
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3181 3182 3183
	/* Wait for any direct GTT access to complete */
	mb();

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3195
int i915_vma_unbind(struct i915_vma *vma)
3196
{
3197
	struct drm_i915_gem_object *obj = vma->obj;
3198
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3199
	int ret;
3200

3201
	if (list_empty(&vma->vma_link))
3202 3203
		return 0;

3204 3205 3206 3207
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3208

B
Ben Widawsky 已提交
3209
	if (vma->pin_count)
3210
		return -EBUSY;
3211

3212 3213
	BUG_ON(obj->pages == NULL);

3214
	ret = i915_gem_object_wait_rendering(obj, false);
3215
	if (ret)
3216 3217 3218 3219 3220 3221
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3222 3223
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3224
		i915_gem_object_finish_gtt(obj);
3225

3226 3227 3228 3229 3230
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3231

3232
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3233

3234
	vma->vm->unbind_vma(vma);
3235
	vma->bound = 0;
3236

3237
	list_del_init(&vma->mm_list);
3238 3239 3240 3241 3242 3243 3244 3245 3246
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3247

B
Ben Widawsky 已提交
3248 3249 3250 3251
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3252
	 * no more VMAs exist. */
3253 3254
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3255
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3256
	}
3257

3258 3259 3260 3261 3262 3263
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3264
	return 0;
3265 3266
}

3267
int i915_gpu_idle(struct drm_device *dev)
3268
{
3269
	struct drm_i915_private *dev_priv = dev->dev_private;
3270
	struct intel_engine_cs *ring;
3271
	int ret, i;
3272 3273

	/* Flush everything onto the inactive list. */
3274
	for_each_ring(ring, dev_priv, i) {
3275 3276 3277 3278 3279
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3280

3281
		ret = intel_ring_idle(ring);
3282 3283 3284
		if (ret)
			return ret;
	}
3285

3286
	WARN_ON(i915_verify_lists(dev));
3287
	return 0;
3288 3289
}

3290 3291
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3292
{
3293
	struct drm_i915_private *dev_priv = dev->dev_private;
3294 3295
	int fence_reg;
	int fence_pitch_shift;
3296

3297 3298 3299 3300 3301 3302 3303 3304
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3319
	if (obj) {
3320
		u32 size = i915_gem_obj_ggtt_size(obj);
3321
		uint64_t val;
3322

3323 3324 3325 3326 3327 3328 3329
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3330
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3331
				 0xfffff000) << 32;
3332
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3333
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3334 3335 3336
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3347 3348
}

3349 3350
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3351
{
3352
	struct drm_i915_private *dev_priv = dev->dev_private;
3353
	u32 val;
3354

3355
	if (obj) {
3356
		u32 size = i915_gem_obj_ggtt_size(obj);
3357 3358
		int pitch_val;
		int tile_width;
3359

3360
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3361
		     (size & -size) != size ||
3362 3363 3364
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3365

3366 3367 3368 3369 3370 3371 3372 3373 3374
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3375
		val = i915_gem_obj_ggtt_offset(obj);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3391 3392
}

3393 3394
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3395
{
3396
	struct drm_i915_private *dev_priv = dev->dev_private;
3397 3398
	uint32_t val;

3399
	if (obj) {
3400
		u32 size = i915_gem_obj_ggtt_size(obj);
3401
		uint32_t pitch_val;
3402

3403
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3404
		     (size & -size) != size ||
3405 3406 3407
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3408

3409 3410
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3411

3412
		val = i915_gem_obj_ggtt_offset(obj);
3413 3414 3415 3416 3417 3418 3419
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3420

3421 3422 3423 3424
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3425 3426 3427 3428 3429
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3430 3431 3432
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3433 3434 3435 3436 3437 3438 3439 3440
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3441 3442 3443 3444
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3445 3446 3447 3448 3449 3450
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3451 3452 3453 3454 3455 3456

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3457 3458
}

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3469
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3470 3471 3472
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3473 3474

	if (enable) {
3475
		obj->fence_reg = reg;
3476 3477 3478 3479 3480 3481 3482
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3483
	obj->fence_dirty = false;
3484 3485
}

3486
static int
3487
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3488
{
3489
	if (obj->last_fenced_req) {
3490
		int ret = i915_wait_request(obj->last_fenced_req);
3491 3492
		if (ret)
			return ret;
3493

3494
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3495 3496 3497 3498 3499 3500 3501 3502
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3503
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3504
	struct drm_i915_fence_reg *fence;
3505 3506
	int ret;

3507
	ret = i915_gem_object_wait_fence(obj);
3508 3509 3510
	if (ret)
		return ret;

3511 3512
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3513

3514 3515
	fence = &dev_priv->fence_regs[obj->fence_reg];

3516 3517 3518
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3519
	i915_gem_object_fence_lost(obj);
3520
	i915_gem_object_update_fence(obj, fence, false);
3521 3522 3523 3524 3525

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3526
i915_find_fence_reg(struct drm_device *dev)
3527 3528
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3529
	struct drm_i915_fence_reg *reg, *avail;
3530
	int i;
3531 3532

	/* First try to find a free reg */
3533
	avail = NULL;
3534 3535 3536
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3537
			return reg;
3538

3539
		if (!reg->pin_count)
3540
			avail = reg;
3541 3542
	}

3543
	if (avail == NULL)
3544
		goto deadlock;
3545 3546

	/* None available, try to steal one or wait for a user to finish */
3547
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3548
		if (reg->pin_count)
3549 3550
			continue;

C
Chris Wilson 已提交
3551
		return reg;
3552 3553
	}

3554 3555 3556 3557 3558 3559
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3560 3561
}

3562
/**
3563
 * i915_gem_object_get_fence - set up fencing for an object
3564 3565 3566 3567 3568 3569 3570 3571 3572
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3573 3574
 *
 * For an untiled surface, this removes any existing fence.
3575
 */
3576
int
3577
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3578
{
3579
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3580
	struct drm_i915_private *dev_priv = dev->dev_private;
3581
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3582
	struct drm_i915_fence_reg *reg;
3583
	int ret;
3584

3585 3586 3587
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3588
	if (obj->fence_dirty) {
3589
		ret = i915_gem_object_wait_fence(obj);
3590 3591 3592
		if (ret)
			return ret;
	}
3593

3594
	/* Just update our place in the LRU if our fence is getting reused. */
3595 3596
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3597
		if (!obj->fence_dirty) {
3598 3599 3600 3601 3602
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3603 3604 3605
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3606
		reg = i915_find_fence_reg(dev);
3607 3608
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3609

3610 3611 3612
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3613
			ret = i915_gem_object_wait_fence(old);
3614 3615 3616
			if (ret)
				return ret;

3617
			i915_gem_object_fence_lost(old);
3618
		}
3619
	} else
3620 3621
		return 0;

3622 3623
	i915_gem_object_update_fence(obj, reg, enable);

3624
	return 0;
3625 3626
}

3627
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3628 3629
				     unsigned long cache_level)
{
3630
	struct drm_mm_node *gtt_space = &vma->node;
3631 3632
	struct drm_mm_node *other;

3633 3634 3635 3636 3637 3638
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3639
	 */
3640
	if (vma->vm->mm.color_adjust == NULL)
3641 3642
		return true;

3643
	if (!drm_mm_node_allocated(gtt_space))
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3660
/**
3661 3662
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3663
 */
3664
static struct i915_vma *
3665 3666
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3667
			   const struct i915_ggtt_view *ggtt_view,
3668
			   unsigned alignment,
3669
			   uint64_t flags)
3670
{
3671
	struct drm_device *dev = obj->base.dev;
3672
	struct drm_i915_private *dev_priv = dev->dev_private;
3673
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3674 3675 3676
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3677
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3678
	struct i915_vma *vma;
3679
	int ret;
3680

3681 3682 3683 3684 3685
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3686

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3716

3717
	if (alignment == 0)
3718
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3719
						unfenced_alignment;
3720
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3721 3722 3723
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3724
		return ERR_PTR(-EINVAL);
3725 3726
	}

3727 3728 3729
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3730
	 */
3731 3732 3733 3734
	if (size > end) {
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3735
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3736
			  end);
3737
		return ERR_PTR(-E2BIG);
3738 3739
	}

3740
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3741
	if (ret)
3742
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3743

3744 3745
	i915_gem_object_pin_pages(obj);

3746 3747 3748
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3749
	if (IS_ERR(vma))
3750
		goto err_unpin;
B
Ben Widawsky 已提交
3751

3752
search_free:
3753
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3754
						  size, alignment,
3755 3756
						  obj->cache_level,
						  start, end,
3757 3758
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3759
	if (ret) {
3760
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3761 3762 3763
					       obj->cache_level,
					       start, end,
					       flags);
3764 3765
		if (ret == 0)
			goto search_free;
3766

3767
		goto err_free_vma;
3768
	}
3769
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3770
		ret = -EINVAL;
3771
		goto err_remove_node;
3772 3773
	}

3774
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3775
	if (ret)
3776
		goto err_remove_node;
3777

3778
	trace_i915_vma_bind(vma, flags);
3779
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3780 3781 3782
	if (ret)
		goto err_finish_gtt;

3783
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3784
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3785

3786
	return vma;
B
Ben Widawsky 已提交
3787

3788 3789
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3790
err_remove_node:
3791
	drm_mm_remove_node(&vma->node);
3792
err_free_vma:
B
Ben Widawsky 已提交
3793
	i915_gem_vma_destroy(vma);
3794
	vma = ERR_PTR(ret);
3795
err_unpin:
B
Ben Widawsky 已提交
3796
	i915_gem_object_unpin_pages(obj);
3797
	return vma;
3798 3799
}

3800
bool
3801 3802
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3803 3804 3805 3806 3807
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3808
	if (obj->pages == NULL)
3809
		return false;
3810

3811 3812 3813 3814
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3815
	if (obj->stolen || obj->phys_handle)
3816
		return false;
3817

3818 3819 3820 3821 3822 3823 3824 3825
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3826 3827
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3828
		return false;
3829
	}
3830

C
Chris Wilson 已提交
3831
	trace_i915_gem_object_clflush(obj);
3832
	drm_clflush_sg(obj->pages);
3833
	obj->cache_dirty = false;
3834 3835

	return true;
3836 3837 3838 3839
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3840
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3841
{
C
Chris Wilson 已提交
3842 3843
	uint32_t old_write_domain;

3844
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3845 3846
		return;

3847
	/* No actual flushing is required for the GTT write domain.  Writes
3848 3849
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3850 3851 3852 3853
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3854
	 */
3855 3856
	wmb();

3857 3858
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3859

3860 3861
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3862
	trace_i915_gem_object_change_domain(obj,
3863
					    obj->base.read_domains,
C
Chris Wilson 已提交
3864
					    old_write_domain);
3865 3866 3867 3868
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3869
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3870
{
C
Chris Wilson 已提交
3871
	uint32_t old_write_domain;
3872

3873
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3874 3875
		return;

3876
	if (i915_gem_clflush_object(obj, obj->pin_display))
3877 3878
		i915_gem_chipset_flush(obj->base.dev);

3879 3880
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3881

3882 3883
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3884
	trace_i915_gem_object_change_domain(obj,
3885
					    obj->base.read_domains,
C
Chris Wilson 已提交
3886
					    old_write_domain);
3887 3888
}

3889 3890 3891 3892 3893 3894
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3895
int
3896
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3897
{
C
Chris Wilson 已提交
3898
	uint32_t old_write_domain, old_read_domains;
3899
	struct i915_vma *vma;
3900
	int ret;
3901

3902 3903 3904
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3905
	ret = i915_gem_object_wait_rendering(obj, !write);
3906 3907 3908
	if (ret)
		return ret;

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3921
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3922

3923 3924 3925 3926 3927 3928 3929
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3930 3931
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3932

3933 3934 3935
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3936 3937
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3938
	if (write) {
3939 3940 3941
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3942 3943
	}

3944
	if (write)
3945
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3946

C
Chris Wilson 已提交
3947 3948 3949 3950
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3951
	/* And bump the LRU for this access */
3952 3953
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3954
		list_move_tail(&vma->mm_list,
3955
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3956

3957 3958 3959
	return 0;
}

3960 3961 3962
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3963
	struct drm_device *dev = obj->base.dev;
3964
	struct i915_vma *vma, *next;
3965 3966 3967 3968 3969
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3970
	if (i915_gem_obj_is_pinned(obj)) {
3971 3972 3973 3974
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3975
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3976
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3977
			ret = i915_vma_unbind(vma);
3978 3979 3980
			if (ret)
				return ret;
		}
3981 3982
	}

3983
	if (i915_gem_obj_bound_any(obj)) {
3984
		ret = i915_gem_object_wait_rendering(obj, false);
3985 3986 3987 3988 3989 3990 3991 3992 3993
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3994
		if (INTEL_INFO(dev)->gen < 6) {
3995 3996 3997 3998 3999
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

4000
		list_for_each_entry(vma, &obj->vma_list, vma_link)
4001 4002
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
4003
						    PIN_UPDATE);
4004 4005 4006
				if (ret)
					return ret;
			}
4007 4008
	}

4009 4010 4011 4012
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4013 4014 4015 4016 4017
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
4018 4019 4020 4021 4022
	}

	return 0;
}

B
Ben Widawsky 已提交
4023 4024
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4025
{
B
Ben Widawsky 已提交
4026
	struct drm_i915_gem_caching *args = data;
4027 4028 4029
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4030 4031
	if (&obj->base == NULL)
		return -ENOENT;
4032

4033 4034 4035 4036 4037 4038
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4039 4040 4041 4042
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4043 4044 4045 4046
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4047

4048 4049
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4050 4051
}

B
Ben Widawsky 已提交
4052 4053
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4054
{
B
Ben Widawsky 已提交
4055
	struct drm_i915_gem_caching *args = data;
4056 4057 4058 4059
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4060 4061
	switch (args->caching) {
	case I915_CACHING_NONE:
4062 4063
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4064
	case I915_CACHING_CACHED:
4065 4066
		level = I915_CACHE_LLC;
		break;
4067 4068 4069
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4070 4071 4072 4073
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
4074 4075 4076 4077
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

4092
/*
4093 4094 4095
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4096 4097
 */
int
4098 4099
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4100 4101
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
4102
{
4103
	u32 old_read_domains, old_write_domain;
4104 4105
	int ret;

4106 4107 4108
	ret = i915_gem_object_sync(obj, pipelined);
	if (ret)
		return ret;
4109

4110 4111 4112
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4113
	obj->pin_display++;
4114

4115 4116 4117 4118 4119 4120 4121 4122 4123
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4124 4125
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4126
	if (ret)
4127
		goto err_unpin_display;
4128

4129 4130 4131 4132
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4133 4134 4135
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4136
	if (ret)
4137
		goto err_unpin_display;
4138

4139
	i915_gem_object_flush_cpu_write_domain(obj);
4140

4141
	old_write_domain = obj->base.write_domain;
4142
	old_read_domains = obj->base.read_domains;
4143 4144 4145 4146

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4147
	obj->base.write_domain = 0;
4148
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4149 4150 4151

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4152
					    old_write_domain);
4153 4154

	return 0;
4155 4156

err_unpin_display:
4157
	obj->pin_display--;
4158 4159 4160 4161
	return ret;
}

void
4162 4163
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4164
{
4165 4166 4167
	if (WARN_ON(obj->pin_display == 0))
		return;

4168 4169
	i915_gem_object_ggtt_unpin_view(obj, view);

4170
	obj->pin_display--;
4171 4172
}

4173 4174 4175 4176 4177 4178
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4179
int
4180
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4181
{
C
Chris Wilson 已提交
4182
	uint32_t old_write_domain, old_read_domains;
4183 4184
	int ret;

4185 4186 4187
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4188
	ret = i915_gem_object_wait_rendering(obj, !write);
4189 4190 4191
	if (ret)
		return ret;

4192
	i915_gem_object_flush_gtt_write_domain(obj);
4193

4194 4195
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4196

4197
	/* Flush the CPU cache if it's still invalid. */
4198
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4199
		i915_gem_clflush_object(obj, false);
4200

4201
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4202 4203 4204 4205 4206
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4207
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4208 4209 4210 4211 4212

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4213 4214
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4215
	}
4216

4217
	if (write)
4218
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4219

C
Chris Wilson 已提交
4220 4221 4222 4223
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4224 4225 4226
	return 0;
}

4227 4228 4229
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4230 4231 4232 4233
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4234 4235 4236
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4237
static int
4238
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4239
{
4240 4241
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4242
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4243
	struct drm_i915_gem_request *request, *target = NULL;
4244
	unsigned reset_counter;
4245
	int ret;
4246

4247 4248 4249 4250 4251 4252 4253
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4254

4255
	spin_lock(&file_priv->mm.lock);
4256
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4257 4258
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4259

4260
		target = request;
4261
	}
4262
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4263 4264
	if (target)
		i915_gem_request_reference(target);
4265
	spin_unlock(&file_priv->mm.lock);
4266

4267
	if (target == NULL)
4268
		return 0;
4269

4270
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4271 4272
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4273

4274
	i915_gem_request_unreference__unlocked(target);
4275

4276 4277 4278
	return ret;
}

4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4298 4299 4300 4301 4302 4303
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4304
{
4305
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4306
	struct i915_vma *vma;
4307
	unsigned bound;
4308 4309
	int ret;

4310 4311 4312
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4313
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4314
		return -EINVAL;
4315

4316 4317 4318
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4319 4320 4321 4322 4323 4324 4325 4326 4327
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4328
	if (vma) {
B
Ben Widawsky 已提交
4329 4330 4331
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4332
		if (i915_vma_misplaced(vma, alignment, flags)) {
4333
			unsigned long offset;
4334
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4335
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4336
			WARN(vma->pin_count,
4337
			     "bo is already pinned in %s with incorrect alignment:"
4338
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4339
			     " obj->map_and_fenceable=%d\n",
4340 4341
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4342
			     alignment,
4343
			     !!(flags & PIN_MAPPABLE),
4344
			     obj->map_and_fenceable);
4345
			ret = i915_vma_unbind(vma);
4346 4347
			if (ret)
				return ret;
4348 4349

			vma = NULL;
4350 4351 4352
		}
	}

4353
	bound = vma ? vma->bound : 0;
4354
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4355 4356
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4357 4358
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4359 4360
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4361 4362 4363
		if (ret)
			return ret;
	}
4364

4365 4366
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4381
		mappable = (vma->node.start + fence_size <=
4382 4383 4384 4385
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4386 4387
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4388

4389
	vma->pin_count++;
4390 4391 4392
	return 0;
}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4414
				      alignment, flags | PIN_GLOBAL);
4415 4416
}

4417
void
4418 4419
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4420
{
4421
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4422

B
Ben Widawsky 已提交
4423
	BUG_ON(!vma);
4424
	WARN_ON(vma->pin_count == 0);
4425
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4426

4427
	--vma->pin_count;
4428 4429
}

4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4456 4457
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4458
		    struct drm_file *file)
4459 4460
{
	struct drm_i915_gem_busy *args = data;
4461
	struct drm_i915_gem_object *obj;
4462 4463
	int ret;

4464
	ret = i915_mutex_lock_interruptible(dev);
4465
	if (ret)
4466
		return ret;
4467

4468
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4469
	if (&obj->base == NULL) {
4470 4471
		ret = -ENOENT;
		goto unlock;
4472
	}
4473

4474 4475 4476 4477
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4478
	 */
4479
	ret = i915_gem_object_flush_active(obj);
4480 4481
	if (ret)
		goto unref;
4482

4483 4484 4485 4486
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4487

4488
unref:
4489
	drm_gem_object_unreference(&obj->base);
4490
unlock:
4491
	mutex_unlock(&dev->struct_mutex);
4492
	return ret;
4493 4494 4495 4496 4497 4498
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4499
	return i915_gem_ring_throttle(dev, file_priv);
4500 4501
}

4502 4503 4504 4505
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4506
	struct drm_i915_private *dev_priv = dev->dev_private;
4507
	struct drm_i915_gem_madvise *args = data;
4508
	struct drm_i915_gem_object *obj;
4509
	int ret;
4510 4511 4512 4513 4514 4515 4516 4517 4518

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4519 4520 4521 4522
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4523
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4524
	if (&obj->base == NULL) {
4525 4526
		ret = -ENOENT;
		goto unlock;
4527 4528
	}

B
Ben Widawsky 已提交
4529
	if (i915_gem_obj_is_pinned(obj)) {
4530 4531
		ret = -EINVAL;
		goto out;
4532 4533
	}

4534 4535 4536 4537 4538 4539 4540 4541 4542
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4543 4544
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4545

C
Chris Wilson 已提交
4546
	/* if the object is no longer attached, discard its backing storage */
4547
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4548 4549
		i915_gem_object_truncate(obj);

4550
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4551

4552
out:
4553
	drm_gem_object_unreference(&obj->base);
4554
unlock:
4555
	mutex_unlock(&dev->struct_mutex);
4556
	return ret;
4557 4558
}

4559 4560
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4561
{
4562 4563
	int i;

4564
	INIT_LIST_HEAD(&obj->global_list);
4565 4566
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4567
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4568
	INIT_LIST_HEAD(&obj->vma_list);
4569
	INIT_LIST_HEAD(&obj->batch_pool_link);
4570

4571 4572
	obj->ops = ops;

4573 4574 4575 4576 4577 4578
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4579 4580 4581 4582 4583
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4584 4585
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4586
{
4587
	struct drm_i915_gem_object *obj;
4588
	struct address_space *mapping;
D
Daniel Vetter 已提交
4589
	gfp_t mask;
4590

4591
	obj = i915_gem_object_alloc(dev);
4592 4593
	if (obj == NULL)
		return NULL;
4594

4595
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4596
		i915_gem_object_free(obj);
4597 4598
		return NULL;
	}
4599

4600 4601 4602 4603 4604 4605 4606
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4607
	mapping = file_inode(obj->base.filp)->i_mapping;
4608
	mapping_set_gfp_mask(mapping, mask);
4609

4610
	i915_gem_object_init(obj, &i915_gem_object_ops);
4611

4612 4613
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4614

4615 4616
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4632 4633
	trace_i915_gem_object_create(obj);

4634
	return obj;
4635 4636
}

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4661
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4662
{
4663
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4664
	struct drm_device *dev = obj->base.dev;
4665
	struct drm_i915_private *dev_priv = dev->dev_private;
4666
	struct i915_vma *vma, *next;
4667

4668 4669
	intel_runtime_pm_get(dev_priv);

4670 4671
	trace_i915_gem_object_destroy(obj);

4672
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4673 4674 4675 4676
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4677 4678
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4679

4680 4681
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4682

4683
			WARN_ON(i915_vma_unbind(vma));
4684

4685 4686
			dev_priv->mm.interruptible = was_interruptible;
		}
4687 4688
	}

B
Ben Widawsky 已提交
4689 4690 4691 4692 4693
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4694 4695
	WARN_ON(obj->frontbuffer_bits);

4696 4697 4698 4699 4700
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4701 4702
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4703
	if (discard_backing_storage(obj))
4704
		obj->madv = I915_MADV_DONTNEED;
4705
	i915_gem_object_put_pages(obj);
4706
	i915_gem_object_free_mmap_offset(obj);
4707

4708 4709
	BUG_ON(obj->pages);

4710 4711
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4712

4713 4714 4715
	if (obj->ops->release)
		obj->ops->release(obj);

4716 4717
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4718

4719
	kfree(obj->bit_17);
4720
	i915_gem_object_free(obj);
4721 4722

	intel_runtime_pm_put(dev_priv);
4723 4724
}

4725 4726
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4727 4728
{
	struct i915_vma *vma;
4729 4730 4731 4732 4733
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4734
			return vma;
4735 4736 4737 4738 4739 4740 4741 4742 4743
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4744

4745 4746 4747 4748
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4749 4750
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4751
			return vma;
4752 4753 4754
	return NULL;
}

B
Ben Widawsky 已提交
4755 4756
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4757
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4758
	WARN_ON(vma->node.allocated);
4759 4760 4761 4762 4763

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4764 4765
	vm = vma->vm;

4766 4767
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4768

4769
	list_del(&vma->vma_link);
4770

4771
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4772 4773
}

4774 4775 4776 4777
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4778
	struct intel_engine_cs *ring;
4779 4780 4781
	int i;

	for_each_ring(ring, dev_priv, i)
4782
		dev_priv->gt.stop_ring(ring);
4783 4784
}

4785
int
4786
i915_gem_suspend(struct drm_device *dev)
4787
{
4788
	struct drm_i915_private *dev_priv = dev->dev_private;
4789
	int ret = 0;
4790

4791
	mutex_lock(&dev->struct_mutex);
4792
	ret = i915_gpu_idle(dev);
4793
	if (ret)
4794
		goto err;
4795

4796
	i915_gem_retire_requests(dev);
4797

4798
	i915_gem_stop_ringbuffers(dev);
4799 4800
	mutex_unlock(&dev->struct_mutex);

4801
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4802
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4803
	flush_delayed_work(&dev_priv->mm.idle_work);
4804

4805 4806 4807 4808 4809
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4810
	return 0;
4811 4812 4813 4814

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4815 4816
}

4817
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4818
{
4819
	struct drm_device *dev = ring->dev;
4820
	struct drm_i915_private *dev_priv = dev->dev_private;
4821 4822
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4823
	int i, ret;
B
Ben Widawsky 已提交
4824

4825
	if (!HAS_L3_DPF(dev) || !remap_info)
4826
		return 0;
B
Ben Widawsky 已提交
4827

4828 4829 4830
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4831

4832 4833 4834 4835 4836
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4837
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4838 4839 4840
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4841 4842
	}

4843
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4844

4845
	return ret;
B
Ben Widawsky 已提交
4846 4847
}

4848 4849
void i915_gem_init_swizzling(struct drm_device *dev)
{
4850
	struct drm_i915_private *dev_priv = dev->dev_private;
4851

4852
	if (INTEL_INFO(dev)->gen < 5 ||
4853 4854 4855 4856 4857 4858
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4859 4860 4861
	if (IS_GEN5(dev))
		return;

4862 4863
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4864
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4865
	else if (IS_GEN7(dev))
4866
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4867 4868
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4869 4870
	else
		BUG();
4871
}
D
Daniel Vetter 已提交
4872

4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4916
int i915_gem_init_rings(struct drm_device *dev)
4917
{
4918
	struct drm_i915_private *dev_priv = dev->dev_private;
4919
	int ret;
4920

4921
	ret = intel_init_render_ring_buffer(dev);
4922
	if (ret)
4923
		return ret;
4924 4925

	if (HAS_BSD(dev)) {
4926
		ret = intel_init_bsd_ring_buffer(dev);
4927 4928
		if (ret)
			goto cleanup_render_ring;
4929
	}
4930

4931
	if (intel_enable_blt(dev)) {
4932 4933 4934 4935 4936
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4937 4938 4939 4940 4941 4942
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4943 4944 4945 4946 4947
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4948

4949
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4950
	if (ret)
4951
		goto cleanup_bsd2_ring;
4952 4953 4954

	return 0;

4955 4956
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4957 4958
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4972
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4973
	struct intel_engine_cs *ring;
4974
	int ret, i;
4975 4976 4977 4978

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4979 4980 4981
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4982
	if (dev_priv->ellc_size)
4983
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4984

4985 4986 4987
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4988

4989
	if (HAS_PCH_NOP(dev)) {
4990 4991 4992 4993 4994 4995 4996 4997 4998
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4999 5000
	}

5001 5002
	i915_gem_init_swizzling(dev);

5003 5004 5005 5006 5007 5008 5009 5010
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
5011 5012 5013
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
5014
			goto out;
D
Daniel Vetter 已提交
5015
	}
5016

5017 5018 5019
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

5020
	ret = i915_ppgtt_init_hw(dev);
5021
	if (ret && ret != -EIO) {
5022
		DRM_ERROR("PPGTT enable failed %d\n", ret);
5023
		i915_gem_cleanup_ringbuffer(dev);
5024 5025
	}

5026
	ret = i915_gem_context_enable(dev_priv);
5027
	if (ret && ret != -EIO) {
5028
		DRM_ERROR("Context enable failed %d\n", ret);
5029
		i915_gem_cleanup_ringbuffer(dev);
5030

5031
		goto out;
5032
	}
D
Daniel Vetter 已提交
5033

5034 5035
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5036
	return ret;
5037 5038
}

5039 5040 5041 5042 5043
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5044 5045 5046
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5047
	mutex_lock(&dev->struct_mutex);
5048 5049 5050

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5051 5052 5053
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
5054 5055 5056
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

5057
	if (!i915.enable_execlists) {
5058
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5059 5060 5061
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5062
	} else {
5063
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5064 5065 5066
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5067 5068
	}

5069 5070 5071 5072 5073 5074 5075 5076
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5077
	ret = i915_gem_init_userptr(dev);
5078 5079
	if (ret)
		goto out_unlock;
5080

5081
	i915_gem_init_global_gtt(dev);
5082

5083
	ret = i915_gem_context_init(dev);
5084 5085
	if (ret)
		goto out_unlock;
5086

D
Daniel Vetter 已提交
5087 5088
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
5089
		goto out_unlock;
5090

5091
	ret = i915_gem_init_hw(dev);
5092 5093 5094 5095 5096 5097 5098 5099
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
5100
	}
5101 5102

out_unlock:
5103
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5104
	mutex_unlock(&dev->struct_mutex);
5105

5106
	return ret;
5107 5108
}

5109 5110 5111
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
5112
	struct drm_i915_private *dev_priv = dev->dev_private;
5113
	struct intel_engine_cs *ring;
5114
	int i;
5115

5116
	for_each_ring(ring, dev_priv, i)
5117
		dev_priv->gt.cleanup_ring(ring);
5118 5119
}

5120
static void
5121
init_ring_lists(struct intel_engine_cs *ring)
5122 5123 5124 5125 5126
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5127 5128
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5129
{
5130 5131
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5132 5133 5134 5135
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5136
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5137 5138
}

5139 5140 5141
void
i915_gem_load(struct drm_device *dev)
{
5142
	struct drm_i915_private *dev_priv = dev->dev_private;
5143 5144
	int i;

5145
	dev_priv->objects =
5146 5147 5148 5149
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5150 5151 5152 5153 5154
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5155 5156 5157 5158 5159
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5160

B
Ben Widawsky 已提交
5161 5162 5163
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5164
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5165 5166
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5167
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5168 5169
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5170
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5171
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5172 5173
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5174 5175
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5176
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5177

5178 5179
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5180 5181 5182
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5183 5184 5185 5186
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5187 5188 5189 5190
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5191
	/* Initialize fence registers to zero */
5192 5193
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5194

5195
	i915_gem_detect_bit_6_swizzle(dev);
5196
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5197

5198 5199
	dev_priv->mm.interruptible = true;

5200
	i915_gem_shrinker_init(dev_priv);
5201 5202

	mutex_init(&dev_priv->fb_tracking.lock);
5203
}
5204

5205
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5206
{
5207
	struct drm_i915_file_private *file_priv = file->driver_priv;
5208 5209 5210 5211 5212

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5213
	spin_lock(&file_priv->mm.lock);
5214 5215 5216 5217 5218 5219 5220 5221 5222
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5223
	spin_unlock(&file_priv->mm.lock);
5224

5225
	if (!list_empty(&file_priv->rps.link)) {
5226
		spin_lock(&to_i915(dev)->rps.client_lock);
5227
		list_del(&file_priv->rps.link);
5228
		spin_unlock(&to_i915(dev)->rps.client_lock);
5229
	}
5230 5231 5232 5233 5234
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5235
	int ret;
5236 5237 5238 5239 5240 5241 5242 5243 5244

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5245
	file_priv->file = file;
5246
	INIT_LIST_HEAD(&file_priv->rps.link);
5247 5248 5249 5250

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5251 5252 5253
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5254

5255
	return ret;
5256 5257
}

5258 5259 5260 5261 5262 5263 5264 5265 5266
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5284
/* All the new VM stuff */
5285 5286 5287
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5288 5289 5290 5291
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5292
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5293 5294

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5295 5296 5297 5298
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5299 5300
			return vma->node.start;
	}
5301

5302 5303
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5304 5305 5306
	return -1;
}

5307 5308
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5309
			      const struct i915_ggtt_view *view)
5310
{
5311
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5312 5313 5314
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5315 5316
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5317 5318
			return vma->node.start;

5319
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5340
				  const struct i915_ggtt_view *view)
5341 5342 5343 5344 5345 5346
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5347
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5348
		    drm_mm_node_allocated(&vma->node))
5349 5350 5351 5352 5353 5354 5355
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5356
	struct i915_vma *vma;
5357

5358 5359
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5371
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5372 5373 5374

	BUG_ON(list_empty(&o->vma_list));

5375 5376 5377 5378
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5379 5380
		if (vma->vm == vm)
			return vma->node.size;
5381
	}
5382 5383 5384
	return 0;
}

5385
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5386 5387
{
	struct i915_vma *vma;
5388
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5389 5390
		if (vma->pin_count > 0)
			return true;
5391

5392
	return false;
5393
}
5394