i915_gem.c 138.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56 57 58 59 60 61 62
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

63 64 65 66
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
67
	spin_lock(&dev_priv->mm.object_stat_lock);
68 69
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
70
	spin_unlock(&dev_priv->mm.object_stat_lock);
71 72 73 74 75
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
76
	spin_lock(&dev_priv->mm.object_stat_lock);
77 78
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
79
	spin_unlock(&dev_priv->mm.object_stat_lock);
80 81
}

82
static int
83
i915_gem_wait_for_error(struct i915_gpu_error *error)
84 85 86
{
	int ret;

87
	if (!i915_reset_in_progress(error))
88 89
		return 0;

90 91 92 93 94
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
95
	ret = wait_event_interruptible_timeout(error->reset_queue,
96
					       !i915_reset_in_progress(error),
97
					       10*HZ);
98 99 100 101
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
102
		return ret;
103 104
	} else {
		return 0;
105
	}
106 107
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109
{
110
	struct drm_i915_private *dev_priv = dev->dev_private;
111 112
	int ret;

113
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 115 116 117 118 119 120
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

121
	WARN_ON(i915_verify_lists(dev));
122 123
	return 0;
}
124

125 126
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127
			    struct drm_file *file)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
131
	struct drm_i915_gem_get_aperture *args = data;
132
	struct i915_vma *vma;
133
	size_t pinned;
134

135
	pinned = 0;
136
	mutex_lock(&dev->struct_mutex);
137
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 139
		if (vma->pin_count)
			pinned += vma->node.size;
140
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 142
		if (vma->pin_count)
			pinned += vma->node.size;
143
	mutex_unlock(&dev->struct_mutex);
144

145
	args->aper_size = ggtt->base.total;
146
	args->aper_available_size = args->aper_size - pinned;
147

148 149 150
	return 0;
}

151 152
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153
{
154 155 156 157 158
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

176
		put_page(page);
177 178 179
		vaddr += PAGE_SIZE;
	}

180
	i915_gem_chipset_flush(to_i915(obj->base.dev));
181 182 183 184 185 186 187 188 189 190 191 192 193

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
194

195 196 197 198 199 200 201 202 203 204 205 206 207
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
208

209
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
210
	if (WARN_ON(ret)) {
211 212 213 214 215 216 217 218 219 220
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
221
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222
		char *vaddr = obj->phys_handle->vaddr;
223 224 225
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
240
				mark_page_accessed(page);
241
			put_page(page);
242 243
			vaddr += PAGE_SIZE;
		}
244
		obj->dirty = 0;
245 246
	}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
270
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 272 273 274 275 276 277
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
278 279 280 281 282 283 284
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
285
	int ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

300 301 302 303
	ret = drop_pages(obj);
	if (ret)
		return ret;

304 305 306 307 308 309
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
310 311 312
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
313 314 315 316 317 318 319 320 321
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
322
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
323
	int ret = 0;
324 325 326 327 328 329 330

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
331

332
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 334 335 336 337 338 339 340 341 342
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
343 344 345 346
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
347 348
	}

349
	drm_clflush_virt_range(vaddr, args->size);
350
	i915_gem_chipset_flush(to_i915(dev));
351 352

out:
353
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354
	return ret;
355 356
}

357 358 359
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
360
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 362 363 364 365
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366
	kmem_cache_free(dev_priv->objects, obj);
367 368
}

369 370 371 372 373
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
374
{
375
	struct drm_i915_gem_object *obj;
376 377
	int ret;
	u32 handle;
378

379
	size = roundup(size, PAGE_SIZE);
380 381
	if (size == 0)
		return -EINVAL;
382 383

	/* Allocate the new object */
384
	obj = i915_gem_object_create(dev, size);
385 386
	if (IS_ERR(obj))
		return PTR_ERR(obj);
387

388
	ret = drm_gem_handle_create(file, &obj->base, &handle);
389
	/* drop reference from allocate - handle holds it now */
390 391 392
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
393

394
	*handle_p = handle;
395 396 397
	return 0;
}

398 399 400 401 402 403
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
404
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 406
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
407
			       args->size, &args->handle);
408 409 410 411
}

/**
 * Creates a new mm object and returns a handle to it.
412 413 414
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
415 416 417 418 419 420
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
421

422
	return i915_gem_create(file, dev,
423
			       args->size, &args->handle);
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

452
static inline int
453 454
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

478 479 480 481 482 483 484 485 486 487 488 489
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

490
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

514 515 516
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
517
static int
518 519 520 521 522 523 524
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

525
	if (unlikely(page_do_bit17_swizzling))
526 527 528 529 530 531 532 533 534 535 536
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

537
	return ret ? -EFAULT : 0;
538 539
}

540 541 542 543
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
544
	if (unlikely(swizzled)) {
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

562 563 564 565 566 567 568 569 570 571 572 573
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
574 575 576
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
577 578 579 580 581 582 583 584 585 586 587

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

588
	return ret ? - EFAULT : 0;
589 590
}

591
static int
592 593 594 595
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
596
{
597
	char __user *user_data;
598
	ssize_t remain;
599
	loff_t offset;
600
	int shmem_page_offset, page_length, ret = 0;
601
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
602
	int prefaulted = 0;
603
	int needs_clflush = 0;
604
	struct sg_page_iter sg_iter;
605

606
	user_data = u64_to_user_ptr(args->data_ptr);
607 608
	remain = args->size;

609
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
610

611
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
612 613 614
	if (ret)
		return ret;

615
	offset = args->offset;
616

617 618
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
619
		struct page *page = sg_page_iter_page(&sg_iter);
620 621 622 623

		if (remain <= 0)
			break;

624 625 626 627 628
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
629
		shmem_page_offset = offset_in_page(offset);
630 631 632 633
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

634 635 636
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

637 638 639 640 641
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
642 643 644

		mutex_unlock(&dev->struct_mutex);

645
		if (likely(!i915.prefault_disable) && !prefaulted) {
646
			ret = fault_in_multipages_writeable(user_data, remain);
647 648 649 650 651 652 653
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
654

655 656 657
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
658

659
		mutex_lock(&dev->struct_mutex);
660 661

		if (ret)
662 663
			goto out;

664
next_page:
665
		remain -= page_length;
666
		user_data += page_length;
667 668 669
		offset += page_length;
	}

670
out:
671 672
	i915_gem_object_unpin_pages(obj);

673 674 675
	return ret;
}

676 677
/**
 * Reads data from the object referenced by handle.
678 679 680
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
681 682 683 684 685
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
686
		     struct drm_file *file)
687 688
{
	struct drm_i915_gem_pread *args = data;
689
	struct drm_i915_gem_object *obj;
690
	int ret = 0;
691

692 693 694 695
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
696
		       u64_to_user_ptr(args->data_ptr),
697 698 699
		       args->size))
		return -EFAULT;

700
	ret = i915_mutex_lock_interruptible(dev);
701
	if (ret)
702
		return ret;
703

704
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
705
	if (&obj->base == NULL) {
706 707
		ret = -ENOENT;
		goto unlock;
708
	}
709

710
	/* Bounds check source.  */
711 712
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
713
		ret = -EINVAL;
714
		goto out;
C
Chris Wilson 已提交
715 716
	}

717 718 719 720 721 722 723 724
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
725 726
	trace_i915_gem_object_pread(obj, args->offset, args->size);

727
	ret = i915_gem_shmem_pread(dev, obj, args, file);
728

729
out:
730
	drm_gem_object_unreference(&obj->base);
731
unlock:
732
	mutex_unlock(&dev->struct_mutex);
733
	return ret;
734 735
}

736 737
/* This is the fast write path which cannot handle
 * page faults in the source data
738
 */
739 740 741 742 743 744

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
745
{
746 747
	void __iomem *vaddr_atomic;
	void *vaddr;
748
	unsigned long unwritten;
749

P
Peter Zijlstra 已提交
750
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
751 752 753
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
754
						      user_data, length);
P
Peter Zijlstra 已提交
755
	io_mapping_unmap_atomic(vaddr_atomic);
756
	return unwritten;
757 758
}

759 760 761
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
762 763 764 765
 * @dev: drm device pointer
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
766
 */
767
static int
768 769
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
770
			 struct drm_i915_gem_pwrite *args,
771
			 struct drm_file *file)
772
{
773 774
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
775
	ssize_t remain;
776
	loff_t offset, page_base;
777
	char __user *user_data;
D
Daniel Vetter 已提交
778 779
	int page_offset, page_length, ret;

780
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
781 782 783 784 785 786 787 788 789 790
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
791

792
	user_data = u64_to_user_ptr(args->data_ptr);
793 794
	remain = args->size;

795
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
796

797
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
798

799 800 801
	while (remain > 0) {
		/* Operation in this page
		 *
802 803 804
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
805
		 */
806 807
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
808 809 810 811 812
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
813 814
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
815
		 */
816
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
817 818
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
819
			goto out_flush;
D
Daniel Vetter 已提交
820
		}
821

822 823 824
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
825 826
	}

827
out_flush:
828
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
829
out_unpin:
B
Ben Widawsky 已提交
830
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
831
out:
832
	return ret;
833 834
}

835 836 837 838
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
839
static int
840 841 842 843 844
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
845
{
846
	char *vaddr;
847
	int ret;
848

849
	if (unlikely(page_do_bit17_swizzling))
850
		return -EINVAL;
851

852 853 854 855
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
856 857
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
858 859 860 861
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
862

863
	return ret ? -EFAULT : 0;
864 865
}

866 867
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
868
static int
869 870 871 872 873
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
874
{
875 876
	char *vaddr;
	int ret;
877

878
	vaddr = kmap(page);
879
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
880 881 882
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
883 884
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
885 886
						user_data,
						page_length);
887 888 889 890 891
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
892 893 894
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
895
	kunmap(page);
896

897
	return ret ? -EFAULT : 0;
898 899 900
}

static int
901 902 903 904
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
905 906
{
	ssize_t remain;
907 908
	loff_t offset;
	char __user *user_data;
909
	int shmem_page_offset, page_length, ret = 0;
910
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
911
	int hit_slowpath = 0;
912 913
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
914
	struct sg_page_iter sg_iter;
915

916
	user_data = u64_to_user_ptr(args->data_ptr);
917 918
	remain = args->size;

919
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
920

921 922 923 924 925
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
926
		needs_clflush_after = cpu_write_needs_clflush(obj);
927 928 929
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
930
	}
931 932 933 934 935
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
936

937 938 939 940
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

941
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
942

943 944
	i915_gem_object_pin_pages(obj);

945
	offset = args->offset;
946
	obj->dirty = 1;
947

948 949
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
950
		struct page *page = sg_page_iter_page(&sg_iter);
951
		int partial_cacheline_write;
952

953 954 955
		if (remain <= 0)
			break;

956 957 958 959 960
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
961
		shmem_page_offset = offset_in_page(offset);
962 963 964 965 966

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

967 968 969 970 971 972 973
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

974 975 976
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

977 978 979 980 981 982
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
983 984 985

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
986 987 988 989
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
990

991
		mutex_lock(&dev->struct_mutex);
992 993

		if (ret)
994 995
			goto out;

996
next_page:
997
		remain -= page_length;
998
		user_data += page_length;
999
		offset += page_length;
1000 1001
	}

1002
out:
1003 1004
	i915_gem_object_unpin_pages(obj);

1005
	if (hit_slowpath) {
1006 1007 1008 1009 1010 1011 1012
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1013
			if (i915_gem_clflush_object(obj, obj->pin_display))
1014
				needs_clflush_after = true;
1015
		}
1016
	}
1017

1018
	if (needs_clflush_after)
1019
		i915_gem_chipset_flush(to_i915(dev));
1020 1021
	else
		obj->cache_dirty = true;
1022

1023
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1024
	return ret;
1025 1026 1027 1028
}

/**
 * Writes data to the object referenced by handle.
1029 1030 1031
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1032 1033 1034 1035 1036
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1037
		      struct drm_file *file)
1038
{
1039
	struct drm_i915_private *dev_priv = dev->dev_private;
1040
	struct drm_i915_gem_pwrite *args = data;
1041
	struct drm_i915_gem_object *obj;
1042 1043 1044 1045 1046 1047
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1048
		       u64_to_user_ptr(args->data_ptr),
1049 1050 1051
		       args->size))
		return -EFAULT;

1052
	if (likely(!i915.prefault_disable)) {
1053
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1054 1055 1056 1057
						   args->size);
		if (ret)
			return -EFAULT;
	}
1058

1059 1060
	intel_runtime_pm_get(dev_priv);

1061
	ret = i915_mutex_lock_interruptible(dev);
1062
	if (ret)
1063
		goto put_rpm;
1064

1065
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1066
	if (&obj->base == NULL) {
1067 1068
		ret = -ENOENT;
		goto unlock;
1069
	}
1070

1071
	/* Bounds check destination. */
1072 1073
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1074
		ret = -EINVAL;
1075
		goto out;
C
Chris Wilson 已提交
1076 1077
	}

1078 1079 1080 1081 1082 1083 1084 1085
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1086 1087
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1088
	ret = -EFAULT;
1089 1090 1091 1092 1093 1094
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1095 1096 1097
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1098
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1099 1100 1101
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1102
	}
1103

1104 1105 1106 1107 1108 1109
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1110

1111
out:
1112
	drm_gem_object_unreference(&obj->base);
1113
unlock:
1114
	mutex_unlock(&dev->struct_mutex);
1115 1116 1117
put_rpm:
	intel_runtime_pm_put(dev_priv);

1118 1119 1120
	return ret;
}

1121 1122
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1123
{
1124 1125
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1126

1127
	if (__i915_reset_in_progress(reset_counter)) {
1128 1129 1130 1131 1132
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1133
		return -EAGAIN;
1134 1135 1136 1137 1138
	}

	return 0;
}

1139 1140 1141 1142 1143 1144
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1145
		       struct intel_engine_cs *engine)
1146
{
1147
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1182
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1183
{
1184
	unsigned long timeout;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1196

1197
	if (req->engine->irq_refcount)
1198 1199
		return -EBUSY;

1200 1201 1202 1203
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1204
	timeout = local_clock_us(&cpu) + 5;
1205
	while (!need_resched()) {
D
Daniel Vetter 已提交
1206
		if (i915_gem_request_completed(req, true))
1207 1208
			return 0;

1209 1210 1211
		if (signal_pending_state(state, current))
			break;

1212
		if (busywait_stop(timeout, cpu))
1213
			break;
1214

1215 1216
		cpu_relax_lowlatency();
	}
1217

D
Daniel Vetter 已提交
1218
	if (i915_gem_request_completed(req, false))
1219 1220 1221
		return 0;

	return -EAGAIN;
1222 1223
}

1224
/**
1225 1226
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1227 1228
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229
 * @rps: RPS client
1230
 *
1231 1232 1233 1234 1235 1236 1237
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1238
 * Returns 0 if the request was found within the alloted time. Else returns the
1239 1240
 * errno with remaining time filled in timeout argument.
 */
1241
int __i915_wait_request(struct drm_i915_gem_request *req,
1242
			bool interruptible,
1243
			s64 *timeout,
1244
			struct intel_rps_client *rps)
1245
{
1246
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1247
	struct drm_i915_private *dev_priv = req->i915;
1248
	const bool irq_test_in_progress =
1249
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1250
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1251
	DEFINE_WAIT(wait);
1252
	unsigned long timeout_expire;
1253
	s64 before = 0; /* Only to silence a compiler warning. */
1254 1255
	int ret;

1256
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1257

1258 1259 1260
	if (list_empty(&req->list))
		return 0;

1261
	if (i915_gem_request_completed(req, true))
1262 1263
		return 0;

1264 1265 1266 1267 1268 1269 1270 1271 1272
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1273 1274 1275 1276 1277

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1278
	}
1279

1280
	if (INTEL_INFO(dev_priv)->gen >= 6)
1281
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1282

1283
	trace_i915_gem_request_wait_begin(req);
1284 1285

	/* Optimistic spin for the next jiffie before touching IRQs */
1286
	ret = __i915_spin_request(req, state);
1287 1288 1289
	if (ret == 0)
		goto out;

1290
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1291 1292 1293 1294
		ret = -ENODEV;
		goto out;
	}

1295 1296
	for (;;) {
		struct timer_list timer;
1297

1298
		prepare_to_wait(&engine->irq_queue, &wait, state);
1299

1300
		/* We need to check whether any gpu reset happened in between
1301 1302 1303 1304 1305 1306
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1307
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1308
			ret = 0;
1309 1310
			break;
		}
1311

1312
		if (i915_gem_request_completed(req, false)) {
1313 1314 1315
			ret = 0;
			break;
		}
1316

1317
		if (signal_pending_state(state, current)) {
1318 1319 1320 1321
			ret = -ERESTARTSYS;
			break;
		}

1322
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323 1324 1325 1326 1327
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1328
		if (timeout || missed_irq(dev_priv, engine)) {
1329 1330
			unsigned long expire;

1331
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1333 1334 1335
			mod_timer(&timer, expire);
		}

1336
		io_schedule();
1337 1338 1339 1340 1341 1342

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1343
	if (!irq_test_in_progress)
1344
		engine->irq_put(engine);
1345

1346
	finish_wait(&engine->irq_queue, &wait);
1347

1348 1349 1350
out:
	trace_i915_gem_request_wait_end(req);

1351
	if (timeout) {
1352
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353 1354

		*timeout = tres < 0 ? 0 : tres;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1365 1366
	}

1367
	return ret;
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1407 1408 1409

	put_pid(request->pid);
	request->pid = NULL;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1429
	if (request->previous_context) {
1430
		if (i915.enable_execlists)
1431 1432
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1433 1434
	}

1435
	i915_gem_context_unreference(request->ctx);
1436 1437 1438 1439 1440 1441
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1442
	struct intel_engine_cs *engine = req->engine;
1443 1444
	struct drm_i915_gem_request *tmp;

1445
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1460
/**
1461
 * Waits for a request to be signaled, and cleans up the
1462
 * request and object lists appropriately for that event.
1463
 * @req: request to wait on
1464 1465
 */
int
1466
i915_wait_request(struct drm_i915_gem_request *req)
1467
{
1468
	struct drm_i915_private *dev_priv = req->i915;
1469
	bool interruptible;
1470 1471
	int ret;

1472 1473
	interruptible = dev_priv->mm.interruptible;

1474
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1475

1476
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1477 1478
	if (ret)
		return ret;
1479

1480 1481 1482 1483
	/* If the GPU hung, we want to keep the requests to find the guilty. */
	if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
		__i915_gem_request_retire__upto(req);

1484 1485 1486
	return 0;
}

1487 1488 1489
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1490 1491
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1492
 */
1493
int
1494 1495 1496
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1497
	int ret, i;
1498

1499
	if (!obj->active)
1500 1501
		return 0;

1502 1503 1504 1505 1506
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1507

1508
			i = obj->last_write_req->engine->id;
1509 1510 1511 1512 1513 1514
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1515
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1516 1517 1518 1519 1520 1521 1522 1523 1524
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1525
		GEM_BUG_ON(obj->active);
1526 1527 1528 1529 1530 1531 1532 1533 1534
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1535
	int ring = req->engine->id;
1536 1537 1538 1539 1540 1541

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1542 1543
	if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
		__i915_gem_request_retire__upto(req);
1544 1545
}

1546 1547 1548 1549 1550
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1551
					    struct intel_rps_client *rps,
1552 1553 1554 1555
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1556
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1557
	int ret, i, n = 0;
1558 1559 1560 1561

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1562
	if (!obj->active)
1563 1564
		return 0;

1565 1566 1567 1568 1569 1570 1571 1572 1573
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1574
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1585
	mutex_unlock(&dev->struct_mutex);
1586
	ret = 0;
1587
	for (i = 0; ret == 0 && i < n; i++)
1588
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1589 1590
	mutex_lock(&dev->struct_mutex);

1591 1592 1593 1594 1595 1596 1597
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1598 1599
}

1600 1601 1602 1603 1604 1605
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1606
/**
1607 1608
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1609 1610 1611
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1612 1613 1614
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1615
			  struct drm_file *file)
1616 1617
{
	struct drm_i915_gem_set_domain *args = data;
1618
	struct drm_i915_gem_object *obj;
1619 1620
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1621 1622
	int ret;

1623
	/* Only handle setting domains to types used by the CPU. */
1624
	if (write_domain & I915_GEM_GPU_DOMAINS)
1625 1626
		return -EINVAL;

1627
	if (read_domains & I915_GEM_GPU_DOMAINS)
1628 1629 1630 1631 1632 1633 1634 1635
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1636
	ret = i915_mutex_lock_interruptible(dev);
1637
	if (ret)
1638
		return ret;
1639

1640
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1641
	if (&obj->base == NULL) {
1642 1643
		ret = -ENOENT;
		goto unlock;
1644
	}
1645

1646 1647 1648 1649
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1650
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1651
							  to_rps_client(file),
1652
							  !write_domain);
1653 1654 1655
	if (ret)
		goto unref;

1656
	if (read_domains & I915_GEM_DOMAIN_GTT)
1657
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1658
	else
1659
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1660

1661 1662 1663 1664 1665
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1666
unref:
1667
	drm_gem_object_unreference(&obj->base);
1668
unlock:
1669 1670 1671 1672 1673 1674
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1675 1676 1677
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1678 1679 1680
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681
			 struct drm_file *file)
1682 1683
{
	struct drm_i915_gem_sw_finish *args = data;
1684
	struct drm_i915_gem_object *obj;
1685 1686
	int ret = 0;

1687
	ret = i915_mutex_lock_interruptible(dev);
1688
	if (ret)
1689
		return ret;
1690

1691
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1692
	if (&obj->base == NULL) {
1693 1694
		ret = -ENOENT;
		goto unlock;
1695 1696 1697
	}

	/* Pinned buffers may be scanout, so flush the cache */
1698
	if (obj->pin_display)
1699
		i915_gem_object_flush_cpu_write_domain(obj);
1700

1701
	drm_gem_object_unreference(&obj->base);
1702
unlock:
1703 1704 1705 1706 1707
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1708 1709 1710 1711 1712
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1713 1714 1715
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1726 1727 1728
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1729
		    struct drm_file *file)
1730 1731 1732 1733 1734
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1735 1736 1737
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1738
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1739 1740
		return -ENODEV;

1741
	obj = drm_gem_object_lookup(file, args->handle);
1742
	if (obj == NULL)
1743
		return -ENOENT;
1744

1745 1746 1747 1748 1749 1750 1751 1752
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1753
	addr = vm_mmap(obj->filp, 0, args->size,
1754 1755
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1756 1757 1758 1759
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1760 1761 1762 1763
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1764 1765 1766 1767 1768 1769 1770 1771
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1772
	drm_gem_object_unreference_unlocked(obj);
1773 1774 1775 1776 1777 1778 1779 1780
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1781 1782
/**
 * i915_gem_fault - fault a page into the GTT
1783 1784
 * @vma: VMA in question
 * @vmf: fault info
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1799 1800
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1801 1802
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1803
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1804 1805 1806
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1807
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1808

1809 1810
	intel_runtime_pm_get(dev_priv);

1811 1812 1813 1814
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1815 1816 1817
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1818

C
Chris Wilson 已提交
1819 1820
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1821 1822 1823 1824 1825 1826 1827 1828 1829
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1830 1831
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1832
		ret = -EFAULT;
1833 1834 1835
		goto unlock;
	}

1836
	/* Use a partial view if the object is bigger than the aperture. */
1837
	if (obj->base.size >= ggtt->mappable_end &&
1838
	    obj->tiling_mode == I915_TILING_NONE) {
1839
		static const unsigned int chunk_size = 256; // 1 MiB
1840

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1853 1854
	if (ret)
		goto unlock;
1855

1856 1857 1858
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1859

1860
	ret = i915_gem_object_get_fence(obj);
1861
	if (ret)
1862
		goto unpin;
1863

1864
	/* Finally, remap it using the new GTT offset */
1865
	pfn = ggtt->mappable_base +
1866
		i915_gem_obj_ggtt_offset_view(obj, &view);
1867
	pfn >>= PAGE_SHIFT;
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1878

1879 1880
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1881 1882 1883 1884 1885
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1907
unpin:
1908
	i915_gem_object_ggtt_unpin_view(obj, &view);
1909
unlock:
1910
	mutex_unlock(&dev->struct_mutex);
1911
out:
1912
	switch (ret) {
1913
	case -EIO:
1914 1915 1916 1917 1918 1919 1920
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1921 1922 1923
			ret = VM_FAULT_SIGBUS;
			break;
		}
1924
	case -EAGAIN:
D
Daniel Vetter 已提交
1925 1926 1927 1928
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1929
		 */
1930 1931
	case 0:
	case -ERESTARTSYS:
1932
	case -EINTR:
1933 1934 1935 1936 1937
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1938 1939
		ret = VM_FAULT_NOPAGE;
		break;
1940
	case -ENOMEM:
1941 1942
		ret = VM_FAULT_OOM;
		break;
1943
	case -ENOSPC:
1944
	case -EFAULT:
1945 1946
		ret = VM_FAULT_SIGBUS;
		break;
1947
	default:
1948
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1949 1950
		ret = VM_FAULT_SIGBUS;
		break;
1951
	}
1952 1953 1954

	intel_runtime_pm_put(dev_priv);
	return ret;
1955 1956
}

1957 1958 1959 1960
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1961
 * Preserve the reservation of the mmapping with the DRM core code, but
1962 1963 1964 1965 1966 1967 1968 1969 1970
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1971
void
1972
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1973
{
1974 1975 1976 1977 1978 1979
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1980 1981
	if (!obj->fault_mappable)
		return;
1982

1983 1984
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1995
	obj->fault_mappable = false;
1996 1997
}

1998 1999 2000 2001 2002 2003 2004 2005 2006
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

2007
uint32_t
2008
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2009
{
2010
	uint32_t gtt_size;
2011 2012

	if (INTEL_INFO(dev)->gen >= 4 ||
2013 2014
	    tiling_mode == I915_TILING_NONE)
		return size;
2015 2016

	/* Previous chips need a power-of-two fence region when tiling */
2017
	if (IS_GEN3(dev))
2018
		gtt_size = 1024*1024;
2019
	else
2020
		gtt_size = 512*1024;
2021

2022 2023
	while (gtt_size < size)
		gtt_size <<= 1;
2024

2025
	return gtt_size;
2026 2027
}

2028 2029
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2030 2031 2032 2033
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
2034 2035
 *
 * Return the required GTT alignment for an object, taking into account
2036
 * potential fence register mapping.
2037
 */
2038 2039 2040
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2041 2042 2043 2044 2045
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2046
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2047
	    tiling_mode == I915_TILING_NONE)
2048 2049
		return 4096;

2050 2051 2052 2053
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2054
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2055 2056
}

2057 2058 2059 2060 2061
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2062 2063
	dev_priv->mm.shrinker_no_lock_stealing = true;

2064 2065
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2066
		goto out;
2067 2068 2069 2070 2071 2072 2073 2074

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2075 2076 2077 2078 2079
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2080 2081
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2082
		goto out;
2083 2084

	i915_gem_shrink_all(dev_priv);
2085 2086 2087 2088 2089
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2090 2091 2092 2093 2094 2095 2096
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2097
int
2098 2099
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2100
		  uint32_t handle,
2101
		  uint64_t *offset)
2102
{
2103
	struct drm_i915_gem_object *obj;
2104 2105
	int ret;

2106
	ret = i915_mutex_lock_interruptible(dev);
2107
	if (ret)
2108
		return ret;
2109

2110
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2111
	if (&obj->base == NULL) {
2112 2113 2114
		ret = -ENOENT;
		goto unlock;
	}
2115

2116
	if (obj->madv != I915_MADV_WILLNEED) {
2117
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2118
		ret = -EFAULT;
2119
		goto out;
2120 2121
	}

2122 2123 2124
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2125

2126
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2127

2128
out:
2129
	drm_gem_object_unreference(&obj->base);
2130
unlock:
2131
	mutex_unlock(&dev->struct_mutex);
2132
	return ret;
2133 2134
}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2156
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2157 2158
}

D
Daniel Vetter 已提交
2159 2160 2161
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2162
{
2163
	i915_gem_object_free_mmap_offset(obj);
2164

2165 2166
	if (obj->base.filp == NULL)
		return;
2167

D
Daniel Vetter 已提交
2168 2169 2170 2171 2172
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2173
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2174 2175
	obj->madv = __I915_MADV_PURGED;
}
2176

2177 2178 2179
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2180
{
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2195 2196
}

2197
static void
2198
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2199
{
2200 2201
	struct sgt_iter sgt_iter;
	struct page *page;
2202
	int ret;
2203

2204
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2205

C
Chris Wilson 已提交
2206
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2207
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2208 2209 2210
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2211
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2212 2213 2214
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2215 2216
	i915_gem_gtt_finish_object(obj);

2217
	if (i915_gem_object_needs_bit17_swizzle(obj))
2218 2219
		i915_gem_object_save_bit_17_swizzle(obj);

2220 2221
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2222

2223
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2224
		if (obj->dirty)
2225
			set_page_dirty(page);
2226

2227
		if (obj->madv == I915_MADV_WILLNEED)
2228
			mark_page_accessed(page);
2229

2230
		put_page(page);
2231
	}
2232
	obj->dirty = 0;
2233

2234 2235
	sg_free_table(obj->pages);
	kfree(obj->pages);
2236
}
C
Chris Wilson 已提交
2237

2238
int
2239 2240 2241 2242
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2243
	if (obj->pages == NULL)
2244 2245
		return 0;

2246 2247 2248
	if (obj->pages_pin_count)
		return -EBUSY;

2249
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2250

2251 2252 2253
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2254
	list_del(&obj->global_list);
2255

2256
	if (obj->mapping) {
2257 2258 2259 2260
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2261 2262 2263
		obj->mapping = NULL;
	}

2264
	ops->put_pages(obj);
2265
	obj->pages = NULL;
2266

2267
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2268 2269 2270 2271

	return 0;
}

2272
static int
C
Chris Wilson 已提交
2273
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2274
{
C
Chris Wilson 已提交
2275
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2276 2277
	int page_count, i;
	struct address_space *mapping;
2278 2279
	struct sg_table *st;
	struct scatterlist *sg;
2280
	struct sgt_iter sgt_iter;
2281
	struct page *page;
2282
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2283
	int ret;
C
Chris Wilson 已提交
2284
	gfp_t gfp;
2285

C
Chris Wilson 已提交
2286 2287 2288 2289 2290 2291 2292
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2293 2294 2295 2296
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2297
	page_count = obj->base.size / PAGE_SIZE;
2298 2299
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2300
		return -ENOMEM;
2301
	}
2302

2303 2304 2305 2306 2307
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2308
	mapping = file_inode(obj->base.filp)->i_mapping;
2309
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2310
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2311 2312 2313
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2314 2315
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2316 2317 2318 2319 2320
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2321 2322 2323 2324 2325 2326 2327 2328
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2329
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2330 2331
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2332
				goto err_pages;
I
Imre Deak 已提交
2333
			}
C
Chris Wilson 已提交
2334
		}
2335 2336 2337 2338 2339 2340 2341 2342
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2343 2344 2345 2346 2347 2348 2349 2350 2351
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2352 2353 2354

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2355
	}
2356 2357 2358 2359
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2360 2361
	obj->pages = st;

I
Imre Deak 已提交
2362 2363 2364 2365
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2366
	if (i915_gem_object_needs_bit17_swizzle(obj))
2367 2368
		i915_gem_object_do_bit_17_swizzle(obj);

2369 2370 2371 2372
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2373 2374 2375
	return 0;

err_pages:
2376
	sg_mark_end(sg);
2377 2378
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2379 2380
	sg_free_table(st);
	kfree(st);
2381 2382 2383 2384 2385 2386 2387 2388 2389

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2390 2391 2392 2393
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2394 2395
}

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2410
	if (obj->pages)
2411 2412
		return 0;

2413
	if (obj->madv != I915_MADV_WILLNEED) {
2414
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2415
		return -EFAULT;
2416 2417
	}

2418 2419
	BUG_ON(obj->pages_pin_count);

2420 2421 2422 2423
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2424
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2425 2426 2427 2428

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2429
	return 0;
2430 2431
}

2432 2433 2434 2435 2436
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2437 2438
	struct sgt_iter sgt_iter;
	struct page *page;
2439 2440
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2441 2442 2443 2444 2445 2446 2447
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2448 2449 2450 2451 2452 2453
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2454

2455 2456
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2457 2458 2459 2460 2461 2462

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2463 2464
	if (pages != stack_pages)
		drm_free_large(pages);
2465 2466 2467 2468 2469

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2482 2483 2484
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2485 2486 2487 2488 2489 2490 2491 2492
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2493
void i915_vma_move_to_active(struct i915_vma *vma,
2494
			     struct drm_i915_gem_request *req)
2495
{
2496
	struct drm_i915_gem_object *obj = vma->obj;
2497
	struct intel_engine_cs *engine;
2498

2499
	engine = i915_gem_request_get_engine(req);
2500 2501

	/* Add a reference if we're newly entering the active list. */
2502
	if (obj->active == 0)
2503
		drm_gem_object_reference(&obj->base);
2504
	obj->active |= intel_engine_flag(engine);
2505

2506
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2507
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2508

2509
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2510 2511
}

2512 2513
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2514
{
2515 2516
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2517 2518

	i915_gem_request_assign(&obj->last_write_req, NULL);
2519
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2520 2521
}

2522
static void
2523
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2524
{
2525
	struct i915_vma *vma;
2526

2527 2528
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2529

2530
	list_del_init(&obj->engine_list[ring]);
2531 2532
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2533
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2534 2535 2536 2537 2538
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2539

2540 2541 2542 2543 2544 2545 2546
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2547 2548 2549
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2550
	}
2551

2552
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2553
	drm_gem_object_unreference(&obj->base);
2554 2555
}

2556
static int
2557
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2558
{
2559
	struct intel_engine_cs *engine;
2560
	int ret;
2561

2562
	/* Carefully retire all requests without writing to the rings */
2563
	for_each_engine(engine, dev_priv) {
2564
		ret = intel_engine_idle(engine);
2565 2566
		if (ret)
			return ret;
2567
	}
2568
	i915_gem_retire_requests(dev_priv);
2569 2570

	/* Finally reset hw state */
2571
	for_each_engine(engine, dev_priv)
2572
		intel_ring_init_seqno(engine, seqno);
2573

2574
	return 0;
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2588
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2603
int
2604
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2605
{
2606 2607
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2608
		int ret = i915_gem_init_seqno(dev_priv, 0);
2609 2610
		if (ret)
			return ret;
2611

2612 2613
		dev_priv->next_seqno = 1;
	}
2614

2615
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2616
	return 0;
2617 2618
}

2619 2620 2621 2622 2623
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2624
void __i915_add_request(struct drm_i915_gem_request *request,
2625 2626
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2627
{
2628
	struct intel_engine_cs *engine;
2629
	struct drm_i915_private *dev_priv;
2630
	struct intel_ringbuffer *ringbuf;
2631
	u32 request_start;
2632
	u32 reserved_tail;
2633 2634
	int ret;

2635
	if (WARN_ON(request == NULL))
2636
		return;
2637

2638
	engine = request->engine;
2639
	dev_priv = request->i915;
2640 2641
	ringbuf = request->ringbuf;

2642 2643 2644 2645 2646
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2647
	request_start = intel_ring_get_tail(ringbuf);
2648 2649 2650
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2651 2652 2653 2654 2655 2656 2657
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2658 2659
	if (flush_caches) {
		if (i915.enable_execlists)
2660
			ret = logical_ring_flush_all_caches(request);
2661
		else
2662
			ret = intel_ring_flush_all_caches(request);
2663 2664 2665
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2666

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2689 2690 2691 2692 2693
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2694
	request->postfix = intel_ring_get_tail(ringbuf);
2695

2696
	if (i915.enable_execlists)
2697
		ret = engine->emit_request(request);
2698
	else {
2699
		ret = engine->add_request(request);
2700 2701

		request->tail = intel_ring_get_tail(ringbuf);
2702
	}
2703 2704
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2705

2706
	i915_queue_hangcheck(engine->i915);
2707

2708 2709 2710
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
2711
	intel_mark_busy(dev_priv);
2712

2713
	/* Sanity check that the reserved size was large enough. */
2714 2715 2716 2717 2718 2719 2720
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2721 2722
}

2723
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2724
				   const struct i915_gem_context *ctx)
2725
{
2726
	unsigned long elapsed;
2727

2728 2729 2730
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2731 2732
		return true;

2733 2734
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2735
		if (!i915_gem_context_is_default(ctx)) {
2736
			DRM_DEBUG("context hanging too fast, banning!\n");
2737
			return true;
2738 2739 2740
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2741
			return true;
2742
		}
2743 2744 2745 2746 2747
	}

	return false;
}

2748
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2749
				  struct i915_gem_context *ctx,
2750
				  const bool guilty)
2751
{
2752 2753 2754 2755
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2756

2757 2758 2759
	hs = &ctx->hang_stats;

	if (guilty) {
2760
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2761 2762 2763 2764
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2765 2766 2767
	}
}

2768 2769 2770 2771
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2772
	kmem_cache_free(req->i915->requests, req);
2773 2774
}

2775
static inline int
2776
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2777
			 struct i915_gem_context *ctx,
2778
			 struct drm_i915_gem_request **req_out)
2779
{
2780
	struct drm_i915_private *dev_priv = engine->i915;
2781
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2782
	struct drm_i915_gem_request *req;
2783 2784
	int ret;

2785 2786 2787
	if (!req_out)
		return -EINVAL;

2788
	*req_out = NULL;
2789

2790 2791 2792 2793 2794
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2795 2796 2797
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2798 2799
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2800 2801
		return -ENOMEM;

2802
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2803 2804
	if (ret)
		goto err;
2805

2806 2807
	kref_init(&req->ref);
	req->i915 = dev_priv;
2808
	req->engine = engine;
2809
	req->reset_counter = reset_counter;
2810 2811
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2812

2813 2814 2815 2816 2817 2818 2819
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2820
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2821 2822 2823 2824 2825 2826 2827

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
2828

2829
	*req_out = req;
2830
	return 0;
2831

2832 2833
err_ctx:
	i915_gem_context_unreference(ctx);
2834 2835 2836
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2837 2838
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
2853
		       struct i915_gem_context *ctx)
2854 2855 2856 2857 2858
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2859
		ctx = engine->i915->kernel_context;
2860 2861 2862 2863
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2864
struct drm_i915_gem_request *
2865
i915_gem_find_active_request(struct intel_engine_cs *engine)
2866
{
2867 2868
	struct drm_i915_gem_request *request;

2869
	list_for_each_entry(request, &engine->request_list, list) {
2870
		if (i915_gem_request_completed(request, false))
2871
			continue;
2872

2873
		return request;
2874
	}
2875 2876 2877 2878

	return NULL;
}

2879
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2880
				       struct intel_engine_cs *engine)
2881 2882 2883 2884
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2885
	request = i915_gem_find_active_request(engine);
2886 2887 2888 2889

	if (request == NULL)
		return;

2890
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2891

2892
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2893

2894
	list_for_each_entry_continue(request, &engine->request_list, list)
2895
		i915_set_reset_status(dev_priv, request->ctx, false);
2896
}
2897

2898
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2899
					struct intel_engine_cs *engine)
2900
{
2901 2902
	struct intel_ringbuffer *buffer;

2903
	while (!list_empty(&engine->active_list)) {
2904
		struct drm_i915_gem_object *obj;
2905

2906
		obj = list_first_entry(&engine->active_list,
2907
				       struct drm_i915_gem_object,
2908
				       engine_list[engine->id]);
2909

2910
		i915_gem_object_retire__read(obj, engine->id);
2911
	}
2912

2913 2914 2915 2916 2917 2918
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2919
	if (i915.enable_execlists) {
2920 2921
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2922

2923
		intel_execlists_cancel_requests(engine);
2924 2925
	}

2926 2927 2928 2929 2930 2931 2932
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2933
	while (!list_empty(&engine->request_list)) {
2934 2935
		struct drm_i915_gem_request *request;

2936
		request = list_first_entry(&engine->request_list,
2937 2938 2939
					   struct drm_i915_gem_request,
					   list);

2940
		i915_gem_request_retire(request);
2941
	}
2942 2943 2944 2945 2946 2947 2948 2949

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2950
	list_for_each_entry(buffer, &engine->buffers, link) {
2951 2952 2953
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2954 2955

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2956 2957
}

2958
void i915_gem_reset(struct drm_device *dev)
2959
{
2960
	struct drm_i915_private *dev_priv = dev->dev_private;
2961
	struct intel_engine_cs *engine;
2962

2963 2964 2965 2966 2967
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2968
	for_each_engine(engine, dev_priv)
2969
		i915_gem_reset_engine_status(dev_priv, engine);
2970

2971
	for_each_engine(engine, dev_priv)
2972
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2973

2974 2975
	i915_gem_context_reset(dev);

2976
	i915_gem_restore_fences(dev);
2977 2978

	WARN_ON(i915_verify_lists(dev));
2979 2980 2981 2982
}

/**
 * This function clears the request list as sequence numbers are passed.
2983
 * @engine: engine to retire requests on
2984
 */
2985
void
2986
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2987
{
2988
	WARN_ON(i915_verify_lists(engine->dev));
2989

2990 2991 2992 2993
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2994
	 */
2995
	while (!list_empty(&engine->request_list)) {
2996 2997
		struct drm_i915_gem_request *request;

2998
		request = list_first_entry(&engine->request_list,
2999 3000 3001
					   struct drm_i915_gem_request,
					   list);

3002
		if (!i915_gem_request_completed(request, true))
3003 3004
			break;

3005
		i915_gem_request_retire(request);
3006
	}
3007

3008 3009 3010 3011
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
3012
	while (!list_empty(&engine->active_list)) {
3013 3014
		struct drm_i915_gem_object *obj;

3015 3016
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
3017
				       engine_list[engine->id]);
3018

3019
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3020 3021
			break;

3022
		i915_gem_object_retire__read(obj, engine->id);
3023 3024
	}

3025 3026 3027 3028
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
3029
	}
3030

3031
	WARN_ON(i915_verify_lists(engine->dev));
3032 3033
}

3034
bool
3035
i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3036
{
3037
	struct intel_engine_cs *engine;
3038
	bool idle = true;
3039

3040
	for_each_engine(engine, dev_priv) {
3041 3042
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3043
		if (i915.enable_execlists) {
3044
			spin_lock_bh(&engine->execlist_lock);
3045
			idle &= list_empty(&engine->execlist_queue);
3046
			spin_unlock_bh(&engine->execlist_lock);
3047
		}
3048 3049 3050 3051 3052 3053 3054 3055
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3056 3057
}

3058
static void
3059 3060
i915_gem_retire_work_handler(struct work_struct *work)
{
3061 3062 3063
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3064
	bool idle;
3065

3066
	/* Come back later if the device is busy... */
3067 3068
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
3069
		idle = i915_gem_retire_requests(dev_priv);
3070
		mutex_unlock(&dev->struct_mutex);
3071
	}
3072
	if (!idle)
3073 3074
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3075
}
3076

3077 3078 3079 3080 3081
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3082
	struct drm_device *dev = dev_priv->dev;
3083
	struct intel_engine_cs *engine;
3084

3085 3086
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3087
			return;
3088

3089
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3090
	 * Also locking seems to be fubar here, engine->request_list is protected
3091 3092
	 * by dev->struct_mutex. */

3093
	intel_mark_idle(dev_priv);
3094 3095

	if (mutex_trylock(&dev->struct_mutex)) {
3096
		for_each_engine(engine, dev_priv)
3097
			i915_gem_batch_pool_fini(&engine->batch_pool);
3098

3099 3100
		mutex_unlock(&dev->struct_mutex);
	}
3101 3102
}

3103 3104 3105 3106
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
3107
 * @obj: object to flush
3108 3109 3110 3111
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3112
	int i;
3113 3114 3115

	if (!obj->active)
		return 0;
3116

3117
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3118
		struct drm_i915_gem_request *req;
3119

3120 3121 3122 3123
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3124
		if (i915_gem_request_completed(req, true))
3125
			i915_gem_object_retire__read(obj, i);
3126 3127 3128 3129 3130
	}

	return 0;
}

3131 3132
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3133 3134 3135
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3160
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3161 3162
	int i, n = 0;
	int ret;
3163

3164 3165 3166
	if (args->flags != 0)
		return -EINVAL;

3167 3168 3169 3170
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3171
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3172 3173 3174 3175 3176
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3177 3178
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3179 3180 3181
	if (ret)
		goto out;

3182
	if (!obj->active)
3183
		goto out;
3184 3185

	/* Do this after OLR check to make sure we make forward progress polling
3186
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3187
	 */
3188
	if (args->timeout_ns == 0) {
3189 3190 3191 3192 3193
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3194

3195
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3196 3197 3198 3199 3200 3201
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3202 3203
	mutex_unlock(&dev->struct_mutex);

3204 3205
	for (i = 0; i < n; i++) {
		if (ret == 0)
3206
			ret = __i915_wait_request(req[i], true,
3207
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3208
						  to_rps_client(file));
3209
		i915_gem_request_unreference(req[i]);
3210
	}
3211
	return ret;
3212 3213 3214 3215 3216 3217 3218

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3219 3220 3221
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3222 3223
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3224 3225 3226 3227
{
	struct intel_engine_cs *from;
	int ret;

3228
	from = i915_gem_request_get_engine(from_req);
3229 3230 3231
	if (to == from)
		return 0;

3232
	if (i915_gem_request_completed(from_req, true))
3233 3234
		return 0;

3235
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3236
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3237
		ret = __i915_wait_request(from_req,
3238 3239 3240
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3241 3242 3243
		if (ret)
			return ret;

3244
		i915_gem_object_retire_request(obj, from_req);
3245 3246
	} else {
		int idx = intel_ring_sync_index(from, to);
3247 3248 3249
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3250 3251 3252 3253

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3254
		if (*to_req == NULL) {
3255 3256 3257 3258 3259 3260 3261
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3262 3263
		}

3264 3265
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3280 3281 3282 3283 3284
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3285 3286 3287
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3288 3289 3290
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3291
 * rather than a particular GPU ring. Conceptually we serialise writes
3292
 * between engines inside the GPU. We only allow one engine to write
3293 3294 3295 3296 3297 3298 3299 3300 3301
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3302
 *
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3313 3314
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3315 3316
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3317 3318
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3319
{
3320
	const bool readonly = obj->base.pending_write_domain == 0;
3321
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3322
	int ret, i, n;
3323

3324
	if (!obj->active)
3325 3326
		return 0;

3327 3328
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3329

3330 3331 3332 3333 3334
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3335
		for (i = 0; i < I915_NUM_ENGINES; i++)
3336 3337 3338 3339
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3340
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3341 3342 3343
		if (ret)
			return ret;
	}
3344

3345
	return 0;
3346 3347
}

3348 3349 3350 3351 3352 3353 3354
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3355 3356 3357
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3380
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3381
{
3382
	struct drm_i915_gem_object *obj = vma->obj;
3383
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3384
	int ret;
3385

3386
	if (list_empty(&vma->obj_link))
3387 3388
		return 0;

3389 3390 3391 3392
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3393

B
Ben Widawsky 已提交
3394
	if (vma->pin_count)
3395
		return -EBUSY;
3396

3397 3398
	BUG_ON(obj->pages == NULL);

3399 3400 3401 3402 3403
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3404

3405
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3406
		i915_gem_object_finish_gtt(obj);
3407

3408 3409 3410 3411
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3412 3413

		__i915_vma_iounmap(vma);
3414
	}
3415

3416
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3417

3418
	vma->vm->unbind_vma(vma);
3419
	vma->bound = 0;
3420

3421
	list_del_init(&vma->vm_link);
3422
	if (vma->is_ggtt) {
3423 3424 3425 3426 3427 3428
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3429
		vma->ggtt_view.pages = NULL;
3430
	}
3431

B
Ben Widawsky 已提交
3432 3433 3434 3435
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3436
	 * no more VMAs exist. */
I
Imre Deak 已提交
3437
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3438
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3439

3440 3441 3442 3443 3444 3445
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3446
	return 0;
3447 3448
}

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3459
int i915_gpu_idle(struct drm_device *dev)
3460
{
3461
	struct drm_i915_private *dev_priv = dev->dev_private;
3462
	struct intel_engine_cs *engine;
3463
	int ret;
3464 3465

	/* Flush everything onto the inactive list. */
3466
	for_each_engine(engine, dev_priv) {
3467
		if (!i915.enable_execlists) {
3468 3469
			struct drm_i915_gem_request *req;

3470
			req = i915_gem_request_alloc(engine, NULL);
3471 3472
			if (IS_ERR(req))
				return PTR_ERR(req);
3473

3474
			ret = i915_switch_context(req);
3475
			i915_add_request_no_flush(req);
3476 3477
			if (ret)
				return ret;
3478
		}
3479

3480
		ret = intel_engine_idle(engine);
3481 3482 3483
		if (ret)
			return ret;
	}
3484

3485
	WARN_ON(i915_verify_lists(dev));
3486
	return 0;
3487 3488
}

3489
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3490 3491
				     unsigned long cache_level)
{
3492
	struct drm_mm_node *gtt_space = &vma->node;
3493 3494
	struct drm_mm_node *other;

3495 3496 3497 3498 3499 3500
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3501
	 */
3502
	if (vma->vm->mm.color_adjust == NULL)
3503 3504
		return true;

3505
	if (!drm_mm_node_allocated(gtt_space))
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3522
/**
3523 3524
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3525 3526 3527 3528 3529
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3530
 */
3531
static struct i915_vma *
3532 3533
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3534
			   const struct i915_ggtt_view *ggtt_view,
3535
			   unsigned alignment,
3536
			   uint64_t flags)
3537
{
3538
	struct drm_device *dev = obj->base.dev;
3539 3540
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3541
	u32 fence_alignment, unfenced_alignment;
3542 3543
	u32 search_flag, alloc_flag;
	u64 start, end;
3544
	u64 size, fence_size;
B
Ben Widawsky 已提交
3545
	struct i915_vma *vma;
3546
	int ret;
3547

3548 3549 3550 3551 3552
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3553

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3583

3584 3585 3586
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3587
		end = min_t(u64, end, ggtt->mappable_end);
3588
	if (flags & PIN_ZONE_4G)
3589
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3590

3591
	if (alignment == 0)
3592
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3593
						unfenced_alignment;
3594
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3595 3596 3597
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3598
		return ERR_PTR(-EINVAL);
3599 3600
	}

3601 3602 3603
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3604
	 */
3605
	if (size > end) {
3606
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3607 3608
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3609
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3610
			  end);
3611
		return ERR_PTR(-E2BIG);
3612 3613
	}

3614
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3615
	if (ret)
3616
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3617

3618 3619
	i915_gem_object_pin_pages(obj);

3620 3621 3622
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3623
	if (IS_ERR(vma))
3624
		goto err_unpin;
B
Ben Widawsky 已提交
3625

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3644
	} else {
3645 3646 3647 3648 3649 3650 3651
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3652

3653
search_free:
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3667

3668 3669
			goto err_free_vma;
		}
3670
	}
3671
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3672
		ret = -EINVAL;
3673
		goto err_remove_node;
3674 3675
	}

3676
	trace_i915_vma_bind(vma, flags);
3677
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3678
	if (ret)
I
Imre Deak 已提交
3679
		goto err_remove_node;
3680

3681
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3682
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3683

3684
	return vma;
B
Ben Widawsky 已提交
3685

3686
err_remove_node:
3687
	drm_mm_remove_node(&vma->node);
3688
err_free_vma:
B
Ben Widawsky 已提交
3689
	i915_gem_vma_destroy(vma);
3690
	vma = ERR_PTR(ret);
3691
err_unpin:
B
Ben Widawsky 已提交
3692
	i915_gem_object_unpin_pages(obj);
3693
	return vma;
3694 3695
}

3696
bool
3697 3698
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3699 3700 3701 3702 3703
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3704
	if (obj->pages == NULL)
3705
		return false;
3706

3707 3708 3709 3710
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3711
	if (obj->stolen || obj->phys_handle)
3712
		return false;
3713

3714 3715 3716 3717 3718 3719 3720 3721
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3722 3723
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3724
		return false;
3725
	}
3726

C
Chris Wilson 已提交
3727
	trace_i915_gem_object_clflush(obj);
3728
	drm_clflush_sg(obj->pages);
3729
	obj->cache_dirty = false;
3730 3731

	return true;
3732 3733 3734 3735
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3736
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3737
{
C
Chris Wilson 已提交
3738 3739
	uint32_t old_write_domain;

3740
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3741 3742
		return;

3743
	/* No actual flushing is required for the GTT write domain.  Writes
3744 3745
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3746 3747 3748 3749
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3750
	 */
3751 3752
	wmb();

3753 3754
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3755

3756
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3757

C
Chris Wilson 已提交
3758
	trace_i915_gem_object_change_domain(obj,
3759
					    obj->base.read_domains,
C
Chris Wilson 已提交
3760
					    old_write_domain);
3761 3762 3763 3764
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3765
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3766
{
C
Chris Wilson 已提交
3767
	uint32_t old_write_domain;
3768

3769
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3770 3771
		return;

3772
	if (i915_gem_clflush_object(obj, obj->pin_display))
3773
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3774

3775 3776
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3777

3778
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3779

C
Chris Wilson 已提交
3780
	trace_i915_gem_object_change_domain(obj,
3781
					    obj->base.read_domains,
C
Chris Wilson 已提交
3782
					    old_write_domain);
3783 3784
}

3785 3786
/**
 * Moves a single object to the GTT read, and possibly write domain.
3787 3788
 * @obj: object to act on
 * @write: ask for write access or read only
3789 3790 3791 3792
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3793
int
3794
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3795
{
3796 3797 3798
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3799
	uint32_t old_write_domain, old_read_domains;
3800
	struct i915_vma *vma;
3801
	int ret;
3802

3803 3804 3805
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3806
	ret = i915_gem_object_wait_rendering(obj, !write);
3807 3808 3809
	if (ret)
		return ret;

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3822
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3823

3824 3825 3826 3827 3828 3829 3830
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3831 3832
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3833

3834 3835 3836
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3837 3838
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3839
	if (write) {
3840 3841 3842
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3843 3844
	}

C
Chris Wilson 已提交
3845 3846 3847 3848
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3849
	/* And bump the LRU for this access */
3850 3851
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3852
		list_move_tail(&vma->vm_link,
3853
			       &ggtt->base.inactive_list);
3854

3855 3856 3857
	return 0;
}

3858 3859
/**
 * Changes the cache-level of an object across all VMA.
3860 3861
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3873 3874 3875
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3876
	struct drm_device *dev = obj->base.dev;
3877
	struct i915_vma *vma, *next;
3878
	bool bound = false;
3879
	int ret = 0;
3880 3881

	if (obj->cache_level == cache_level)
3882
		goto out;
3883

3884 3885 3886 3887 3888
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3889
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3890 3891 3892 3893 3894 3895 3896 3897
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3898
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3899
			ret = i915_vma_unbind(vma);
3900 3901
			if (ret)
				return ret;
3902 3903
		} else
			bound = true;
3904 3905
	}

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3918
		ret = i915_gem_object_wait_rendering(obj, false);
3919 3920 3921
		if (ret)
			return ret;

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3939 3940 3941
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3942 3943 3944 3945 3946 3947 3948 3949
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3950 3951
		}

3952
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3953 3954 3955 3956 3957 3958 3959
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3960 3961
	}

3962
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3963 3964 3965
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3966
out:
3967 3968 3969 3970
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3971 3972 3973 3974
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
3975
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3976 3977 3978 3979 3980
	}

	return 0;
}

B
Ben Widawsky 已提交
3981 3982
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3983
{
B
Ben Widawsky 已提交
3984
	struct drm_i915_gem_caching *args = data;
3985 3986
	struct drm_i915_gem_object *obj;

3987
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3988 3989
	if (&obj->base == NULL)
		return -ENOENT;
3990

3991 3992 3993 3994 3995 3996
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3997 3998 3999 4000
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4001 4002 4003 4004
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4005

4006 4007
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4008 4009
}

B
Ben Widawsky 已提交
4010 4011
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4012
{
4013
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
4014
	struct drm_i915_gem_caching *args = data;
4015 4016 4017 4018
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4019 4020
	switch (args->caching) {
	case I915_CACHING_NONE:
4021 4022
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4023
	case I915_CACHING_CACHED:
4024 4025 4026 4027 4028 4029
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4030
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4031 4032
			return -ENODEV;

4033 4034
		level = I915_CACHE_LLC;
		break;
4035 4036 4037
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4038 4039 4040 4041
	default:
		return -EINVAL;
	}

4042 4043
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4044 4045
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4046
		goto rpm_put;
B
Ben Widawsky 已提交
4047

4048
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4059 4060 4061
rpm_put:
	intel_runtime_pm_put(dev_priv);

4062 4063 4064
	return ret;
}

4065
/*
4066 4067 4068
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4069 4070
 */
int
4071 4072
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4073
				     const struct i915_ggtt_view *view)
4074
{
4075
	u32 old_read_domains, old_write_domain;
4076 4077
	int ret;

4078 4079 4080
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4081
	obj->pin_display++;
4082

4083 4084 4085 4086 4087 4088 4089 4090 4091
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4092 4093
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4094
	if (ret)
4095
		goto err_unpin_display;
4096

4097 4098 4099 4100
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4101 4102 4103
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4104
	if (ret)
4105
		goto err_unpin_display;
4106

4107
	i915_gem_object_flush_cpu_write_domain(obj);
4108

4109
	old_write_domain = obj->base.write_domain;
4110
	old_read_domains = obj->base.read_domains;
4111 4112 4113 4114

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4115
	obj->base.write_domain = 0;
4116
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4117 4118 4119

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4120
					    old_write_domain);
4121 4122

	return 0;
4123 4124

err_unpin_display:
4125
	obj->pin_display--;
4126 4127 4128 4129
	return ret;
}

void
4130 4131
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4132
{
4133 4134 4135
	if (WARN_ON(obj->pin_display == 0))
		return;

4136 4137
	i915_gem_object_ggtt_unpin_view(obj, view);

4138
	obj->pin_display--;
4139 4140
}

4141 4142
/**
 * Moves a single object to the CPU read, and possibly write domain.
4143 4144
 * @obj: object to act on
 * @write: requesting write or read-only access
4145 4146 4147 4148
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4149
int
4150
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4151
{
C
Chris Wilson 已提交
4152
	uint32_t old_write_domain, old_read_domains;
4153 4154
	int ret;

4155 4156 4157
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4158
	ret = i915_gem_object_wait_rendering(obj, !write);
4159 4160 4161
	if (ret)
		return ret;

4162
	i915_gem_object_flush_gtt_write_domain(obj);
4163

4164 4165
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4166

4167
	/* Flush the CPU cache if it's still invalid. */
4168
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4169
		i915_gem_clflush_object(obj, false);
4170

4171
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4172 4173 4174 4175 4176
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4177
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4178 4179 4180 4181 4182

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4183 4184
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4185
	}
4186

C
Chris Wilson 已提交
4187 4188 4189 4190
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4191 4192 4193
	return 0;
}

4194 4195 4196
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4197 4198 4199 4200
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4201 4202 4203
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4204
static int
4205
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4206
{
4207 4208
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4209
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4210
	struct drm_i915_gem_request *request, *target = NULL;
4211
	int ret;
4212

4213 4214 4215 4216
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4217 4218 4219
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4220

4221
	spin_lock(&file_priv->mm.lock);
4222
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4223 4224
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4225

4226 4227 4228 4229 4230 4231 4232
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4233
		target = request;
4234
	}
4235 4236
	if (target)
		i915_gem_request_reference(target);
4237
	spin_unlock(&file_priv->mm.lock);
4238

4239
	if (target == NULL)
4240
		return 0;
4241

4242
	ret = __i915_wait_request(target, true, NULL, NULL);
4243 4244
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4245

4246
	i915_gem_request_unreference(target);
4247

4248 4249 4250
	return ret;
}

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4267 4268 4269 4270
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4271 4272 4273
	return false;
}

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4292
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4293 4294 4295 4296

	obj->map_and_fenceable = mappable && fenceable;
}

4297 4298 4299 4300 4301 4302
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4303
{
4304
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4305
	struct i915_vma *vma;
4306
	unsigned bound;
4307 4308
	int ret;

4309 4310 4311
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4312
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4313
		return -EINVAL;
4314

4315 4316 4317
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4318 4319 4320 4321 4322 4323
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4324
	if (vma) {
B
Ben Widawsky 已提交
4325 4326 4327
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4328
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4329
			WARN(vma->pin_count,
4330
			     "bo is already pinned in %s with incorrect alignment:"
4331
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4332
			     " obj->map_and_fenceable=%d\n",
4333
			     ggtt_view ? "ggtt" : "ppgtt",
4334 4335
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4336
			     alignment,
4337
			     !!(flags & PIN_MAPPABLE),
4338
			     obj->map_and_fenceable);
4339
			ret = i915_vma_unbind(vma);
4340 4341
			if (ret)
				return ret;
4342 4343

			vma = NULL;
4344 4345 4346
		}
	}

4347
	bound = vma ? vma->bound : 0;
4348
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4349 4350
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4351 4352
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4353 4354
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4355 4356 4357
		if (ret)
			return ret;
	}
4358

4359 4360
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4361
		__i915_vma_set_map_and_fenceable(vma);
4362 4363
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4364

4365
	vma->pin_count++;
4366 4367 4368
	return 0;
}

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4386 4387 4388 4389
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4390
	BUG_ON(!view);
4391

4392
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4393
				      alignment, flags | PIN_GLOBAL);
4394 4395
}

4396
void
4397 4398
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4399
{
4400
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4401

4402
	WARN_ON(vma->pin_count == 0);
4403
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4404

4405
	--vma->pin_count;
4406 4407 4408 4409
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4410
		    struct drm_file *file)
4411 4412
{
	struct drm_i915_gem_busy *args = data;
4413
	struct drm_i915_gem_object *obj;
4414 4415
	int ret;

4416
	ret = i915_mutex_lock_interruptible(dev);
4417
	if (ret)
4418
		return ret;
4419

4420
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4421
	if (&obj->base == NULL) {
4422 4423
		ret = -ENOENT;
		goto unlock;
4424
	}
4425

4426 4427 4428 4429
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4430
	 */
4431
	ret = i915_gem_object_flush_active(obj);
4432 4433
	if (ret)
		goto unref;
4434

4435 4436 4437 4438
	args->busy = 0;
	if (obj->active) {
		int i;

4439
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4440 4441 4442 4443
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4444
				args->busy |= 1 << (16 + req->engine->exec_id);
4445 4446
		}
		if (obj->last_write_req)
4447
			args->busy |= obj->last_write_req->engine->exec_id;
4448
	}
4449

4450
unref:
4451
	drm_gem_object_unreference(&obj->base);
4452
unlock:
4453
	mutex_unlock(&dev->struct_mutex);
4454
	return ret;
4455 4456 4457 4458 4459 4460
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4461
	return i915_gem_ring_throttle(dev, file_priv);
4462 4463
}

4464 4465 4466 4467
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4468
	struct drm_i915_private *dev_priv = dev->dev_private;
4469
	struct drm_i915_gem_madvise *args = data;
4470
	struct drm_i915_gem_object *obj;
4471
	int ret;
4472 4473 4474 4475 4476 4477 4478 4479 4480

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4481 4482 4483 4484
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4485
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4486
	if (&obj->base == NULL) {
4487 4488
		ret = -ENOENT;
		goto unlock;
4489 4490
	}

B
Ben Widawsky 已提交
4491
	if (i915_gem_obj_is_pinned(obj)) {
4492 4493
		ret = -EINVAL;
		goto out;
4494 4495
	}

4496 4497 4498 4499 4500 4501 4502 4503 4504
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4505 4506
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4507

C
Chris Wilson 已提交
4508
	/* if the object is no longer attached, discard its backing storage */
4509
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4510 4511
		i915_gem_object_truncate(obj);

4512
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4513

4514
out:
4515
	drm_gem_object_unreference(&obj->base);
4516
unlock:
4517
	mutex_unlock(&dev->struct_mutex);
4518
	return ret;
4519 4520
}

4521 4522
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4523
{
4524 4525
	int i;

4526
	INIT_LIST_HEAD(&obj->global_list);
4527
	for (i = 0; i < I915_NUM_ENGINES; i++)
4528
		INIT_LIST_HEAD(&obj->engine_list[i]);
4529
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4530
	INIT_LIST_HEAD(&obj->vma_list);
4531
	INIT_LIST_HEAD(&obj->batch_pool_link);
4532

4533 4534
	obj->ops = ops;

4535 4536 4537 4538 4539 4540
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4541
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4542
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4543 4544 4545 4546
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4547
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4548
						  size_t size)
4549
{
4550
	struct drm_i915_gem_object *obj;
4551
	struct address_space *mapping;
D
Daniel Vetter 已提交
4552
	gfp_t mask;
4553
	int ret;
4554

4555
	obj = i915_gem_object_alloc(dev);
4556
	if (obj == NULL)
4557
		return ERR_PTR(-ENOMEM);
4558

4559 4560 4561
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4562

4563 4564 4565 4566 4567 4568 4569
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4570
	mapping = file_inode(obj->base.filp)->i_mapping;
4571
	mapping_set_gfp_mask(mapping, mask);
4572

4573
	i915_gem_object_init(obj, &i915_gem_object_ops);
4574

4575 4576
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4577

4578 4579
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4595 4596
	trace_i915_gem_object_create(obj);

4597
	return obj;
4598 4599 4600 4601 4602

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4603 4604
}

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4629
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4630
{
4631
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4632
	struct drm_device *dev = obj->base.dev;
4633
	struct drm_i915_private *dev_priv = dev->dev_private;
4634
	struct i915_vma *vma, *next;
4635

4636 4637
	intel_runtime_pm_get(dev_priv);

4638 4639
	trace_i915_gem_object_destroy(obj);

4640
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4641 4642 4643 4644
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4645 4646
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4647

4648 4649
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4650

4651
			WARN_ON(i915_vma_unbind(vma));
4652

4653 4654
			dev_priv->mm.interruptible = was_interruptible;
		}
4655 4656
	}

B
Ben Widawsky 已提交
4657 4658 4659 4660 4661
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4662 4663
	WARN_ON(obj->frontbuffer_bits);

4664 4665 4666 4667 4668
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4669 4670
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4671
	if (discard_backing_storage(obj))
4672
		obj->madv = I915_MADV_DONTNEED;
4673
	i915_gem_object_put_pages(obj);
4674
	i915_gem_object_free_mmap_offset(obj);
4675

4676 4677
	BUG_ON(obj->pages);

4678 4679
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4680

4681 4682 4683
	if (obj->ops->release)
		obj->ops->release(obj);

4684 4685
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4686

4687
	kfree(obj->bit_17);
4688
	i915_gem_object_free(obj);
4689 4690

	intel_runtime_pm_put(dev_priv);
4691 4692
}

4693 4694
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4695 4696
{
	struct i915_vma *vma;
4697
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4698 4699
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4700
			return vma;
4701 4702 4703 4704 4705 4706 4707 4708
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4709

4710
	GEM_BUG_ON(!view);
4711

4712
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4713
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4714
			return vma;
4715 4716 4717
	return NULL;
}

B
Ben Widawsky 已提交
4718 4719 4720
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4721 4722 4723 4724 4725

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4726 4727
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4728

4729
	list_del(&vma->obj_link);
4730

4731
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4732 4733
}

4734
static void
4735
i915_gem_stop_engines(struct drm_device *dev)
4736 4737
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4738
	struct intel_engine_cs *engine;
4739

4740
	for_each_engine(engine, dev_priv)
4741
		dev_priv->gt.stop_engine(engine);
4742 4743
}

4744
int
4745
i915_gem_suspend(struct drm_device *dev)
4746
{
4747
	struct drm_i915_private *dev_priv = dev->dev_private;
4748
	int ret = 0;
4749

4750
	mutex_lock(&dev->struct_mutex);
4751
	ret = i915_gpu_idle(dev);
4752
	if (ret)
4753
		goto err;
4754

4755
	i915_gem_retire_requests(dev_priv);
4756

4757
	i915_gem_stop_engines(dev);
4758
	i915_gem_context_lost(dev_priv);
4759 4760
	mutex_unlock(&dev->struct_mutex);

4761
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4762
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4763
	flush_delayed_work(&dev_priv->mm.idle_work);
4764

4765 4766 4767 4768 4769
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4770
	return 0;
4771 4772 4773 4774

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4775 4776
}

4777 4778
void i915_gem_init_swizzling(struct drm_device *dev)
{
4779
	struct drm_i915_private *dev_priv = dev->dev_private;
4780

4781
	if (INTEL_INFO(dev)->gen < 5 ||
4782 4783 4784 4785 4786 4787
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4788 4789 4790
	if (IS_GEN5(dev))
		return;

4791 4792
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4793
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4794
	else if (IS_GEN7(dev))
4795
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4796 4797
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4798 4799
	else
		BUG();
4800
}
D
Daniel Vetter 已提交
4801

4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4829
int i915_gem_init_engines(struct drm_device *dev)
4830
{
4831
	struct drm_i915_private *dev_priv = dev->dev_private;
4832
	int ret;
4833

4834
	ret = intel_init_render_ring_buffer(dev);
4835
	if (ret)
4836
		return ret;
4837 4838

	if (HAS_BSD(dev)) {
4839
		ret = intel_init_bsd_ring_buffer(dev);
4840 4841
		if (ret)
			goto cleanup_render_ring;
4842
	}
4843

4844
	if (HAS_BLT(dev)) {
4845 4846 4847 4848 4849
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4850 4851 4852 4853 4854 4855
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4856 4857 4858 4859 4860
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4861

4862 4863
	return 0;

B
Ben Widawsky 已提交
4864
cleanup_vebox_ring:
4865
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4866
cleanup_blt_ring:
4867
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4868
cleanup_bsd_ring:
4869
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4870
cleanup_render_ring:
4871
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4872 4873 4874 4875 4876 4877 4878

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4879
	struct drm_i915_private *dev_priv = dev->dev_private;
4880
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4881
	int ret;
4882

4883 4884 4885
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4886
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4887
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4888

4889 4890 4891
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4892

4893
	if (HAS_PCH_NOP(dev)) {
4894 4895 4896 4897 4898 4899 4900 4901 4902
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4903 4904
	}

4905 4906
	i915_gem_init_swizzling(dev);

4907 4908 4909 4910 4911 4912 4913 4914
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4915
	BUG_ON(!dev_priv->kernel_context);
4916

4917 4918 4919 4920 4921 4922 4923
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4924
	for_each_engine(engine, dev_priv) {
4925
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4926
		if (ret)
4927
			goto out;
D
Daniel Vetter 已提交
4928
	}
4929

4930 4931
	intel_mocs_init_l3cc_table(dev);

4932
	/* We can't enable contexts until all firmware is loaded */
4933 4934 4935
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4936

4937 4938 4939 4940 4941
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
D
Daniel Vetter 已提交
4942

4943 4944
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4945
	return ret;
4946 4947
}

4948 4949 4950 4951 4952 4953
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
4954

4955
	if (!i915.enable_execlists) {
4956
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4957 4958 4959
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4960
	} else {
4961
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4962 4963 4964
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4965 4966
	}

4967 4968 4969 4970 4971 4972 4973 4974
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4975
	i915_gem_init_userptr(dev_priv);
4976
	i915_gem_init_ggtt(dev);
4977

4978
	ret = i915_gem_context_init(dev);
4979 4980
	if (ret)
		goto out_unlock;
4981

4982
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
4983
	if (ret)
4984
		goto out_unlock;
4985

4986
	ret = i915_gem_init_hw(dev);
4987 4988 4989 4990 4991 4992
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4993
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4994
		ret = 0;
4995
	}
4996 4997

out_unlock:
4998
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4999
	mutex_unlock(&dev->struct_mutex);
5000

5001
	return ret;
5002 5003
}

5004
void
5005
i915_gem_cleanup_engines(struct drm_device *dev)
5006
{
5007
	struct drm_i915_private *dev_priv = dev->dev_private;
5008
	struct intel_engine_cs *engine;
5009

5010
	for_each_engine(engine, dev_priv)
5011
		dev_priv->gt.cleanup_engine(engine);
5012 5013
}

5014
static void
5015
init_engine_lists(struct intel_engine_cs *engine)
5016
{
5017 5018
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5019 5020
}

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5035
	if (intel_vgpu_active(dev_priv))
5036 5037 5038 5039 5040 5041 5042 5043 5044
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5045
void
5046
i915_gem_load_init(struct drm_device *dev)
5047
{
5048
	struct drm_i915_private *dev_priv = dev->dev_private;
5049 5050
	int i;

5051
	dev_priv->objects =
5052 5053 5054 5055
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5056 5057 5058 5059 5060
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5061 5062 5063 5064 5065
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5066

B
Ben Widawsky 已提交
5067
	INIT_LIST_HEAD(&dev_priv->vm_list);
5068
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5069 5070
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5071
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5072 5073
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5074
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5075
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5076 5077
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5078 5079
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5080
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5081

5082 5083
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5084 5085 5086 5087 5088 5089 5090 5091
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5092
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5093

5094
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5095

5096 5097
	dev_priv->mm.interruptible = true;

5098
	mutex_init(&dev_priv->fb_tracking.lock);
5099
}
5100

5101 5102 5103 5104 5105 5106 5107 5108 5109
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5138
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5139
{
5140
	struct drm_i915_file_private *file_priv = file->driver_priv;
5141 5142 5143 5144 5145

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5146
	spin_lock(&file_priv->mm.lock);
5147 5148 5149 5150 5151 5152 5153 5154 5155
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5156
	spin_unlock(&file_priv->mm.lock);
5157

5158
	if (!list_empty(&file_priv->rps.link)) {
5159
		spin_lock(&to_i915(dev)->rps.client_lock);
5160
		list_del(&file_priv->rps.link);
5161
		spin_unlock(&to_i915(dev)->rps.client_lock);
5162
	}
5163 5164 5165 5166 5167
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5168
	int ret;
5169 5170 5171 5172 5173 5174 5175 5176 5177

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5178
	file_priv->file = file;
5179
	INIT_LIST_HEAD(&file_priv->rps.link);
5180 5181 5182 5183

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5184 5185
	file_priv->bsd_ring = -1;

5186 5187 5188
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5189

5190
	return ret;
5191 5192
}

5193 5194
/**
 * i915_gem_track_fb - update frontbuffer tracking
5195 5196 5197
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5198 5199 5200 5201
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5219
/* All the new VM stuff */
5220 5221
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5222 5223 5224 5225
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5226
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5227

5228
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5229
		if (vma->is_ggtt &&
5230 5231 5232
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5233 5234
			return vma->node.start;
	}
5235

5236 5237
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5238 5239 5240
	return -1;
}

5241 5242
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5243 5244 5245
{
	struct i915_vma *vma;

5246
	list_for_each_entry(vma, &o->vma_list, obj_link)
5247
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5248 5249
			return vma->node.start;

5250
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5251 5252 5253 5254 5255 5256 5257 5258
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5259
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5260
		if (vma->is_ggtt &&
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5271
				  const struct i915_ggtt_view *view)
5272 5273 5274
{
	struct i915_vma *vma;

5275
	list_for_each_entry(vma, &o->vma_list, obj_link)
5276
		if (vma->is_ggtt &&
5277
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5278
		    drm_mm_node_allocated(&vma->node))
5279 5280 5281 5282 5283 5284 5285
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5286
	struct i915_vma *vma;
5287

5288
	list_for_each_entry(vma, &o->vma_list, obj_link)
5289
		if (drm_mm_node_allocated(&vma->node))
5290 5291 5292 5293 5294
			return true;

	return false;
}

5295
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5296 5297 5298
{
	struct i915_vma *vma;

5299
	GEM_BUG_ON(list_empty(&o->vma_list));
5300

5301
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5302
		if (vma->is_ggtt &&
5303
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5304
			return vma->node.size;
5305
	}
5306

5307 5308 5309
	return 0;
}

5310
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5311 5312
{
	struct i915_vma *vma;
5313
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5314 5315
		if (vma->pin_count > 0)
			return true;
5316

5317
	return false;
5318
}
5319

5320 5321 5322 5323 5324 5325 5326
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5327
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5328 5329 5330 5331 5332 5333 5334
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5345
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5346
	if (IS_ERR(obj))
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5360
	obj->dirty = 1;		/* Backing store is now out of date */
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}