i915_gem.c 139.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49

50 51
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
52 53 54
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

55
	if (!i915_gem_object_is_coherent(obj))
56 57 58 59 60
		return true;

	return obj->pin_display;
}

61
static int
62
insert_mappable_node(struct i915_ggtt *ggtt,
63 64 65
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
66 67 68 69
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
70 71 72 73 74 75 76 77
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

78 79
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80
				  u64 size)
81
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89
				     u64 size)
90
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
	might_sleep();

104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
109
	ret = wait_event_interruptible_timeout(error->reset_queue,
110
					       !i915_reset_backoff(error),
111
					       I915_RESET_TIMEOUT);
112 113 114 115
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
116
		return ret;
117 118
	} else {
		return 0;
119
	}
120 121
}

122
int i915_mutex_lock_interruptible(struct drm_device *dev)
123
{
124
	struct drm_i915_private *dev_priv = to_i915(dev);
125 126
	int ret;

127
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 129 130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
137

138 139
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140
			    struct drm_file *file)
141
{
142
	struct drm_i915_private *dev_priv = to_i915(dev);
143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144
	struct drm_i915_gem_get_aperture *args = data;
145
	struct i915_vma *vma;
146
	size_t pinned;
147

148
	pinned = 0;
149
	mutex_lock(&dev->struct_mutex);
150
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151
		if (i915_vma_is_pinned(vma))
152
			pinned += vma->node.size;
153
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154
		if (i915_vma_is_pinned(vma))
155
			pinned += vma->node.size;
156
	mutex_unlock(&dev->struct_mutex);
157

158
	args->aper_size = ggtt->base.total;
159
	args->aper_available_size = args->aper_size - pinned;
160

161 162 163
	return 0;
}

164
static struct sg_table *
165
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173

174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175
		return ERR_PTR(-EINVAL);
176

177 178 179 180 181 182 183 184 185 186 187
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
188 189 190 191 192
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
193 194 195 196
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
197 198 199 200 201 202

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

203
		put_page(page);
204 205 206
		vaddr += PAGE_SIZE;
	}

207
	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 209

	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 211 212 213
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
214 215 216

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
217 218
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
219 220 221 222 223
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
224

225
	sg_dma_address(sg) = phys->busaddr;
226 227
	sg_dma_len(sg) = obj->base.size;

228 229 230 231 232
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
233
	return st;
234 235 236
}

static void
237
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
238 239
				struct sg_table *pages,
				bool needs_clflush)
240
{
C
Chris Wilson 已提交
241
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
242

C
Chris Wilson 已提交
243 244
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
245

246 247
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
248
	    !i915_gem_object_is_coherent(obj))
249
		drm_clflush_sg(pages);
250 251 252 253 254 255 256 257 258

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
259
	__i915_gem_object_release_shmem(obj, pages, false);
260

C
Chris Wilson 已提交
261
	if (obj->mm.dirty) {
262
		struct address_space *mapping = obj->base.filp->f_mapping;
263
		char *vaddr = obj->phys_handle->vaddr;
264 265 266
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
267 268 269 270 271 272 273 274 275 276 277 278 279
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
280
			if (obj->mm.madv == I915_MADV_WILLNEED)
281
				mark_page_accessed(page);
282
			put_page(page);
283 284
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
285
		obj->mm.dirty = false;
286 287
	}

288 289
	sg_free_table(pages);
	kfree(pages);
290 291

	drm_pci_free(obj->base.dev, obj->phys_handle);
292 293 294 295 296
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
297
	i915_gem_object_unpin_pages(obj);
298 299 300 301 302 303 304 305
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

306 307
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

308
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
309 310 311
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
312 313 314
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
315

316 317 318 319
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
320
	 */
321 322 323 324 325 326
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
327 328 329 330 331
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

332 333 334 335 336 337 338 339 340 341 342 343 344
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

345 346 347 348 349
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
350
{
351
	struct drm_i915_gem_request *rq;
352

353
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
387 388
	}

389 390 391 392 393 394
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

395
	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
420
	unsigned int seq = __read_seqcount_begin(&resv->seq);
421
	struct dma_fence *excl;
422
	bool prune_fences = false;
423 424 425 426

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
427 428
		int ret;

429 430
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
431 432 433
		if (ret)
			return ret;

434 435 436 437
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
438
			if (timeout < 0)
439
				break;
440

441 442 443 444 445 446
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
447 448

		prune_fences = count && timeout >= 0;
449 450
	} else {
		excl = reservation_object_get_excl_rcu(resv);
451 452
	}

453
	if (excl && timeout >= 0) {
454
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
455 456
		prune_fences = timeout >= 0;
	}
457 458 459

	dma_fence_put(excl);

460 461 462 463
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
464
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
465 466 467 468 469
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
470 471
	}

472
	return timeout;
473 474
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

539 540 541 542 543 544
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
545
 */
546 547 548 549 550
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
551
{
552 553 554 555 556 557 558
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
559

560 561 562
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
563
	return timeout < 0 ? timeout : 0;
564 565 566 567 568 569 570 571 572
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

573 574 575 576
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
577
	int ret;
578

579 580
	if (align > obj->base.size)
		return -EINVAL;
581

582
	if (obj->ops == &i915_gem_phys_ops)
583 584
		return 0;

C
Chris Wilson 已提交
585
	if (obj->mm.madv != I915_MADV_WILLNEED)
586 587 588 589 590
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
591 592 593 594
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

595
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
596 597
	if (obj->mm.pages)
		return -EBUSY;
598

599
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
600 601
	obj->ops = &i915_gem_phys_ops;

602 603 604 605 606 607 608 609 610
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
611 612 613 614 615
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
616
		     struct drm_file *file)
617 618
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
619
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
620 621 622 623

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
624
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
625 626
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
627

628
	drm_clflush_virt_range(vaddr, args->size);
629
	i915_gem_chipset_flush(to_i915(obj->base.dev));
630

631
	intel_fb_obj_flush(obj, ORIGIN_CPU);
632
	return 0;
633 634
}

635
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
636
{
637
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
638 639 640 641
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
642
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
643
	kmem_cache_free(dev_priv->objects, obj);
644 645
}

646 647
static int
i915_gem_create(struct drm_file *file,
648
		struct drm_i915_private *dev_priv,
649 650
		uint64_t size,
		uint32_t *handle_p)
651
{
652
	struct drm_i915_gem_object *obj;
653 654
	int ret;
	u32 handle;
655

656
	size = roundup(size, PAGE_SIZE);
657 658
	if (size == 0)
		return -EINVAL;
659 660

	/* Allocate the new object */
661
	obj = i915_gem_object_create(dev_priv, size);
662 663
	if (IS_ERR(obj))
		return PTR_ERR(obj);
664

665
	ret = drm_gem_handle_create(file, &obj->base, &handle);
666
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
667
	i915_gem_object_put(obj);
668 669
	if (ret)
		return ret;
670

671
	*handle_p = handle;
672 673 674
	return 0;
}

675 676 677 678 679 680
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
681
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
682
	args->size = args->pitch * args->height;
683
	return i915_gem_create(file, to_i915(dev),
684
			       args->size, &args->handle);
685 686 687 688
}

/**
 * Creates a new mm object and returns a handle to it.
689 690 691
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
692 693 694 695 696
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
697
	struct drm_i915_private *dev_priv = to_i915(dev);
698
	struct drm_i915_gem_create *args = data;
699

700
	i915_gem_flush_free_objects(dev_priv);
701

702
	return i915_gem_create(file, dev_priv,
703
			       args->size, &args->handle);
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
			if (intel_runtime_pm_get_if_in_use(dev_priv)) {
				spin_lock_irq(&dev_priv->uncore.lock);
				POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
				spin_unlock_irq(&dev_priv->uncore.lock);
				intel_runtime_pm_put(dev_priv);
			}
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
	}

	obj->base.write_domain = 0;
}

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

787
static inline int
788 789
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

813 814 815 816 817 818
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
819
				    unsigned int *needs_clflush)
820 821 822
{
	int ret;

823
	lockdep_assert_held(&obj->base.dev->struct_mutex);
824

825
	*needs_clflush = 0;
826 827
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
828

829 830 831 832 833
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
834 835 836
	if (ret)
		return ret;

C
Chris Wilson 已提交
837
	ret = i915_gem_object_pin_pages(obj);
838 839 840
	if (ret)
		return ret;

841 842 843 844 845 846 847 848 849
	if (i915_gem_object_is_coherent(obj) ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

850
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
851

852 853 854 855 856 857
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
858
		*needs_clflush = CLFLUSH_BEFORE;
859

860
out:
861
	/* return with the pages pinned */
862
	return 0;
863 864 865 866

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
867 868 869 870 871 872 873
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

874 875
	lockdep_assert_held(&obj->base.dev->struct_mutex);

876 877 878 879
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

880 881 882 883 884 885
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
886 887 888
	if (ret)
		return ret;

C
Chris Wilson 已提交
889
	ret = i915_gem_object_pin_pages(obj);
890 891 892
	if (ret)
		return ret;

893 894 895 896 897 898 899 900 901
	if (i915_gem_object_is_coherent(obj) ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

902
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
903

904 905 906 907 908 909
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
910
		*needs_clflush |= CLFLUSH_AFTER;
911 912 913 914 915

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
916
		*needs_clflush |= CLFLUSH_BEFORE;
917

918
out:
919
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
920
	obj->mm.dirty = true;
921
	/* return with the pages pinned */
922
	return 0;
923 924 925 926

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
927 928
}

929 930 931 932
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
933
	if (unlikely(swizzled)) {
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

951 952 953
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
954
shmem_pread_slow(struct page *page, int offset, int length,
955 956 957 958 959 960 961 962
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
963
		shmem_clflush_swizzled_range(vaddr + offset, length,
964
					     page_do_bit17_swizzling);
965 966

	if (page_do_bit17_swizzling)
967
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
968
	else
969
		ret = __copy_to_user(user_data, vaddr + offset, length);
970 971
	kunmap(page);

972
	return ret ? - EFAULT : 0;
973 974
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1051 1052
{
	void *vaddr;
1053
	unsigned long unwritten;
1054 1055

	/* We can use the cpu mem copy function because this is X86. */
1056 1057 1058 1059 1060 1061 1062 1063 1064
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1065 1066 1067 1068
	return unwritten;
}

static int
1069 1070
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1071
{
1072 1073
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1074
	struct drm_mm_node node;
1075 1076 1077
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1078 1079
	int ret;

1080 1081 1082 1083 1084 1085 1086
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1087 1088 1089
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1090
		ret = i915_vma_put_fence(vma);
1091 1092 1093 1094 1095
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1096
	if (IS_ERR(vma)) {
1097
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1098
		if (ret)
1099 1100
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1101 1102 1103 1104 1105 1106
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1107
	mutex_unlock(&i915->drm.struct_mutex);
1108

1109 1110 1111
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1128
					       node.start, I915_CACHE_NONE, 0);
1129 1130 1131 1132
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1133 1134 1135

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1136 1137 1138 1139 1140 1141 1142 1143 1144
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1145
	mutex_lock(&i915->drm.struct_mutex);
1146 1147 1148 1149
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1150
				       node.start, node.size);
1151 1152
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1153
		i915_vma_unpin(vma);
1154
	}
1155 1156 1157
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1158

1159 1160 1161
	return ret;
}

1162 1163
/**
 * Reads data from the object referenced by handle.
1164 1165 1166
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1167 1168 1169 1170 1171
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1172
		     struct drm_file *file)
1173 1174
{
	struct drm_i915_gem_pread *args = data;
1175
	struct drm_i915_gem_object *obj;
1176
	int ret;
1177

1178 1179 1180 1181
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1182
		       u64_to_user_ptr(args->data_ptr),
1183 1184 1185
		       args->size))
		return -EFAULT;

1186
	obj = i915_gem_object_lookup(file, args->handle);
1187 1188
	if (!obj)
		return -ENOENT;
1189

1190
	/* Bounds check source.  */
1191
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1192
		ret = -EINVAL;
1193
		goto out;
C
Chris Wilson 已提交
1194 1195
	}

C
Chris Wilson 已提交
1196 1197
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1198 1199 1200 1201
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1202
	if (ret)
1203
		goto out;
1204

1205
	ret = i915_gem_object_pin_pages(obj);
1206
	if (ret)
1207
		goto out;
1208

1209
	ret = i915_gem_shmem_pread(obj, args);
1210
	if (ret == -EFAULT || ret == -ENODEV)
1211
		ret = i915_gem_gtt_pread(obj, args);
1212

1213 1214
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1215
	i915_gem_object_put(obj);
1216
	return ret;
1217 1218
}

1219 1220
/* This is the fast write path which cannot handle
 * page faults in the source data
1221
 */
1222

1223 1224 1225 1226
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1227
{
1228
	void *vaddr;
1229
	unsigned long unwritten;
1230

1231
	/* We can use the cpu mem copy function because this is X86. */
1232 1233
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1234
						      user_data, length);
1235 1236 1237 1238 1239 1240 1241
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1242 1243 1244 1245

	return unwritten;
}

1246 1247 1248
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1249
 * @obj: i915 GEM object
1250
 * @args: pwrite arguments structure
1251
 */
1252
static int
1253 1254
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1255
{
1256
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1257 1258
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1259 1260 1261
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1262
	int ret;
1263

1264 1265 1266
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1267

1268
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1269
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1270
				       PIN_MAPPABLE | PIN_NONBLOCK);
1271 1272 1273
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1274
		ret = i915_vma_put_fence(vma);
1275 1276 1277 1278 1279
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1280
	if (IS_ERR(vma)) {
1281
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1282
		if (ret)
1283 1284
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1285
	}
D
Daniel Vetter 已提交
1286 1287 1288 1289 1290

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1291 1292
	mutex_unlock(&i915->drm.struct_mutex);

1293
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1294

1295 1296 1297 1298
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1299 1300
		/* Operation in this page
		 *
1301 1302 1303
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1304
		 */
1305
		u32 page_base = node.start;
1306 1307
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1318
		/* If we get a fault while copying data, then (presumably) our
1319 1320
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1321 1322
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1323
		 */
1324 1325 1326 1327
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1328
		}
1329

1330 1331 1332
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1333
	}
1334
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1335 1336

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1337
out_unpin:
1338 1339 1340
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1341
				       node.start, node.size);
1342 1343
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1344
		i915_vma_unpin(vma);
1345
	}
1346
out_unlock:
1347
	intel_runtime_pm_put(i915);
1348
	mutex_unlock(&i915->drm.struct_mutex);
1349
	return ret;
1350 1351
}

1352
static int
1353
shmem_pwrite_slow(struct page *page, int offset, int length,
1354 1355 1356 1357
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1358
{
1359 1360
	char *vaddr;
	int ret;
1361

1362
	vaddr = kmap(page);
1363
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1364
		shmem_clflush_swizzled_range(vaddr + offset, length,
1365
					     page_do_bit17_swizzling);
1366
	if (page_do_bit17_swizzling)
1367 1368
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1369
	else
1370
		ret = __copy_from_user(vaddr + offset, user_data, length);
1371
	if (needs_clflush_after)
1372
		shmem_clflush_swizzled_range(vaddr + offset, length,
1373
					     page_do_bit17_swizzling);
1374
	kunmap(page);
1375

1376
	return ret ? -EFAULT : 0;
1377 1378
}

1379 1380 1381 1382 1383
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1384
static int
1385 1386 1387 1388
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1389
{
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1422
	unsigned int needs_clflush;
1423 1424
	unsigned int offset, idx;
	int ret;
1425

1426
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1427 1428 1429
	if (ret)
		return ret;

1430 1431 1432 1433
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1434

1435 1436 1437
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1438

1439 1440 1441 1442 1443 1444 1445
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1446

1447 1448 1449 1450 1451 1452
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1453

1454 1455 1456
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1457

1458 1459 1460 1461
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1462
		if (ret)
1463
			break;
1464

1465 1466 1467
		remain -= length;
		user_data += length;
		offset = 0;
1468
	}
1469

1470
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1471
	i915_gem_obj_finish_shmem_access(obj);
1472
	return ret;
1473 1474 1475 1476
}

/**
 * Writes data to the object referenced by handle.
1477 1478 1479
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1480 1481 1482 1483 1484
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1485
		      struct drm_file *file)
1486 1487
{
	struct drm_i915_gem_pwrite *args = data;
1488
	struct drm_i915_gem_object *obj;
1489 1490 1491 1492 1493 1494
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1495
		       u64_to_user_ptr(args->data_ptr),
1496 1497 1498
		       args->size))
		return -EFAULT;

1499
	obj = i915_gem_object_lookup(file, args->handle);
1500 1501
	if (!obj)
		return -ENOENT;
1502

1503
	/* Bounds check destination. */
1504
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1505
		ret = -EINVAL;
1506
		goto err;
C
Chris Wilson 已提交
1507 1508
	}

C
Chris Wilson 已提交
1509 1510
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1511 1512 1513 1514 1515 1516
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1517 1518 1519 1520 1521
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1522 1523 1524
	if (ret)
		goto err;

1525
	ret = i915_gem_object_pin_pages(obj);
1526
	if (ret)
1527
		goto err;
1528

D
Daniel Vetter 已提交
1529
	ret = -EFAULT;
1530 1531 1532 1533 1534 1535
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1536
	if (!i915_gem_object_has_struct_page(obj) ||
1537
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1538 1539
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1540 1541
		 * textures). Fallback to the shmem path in that case.
		 */
1542
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1543

1544
	if (ret == -EFAULT || ret == -ENOSPC) {
1545 1546
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1547
		else
1548
			ret = i915_gem_shmem_pwrite(obj, args);
1549
	}
1550

1551
	i915_gem_object_unpin_pages(obj);
1552
err:
C
Chris Wilson 已提交
1553
	i915_gem_object_put(obj);
1554
	return ret;
1555 1556
}

1557 1558 1559 1560 1561 1562 1563 1564
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1565
			break;
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1578
	list_move_tail(&obj->global_link, list);
1579 1580
}

1581
/**
1582 1583
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1584 1585 1586
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1587 1588 1589
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1590
			  struct drm_file *file)
1591 1592
{
	struct drm_i915_gem_set_domain *args = data;
1593
	struct drm_i915_gem_object *obj;
1594 1595
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1596
	int err;
1597

1598
	/* Only handle setting domains to types used by the CPU. */
1599
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1600 1601 1602 1603 1604 1605 1606 1607
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1608
	obj = i915_gem_object_lookup(file, args->handle);
1609 1610
	if (!obj)
		return -ENOENT;
1611

1612 1613 1614 1615
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1616
	err = i915_gem_object_wait(obj,
1617 1618 1619 1620
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1621
	if (err)
C
Chris Wilson 已提交
1622
		goto out;
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1634
		goto out;
1635 1636 1637

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1638
		goto out_unpin;
1639

1640
	if (read_domains & I915_GEM_DOMAIN_GTT)
1641
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1642
	else
1643
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1644

1645 1646
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1647

1648
	mutex_unlock(&dev->struct_mutex);
1649

1650
	if (write_domain != 0)
1651 1652
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1653

C
Chris Wilson 已提交
1654
out_unpin:
1655
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1656 1657
out:
	i915_gem_object_put(obj);
1658
	return err;
1659 1660 1661 1662
}

/**
 * Called when user space has done writes to this buffer
1663 1664 1665
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1666 1667 1668
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1669
			 struct drm_file *file)
1670 1671
{
	struct drm_i915_gem_sw_finish *args = data;
1672
	struct drm_i915_gem_object *obj;
1673

1674
	obj = i915_gem_object_lookup(file, args->handle);
1675 1676
	if (!obj)
		return -ENOENT;
1677 1678

	/* Pinned buffers may be scanout, so flush the cache */
1679
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1680
	i915_gem_object_put(obj);
1681 1682

	return 0;
1683 1684 1685
}

/**
1686 1687 1688 1689 1690
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1691 1692 1693
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1704 1705 1706
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1707
		    struct drm_file *file)
1708 1709
{
	struct drm_i915_gem_mmap *args = data;
1710
	struct drm_i915_gem_object *obj;
1711 1712
	unsigned long addr;

1713 1714 1715
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1716
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1717 1718
		return -ENODEV;

1719 1720
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1721
		return -ENOENT;
1722

1723 1724 1725
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1726
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1727
		i915_gem_object_put(obj);
1728 1729 1730
		return -EINVAL;
	}

1731
	addr = vm_mmap(obj->base.filp, 0, args->size,
1732 1733
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1734 1735 1736 1737
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1738
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1739
			i915_gem_object_put(obj);
1740 1741
			return -EINTR;
		}
1742 1743 1744 1745 1746 1747 1748
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1749 1750

		/* This may race, but that's ok, it only gets set */
1751
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1752
	}
C
Chris Wilson 已提交
1753
	i915_gem_object_put(obj);
1754 1755 1756 1757 1758 1759 1760 1761
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1762 1763
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1764
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1765 1766
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1828 1829
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1830
		min_t(unsigned int, chunk,
1831
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1832 1833 1834 1835 1836 1837 1838 1839

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1840 1841
/**
 * i915_gem_fault - fault a page into the GTT
1842
 * @vmf: fault info
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1854 1855 1856
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1857
 */
1858
int i915_gem_fault(struct vm_fault *vmf)
1859
{
1860
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1861
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1862
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1863
	struct drm_device *dev = obj->base.dev;
1864 1865
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1866
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1867
	struct i915_vma *vma;
1868
	pgoff_t page_offset;
1869
	unsigned int flags;
1870
	int ret;
1871

1872
	/* We don't use vmf->pgoff since that has the fake offset */
1873
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1874

C
Chris Wilson 已提交
1875 1876
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1877
	/* Try to flush the object off the GPU first without holding the lock.
1878
	 * Upon acquiring the lock, we will perform our sanity checks and then
1879 1880 1881
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1882 1883 1884 1885
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1886
	if (ret)
1887 1888
		goto err;

1889 1890 1891 1892
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1893 1894 1895 1896 1897
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1898

1899
	/* Access to snoopable pages through the GTT is incoherent. */
1900
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1901
		ret = -EFAULT;
1902
		goto err_unlock;
1903 1904
	}

1905 1906 1907 1908 1909 1910 1911 1912
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1913
	/* Now pin it into the GTT as needed */
1914
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1915 1916
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1917
		struct i915_ggtt_view view =
1918
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1919

1920 1921 1922 1923 1924
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1925 1926
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1927 1928
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1929
		goto err_unlock;
C
Chris Wilson 已提交
1930
	}
1931

1932 1933
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1934
		goto err_unpin;
1935

1936
	ret = i915_vma_get_fence(vma);
1937
	if (ret)
1938
		goto err_unpin;
1939

1940
	/* Mark as being mmapped into userspace for later revocation */
1941
	assert_rpm_wakelock_held(dev_priv);
1942 1943 1944
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1945
	/* Finally, remap it using the new GTT offset */
1946
	ret = remap_io_mapping(area,
1947
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1948 1949 1950
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1951

1952
err_unpin:
C
Chris Wilson 已提交
1953
	__i915_vma_unpin(vma);
1954
err_unlock:
1955
	mutex_unlock(&dev->struct_mutex);
1956 1957
err_rpm:
	intel_runtime_pm_put(dev_priv);
1958
	i915_gem_object_unpin_pages(obj);
1959
err:
1960
	switch (ret) {
1961
	case -EIO:
1962 1963 1964 1965 1966 1967 1968
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1969 1970 1971
			ret = VM_FAULT_SIGBUS;
			break;
		}
1972
	case -EAGAIN:
D
Daniel Vetter 已提交
1973 1974 1975 1976
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1977
		 */
1978 1979
	case 0:
	case -ERESTARTSYS:
1980
	case -EINTR:
1981 1982 1983 1984 1985
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1986 1987
		ret = VM_FAULT_NOPAGE;
		break;
1988
	case -ENOMEM:
1989 1990
		ret = VM_FAULT_OOM;
		break;
1991
	case -ENOSPC:
1992
	case -EFAULT:
1993 1994
		ret = VM_FAULT_SIGBUS;
		break;
1995
	default:
1996
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1997 1998
		ret = VM_FAULT_SIGBUS;
		break;
1999
	}
2000
	return ret;
2001 2002
}

2003 2004 2005 2006
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2007
 * Preserve the reservation of the mmapping with the DRM core code, but
2008 2009 2010 2011 2012 2013 2014 2015 2016
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2017
void
2018
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2019
{
2020 2021
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2022 2023 2024
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2025 2026 2027 2028
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2029
	 */
2030
	lockdep_assert_held(&i915->drm.struct_mutex);
2031
	intel_runtime_pm_get(i915);
2032

2033
	if (list_empty(&obj->userfault_link))
2034
		goto out;
2035

2036
	list_del_init(&obj->userfault_link);
2037 2038
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2039 2040 2041 2042 2043 2044 2045 2046 2047

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2048 2049 2050

out:
	intel_runtime_pm_put(i915);
2051 2052
}

2053
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2054
{
2055
	struct drm_i915_gem_object *obj, *on;
2056
	int i;
2057

2058 2059 2060 2061 2062 2063
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2064

2065 2066 2067
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2068 2069 2070
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2071 2072 2073 2074 2075 2076 2077 2078

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2089 2090 2091 2092 2093 2094 2095

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2096 2097
}

2098 2099
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2100
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2101
	int err;
2102

2103
	err = drm_gem_create_mmap_offset(&obj->base);
2104
	if (likely(!err))
2105
		return 0;
2106

2107 2108 2109 2110 2111
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2112

2113
		i915_gem_drain_freed_objects(dev_priv);
2114
		err = drm_gem_create_mmap_offset(&obj->base);
2115 2116 2117 2118
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2119

2120
	return err;
2121 2122 2123 2124 2125 2126 2127
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2128
int
2129 2130
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2131
		  uint32_t handle,
2132
		  uint64_t *offset)
2133
{
2134
	struct drm_i915_gem_object *obj;
2135 2136
	int ret;

2137
	obj = i915_gem_object_lookup(file, handle);
2138 2139
	if (!obj)
		return -ENOENT;
2140

2141
	ret = i915_gem_object_create_mmap_offset(obj);
2142 2143
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2144

C
Chris Wilson 已提交
2145
	i915_gem_object_put(obj);
2146
	return ret;
2147 2148
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2170
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2171 2172
}

D
Daniel Vetter 已提交
2173 2174 2175
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2176
{
2177
	i915_gem_object_free_mmap_offset(obj);
2178

2179 2180
	if (obj->base.filp == NULL)
		return;
2181

D
Daniel Vetter 已提交
2182 2183 2184 2185 2186
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2187
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2188
	obj->mm.madv = __I915_MADV_PURGED;
2189
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2190
}
2191

2192
/* Try to discard unwanted pages */
2193
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2194
{
2195 2196
	struct address_space *mapping;

2197 2198 2199
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2200
	switch (obj->mm.madv) {
2201 2202 2203 2204 2205 2206 2207 2208 2209
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2210
	mapping = obj->base.filp->f_mapping,
2211
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2212 2213
}

2214
static void
2215 2216
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2217
{
2218 2219
	struct sgt_iter sgt_iter;
	struct page *page;
2220

2221
	__i915_gem_object_release_shmem(obj, pages, true);
2222

2223
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2224

2225
	if (i915_gem_object_needs_bit17_swizzle(obj))
2226
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2227

2228
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2229
		if (obj->mm.dirty)
2230
			set_page_dirty(page);
2231

C
Chris Wilson 已提交
2232
		if (obj->mm.madv == I915_MADV_WILLNEED)
2233
			mark_page_accessed(page);
2234

2235
		put_page(page);
2236
	}
C
Chris Wilson 已提交
2237
	obj->mm.dirty = false;
2238

2239 2240
	sg_free_table(pages);
	kfree(pages);
2241
}
C
Chris Wilson 已提交
2242

2243 2244 2245 2246 2247
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2248 2249
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2250 2251
}

2252 2253
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2254
{
2255
	struct sg_table *pages;
2256

C
Chris Wilson 已提交
2257
	if (i915_gem_object_has_pinned_pages(obj))
2258
		return;
2259

2260
	GEM_BUG_ON(obj->bind_count);
2261 2262 2263 2264
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2265
	mutex_lock_nested(&obj->mm.lock, subclass);
2266 2267
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2268

2269 2270 2271
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2272 2273
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2274

C
Chris Wilson 已提交
2275
	if (obj->mm.mapping) {
2276 2277
		void *ptr;

C
Chris Wilson 已提交
2278
		ptr = ptr_mask_bits(obj->mm.mapping);
2279 2280
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2281
		else
2282 2283
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2284
		obj->mm.mapping = NULL;
2285 2286
	}

2287 2288
	__i915_gem_object_reset_page_iter(obj);

2289 2290 2291
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2292 2293
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2294 2295
}

2296
static bool i915_sg_trim(struct sg_table *orig_st)
2297 2298 2299 2300 2301 2302
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2303
		return false;
2304

2305
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2306
		return false;
2307 2308 2309 2310 2311 2312 2313

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2314
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2315 2316 2317 2318

	sg_free_table(orig_st);

	*orig_st = new_st;
2319
	return true;
2320 2321
}

2322
static struct sg_table *
C
Chris Wilson 已提交
2323
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2324
{
2325
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2326 2327
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2328
	struct address_space *mapping;
2329 2330
	struct sg_table *st;
	struct scatterlist *sg;
2331
	struct sgt_iter sgt_iter;
2332
	struct page *page;
2333
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2334
	unsigned int max_segment;
I
Imre Deak 已提交
2335
	int ret;
C
Chris Wilson 已提交
2336
	gfp_t gfp;
2337

C
Chris Wilson 已提交
2338 2339 2340 2341
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2342 2343
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2344

2345
	max_segment = swiotlb_max_segment();
2346
	if (!max_segment)
2347
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2348

2349 2350
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2351
		return ERR_PTR(-ENOMEM);
2352

2353
rebuild_st:
2354 2355
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2356
		return ERR_PTR(-ENOMEM);
2357
	}
2358

2359 2360 2361 2362 2363
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2364
	mapping = obj->base.filp->f_mapping;
2365
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2366
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2367 2368 2369
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2370
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2371
		if (unlikely(IS_ERR(page))) {
2372 2373 2374 2375 2376
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2377 2378
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
2379 2380 2381
		if (unlikely(IS_ERR(page))) {
			gfp_t reclaim;

C
Chris Wilson 已提交
2382 2383 2384
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2385 2386 2387 2388
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2389
			 */
2390
			reclaim = mapping_gfp_mask(mapping);
2391 2392
			reclaim |= __GFP_NORETRY; /* reclaim, but no oom */

2393
			page = shmem_read_mapping_page_gfp(mapping, i, reclaim);
I
Imre Deak 已提交
2394 2395
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2396
				goto err_sg;
I
Imre Deak 已提交
2397
			}
C
Chris Wilson 已提交
2398
		}
2399 2400 2401
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2402 2403 2404 2405 2406 2407 2408 2409
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2410 2411 2412

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2413
	}
2414
	if (sg) /* loop terminated early; short sg table */
2415
		sg_mark_end(sg);
2416

2417 2418 2419
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2420
	ret = i915_gem_gtt_prepare_pages(obj, st);
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2440

2441
	if (i915_gem_object_needs_bit17_swizzle(obj))
2442
		i915_gem_object_do_bit_17_swizzle(obj, st);
2443

2444
	return st;
2445

2446
err_sg:
2447
	sg_mark_end(sg);
2448
err_pages:
2449 2450
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2451 2452
	sg_free_table(st);
	kfree(st);
2453 2454 2455 2456 2457 2458 2459 2460 2461

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2462 2463 2464
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2465 2466 2467 2468 2469 2470
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2471
	lockdep_assert_held(&obj->mm.lock);
2472 2473 2474 2475 2476

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2477 2478 2479 2480 2481 2482 2483

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2484 2485 2486 2487 2488 2489
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2490 2491
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2503 2504
}

2505
/* Ensure that the associated pages are gathered from the backing storage
2506
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2507
 * multiple times before they are released by a single call to
2508
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2509 2510 2511
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2512
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2513
{
2514
	int err;
2515

2516 2517 2518
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2519

2520
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2521 2522 2523
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2524

2525 2526 2527
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2528

2529 2530
unlock:
	mutex_unlock(&obj->mm.lock);
2531
	return err;
2532 2533
}

2534
/* The 'mapping' part of i915_gem_object_pin_map() below */
2535 2536
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2537 2538
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2539
	struct sg_table *sgt = obj->mm.pages;
2540 2541
	struct sgt_iter sgt_iter;
	struct page *page;
2542 2543
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2544
	unsigned long i = 0;
2545
	pgprot_t pgprot;
2546 2547 2548
	void *addr;

	/* A single page can always be kmapped */
2549
	if (n_pages == 1 && type == I915_MAP_WB)
2550 2551
		return kmap(sg_page(sgt->sgl));

2552 2553 2554 2555 2556 2557
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2558

2559 2560
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2561 2562 2563 2564

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2565 2566 2567 2568 2569 2570 2571 2572 2573
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2574

2575 2576
	if (pages != stack_pages)
		drm_free_large(pages);
2577 2578 2579 2580 2581

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2582 2583
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2584
{
2585 2586 2587
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2588 2589
	int ret;

2590
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2591

2592
	ret = mutex_lock_interruptible(&obj->mm.lock);
2593 2594 2595
	if (ret)
		return ERR_PTR(ret);

2596 2597
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2598
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2599 2600 2601
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2602

2603 2604 2605
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2606 2607 2608
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2609

C
Chris Wilson 已提交
2610
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2611 2612 2613
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2614
			goto err_unpin;
2615
		}
2616 2617 2618 2619 2620 2621

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2622
		ptr = obj->mm.mapping = NULL;
2623 2624
	}

2625 2626 2627 2628
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2629
			goto err_unpin;
2630 2631
		}

C
Chris Wilson 已提交
2632
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2633 2634
	}

2635 2636
out_unlock:
	mutex_unlock(&obj->mm.lock);
2637 2638
	return ptr;

2639 2640 2641 2642 2643
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2644 2645
}

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2715
static bool ban_context(const struct i915_gem_context *ctx)
2716
{
2717 2718
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2719 2720
}

2721
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2722
{
2723
	ctx->guilty_count++;
2724 2725 2726
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2727 2728

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2729
			 ctx->name, ctx->ban_score,
2730
			 yesno(i915_gem_context_is_banned(ctx)));
2731

2732
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2733 2734
		return;

2735 2736 2737
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2738 2739 2740 2741
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2742
	ctx->active_count++;
2743 2744
}

2745
struct drm_i915_gem_request *
2746
i915_gem_find_active_request(struct intel_engine_cs *engine)
2747
{
2748 2749
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2750

2751 2752 2753 2754 2755 2756 2757 2758
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2759
	spin_lock_irqsave(&engine->timeline->lock, flags);
2760
	list_for_each_entry(request, &engine->timeline->requests, link) {
2761 2762
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2763
			continue;
2764

2765
		GEM_BUG_ON(request->engine != engine);
2766 2767
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2768 2769 2770

		active = request;
		break;
2771
	}
2772
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2773

2774
	return active;
2775 2776
}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2791
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2792 2793 2794
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2795
	int err = 0;
2796 2797

	/* Ensure irq handler finishes, and not run again. */
2798 2799 2800
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2812 2813 2814 2815 2816 2817 2818 2819
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2820
		tasklet_kill(&engine->irq_tasklet);
2821
		tasklet_disable(&engine->irq_tasklet);
2822

2823 2824 2825
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2826 2827 2828 2829 2830 2831 2832
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2833
	i915_gem_revoke_fences(dev_priv);
2834 2835

	return err;
2836 2837
}

2838
static void skip_request(struct drm_i915_gem_request *request)
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2853 2854

	dma_fence_set_error(&request->fence, -EIO);
2855 2856
}

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2880 2881 2882 2883 2884 2885
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2918
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2919 2920 2921
{
	struct drm_i915_gem_request *request;

2922
	request = i915_gem_find_active_request(engine);
2923 2924 2925
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2926

2927 2928 2929 2930
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2931 2932 2933

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2934
}
2935

2936
void i915_gem_reset(struct drm_i915_private *dev_priv)
2937
{
2938
	struct intel_engine_cs *engine;
2939
	enum intel_engine_id id;
2940

2941 2942
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2943 2944
	i915_gem_retire_requests(dev_priv);

2945 2946 2947
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2948
		i915_gem_reset_engine(engine);
2949 2950 2951 2952
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2953

2954
	i915_gem_restore_fences(dev_priv);
2955 2956 2957 2958 2959 2960 2961

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2962 2963
}

2964 2965
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2966 2967 2968
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2969
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2970

2971
	for_each_engine(engine, dev_priv, id) {
2972
		tasklet_enable(&engine->irq_tasklet);
2973 2974
		kthread_unpark(engine->breadcrumbs.signaler);
	}
2975 2976
}

2977 2978
static void nop_submit_request(struct drm_i915_gem_request *request)
{
2979
	dma_fence_set_error(&request->fence, -EIO);
2980 2981
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2982 2983
}

2984
static void engine_set_wedged(struct intel_engine_cs *engine)
2985
{
2986 2987 2988
	struct drm_i915_gem_request *request;
	unsigned long flags;

2989 2990 2991 2992 2993 2994
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2995
	engine->submit_request = nop_submit_request;
2996

2997 2998 2999 3000 3001 3002
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

3003 3004 3005 3006
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
3007
	intel_engine_init_global_seqno(engine,
3008
				       intel_engine_last_submit(engine));
3009

3010 3011 3012 3013 3014 3015
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3016
	if (i915.enable_execlists) {
3017 3018 3019 3020
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

3021 3022 3023
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3024 3025
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
3026 3027

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3028
	}
3029 3030
}

3031
static int __i915_gem_set_wedged_BKL(void *data)
3032
{
3033
	struct drm_i915_private *i915 = data;
3034
	struct intel_engine_cs *engine;
3035
	enum intel_engine_id id;
3036

3037
	for_each_engine(engine, i915, id)
3038
		engine_set_wedged(engine);
3039 3040 3041 3042 3043 3044

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
3045 3046
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3047

3048 3049 3050 3051 3052 3053
	/* Retire completed requests first so the list of inflight/incomplete
	 * requests is accurate and we don't try and mark successful requests
	 * as in error during __i915_gem_set_wedged_BKL().
	 */
	i915_gem_retire_requests(dev_priv);

3054
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3055

3056 3057 3058
	i915_gem_context_lost(dev_priv);

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3059 3060
}

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3120
static void
3121 3122
i915_gem_retire_work_handler(struct work_struct *work)
{
3123
	struct drm_i915_private *dev_priv =
3124
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3125
	struct drm_device *dev = &dev_priv->drm;
3126

3127
	/* Come back later if the device is busy... */
3128
	if (mutex_trylock(&dev->struct_mutex)) {
3129
		i915_gem_retire_requests(dev_priv);
3130
		mutex_unlock(&dev->struct_mutex);
3131
	}
3132 3133 3134 3135 3136

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3137 3138
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3139 3140
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3141
				   round_jiffies_up_relative(HZ));
3142
	}
3143
}
3144

3145 3146 3147 3148
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3149
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3150
	struct drm_device *dev = &dev_priv->drm;
3151
	struct intel_engine_cs *engine;
3152
	enum intel_engine_id id;
3153 3154 3155 3156 3157
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3158 3159 3160 3161
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3162
	wait_for(intel_engines_are_idle(dev_priv), 10);
3163
	if (READ_ONCE(dev_priv->gt.active_requests))
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3177 3178 3179 3180 3181 3182 3183
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3184
	if (dev_priv->gt.active_requests)
3185
		goto out_unlock;
3186

3187
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3188 3189
		DRM_ERROR("Timeout waiting for engines to idle\n");

3190 3191
	for_each_engine(engine, dev_priv, id) {
		intel_engine_disarm_breadcrumbs(engine);
3192
		i915_gem_batch_pool_fini(&engine->batch_pool);
3193
	}
3194

3195 3196 3197
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3198

3199 3200 3201 3202 3203
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3204

3205 3206 3207 3208
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3209
	}
3210 3211
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3222 3223 3224 3225 3226 3227

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3228 3229 3230
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3242 3243
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3244 3245 3246
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3271 3272
	ktime_t start;
	long ret;
3273

3274 3275 3276
	if (args->flags != 0)
		return -EINVAL;

3277
	obj = i915_gem_object_lookup(file, args->bo_handle);
3278
	if (!obj)
3279 3280
		return -ENOENT;

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3302 3303
	}

C
Chris Wilson 已提交
3304
	i915_gem_object_put(obj);
3305
	return ret;
3306 3307
}

3308
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3309
{
3310
	int ret, i;
3311

3312 3313 3314 3315 3316
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3317

3318 3319 3320
	return 0;
}

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
{
	return wait_for(intel_engine_is_idle(engine), timeout_ms);
}

static int wait_for_engines(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
			i915_gem_set_wedged(i915);
			return -EIO;
		}

		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
			   intel_engine_last_submit(engine));
	}

	return 0;
}

3344 3345 3346 3347
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3358 3359 3360

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3361 3362

		ret = wait_for_engines(i915);
3363 3364
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3365
	}
3366

3367
	return ret;
3368 3369
}

3370 3371 3372 3373 3374
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
		return;

3375
	i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3389 3390
/**
 * Moves a single object to the GTT read, and possibly write domain.
3391 3392
 * @obj: object to act on
 * @write: ask for write access or read only
3393 3394 3395 3396
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3397
int
3398
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3399
{
3400
	int ret;
3401

3402
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3403

3404 3405 3406 3407 3408 3409
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3410 3411 3412
	if (ret)
		return ret;

3413 3414 3415
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3416 3417 3418 3419 3420 3421 3422 3423
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3424
	ret = i915_gem_object_pin_pages(obj);
3425 3426 3427
	if (ret)
		return ret;

3428
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3429

3430 3431 3432 3433 3434 3435 3436
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3437 3438 3439
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3440
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3441
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3442
	if (write) {
3443 3444
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3445
		obj->mm.dirty = true;
3446 3447
	}

C
Chris Wilson 已提交
3448
	i915_gem_object_unpin_pages(obj);
3449 3450 3451
	return 0;
}

3452 3453
/**
 * Changes the cache-level of an object across all VMA.
3454 3455
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3467 3468 3469
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3470
	struct i915_vma *vma;
3471
	int ret;
3472

3473 3474
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3475
	if (obj->cache_level == cache_level)
3476
		return 0;
3477

3478 3479 3480 3481 3482
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3483 3484
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3485 3486 3487
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3488
		if (i915_vma_is_pinned(vma)) {
3489 3490 3491 3492
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3505 3506
	}

3507 3508 3509 3510 3511 3512 3513
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3514
	if (obj->bind_count) {
3515 3516 3517 3518
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3519 3520 3521 3522 3523 3524
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3525 3526 3527
		if (ret)
			return ret;

3528 3529
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3546 3547 3548 3549 3550
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3551 3552 3553 3554 3555 3556 3557 3558
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3559 3560
		}

3561
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3562 3563 3564 3565 3566 3567 3568
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3569 3570
	}

3571
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3572
	    i915_gem_object_is_coherent(obj))
3573 3574
		obj->cache_dirty = true;

3575
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3576 3577 3578
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3579 3580 3581
	return 0;
}

B
Ben Widawsky 已提交
3582 3583
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3584
{
B
Ben Widawsky 已提交
3585
	struct drm_i915_gem_caching *args = data;
3586
	struct drm_i915_gem_object *obj;
3587
	int err = 0;
3588

3589 3590 3591 3592 3593 3594
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3595

3596 3597 3598 3599 3600 3601
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3602 3603 3604 3605
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3606 3607 3608 3609
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3610 3611 3612
out:
	rcu_read_unlock();
	return err;
3613 3614
}

B
Ben Widawsky 已提交
3615 3616
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3617
{
3618
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3619
	struct drm_i915_gem_caching *args = data;
3620 3621
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3622
	int ret = 0;
3623

B
Ben Widawsky 已提交
3624 3625
	switch (args->caching) {
	case I915_CACHING_NONE:
3626 3627
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3628
	case I915_CACHING_CACHED:
3629 3630 3631 3632 3633 3634
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3635
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3636 3637
			return -ENODEV;

3638 3639
		level = I915_CACHE_LLC;
		break;
3640
	case I915_CACHING_DISPLAY:
3641
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3642
		break;
3643 3644 3645 3646
	default:
		return -EINVAL;
	}

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3658
	if (ret)
3659
		goto out;
B
Ben Widawsky 已提交
3660

3661 3662 3663
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3664 3665 3666

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3667 3668 3669

out:
	i915_gem_object_put(obj);
3670 3671 3672
	return ret;
}

3673
/*
3674 3675 3676
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3677
 */
C
Chris Wilson 已提交
3678
struct i915_vma *
3679 3680
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3681
				     const struct i915_ggtt_view *view)
3682
{
C
Chris Wilson 已提交
3683
	struct i915_vma *vma;
3684 3685
	int ret;

3686 3687
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3688 3689 3690
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3691
	obj->pin_display++;
3692

3693 3694 3695 3696 3697 3698 3699 3700 3701
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3702
	ret = i915_gem_object_set_cache_level(obj,
3703 3704
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3705 3706
	if (ret) {
		vma = ERR_PTR(ret);
3707
		goto err_unpin_display;
C
Chris Wilson 已提交
3708
	}
3709

3710 3711
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3712 3713 3714 3715
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3716
	 */
3717
	vma = ERR_PTR(-ENOSPC);
3718
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3719 3720
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3737
	if (IS_ERR(vma))
3738
		goto err_unpin_display;
3739

3740 3741
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3742
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3743
	__i915_gem_object_flush_for_display(obj);
3744
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3745

3746 3747 3748
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3749
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3750

C
Chris Wilson 已提交
3751
	return vma;
3752 3753

err_unpin_display:
3754
	obj->pin_display--;
C
Chris Wilson 已提交
3755
	return vma;
3756 3757 3758
}

void
C
Chris Wilson 已提交
3759
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3760
{
3761
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3762

C
Chris Wilson 已提交
3763
	if (WARN_ON(vma->obj->pin_display == 0))
3764 3765
		return;

3766
	if (--vma->obj->pin_display == 0)
3767
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3768

3769
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3770
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3771

C
Chris Wilson 已提交
3772
	i915_vma_unpin(vma);
3773 3774
}

3775 3776
/**
 * Moves a single object to the CPU read, and possibly write domain.
3777 3778
 * @obj: object to act on
 * @write: requesting write or read-only access
3779 3780 3781 3782
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3783
int
3784
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3785 3786 3787
{
	int ret;

3788
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3789

3790 3791 3792 3793 3794 3795
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3796 3797 3798
	if (ret)
		return ret;

3799 3800 3801
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3802
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3803

3804
	/* Flush the CPU cache if it's still invalid. */
3805
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3806
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3807
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3808 3809 3810 3811 3812
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3813
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3814 3815 3816 3817 3818

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3819 3820
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3821
	}
3822 3823 3824 3825

	return 0;
}

3826 3827 3828
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3829 3830 3831 3832
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3833 3834 3835
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3836
static int
3837
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3838
{
3839
	struct drm_i915_private *dev_priv = to_i915(dev);
3840
	struct drm_i915_file_private *file_priv = file->driver_priv;
3841
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3842
	struct drm_i915_gem_request *request, *target = NULL;
3843
	long ret;
3844

3845 3846 3847
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3848

3849
	spin_lock(&file_priv->mm.lock);
3850
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3851 3852
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3853

3854 3855 3856 3857
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3858

3859
		target = request;
3860
	}
3861
	if (target)
3862
		i915_gem_request_get(target);
3863
	spin_unlock(&file_priv->mm.lock);
3864

3865
	if (target == NULL)
3866
		return 0;
3867

3868 3869 3870
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3871
	i915_gem_request_put(target);
3872

3873
	return ret < 0 ? ret : 0;
3874 3875
}

C
Chris Wilson 已提交
3876
struct i915_vma *
3877 3878
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3879
			 u64 size,
3880 3881
			 u64 alignment,
			 u64 flags)
3882
{
3883 3884
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3885 3886
	struct i915_vma *vma;
	int ret;
3887

3888 3889
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3890
	vma = i915_vma_instance(obj, vm, view);
3891
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3892
		return vma;
3893 3894 3895 3896

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3897
			return ERR_PTR(-ENOSPC);
3898

3899 3900 3901 3902 3903 3904 3905 3906
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3907
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3926
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3927 3928 3929
				return ERR_PTR(-ENOSPC);
		}

3930 3931
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3932 3933 3934
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3935
		     !!(flags & PIN_MAPPABLE),
3936
		     i915_vma_is_map_and_fenceable(vma));
3937 3938
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3939
			return ERR_PTR(ret);
3940 3941
	}

C
Chris Wilson 已提交
3942 3943 3944
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3945

C
Chris Wilson 已提交
3946
	return vma;
3947 3948
}

3949
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3964 3965 3966 3967 3968 3969 3970 3971 3972
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3973 3974
}

3975
static __always_inline unsigned int
3976
__busy_set_if_active(const struct dma_fence *fence,
3977 3978
		     unsigned int (*flag)(unsigned int id))
{
3979
	struct drm_i915_gem_request *rq;
3980

3981 3982 3983 3984
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3985
	 *
3986
	 * Note we only report on the status of native fences.
3987
	 */
3988 3989 3990 3991 3992 3993 3994 3995
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

3996
	return flag(rq->engine->uabi_id);
3997 3998
}

3999
static __always_inline unsigned int
4000
busy_check_reader(const struct dma_fence *fence)
4001
{
4002
	return __busy_set_if_active(fence, __busy_read_flag);
4003 4004
}

4005
static __always_inline unsigned int
4006
busy_check_writer(const struct dma_fence *fence)
4007
{
4008 4009 4010 4011
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4012 4013
}

4014 4015
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4016
		    struct drm_file *file)
4017 4018
{
	struct drm_i915_gem_busy *args = data;
4019
	struct drm_i915_gem_object *obj;
4020 4021
	struct reservation_object_list *list;
	unsigned int seq;
4022
	int err;
4023

4024
	err = -ENOENT;
4025 4026
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4027
	if (!obj)
4028
		goto out;
4029

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4048

4049 4050
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4051

4052 4053 4054 4055
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4056

4057 4058 4059 4060 4061 4062
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4063
	}
4064

4065 4066 4067 4068
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4069 4070 4071
out:
	rcu_read_unlock();
	return err;
4072 4073 4074 4075 4076 4077
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4078
	return i915_gem_ring_throttle(dev, file_priv);
4079 4080
}

4081 4082 4083 4084
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4085
	struct drm_i915_private *dev_priv = to_i915(dev);
4086
	struct drm_i915_gem_madvise *args = data;
4087
	struct drm_i915_gem_object *obj;
4088
	int err;
4089 4090 4091 4092 4093 4094 4095 4096 4097

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4098
	obj = i915_gem_object_lookup(file_priv, args->handle);
4099 4100 4101 4102 4103 4104
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4105

C
Chris Wilson 已提交
4106
	if (obj->mm.pages &&
4107
	    i915_gem_object_is_tiled(obj) &&
4108
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4109 4110
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4111
			__i915_gem_object_unpin_pages(obj);
4112 4113 4114
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4115
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4116
			__i915_gem_object_pin_pages(obj);
4117 4118
			obj->mm.quirked = true;
		}
4119 4120
	}

C
Chris Wilson 已提交
4121 4122
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4123

C
Chris Wilson 已提交
4124
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4125
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4126 4127
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4128
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4129
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4130

4131
out:
4132
	i915_gem_object_put(obj);
4133
	return err;
4134 4135
}

4136 4137 4138 4139 4140 4141 4142
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4143
	intel_fb_obj_flush(obj, ORIGIN_CS);
4144 4145
}

4146 4147
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4148
{
4149 4150
	mutex_init(&obj->mm.lock);

4151
	INIT_LIST_HEAD(&obj->global_link);
4152
	INIT_LIST_HEAD(&obj->userfault_link);
4153
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4154
	INIT_LIST_HEAD(&obj->vma_list);
4155
	INIT_LIST_HEAD(&obj->batch_pool_link);
4156

4157 4158
	obj->ops = ops;

4159 4160 4161
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4162
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4163
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4164 4165 4166 4167

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4168

4169
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4170 4171
}

4172
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4173 4174
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4175

4176 4177
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4178 4179

	.pwrite = i915_gem_object_pwrite_gtt,
4180 4181
};

4182
struct drm_i915_gem_object *
4183
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4184
{
4185
	struct drm_i915_gem_object *obj;
4186
	struct address_space *mapping;
D
Daniel Vetter 已提交
4187
	gfp_t mask;
4188
	int ret;
4189

4190 4191 4192 4193 4194
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4195
	if (size >> PAGE_SHIFT > INT_MAX)
4196 4197 4198 4199 4200
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4201
	obj = i915_gem_object_alloc(dev_priv);
4202
	if (obj == NULL)
4203
		return ERR_PTR(-ENOMEM);
4204

4205
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4206 4207
	if (ret)
		goto fail;
4208

4209
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4210
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4211 4212 4213 4214 4215
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4216
	mapping = obj->base.filp->f_mapping;
4217
	mapping_set_gfp_mask(mapping, mask);
4218

4219
	i915_gem_object_init(obj, &i915_gem_object_ops);
4220

4221 4222
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4223

4224
	if (HAS_LLC(dev_priv)) {
4225
		/* On some devices, we can have the GPU use the LLC (the CPU
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4241 4242
	trace_i915_gem_object_create(obj);

4243
	return obj;
4244 4245 4246 4247

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4248 4249
}

4250 4251 4252 4253 4254 4255 4256 4257
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4258
	if (obj->mm.madv != I915_MADV_WILLNEED)
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4274 4275
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4276
{
4277
	struct drm_i915_gem_object *obj, *on;
4278

4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4294 4295
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4296

4297
		list_del(&obj->global_link);
4298 4299 4300 4301
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4302 4303
	cond_resched();

4304 4305 4306 4307 4308 4309
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4310

4311 4312
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4313
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4314 4315 4316 4317 4318
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4319
		reservation_object_fini(&obj->__builtin_resv);
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4342

4343 4344 4345 4346 4347 4348 4349
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4350

4351
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4352
		__i915_gem_free_objects(i915, freed);
4353 4354 4355
		if (need_resched())
			break;
	}
4356
}
4357

4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4372

4373 4374 4375
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4376

4377 4378 4379
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4380
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4381
		obj->mm.madv = I915_MADV_DONTNEED;
4382

4383 4384 4385 4386 4387 4388
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4389 4390
}

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4402 4403 4404 4405 4406 4407
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4408 4409
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4410 4411
}

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
	 * of the reset, so we only reset recent machines with logical
	 * context support (that must be reset to remove any stray contexts).
	 */
	if (HAS_HW_CONTEXTS(i915)) {
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4429
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4430
{
4431
	struct drm_device *dev = &dev_priv->drm;
4432
	int ret;
4433

4434
	intel_runtime_pm_get(dev_priv);
4435 4436
	intel_suspend_gt_powersave(dev_priv);

4437
	mutex_lock(&dev->struct_mutex);
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4449
		goto err_unlock;
4450

4451 4452 4453
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4454
	if (ret)
4455
		goto err_unlock;
4456

4457
	assert_kernel_context_is_current(dev_priv);
4458
	i915_gem_context_lost(dev_priv);
4459 4460
	mutex_unlock(&dev->struct_mutex);

4461 4462
	intel_guc_suspend(dev_priv);

4463
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4464
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4465 4466 4467 4468 4469 4470 4471 4472

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4473

4474 4475 4476
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4477
	WARN_ON(dev_priv->gt.awake);
4478
	WARN_ON(!intel_engines_are_idle(dev_priv));
4479

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4499
	i915_gem_sanitize(dev_priv);
4500
	goto out_rpm_put;
4501

4502
err_unlock:
4503
	mutex_unlock(&dev->struct_mutex);
4504 4505
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4506
	return ret;
4507 4508
}

4509
void i915_gem_resume(struct drm_i915_private *dev_priv)
4510
{
4511
	struct drm_device *dev = &dev_priv->drm;
4512

4513 4514
	WARN_ON(dev_priv->gt.awake);

4515
	mutex_lock(&dev->struct_mutex);
4516
	i915_gem_restore_gtt_mappings(dev_priv);
4517 4518 4519 4520 4521

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4522
	dev_priv->gt.resume(dev_priv);
4523 4524 4525 4526

	mutex_unlock(&dev->struct_mutex);
}

4527
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4528
{
4529
	if (INTEL_GEN(dev_priv) < 5 ||
4530 4531 4532 4533 4534 4535
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4536
	if (IS_GEN5(dev_priv))
4537 4538
		return;

4539
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4540
	if (IS_GEN6(dev_priv))
4541
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4542
	else if (IS_GEN7(dev_priv))
4543
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4544
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4545
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4546 4547
	else
		BUG();
4548
}
D
Daniel Vetter 已提交
4549

4550
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4551 4552 4553 4554 4555 4556 4557
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4558
static void init_unused_rings(struct drm_i915_private *dev_priv)
4559
{
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4572 4573 4574
	}
}

4575
static int __i915_gem_restart_engines(void *data)
4576
{
4577
	struct drm_i915_private *i915 = data;
4578
	struct intel_engine_cs *engine;
4579
	enum intel_engine_id id;
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4593
	int ret;
4594

4595 4596
	dev_priv->gt.last_init_time = ktime_get();

4597 4598 4599
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4600
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4601
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4602

4603
	if (IS_HASWELL(dev_priv))
4604
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4605
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4606

4607
	if (HAS_PCH_NOP(dev_priv)) {
4608
		if (IS_IVYBRIDGE(dev_priv)) {
4609 4610 4611
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4612
		} else if (INTEL_GEN(dev_priv) >= 7) {
4613 4614 4615 4616
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4617 4618
	}

4619
	i915_gem_init_swizzling(dev_priv);
4620

4621 4622 4623 4624 4625 4626
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4627
	init_unused_rings(dev_priv);
4628

4629
	BUG_ON(!dev_priv->kernel_context);
4630

4631
	ret = i915_ppgtt_init_hw(dev_priv);
4632 4633 4634 4635 4636 4637
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4638 4639 4640
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4641

4642
	intel_mocs_init_l3cc_table(dev_priv);
4643

4644 4645 4646 4647
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4648

4649 4650
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4651
	return ret;
4652 4653
}

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4675
int i915_gem_init(struct drm_i915_private *dev_priv)
4676 4677 4678
{
	int ret;

4679
	mutex_lock(&dev_priv->drm.struct_mutex);
4680

4681 4682
	i915_gem_clflush_init(dev_priv);

4683
	if (!i915.enable_execlists) {
4684
		dev_priv->gt.resume = intel_legacy_submission_resume;
4685
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4686
	} else {
4687
		dev_priv->gt.resume = intel_lr_context_resume;
4688
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4689 4690
	}

4691 4692 4693 4694 4695 4696 4697 4698
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4699
	i915_gem_init_userptr(dev_priv);
4700 4701 4702 4703

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4704

4705
	ret = i915_gem_context_init(dev_priv);
4706 4707
	if (ret)
		goto out_unlock;
4708

4709
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4710
	if (ret)
4711
		goto out_unlock;
4712

4713
	ret = i915_gem_init_hw(dev_priv);
4714
	if (ret == -EIO) {
4715
		/* Allow engine initialisation to fail by marking the GPU as
4716 4717 4718 4719
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4720
		i915_gem_set_wedged(dev_priv);
4721
		ret = 0;
4722
	}
4723 4724

out_unlock:
4725
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4726
	mutex_unlock(&dev_priv->drm.struct_mutex);
4727

4728
	return ret;
4729 4730
}

4731 4732 4733 4734 4735
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4736
void
4737
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4738
{
4739
	struct intel_engine_cs *engine;
4740
	enum intel_engine_id id;
4741

4742
	for_each_engine(engine, dev_priv, id)
4743
		dev_priv->gt.cleanup_engine(engine);
4744 4745
}

4746 4747 4748
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4749
	int i;
4750 4751 4752 4753

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4754 4755 4756
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4757 4758 4759 4760
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4761
	if (intel_vgpu_active(dev_priv))
4762 4763 4764 4765
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4766 4767 4768 4769 4770 4771 4772
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4773
	i915_gem_restore_fences(dev_priv);
4774

4775
	i915_gem_detect_bit_6_swizzle(dev_priv);
4776 4777
}

4778
int
4779
i915_gem_load_init(struct drm_i915_private *dev_priv)
4780
{
4781
	int err = -ENOMEM;
4782

4783 4784
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4785 4786
		goto err_out;

4787 4788
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4789 4790
		goto err_objects;

4791 4792 4793 4794 4795
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4796 4797
		goto err_vmas;

4798 4799 4800 4801 4802 4803
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4804 4805
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4806
	err = i915_gem_timeline_init__global(dev_priv);
4807 4808
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4809
		goto err_dependencies;
4810

4811
	INIT_LIST_HEAD(&dev_priv->context_list);
4812 4813
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4814 4815
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4816
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4817
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4818
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4819
			  i915_gem_retire_work_handler);
4820
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4821
			  i915_gem_idle_work_handler);
4822
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4823
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4824

4825
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4826

4827 4828
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4829
	spin_lock_init(&dev_priv->fb_tracking.lock);
4830 4831 4832

	return 0;

4833 4834
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4835 4836 4837 4838 4839 4840 4841 4842
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4843
}
4844

4845
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4846
{
4847
	i915_gem_drain_freed_objects(dev_priv);
4848
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4849
	WARN_ON(dev_priv->mm.object_count);
4850

4851 4852 4853 4854 4855
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4856
	kmem_cache_destroy(dev_priv->dependencies);
4857 4858 4859
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4860 4861 4862

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4863 4864
}

4865 4866
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4867 4868 4869
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
4870 4871 4872 4873 4874
	i915_gem_shrink_all(dev_priv);

	return 0;
}

4875 4876 4877
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4878 4879 4880 4881 4882
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4893 4894
	 *
	 * To try and reduce the hibernation image, we manually shrink
4895
	 * the objects as well, see i915_gem_freeze()
4896 4897
	 */

4898
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4899
	i915_gem_drain_freed_objects(dev_priv);
4900

4901
	mutex_lock(&dev_priv->drm.struct_mutex);
4902
	for (p = phases; *p; p++) {
4903
		list_for_each_entry(obj, *p, global_link) {
4904 4905 4906
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4907
	}
4908
	mutex_unlock(&dev_priv->drm.struct_mutex);
4909 4910 4911 4912

	return 0;
}

4913
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4914
{
4915
	struct drm_i915_file_private *file_priv = file->driver_priv;
4916
	struct drm_i915_gem_request *request;
4917 4918 4919 4920 4921

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4922
	spin_lock(&file_priv->mm.lock);
4923
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4924
		request->file_priv = NULL;
4925
	spin_unlock(&file_priv->mm.lock);
4926

4927
	if (!list_empty(&file_priv->rps.link)) {
4928
		spin_lock(&to_i915(dev)->rps.client_lock);
4929
		list_del(&file_priv->rps.link);
4930
		spin_unlock(&to_i915(dev)->rps.client_lock);
4931
	}
4932 4933 4934 4935 4936
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4937
	int ret;
4938

4939
	DRM_DEBUG("\n");
4940 4941 4942 4943 4944 4945

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4946
	file_priv->dev_priv = to_i915(dev);
4947
	file_priv->file = file;
4948
	INIT_LIST_HEAD(&file_priv->rps.link);
4949 4950 4951 4952

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4953
	file_priv->bsd_engine = -1;
4954

4955 4956 4957
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4958

4959
	return ret;
4960 4961
}

4962 4963
/**
 * i915_gem_track_fb - update frontbuffer tracking
4964 4965 4966
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4967 4968 4969 4970
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4971 4972 4973 4974
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4975 4976 4977 4978 4979 4980 4981 4982 4983
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4984
	if (old) {
4985 4986
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4987 4988 4989
	}

	if (new) {
4990 4991
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4992 4993 4994
	}
}

4995 4996
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4997
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4998 4999 5000
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5001 5002 5003
	struct file *file;
	size_t offset;
	int err;
5004

5005
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5006
	if (IS_ERR(obj))
5007 5008
		return obj;

5009
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5010

5011 5012 5013 5014 5015 5016
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5017

5018 5019 5020 5021 5022
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5023

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5038 5039 5040 5041

	return obj;

fail:
5042
	i915_gem_object_put(obj);
5043
	return ERR_PTR(err);
5044
}
5045 5046 5047 5048 5049 5050

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5051
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5052 5053 5054 5055 5056
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5057
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5182
	if (!obj->mm.dirty)
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5198 5199 5200

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5201
#include "selftests/mock_gem_device.c"
5202
#include "selftests/huge_gem_object.c"
5203
#include "selftests/i915_gem_object.c"
5204
#include "selftests/i915_gem_coherency.c"
5205
#endif