i915_gem.c 124.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

301 302 303 304 305 306 307 308 309 310 311 312 313
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

361 362 363
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
364 365
 */
static __must_check int
366 367 368
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
369 370 371
{
	struct i915_gem_active *active;
	unsigned long active_mask;
372
	int idx;
373

374
	active_mask = __I915_BO_ACTIVE(obj);
375 376 377 378 379 380 381 382 383 384
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

385 386
	for_each_active(active_mask, idx) {
		int ret;
387

388 389 390 391
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
392 393
	}

394
	return 0;
395 396 397 398 399 400 401 402 403
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

404 405 406 407 408
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
409
	int ret;
410 411 412 413 414 415 416 417 418 419 420 421 422 423

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
424 425 426 427 428
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
429 430 431
	if (ret)
		return ret;

432 433 434 435 436 437
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
438 439 440
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
441 442 443 444 445 446 447 448 449
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
450
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
451
	int ret = 0;
452 453 454 455 456 457 458

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
459

460
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
461 462 463 464 465 466 467 468 469 470
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
471 472 473 474
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
475 476
	}

477
	drm_clflush_virt_range(vaddr, args->size);
478
	i915_gem_chipset_flush(to_i915(dev));
479 480

out:
481
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
482
	return ret;
483 484
}

485 486
void *i915_gem_object_alloc(struct drm_device *dev)
{
487
	struct drm_i915_private *dev_priv = to_i915(dev);
488
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
489 490 491 492
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
493
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
494
	kmem_cache_free(dev_priv->objects, obj);
495 496
}

497 498 499 500 501
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
502
{
503
	struct drm_i915_gem_object *obj;
504 505
	int ret;
	u32 handle;
506

507
	size = roundup(size, PAGE_SIZE);
508 509
	if (size == 0)
		return -EINVAL;
510 511

	/* Allocate the new object */
512
	obj = i915_gem_object_create(dev, size);
513 514
	if (IS_ERR(obj))
		return PTR_ERR(obj);
515

516
	ret = drm_gem_handle_create(file, &obj->base, &handle);
517
	/* drop reference from allocate - handle holds it now */
518
	i915_gem_object_put_unlocked(obj);
519 520
	if (ret)
		return ret;
521

522
	*handle_p = handle;
523 524 525
	return 0;
}

526 527 528 529 530 531
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
532
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
533 534
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
535
			       args->size, &args->handle);
536 537 538 539
}

/**
 * Creates a new mm object and returns a handle to it.
540 541 542
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
543 544 545 546 547 548
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
549

550
	return i915_gem_create(file, dev,
551
			       args->size, &args->handle);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

580
static inline int
581 582
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

606 607 608 609 610 611
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
612
				    unsigned int *needs_clflush)
613 614 615 616 617
{
	int ret;

	*needs_clflush = 0;

618 619
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
620

621 622 623 624
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

625 626 627 628 629 630
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

631 632
	i915_gem_object_flush_gtt_write_domain(obj);

633 634 635 636 637 638
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
639 640
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
641 642 643

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
644 645 646
		if (ret)
			goto err_unpin;

647
		*needs_clflush = 0;
648 649
	}

650
	/* return with the pages pinned */
651
	return 0;
652 653 654 655

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

671 672 673 674 675 676
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

677 678
	i915_gem_object_flush_gtt_write_domain(obj);

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
696 697 698
		if (ret)
			goto err_unpin;

699 700 701 702 703 704 705 706
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
	obj->dirty = 1;
707
	/* return with the pages pinned */
708
	return 0;
709 710 711 712

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
713 714
}

715 716 717
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
718
static int
719 720 721 722 723 724 725
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

726
	if (unlikely(page_do_bit17_swizzling))
727 728 729 730 731 732 733 734 735 736 737
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

738
	return ret ? -EFAULT : 0;
739 740
}

741 742 743 744
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
745
	if (unlikely(swizzled)) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

763 764 765 766 767 768 769 770 771 772 773 774
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
775 776 777
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
778 779 780 781 782 783 784 785 786 787 788

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

789
	return ret ? - EFAULT : 0;
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
819
	struct drm_i915_private *dev_priv = to_i915(dev);
820
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
821
	struct i915_vma *vma;
822 823 824 825 826 827
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

C
Chris Wilson 已提交
828
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
829 830 831
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
832
		ret = i915_vma_put_fence(vma);
833 834 835 836 837
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
838
	if (IS_ERR(vma)) {
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
926
		i915_vma_unpin(vma);
927 928 929 930 931
	}
out:
	return ret;
}

932
static int
933 934 935 936
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
937
{
938
	char __user *user_data;
939
	ssize_t remain;
940
	loff_t offset;
941
	int shmem_page_offset, page_length, ret = 0;
942
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
943
	int prefaulted = 0;
944
	int needs_clflush = 0;
945
	struct sg_page_iter sg_iter;
946

947
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
948 949 950
	if (ret)
		return ret;

951 952
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
953
	offset = args->offset;
954
	remain = args->size;
955

956 957
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
958
		struct page *page = sg_page_iter_page(&sg_iter);
959 960 961 962

		if (remain <= 0)
			break;

963 964 965 966 967
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
968
		shmem_page_offset = offset_in_page(offset);
969 970 971 972
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

973 974 975
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

976 977 978 979 980
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
981 982 983

		mutex_unlock(&dev->struct_mutex);

984
		if (likely(!i915.prefault_disable) && !prefaulted) {
985
			ret = fault_in_multipages_writeable(user_data, remain);
986 987 988 989 990 991 992
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
993

994 995 996
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
997

998
		mutex_lock(&dev->struct_mutex);
999 1000

		if (ret)
1001 1002
			goto out;

1003
next_page:
1004
		remain -= page_length;
1005
		user_data += page_length;
1006 1007 1008
		offset += page_length;
	}

1009
out:
1010
	i915_gem_obj_finish_shmem_access(obj);
1011

1012 1013 1014
	return ret;
}

1015 1016
/**
 * Reads data from the object referenced by handle.
1017 1018 1019
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1020 1021 1022 1023 1024
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1025
		     struct drm_file *file)
1026 1027
{
	struct drm_i915_gem_pread *args = data;
1028
	struct drm_i915_gem_object *obj;
1029
	int ret = 0;
1030

1031 1032 1033 1034
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1035
		       u64_to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	obj = i915_gem_object_lookup(file, args->handle);
1040 1041
	if (!obj)
		return -ENOENT;
1042

1043
	/* Bounds check source.  */
1044 1045
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1046
		ret = -EINVAL;
1047
		goto err;
C
Chris Wilson 已提交
1048 1049
	}

C
Chris Wilson 已提交
1050 1051
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1052 1053 1054 1055 1056 1057 1058 1059
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1060
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1061

1062
	/* pread for non shmem backed objects */
1063 1064
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
1065 1066
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
1067 1068
		intel_runtime_pm_put(to_i915(dev));
	}
1069

1070
	i915_gem_object_put(obj);
1071
	mutex_unlock(&dev->struct_mutex);
1072 1073 1074 1075 1076

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1077
	return ret;
1078 1079
}

1080 1081
/* This is the fast write path which cannot handle
 * page faults in the source data
1082
 */
1083 1084 1085 1086 1087 1088

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1089
{
1090 1091
	void __iomem *vaddr_atomic;
	void *vaddr;
1092
	unsigned long unwritten;
1093

P
Peter Zijlstra 已提交
1094
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1095 1096 1097
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1098
						      user_data, length);
P
Peter Zijlstra 已提交
1099
	io_mapping_unmap_atomic(vaddr_atomic);
1100
	return unwritten;
1101 1102
}

1103 1104 1105
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1106
 * @i915: i915 device private data
1107 1108 1109
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1110
 */
1111
static int
1112
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1113
			 struct drm_i915_gem_object *obj,
1114
			 struct drm_i915_gem_pwrite *args,
1115
			 struct drm_file *file)
1116
{
1117
	struct i915_ggtt *ggtt = &i915->ggtt;
1118
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1119
	struct i915_vma *vma;
1120 1121
	struct drm_mm_node node;
	uint64_t remain, offset;
1122
	char __user *user_data;
1123
	int ret;
1124 1125
	bool hit_slow_path = false;

1126
	if (i915_gem_object_is_tiled(obj))
1127
		return -EFAULT;
D
Daniel Vetter 已提交
1128

C
Chris Wilson 已提交
1129
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1130
				       PIN_MAPPABLE | PIN_NONBLOCK);
1131 1132 1133
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1134
		ret = i915_vma_put_fence(vma);
1135 1136 1137 1138 1139
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1140
	if (IS_ERR(vma)) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}
D
Daniel Vetter 已提交
1153 1154 1155 1156 1157

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1158
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159
	obj->dirty = true;
1160

1161 1162 1163 1164
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1165 1166
		/* Operation in this page
		 *
1167 1168 1169
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1170
		 */
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1184
		/* If we get a fault while copying data, then (presumably) our
1185 1186
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1187 1188
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1189
		 */
1190
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1191
				    page_offset, user_data, page_length)) {
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1204
		}
1205

1206 1207 1208
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1209 1210
	}

1211
out_flush:
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1225
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1226
out_unpin:
1227 1228 1229 1230 1231 1232 1233 1234
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1235
		i915_vma_unpin(vma);
1236
	}
D
Daniel Vetter 已提交
1237
out:
1238
	return ret;
1239 1240
}

1241 1242 1243 1244
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1245
static int
1246 1247 1248 1249 1250
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1251
{
1252
	char *vaddr;
1253
	int ret;
1254

1255
	if (unlikely(page_do_bit17_swizzling))
1256
		return -EINVAL;
1257

1258 1259 1260 1261
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1262 1263
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1264 1265 1266 1267
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1268

1269
	return ret ? -EFAULT : 0;
1270 1271
}

1272 1273
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1274
static int
1275 1276 1277 1278 1279
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1280
{
1281 1282
	char *vaddr;
	int ret;
1283

1284
	vaddr = kmap(page);
1285
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1286 1287 1288
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1289 1290
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1291 1292
						user_data,
						page_length);
1293 1294 1295 1296 1297
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1298 1299 1300
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1301
	kunmap(page);
1302

1303
	return ret ? -EFAULT : 0;
1304 1305 1306
}

static int
1307 1308 1309 1310
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1311 1312
{
	ssize_t remain;
1313 1314
	loff_t offset;
	char __user *user_data;
1315
	int shmem_page_offset, page_length, ret = 0;
1316
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1317
	int hit_slowpath = 0;
1318
	unsigned int needs_clflush;
1319
	struct sg_page_iter sg_iter;
1320

1321
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1322 1323 1324
	if (ret)
		return ret;

1325 1326
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1327
	offset = args->offset;
1328
	remain = args->size;
1329

1330 1331
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1332
		struct page *page = sg_page_iter_page(&sg_iter);
1333
		int partial_cacheline_write;
1334

1335 1336 1337
		if (remain <= 0)
			break;

1338 1339 1340 1341 1342
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1343
		shmem_page_offset = offset_in_page(offset);
1344 1345 1346 1347 1348

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1349 1350 1351
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1352
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1353 1354 1355
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1356 1357 1358
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1359 1360 1361
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1362
					needs_clflush & CLFLUSH_AFTER);
1363 1364
		if (ret == 0)
			goto next_page;
1365 1366 1367

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1368 1369 1370
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1371
					needs_clflush & CLFLUSH_AFTER);
1372

1373
		mutex_lock(&dev->struct_mutex);
1374 1375

		if (ret)
1376 1377
			goto out;

1378
next_page:
1379
		remain -= page_length;
1380
		user_data += page_length;
1381
		offset += page_length;
1382 1383
	}

1384
out:
1385
	i915_gem_obj_finish_shmem_access(obj);
1386

1387
	if (hit_slowpath) {
1388 1389 1390 1391 1392
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1393
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1394
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1395
			if (i915_gem_clflush_object(obj, obj->pin_display))
1396
				needs_clflush |= CLFLUSH_AFTER;
1397
		}
1398
	}
1399

1400
	if (needs_clflush & CLFLUSH_AFTER)
1401
		i915_gem_chipset_flush(to_i915(dev));
1402

1403
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1404
	return ret;
1405 1406 1407 1408
}

/**
 * Writes data to the object referenced by handle.
1409 1410 1411
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1412 1413 1414 1415 1416
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1417
		      struct drm_file *file)
1418
{
1419
	struct drm_i915_private *dev_priv = to_i915(dev);
1420
	struct drm_i915_gem_pwrite *args = data;
1421
	struct drm_i915_gem_object *obj;
1422 1423 1424 1425 1426 1427
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1428
		       u64_to_user_ptr(args->data_ptr),
1429 1430 1431
		       args->size))
		return -EFAULT;

1432
	if (likely(!i915.prefault_disable)) {
1433
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1434 1435 1436 1437
						   args->size);
		if (ret)
			return -EFAULT;
	}
1438

1439
	obj = i915_gem_object_lookup(file, args->handle);
1440 1441
	if (!obj)
		return -ENOENT;
1442

1443
	/* Bounds check destination. */
1444 1445
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1446
		ret = -EINVAL;
1447
		goto err;
C
Chris Wilson 已提交
1448 1449
	}

C
Chris Wilson 已提交
1450 1451
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1462
	ret = -EFAULT;
1463 1464 1465 1466 1467 1468
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1469 1470
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1471
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1472 1473 1474
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1475
	}
1476

1477
	if (ret == -EFAULT || ret == -ENOSPC) {
1478 1479
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1480
		else
1481
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1482
	}
1483

1484
	i915_gem_object_put(obj);
1485
	mutex_unlock(&dev->struct_mutex);
1486 1487
	intel_runtime_pm_put(dev_priv);

1488
	return ret;
1489 1490 1491 1492 1493 1494

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1495 1496
}

1497
static inline enum fb_op_origin
1498 1499 1500 1501 1502 1503
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1504
/**
1505 1506
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1507 1508 1509
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1510 1511 1512
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1513
			  struct drm_file *file)
1514 1515
{
	struct drm_i915_gem_set_domain *args = data;
1516
	struct drm_i915_gem_object *obj;
1517 1518
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1519 1520
	int ret;

1521
	/* Only handle setting domains to types used by the CPU. */
1522
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1523 1524 1525 1526 1527 1528 1529 1530
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1531
	obj = i915_gem_object_lookup(file, args->handle);
1532 1533
	if (!obj)
		return -ENOENT;
1534

1535 1536 1537 1538
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1539 1540 1541 1542 1543
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1544
	if (ret)
1545
		goto err;
1546

1547
	if (read_domains & I915_GEM_DOMAIN_GTT)
1548
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1549
	else
1550
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1551

1552
	if (write_domain != 0)
1553
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1554

1555
	i915_gem_object_put(obj);
1556 1557
	mutex_unlock(&dev->struct_mutex);
	return ret;
1558 1559 1560 1561

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1562 1563 1564 1565
}

/**
 * Called when user space has done writes to this buffer
1566 1567 1568
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1569 1570 1571
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1572
			 struct drm_file *file)
1573 1574
{
	struct drm_i915_gem_sw_finish *args = data;
1575
	struct drm_i915_gem_object *obj;
1576
	int err = 0;
1577

1578
	obj = i915_gem_object_lookup(file, args->handle);
1579 1580
	if (!obj)
		return -ENOENT;
1581 1582

	/* Pinned buffers may be scanout, so flush the cache */
1583 1584 1585 1586 1587 1588 1589
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1590

1591 1592
	i915_gem_object_put_unlocked(obj);
	return err;
1593 1594 1595
}

/**
1596 1597 1598 1599 1600
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1601 1602 1603
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1614 1615 1616
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1617
		    struct drm_file *file)
1618 1619
{
	struct drm_i915_gem_mmap *args = data;
1620
	struct drm_i915_gem_object *obj;
1621 1622
	unsigned long addr;

1623 1624 1625
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1626
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1627 1628
		return -ENODEV;

1629 1630
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1631
		return -ENOENT;
1632

1633 1634 1635
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1636
	if (!obj->base.filp) {
1637
		i915_gem_object_put_unlocked(obj);
1638 1639 1640
		return -EINVAL;
	}

1641
	addr = vm_mmap(obj->base.filp, 0, args->size,
1642 1643
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1644 1645 1646 1647
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1648
		if (down_write_killable(&mm->mmap_sem)) {
1649
			i915_gem_object_put_unlocked(obj);
1650 1651
			return -EINTR;
		}
1652 1653 1654 1655 1656 1657 1658
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1659 1660

		/* This may race, but that's ok, it only gets set */
1661
		WRITE_ONCE(obj->has_wc_mmap, true);
1662
	}
1663
	i915_gem_object_put_unlocked(obj);
1664 1665 1666 1667 1668 1669 1670 1671
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1682 1683
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1684
 * @area: CPU VMA in question
1685
 * @vmf: fault info
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
C
Chris Wilson 已提交
1698
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1699
{
1700
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1701
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1702
	struct drm_device *dev = obj->base.dev;
1703 1704
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1705
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1706
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1707
	struct i915_vma *vma;
1708 1709
	pgoff_t page_offset;
	unsigned long pfn;
1710
	int ret;
1711

1712
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1713
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1714 1715
		PAGE_SHIFT;

C
Chris Wilson 已提交
1716 1717
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1718
	/* Try to flush the object off the GPU first without holding the lock.
1719
	 * Upon acquiring the lock, we will perform our sanity checks and then
1720 1721 1722
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1723
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1724
	if (ret)
1725 1726 1727 1728 1729 1730 1731
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1732

1733 1734
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1735
		ret = -EFAULT;
1736
		goto err_unlock;
1737 1738
	}

1739
	/* Use a partial view if the object is bigger than the aperture. */
1740
	if (obj->base.size >= ggtt->mappable_end &&
1741
	    !i915_gem_object_is_tiled(obj)) {
1742 1743 1744 1745 1746
		unsigned int chunk_size;

		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
			chunk_size = max(chunk_size, tile_row_pages(obj));
1747

1748 1749 1750 1751 1752 1753
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
C
Chris Wilson 已提交
1754
			      (area->vm_end - area->vm_start) / PAGE_SIZE -
1755 1756 1757 1758
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
C
Chris Wilson 已提交
1759 1760 1761
	vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1762
		goto err_unlock;
C
Chris Wilson 已提交
1763
	}
1764

1765 1766
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1767
		goto err_unpin;
1768

1769
	ret = i915_vma_get_fence(vma);
1770
	if (ret)
1771
		goto err_unpin;
1772

1773
	/* Finally, remap it using the new GTT offset */
1774
	pfn = ggtt->mappable_base + i915_ggtt_offset(vma);
1775
	pfn >>= PAGE_SHIFT;
1776

1777 1778 1779 1780 1781 1782
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
C
Chris Wilson 已提交
1783
		unsigned long base = area->vm_start +
1784 1785
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1786

1787
		for (i = 0; i < view.params.partial.size; i++) {
C
Chris Wilson 已提交
1788 1789 1790
			ret = vm_insert_pfn(area,
					    base + i * PAGE_SIZE,
					    pfn + i);
1791 1792 1793 1794 1795
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1796 1797
	} else {
		if (!obj->fault_mappable) {
C
Chris Wilson 已提交
1798 1799 1800 1801 1802
			unsigned long size =
				min_t(unsigned long,
				      area->vm_end - area->vm_start,
				      obj->base.size) >> PAGE_SHIFT;
			unsigned long base = area->vm_start;
1803 1804
			int i;

C
Chris Wilson 已提交
1805 1806 1807
			for (i = 0; i < size; i++) {
				ret = vm_insert_pfn(area,
						    base + i * PAGE_SIZE,
1808 1809 1810 1811 1812 1813 1814
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
C
Chris Wilson 已提交
1815
			ret = vm_insert_pfn(area,
1816 1817 1818
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1819
err_unpin:
C
Chris Wilson 已提交
1820
	__i915_vma_unpin(vma);
1821
err_unlock:
1822
	mutex_unlock(&dev->struct_mutex);
1823 1824 1825
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1826
	switch (ret) {
1827
	case -EIO:
1828 1829 1830 1831 1832 1833 1834
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1835 1836 1837
			ret = VM_FAULT_SIGBUS;
			break;
		}
1838
	case -EAGAIN:
D
Daniel Vetter 已提交
1839 1840 1841 1842
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1843
		 */
1844 1845
	case 0:
	case -ERESTARTSYS:
1846
	case -EINTR:
1847 1848 1849 1850 1851
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1852 1853
		ret = VM_FAULT_NOPAGE;
		break;
1854
	case -ENOMEM:
1855 1856
		ret = VM_FAULT_OOM;
		break;
1857
	case -ENOSPC:
1858
	case -EFAULT:
1859 1860
		ret = VM_FAULT_SIGBUS;
		break;
1861
	default:
1862
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1863 1864
		ret = VM_FAULT_SIGBUS;
		break;
1865
	}
1866
	return ret;
1867 1868
}

1869 1870 1871 1872
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1873
 * Preserve the reservation of the mmapping with the DRM core code, but
1874 1875 1876 1877 1878 1879 1880 1881 1882
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1883
void
1884
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1885
{
1886 1887 1888 1889 1890 1891
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1892 1893
	if (!obj->fault_mappable)
		return;
1894

1895 1896
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1907
	obj->fault_mappable = false;
1908 1909
}

1910 1911 1912 1913 1914 1915 1916 1917 1918
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1919 1920
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1921
 * @dev_priv: i915 device
1922 1923 1924 1925 1926 1927
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1928 1929
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1930
{
1931
	u64 ggtt_size;
1932

1933 1934
	GEM_BUG_ON(size == 0);

1935
	if (INTEL_GEN(dev_priv) >= 4 ||
1936 1937
	    tiling_mode == I915_TILING_NONE)
		return size;
1938 1939

	/* Previous chips need a power-of-two fence region when tiling */
1940
	if (IS_GEN3(dev_priv))
1941
		ggtt_size = 1024*1024;
1942
	else
1943
		ggtt_size = 512*1024;
1944

1945 1946
	while (ggtt_size < size)
		ggtt_size <<= 1;
1947

1948
	return ggtt_size;
1949 1950
}

1951
/**
1952
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1953
 * @dev_priv: i915 device
1954 1955
 * @size: object size
 * @tiling_mode: tiling mode
1956
 * @fenced: is fenced alignment required or not
1957
 *
1958
 * Return the required global GTT alignment for an object, taking into account
1959
 * potential fence register mapping.
1960
 */
1961
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1962
				int tiling_mode, bool fenced)
1963
{
1964 1965
	GEM_BUG_ON(size == 0);

1966 1967 1968 1969
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1970
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1971
	    tiling_mode == I915_TILING_NONE)
1972 1973
		return 4096;

1974 1975 1976 1977
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1978
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1979 1980
}

1981 1982
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1983
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1984
	int err;
1985

1986 1987 1988
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1989

1990 1991 1992
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1993
	 */
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2004

2005
	return err;
2006 2007 2008 2009 2010 2011 2012
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2013
int
2014 2015
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2016
		  uint32_t handle,
2017
		  uint64_t *offset)
2018
{
2019
	struct drm_i915_gem_object *obj;
2020 2021
	int ret;

2022
	obj = i915_gem_object_lookup(file, handle);
2023 2024
	if (!obj)
		return -ENOENT;
2025

2026
	ret = i915_gem_object_create_mmap_offset(obj);
2027 2028
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2029

2030
	i915_gem_object_put_unlocked(obj);
2031
	return ret;
2032 2033
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2055
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2056 2057
}

D
Daniel Vetter 已提交
2058 2059 2060
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2061
{
2062
	i915_gem_object_free_mmap_offset(obj);
2063

2064 2065
	if (obj->base.filp == NULL)
		return;
2066

D
Daniel Vetter 已提交
2067 2068 2069 2070 2071
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2072
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2073 2074
	obj->madv = __I915_MADV_PURGED;
}
2075

2076 2077 2078
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2079
{
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2092
	mapping = obj->base.filp->f_mapping,
2093
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2094 2095
}

2096
static void
2097
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2098
{
2099 2100
	struct sgt_iter sgt_iter;
	struct page *page;
2101
	int ret;
2102

2103
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2104

C
Chris Wilson 已提交
2105
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2106
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2107 2108 2109
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2110
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2111 2112 2113
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2114 2115
	i915_gem_gtt_finish_object(obj);

2116
	if (i915_gem_object_needs_bit17_swizzle(obj))
2117 2118
		i915_gem_object_save_bit_17_swizzle(obj);

2119 2120
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2121

2122
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2123
		if (obj->dirty)
2124
			set_page_dirty(page);
2125

2126
		if (obj->madv == I915_MADV_WILLNEED)
2127
			mark_page_accessed(page);
2128

2129
		put_page(page);
2130
	}
2131
	obj->dirty = 0;
2132

2133 2134
	sg_free_table(obj->pages);
	kfree(obj->pages);
2135
}
C
Chris Wilson 已提交
2136

2137
int
2138 2139 2140 2141
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2142
	if (obj->pages == NULL)
2143 2144
		return 0;

2145 2146 2147
	if (obj->pages_pin_count)
		return -EBUSY;

2148
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2149

2150 2151 2152
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2153
	list_del(&obj->global_list);
2154

2155
	if (obj->mapping) {
2156 2157 2158 2159 2160
		void *ptr;

		ptr = ptr_mask_bits(obj->mapping);
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2161
		else
2162 2163
			kunmap(kmap_to_page(ptr));

2164 2165 2166
		obj->mapping = NULL;
	}

2167
	ops->put_pages(obj);
2168
	obj->pages = NULL;
2169

2170
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2171 2172 2173 2174

	return 0;
}

2175
static int
C
Chris Wilson 已提交
2176
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2177
{
2178
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2179 2180
	int page_count, i;
	struct address_space *mapping;
2181 2182
	struct sg_table *st;
	struct scatterlist *sg;
2183
	struct sgt_iter sgt_iter;
2184
	struct page *page;
2185
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2186
	int ret;
C
Chris Wilson 已提交
2187
	gfp_t gfp;
2188

C
Chris Wilson 已提交
2189 2190 2191 2192 2193 2194 2195
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2196 2197 2198 2199
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2200
	page_count = obj->base.size / PAGE_SIZE;
2201 2202
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2203
		return -ENOMEM;
2204
	}
2205

2206 2207 2208 2209 2210
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2211
	mapping = obj->base.filp->f_mapping;
2212
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2213
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2214 2215 2216
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2217 2218
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2219 2220 2221 2222 2223
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2224 2225 2226 2227 2228 2229 2230 2231
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2232
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2233 2234
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2235
				goto err_pages;
I
Imre Deak 已提交
2236
			}
C
Chris Wilson 已提交
2237
		}
2238 2239 2240 2241 2242 2243 2244 2245
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2246 2247 2248 2249 2250 2251 2252 2253 2254
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2255 2256 2257

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2258
	}
2259 2260 2261 2262
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2263 2264
	obj->pages = st;

I
Imre Deak 已提交
2265 2266 2267 2268
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2269
	if (i915_gem_object_needs_bit17_swizzle(obj))
2270 2271
		i915_gem_object_do_bit_17_swizzle(obj);

2272
	if (i915_gem_object_is_tiled(obj) &&
2273 2274 2275
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2276 2277 2278
	return 0;

err_pages:
2279
	sg_mark_end(sg);
2280 2281
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2282 2283
	sg_free_table(st);
	kfree(st);
2284 2285 2286 2287 2288 2289 2290 2291 2292

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2293 2294 2295 2296
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2309
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2310 2311 2312
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2313
	if (obj->pages)
2314 2315
		return 0;

2316
	if (obj->madv != I915_MADV_WILLNEED) {
2317
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2318
		return -EFAULT;
2319 2320
	}

2321 2322
	BUG_ON(obj->pages_pin_count);

2323 2324 2325 2326
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2327
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2328 2329 2330 2331

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2332
	return 0;
2333 2334
}

2335
/* The 'mapping' part of i915_gem_object_pin_map() below */
2336 2337
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2338 2339 2340
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2341 2342
	struct sgt_iter sgt_iter;
	struct page *page;
2343 2344
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2345
	unsigned long i = 0;
2346
	pgprot_t pgprot;
2347 2348 2349
	void *addr;

	/* A single page can always be kmapped */
2350
	if (n_pages == 1 && type == I915_MAP_WB)
2351 2352
		return kmap(sg_page(sgt->sgl));

2353 2354 2355 2356 2357 2358
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2359

2360 2361
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2362 2363 2364 2365

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2366 2367 2368 2369 2370 2371 2372 2373 2374
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2375

2376 2377
	if (pages != stack_pages)
		drm_free_large(pages);
2378 2379 2380 2381 2382

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2383 2384
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2385
{
2386 2387 2388
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2389 2390 2391
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2392
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2393 2394 2395 2396 2397 2398

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2399
	pinned = obj->pages_pin_count > 1;
2400

2401 2402 2403 2404 2405
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2406
		}
2407 2408 2409 2410 2411 2412 2413

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2414 2415
	}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2431 2432
}

2433
static void
2434 2435
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2436
{
2437 2438
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2439

2440
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2441 2442
}

2443
static void
2444 2445
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2446
{
2447 2448 2449
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2450

2451
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2452

2453 2454
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2455
		return;
2456

2457 2458 2459 2460
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2461 2462 2463
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2464

2465
	i915_gem_object_put(obj);
2466 2467
}

2468
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2469
{
2470
	unsigned long elapsed;
2471

2472
	if (ctx->hang_stats.banned)
2473 2474
		return true;

2475
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2476 2477
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2478 2479
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2480 2481 2482 2483 2484
	}

	return false;
}

2485
static void i915_set_reset_status(struct i915_gem_context *ctx,
2486
				  const bool guilty)
2487
{
2488
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2489 2490

	if (guilty) {
2491
		hs->banned = i915_context_is_banned(ctx);
2492 2493 2494 2495
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2496 2497 2498
	}
}

2499
struct drm_i915_gem_request *
2500
i915_gem_find_active_request(struct intel_engine_cs *engine)
2501
{
2502 2503
	struct drm_i915_gem_request *request;

2504 2505 2506 2507 2508 2509 2510 2511
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2512
	list_for_each_entry(request, &engine->request_list, link) {
2513
		if (i915_gem_request_completed(request))
2514
			continue;
2515

2516
		return request;
2517
	}
2518 2519 2520 2521

	return NULL;
}

2522
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2523 2524 2525 2526
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2527
	request = i915_gem_find_active_request(engine);
2528 2529 2530
	if (request == NULL)
		return;

2531
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2532

2533
	i915_set_reset_status(request->ctx, ring_hung);
2534
	list_for_each_entry_continue(request, &engine->request_list, link)
2535
		i915_set_reset_status(request->ctx, false);
2536
}
2537

2538
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2539
{
2540
	struct drm_i915_gem_request *request;
2541
	struct intel_ring *ring;
2542

2543 2544 2545 2546
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2547
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2548

2549 2550 2551 2552 2553 2554
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2555
	if (i915.enable_execlists) {
2556 2557
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2558

2559
		intel_execlists_cancel_requests(engine);
2560 2561
	}

2562 2563 2564 2565 2566 2567 2568
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2569 2570
	request = i915_gem_active_raw(&engine->last_request,
				      &engine->i915->drm.struct_mutex);
2571
	if (request)
2572
		i915_gem_request_retire_upto(request);
2573
	GEM_BUG_ON(intel_engine_is_active(engine));
2574 2575 2576 2577 2578 2579 2580 2581

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2582 2583 2584
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2585
	}
2586

2587
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2588 2589
}

2590
void i915_gem_reset(struct drm_device *dev)
2591
{
2592
	struct drm_i915_private *dev_priv = to_i915(dev);
2593
	struct intel_engine_cs *engine;
2594

2595 2596 2597 2598 2599
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2600
	for_each_engine(engine, dev_priv)
2601
		i915_gem_reset_engine_status(engine);
2602

2603
	for_each_engine(engine, dev_priv)
2604
		i915_gem_reset_engine_cleanup(engine);
2605
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2606

2607 2608
	i915_gem_context_reset(dev);

2609
	i915_gem_restore_fences(dev);
2610 2611
}

2612
static void
2613 2614
i915_gem_retire_work_handler(struct work_struct *work)
{
2615
	struct drm_i915_private *dev_priv =
2616
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2617
	struct drm_device *dev = &dev_priv->drm;
2618

2619
	/* Come back later if the device is busy... */
2620
	if (mutex_trylock(&dev->struct_mutex)) {
2621
		i915_gem_retire_requests(dev_priv);
2622
		mutex_unlock(&dev->struct_mutex);
2623
	}
2624 2625 2626 2627 2628

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2629 2630
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2631 2632
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2633
				   round_jiffies_up_relative(HZ));
2634
	}
2635
}
2636

2637 2638 2639 2640
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2641
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2642
	struct drm_device *dev = &dev_priv->drm;
2643
	struct intel_engine_cs *engine;
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2665

2666
	for_each_engine(engine, dev_priv)
2667
		i915_gem_batch_pool_fini(&engine->batch_pool);
2668

2669 2670 2671
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2672

2673 2674 2675 2676 2677
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2678

2679 2680 2681 2682
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2683
	}
2684 2685
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2699 2700
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2701 2702 2703
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2727
	struct intel_rps_client *rps = to_rps_client(file);
2728
	struct drm_i915_gem_object *obj;
2729 2730
	unsigned long active;
	int idx, ret = 0;
2731

2732 2733 2734
	if (args->flags != 0)
		return -EINVAL;

2735
	obj = i915_gem_object_lookup(file, args->bo_handle);
2736
	if (!obj)
2737 2738
		return -ENOENT;

2739 2740 2741 2742 2743 2744 2745
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2746 2747
	}

2748
	i915_gem_object_put_unlocked(obj);
2749
	return ret;
2750 2751
}

2752
static int
2753
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2754
		       struct drm_i915_gem_request *from)
2755 2756 2757
{
	int ret;

2758
	if (to->engine == from->engine)
2759 2760
		return 0;

2761
	if (!i915.semaphores) {
2762 2763 2764 2765
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2766 2767 2768
		if (ret)
			return ret;
	} else {
2769
		int idx = intel_engine_sync_index(from->engine, to->engine);
2770
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2771 2772
			return 0;

2773
		trace_i915_gem_ring_sync_to(to, from);
2774
		ret = to->engine->semaphore.sync_to(to, from);
2775 2776 2777
		if (ret)
			return ret;

2778
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2779 2780 2781 2782 2783
	}

	return 0;
}

2784 2785 2786 2787
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2788
 * @to: request we are wishing to use
2789 2790
 *
 * This code is meant to abstract object synchronization with the GPU.
2791 2792 2793
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2794 2795 2796 2797 2798 2799 2800
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2801 2802 2803
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2804 2805
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2806
		     struct drm_i915_gem_request *to)
2807
{
C
Chris Wilson 已提交
2808 2809 2810
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2811

C
Chris Wilson 已提交
2812
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2813

2814
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2815 2816
	if (!active_mask)
		return 0;
2817

C
Chris Wilson 已提交
2818 2819
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2820
	} else {
C
Chris Wilson 已提交
2821 2822
		active_mask = 1;
		active = &obj->last_write;
2823
	}
C
Chris Wilson 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2834
		ret = __i915_gem_object_sync(to, request);
2835 2836 2837
		if (ret)
			return ret;
	}
2838

2839
	return 0;
2840 2841
}

2842 2843 2844 2845 2846 2847 2848
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2849 2850 2851
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2863 2864
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2865
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2866 2867 2868 2869 2870 2871 2872 2873

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2874
int i915_vma_unbind(struct i915_vma *vma)
2875
{
2876
	struct drm_i915_gem_object *obj = vma->obj;
2877
	unsigned long active;
2878
	int ret;
2879

2880 2881 2882 2883
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2884
	if (active) {
2885 2886
		int idx;

2887 2888 2889 2890 2891
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2892
		__i915_vma_pin(vma);
2893

2894 2895 2896 2897
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2898
				break;
2899 2900
		}

2901
		__i915_vma_unpin(vma);
2902 2903 2904
		if (ret)
			return ret;

2905 2906 2907
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2908
	if (i915_vma_is_pinned(vma))
2909 2910
		return -EBUSY;

2911 2912
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2913

2914 2915
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2916

2917
	if (i915_vma_is_map_and_fenceable(vma)) {
2918
		i915_gem_object_finish_gtt(obj);
2919

2920
		/* release the fence reg _after_ flushing */
2921
		ret = i915_vma_put_fence(vma);
2922 2923
		if (ret)
			return ret;
2924 2925

		__i915_vma_iounmap(vma);
2926
		vma->flags &= ~I915_VMA_CAN_FENCE;
2927
	}
2928

2929 2930 2931 2932
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2933
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2934

2935 2936 2937
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2938 2939 2940 2941
	if (vma->pages != obj->pages) {
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
2942
	}
2943
	vma->pages = NULL;
2944

B
Ben Widawsky 已提交
2945
	/* Since the unbound list is global, only move to that list if
2946
	 * no more VMAs exist. */
2947 2948 2949
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2950

2951 2952 2953 2954 2955 2956
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2957
destroy:
2958
	if (unlikely(i915_vma_is_closed(vma)))
2959 2960
		i915_vma_destroy(vma);

2961
	return 0;
2962 2963
}

2964 2965
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2966
{
2967
	struct intel_engine_cs *engine;
2968
	int ret;
2969

2970
	for_each_engine(engine, dev_priv) {
2971 2972 2973
		if (engine->last_context == NULL)
			continue;

2974
		ret = intel_engine_idle(engine, interruptible);
2975 2976 2977
		if (ret)
			return ret;
	}
2978

2979
	return 0;
2980 2981
}

2982
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2983 2984
				     unsigned long cache_level)
{
2985
	struct drm_mm_node *gtt_space = &vma->node;
2986 2987
	struct drm_mm_node *other;

2988 2989 2990 2991 2992 2993
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2994
	 */
2995
	if (vma->vm->mm.color_adjust == NULL)
2996 2997
		return true;

2998
	if (!drm_mm_node_allocated(gtt_space))
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3015
/**
3016 3017
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3018
 * @size: requested size in bytes (can be larger than the VMA)
3019
 * @alignment: required alignment
3020
 * @flags: mask of PIN_* flags to use
3021 3022 3023 3024 3025 3026 3027
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3028
 */
3029 3030
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3031
{
3032 3033
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3034 3035
	u64 start, end;
	u64 min_alignment;
3036
	int ret;
3037

3038
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3039
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3040 3041 3042

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3043 3044
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3045 3046

	min_alignment =
3047 3048
		i915_gem_get_ggtt_alignment(dev_priv, size,
					    i915_gem_object_get_tiling(obj),
3049 3050 3051 3052 3053 3054
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
3055
		return -EINVAL;
3056
	}
3057

3058
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3059 3060

	end = vma->vm->total;
3061
	if (flags & PIN_MAPPABLE)
3062
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3063
	if (flags & PIN_ZONE_4G)
3064
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3065

3066 3067 3068
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3069
	 */
3070
	if (size > end) {
3071
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3072
			  size, obj->base.size,
3073
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3074
			  end);
3075
		return -E2BIG;
3076 3077
	}

3078
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3079
	if (ret)
3080
		return ret;
C
Chris Wilson 已提交
3081

3082 3083
	i915_gem_object_pin_pages(obj);

3084
	if (flags & PIN_OFFSET_FIXED) {
3085
		u64 offset = flags & PIN_OFFSET_MASK;
3086
		if (offset & (alignment - 1) || offset > end - size) {
3087
			ret = -EINVAL;
3088
			goto err_unpin;
3089
		}
3090

3091 3092 3093
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3094
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3095 3096 3097
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3098 3099 3100
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3101
		}
3102
	} else {
3103 3104
		u32 search_flag, alloc_flag;

3105 3106 3107 3108 3109 3110 3111
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3112

3113 3114 3115 3116 3117 3118 3119 3120 3121
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3122
search_free:
3123 3124
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3125 3126 3127 3128 3129 3130
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3131
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3132 3133 3134 3135 3136
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3137

3138
			goto err_unpin;
3139
		}
3140
	}
3141
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3142

3143
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3144
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3145
	obj->bind_count++;
3146

3147
	return 0;
B
Ben Widawsky 已提交
3148

3149
err_unpin:
B
Ben Widawsky 已提交
3150
	i915_gem_object_unpin_pages(obj);
3151
	return ret;
3152 3153
}

3154
bool
3155 3156
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3157 3158 3159 3160 3161
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3162
	if (obj->pages == NULL)
3163
		return false;
3164

3165 3166 3167 3168
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3169
	if (obj->stolen || obj->phys_handle)
3170
		return false;
3171

3172 3173 3174 3175 3176 3177 3178 3179
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3180 3181
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3182
		return false;
3183
	}
3184

C
Chris Wilson 已提交
3185
	trace_i915_gem_object_clflush(obj);
3186
	drm_clflush_sg(obj->pages);
3187
	obj->cache_dirty = false;
3188 3189

	return true;
3190 3191 3192 3193
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3194
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3195
{
3196
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3197

3198
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3199 3200
		return;

3201
	/* No actual flushing is required for the GTT write domain.  Writes
3202
	 * to it "immediately" go to main memory as far as we know, so there's
3203
	 * no chipset flush.  It also doesn't land in render cache.
3204 3205 3206 3207
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3208 3209 3210 3211 3212 3213 3214
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3215
	 */
3216
	wmb();
3217 3218
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3219

3220
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3221

3222
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3223
	trace_i915_gem_object_change_domain(obj,
3224
					    obj->base.read_domains,
3225
					    I915_GEM_DOMAIN_GTT);
3226 3227 3228 3229
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3230
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3231
{
3232
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3233 3234
		return;

3235
	if (i915_gem_clflush_object(obj, obj->pin_display))
3236
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3237

3238
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3239

3240
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3241
	trace_i915_gem_object_change_domain(obj,
3242
					    obj->base.read_domains,
3243
					    I915_GEM_DOMAIN_CPU);
3244 3245
}

3246 3247
/**
 * Moves a single object to the GTT read, and possibly write domain.
3248 3249
 * @obj: object to act on
 * @write: ask for write access or read only
3250 3251 3252 3253
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3254
int
3255
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3256
{
C
Chris Wilson 已提交
3257
	uint32_t old_write_domain, old_read_domains;
3258
	struct i915_vma *vma;
3259
	int ret;
3260

3261
	ret = i915_gem_object_wait_rendering(obj, !write);
3262 3263 3264
	if (ret)
		return ret;

3265 3266 3267
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3280
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3281

3282 3283 3284 3285 3286 3287 3288
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3289 3290
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3291

3292 3293 3294
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3295 3296
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3297
	if (write) {
3298 3299 3300
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3301 3302
	}

C
Chris Wilson 已提交
3303 3304 3305 3306
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3307
	/* And bump the LRU for this access */
C
Chris Wilson 已提交
3308
	vma = i915_gem_object_to_ggtt(obj, NULL);
3309 3310 3311 3312
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3313

3314 3315 3316
	return 0;
}

3317 3318
/**
 * Changes the cache-level of an object across all VMA.
3319 3320
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3332 3333 3334
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3335
	struct i915_vma *vma;
3336
	int ret = 0;
3337 3338

	if (obj->cache_level == cache_level)
3339
		goto out;
3340

3341 3342 3343 3344 3345
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3346 3347
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3348 3349 3350
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3351
		if (i915_vma_is_pinned(vma)) {
3352 3353 3354 3355
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3368 3369
	}

3370 3371 3372 3373 3374 3375 3376
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3377
	if (obj->bind_count) {
3378 3379 3380 3381
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3382
		ret = i915_gem_object_wait_rendering(obj, false);
3383 3384 3385
		if (ret)
			return ret;

3386
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3403 3404 3405 3406 3407
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3408 3409 3410 3411 3412 3413 3414 3415
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3416 3417
		}

3418
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3419 3420 3421 3422 3423 3424 3425
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3426 3427
	}

3428
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3429 3430 3431
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3432
out:
3433 3434 3435 3436
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3437
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3438
		if (i915_gem_clflush_object(obj, true))
3439
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3440 3441 3442 3443 3444
	}

	return 0;
}

B
Ben Widawsky 已提交
3445 3446
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3447
{
B
Ben Widawsky 已提交
3448
	struct drm_i915_gem_caching *args = data;
3449 3450
	struct drm_i915_gem_object *obj;

3451 3452
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3453
		return -ENOENT;
3454

3455 3456 3457 3458 3459 3460
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3461 3462 3463 3464
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3465 3466 3467 3468
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3469

3470
	i915_gem_object_put_unlocked(obj);
3471
	return 0;
3472 3473
}

B
Ben Widawsky 已提交
3474 3475
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3476
{
3477
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3478
	struct drm_i915_gem_caching *args = data;
3479 3480 3481 3482
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3483 3484
	switch (args->caching) {
	case I915_CACHING_NONE:
3485 3486
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3487
	case I915_CACHING_CACHED:
3488 3489 3490 3491 3492 3493
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3494
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3495 3496
			return -ENODEV;

3497 3498
		level = I915_CACHE_LLC;
		break;
3499 3500 3501
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3502 3503 3504 3505
	default:
		return -EINVAL;
	}

3506 3507
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3508 3509
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3510
		goto rpm_put;
B
Ben Widawsky 已提交
3511

3512 3513
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3514 3515 3516 3517 3518 3519
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3520
	i915_gem_object_put(obj);
3521 3522
unlock:
	mutex_unlock(&dev->struct_mutex);
3523 3524 3525
rpm_put:
	intel_runtime_pm_put(dev_priv);

3526 3527 3528
	return ret;
}

3529
/*
3530 3531 3532
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3533
 */
C
Chris Wilson 已提交
3534
struct i915_vma *
3535 3536
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3537
				     const struct i915_ggtt_view *view)
3538
{
C
Chris Wilson 已提交
3539
	struct i915_vma *vma;
3540
	u32 old_read_domains, old_write_domain;
3541 3542
	int ret;

3543 3544 3545
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3546
	obj->pin_display++;
3547

3548 3549 3550 3551 3552 3553 3554 3555 3556
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3557 3558
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3559 3560
	if (ret) {
		vma = ERR_PTR(ret);
3561
		goto err_unpin_display;
C
Chris Wilson 已提交
3562
	}
3563

3564 3565 3566 3567
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
C
Chris Wilson 已提交
3568
	vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3569 3570
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
C
Chris Wilson 已提交
3571
	if (IS_ERR(vma))
3572
		goto err_unpin_display;
3573

C
Chris Wilson 已提交
3574 3575
	WARN_ON(obj->pin_display > i915_vma_pin_count(vma));

3576
	i915_gem_object_flush_cpu_write_domain(obj);
3577

3578
	old_write_domain = obj->base.write_domain;
3579
	old_read_domains = obj->base.read_domains;
3580 3581 3582 3583

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3584
	obj->base.write_domain = 0;
3585
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3586 3587 3588

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3589
					    old_write_domain);
3590

C
Chris Wilson 已提交
3591
	return vma;
3592 3593

err_unpin_display:
3594
	obj->pin_display--;
C
Chris Wilson 已提交
3595
	return vma;
3596 3597 3598
}

void
C
Chris Wilson 已提交
3599
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3600
{
C
Chris Wilson 已提交
3601
	if (WARN_ON(vma->obj->pin_display == 0))
3602 3603
		return;

C
Chris Wilson 已提交
3604
	vma->obj->pin_display--;
3605

C
Chris Wilson 已提交
3606 3607
	i915_vma_unpin(vma);
	WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3608 3609
}

3610 3611
/**
 * Moves a single object to the CPU read, and possibly write domain.
3612 3613
 * @obj: object to act on
 * @write: requesting write or read-only access
3614 3615 3616 3617
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3618
int
3619
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3620
{
C
Chris Wilson 已提交
3621
	uint32_t old_write_domain, old_read_domains;
3622 3623
	int ret;

3624
	ret = i915_gem_object_wait_rendering(obj, !write);
3625 3626 3627
	if (ret)
		return ret;

3628 3629 3630
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3631
	i915_gem_object_flush_gtt_write_domain(obj);
3632

3633 3634
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3635

3636
	/* Flush the CPU cache if it's still invalid. */
3637
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3638
		i915_gem_clflush_object(obj, false);
3639

3640
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3641 3642 3643 3644 3645
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3646
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3647 3648 3649 3650 3651

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3652 3653
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3654
	}
3655

C
Chris Wilson 已提交
3656 3657 3658 3659
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3660 3661 3662
	return 0;
}

3663 3664 3665
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3666 3667 3668 3669
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3670 3671 3672
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3673
static int
3674
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3675
{
3676
	struct drm_i915_private *dev_priv = to_i915(dev);
3677
	struct drm_i915_file_private *file_priv = file->driver_priv;
3678
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3679
	struct drm_i915_gem_request *request, *target = NULL;
3680
	int ret;
3681

3682 3683 3684 3685
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3686 3687 3688
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3689

3690
	spin_lock(&file_priv->mm.lock);
3691
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3692 3693
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3694

3695 3696 3697 3698 3699 3700 3701
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3702
		target = request;
3703
	}
3704
	if (target)
3705
		i915_gem_request_get(target);
3706
	spin_unlock(&file_priv->mm.lock);
3707

3708
	if (target == NULL)
3709
		return 0;
3710

3711
	ret = i915_wait_request(target, true, NULL, NULL);
3712
	i915_gem_request_put(target);
3713

3714 3715 3716
	return ret;
}

3717
static bool
3718
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3719
{
3720 3721 3722
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3723 3724 3725 3726
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3727 3728
		return true;

3729
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3730 3731 3732 3733 3734 3735
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3736 3737 3738 3739
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3740 3741 3742
	return false;
}

3743 3744 3745
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3746
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3747 3748 3749
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3750
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3751
					    vma->size,
3752
					    i915_gem_object_get_tiling(obj));
3753
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3754
						      vma->size,
3755
						      i915_gem_object_get_tiling(obj),
3756
						      true);
3757 3758 3759 3760 3761

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3762
		    dev_priv->ggtt.mappable_end);
3763

3764 3765 3766 3767
	if (mappable && fenceable)
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3768 3769
}

3770 3771
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3772
{
3773
	unsigned int bound = vma->flags;
3774 3775
	int ret;

3776
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3777
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3778

3779 3780 3781 3782
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3783

3784
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3785 3786 3787
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3788
	}
3789

3790
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3791
	if (ret)
3792
		goto err;
3793

3794
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3795
		__i915_vma_set_map_and_fenceable(vma);
3796

3797
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3798 3799
	return 0;

3800 3801 3802
err:
	__i915_vma_unpin(vma);
	return ret;
3803 3804
}

C
Chris Wilson 已提交
3805
struct i915_vma *
3806 3807
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3808
			 u64 size,
3809 3810
			 u64 alignment,
			 u64 flags)
3811
{
C
Chris Wilson 已提交
3812
	struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3813 3814
	struct i915_vma *vma;
	int ret;
3815

C
Chris Wilson 已提交
3816
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3817
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3818
		return vma;
3819 3820 3821 3822

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3823
			return ERR_PTR(-ENOSPC);
3824 3825 3826

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3827 3828 3829
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3830
		     !!(flags & PIN_MAPPABLE),
3831
		     i915_vma_is_map_and_fenceable(vma));
3832 3833
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3834
			return ERR_PTR(ret);
3835 3836
	}

C
Chris Wilson 已提交
3837 3838 3839
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3840

C
Chris Wilson 已提交
3841
	return vma;
3842 3843
}

3844
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3859 3860 3861 3862 3863 3864 3865 3866 3867
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3868 3869
}

3870
static __always_inline unsigned int
3871 3872 3873
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
3874
	struct drm_i915_gem_request *request;
3875

3876 3877 3878
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
3879

3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
3936 3937
}

3938
static __always_inline unsigned int
3939 3940 3941 3942 3943
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3944
static __always_inline unsigned int
3945 3946 3947 3948 3949
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3950 3951
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3952
		    struct drm_file *file)
3953 3954
{
	struct drm_i915_gem_busy *args = data;
3955
	struct drm_i915_gem_object *obj;
3956
	unsigned long active;
3957

3958
	obj = i915_gem_object_lookup(file, args->handle);
3959 3960
	if (!obj)
		return -ENOENT;
3961

3962
	args->busy = 0;
3963 3964 3965
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
3966

3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
3983 3984 3985 3986 3987 3988
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
3989 3990 3991 3992 3993 3994 3995
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
3996 3997 3998 3999 4000
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
4001 4002 4003 4004 4005 4006 4007 4008 4009
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
4010
	}
4011

4012 4013
	i915_gem_object_put_unlocked(obj);
	return 0;
4014 4015 4016 4017 4018 4019
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4020
	return i915_gem_ring_throttle(dev, file_priv);
4021 4022
}

4023 4024 4025 4026
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4027
	struct drm_i915_private *dev_priv = to_i915(dev);
4028
	struct drm_i915_gem_madvise *args = data;
4029
	struct drm_i915_gem_object *obj;
4030
	int ret;
4031 4032 4033 4034 4035 4036 4037 4038 4039

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4040 4041 4042 4043
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4044 4045
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4046 4047
		ret = -ENOENT;
		goto unlock;
4048 4049
	}

4050
	if (obj->pages &&
4051
	    i915_gem_object_is_tiled(obj) &&
4052 4053 4054 4055 4056 4057 4058
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4059 4060
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4061

C
Chris Wilson 已提交
4062
	/* if the object is no longer attached, discard its backing storage */
4063
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4064 4065
		i915_gem_object_truncate(obj);

4066
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4067

4068
	i915_gem_object_put(obj);
4069
unlock:
4070
	mutex_unlock(&dev->struct_mutex);
4071
	return ret;
4072 4073
}

4074 4075
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4076
{
4077 4078
	int i;

4079
	INIT_LIST_HEAD(&obj->global_list);
4080
	for (i = 0; i < I915_NUM_ENGINES; i++)
4081 4082 4083 4084
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
4085
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4086
	INIT_LIST_HEAD(&obj->vma_list);
4087
	INIT_LIST_HEAD(&obj->batch_pool_link);
4088

4089 4090
	obj->ops = ops;

4091 4092
	obj->madv = I915_MADV_WILLNEED;

4093
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4094 4095
}

4096
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4097
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4098 4099 4100 4101
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4102
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4103
						  size_t size)
4104
{
4105
	struct drm_i915_gem_object *obj;
4106
	struct address_space *mapping;
D
Daniel Vetter 已提交
4107
	gfp_t mask;
4108
	int ret;
4109

4110
	obj = i915_gem_object_alloc(dev);
4111
	if (obj == NULL)
4112
		return ERR_PTR(-ENOMEM);
4113

4114 4115 4116
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4117

4118 4119 4120 4121 4122 4123 4124
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4125
	mapping = obj->base.filp->f_mapping;
4126
	mapping_set_gfp_mask(mapping, mask);
4127

4128
	i915_gem_object_init(obj, &i915_gem_object_ops);
4129

4130 4131
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4132

4133 4134
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4150 4151
	trace_i915_gem_object_create(obj);

4152
	return obj;
4153 4154 4155 4156 4157

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4158 4159
}

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4184
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4185
{
4186
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4187
	struct drm_device *dev = obj->base.dev;
4188
	struct drm_i915_private *dev_priv = to_i915(dev);
4189
	struct i915_vma *vma, *next;
4190

4191 4192
	intel_runtime_pm_get(dev_priv);

4193 4194
	trace_i915_gem_object_destroy(obj);

4195 4196 4197 4198 4199 4200 4201
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4202
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4203
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4204
		GEM_BUG_ON(i915_vma_is_active(vma));
4205
		vma->flags &= ~I915_VMA_PIN_MASK;
4206
		i915_vma_close(vma);
4207
	}
4208
	GEM_BUG_ON(obj->bind_count);
4209

B
Ben Widawsky 已提交
4210 4211 4212 4213 4214
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4215
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4216

4217 4218
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4219
	    i915_gem_object_is_tiled(obj))
4220 4221
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4222 4223
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4224
	if (discard_backing_storage(obj))
4225
		obj->madv = I915_MADV_DONTNEED;
4226
	i915_gem_object_put_pages(obj);
4227

4228 4229
	BUG_ON(obj->pages);

4230 4231
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4232

4233 4234 4235
	if (obj->ops->release)
		obj->ops->release(obj);

4236 4237
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4238

4239
	kfree(obj->bit_17);
4240
	i915_gem_object_free(obj);
4241 4242

	intel_runtime_pm_put(dev_priv);
4243 4244
}

4245
int i915_gem_suspend(struct drm_device *dev)
4246
{
4247
	struct drm_i915_private *dev_priv = to_i915(dev);
4248
	int ret;
4249

4250 4251
	intel_suspend_gt_powersave(dev_priv);

4252
	mutex_lock(&dev->struct_mutex);
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4266
	ret = i915_gem_wait_for_idle(dev_priv, true);
4267
	if (ret)
4268
		goto err;
4269

4270
	i915_gem_retire_requests(dev_priv);
4271

4272
	i915_gem_context_lost(dev_priv);
4273 4274
	mutex_unlock(&dev->struct_mutex);

4275
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4276 4277
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4278

4279 4280 4281
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4282
	WARN_ON(dev_priv->gt.awake);
4283

4284
	return 0;
4285 4286 4287 4288

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4289 4290
}

4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4308 4309
void i915_gem_init_swizzling(struct drm_device *dev)
{
4310
	struct drm_i915_private *dev_priv = to_i915(dev);
4311

4312
	if (INTEL_INFO(dev)->gen < 5 ||
4313 4314 4315 4316 4317 4318
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4319 4320 4321
	if (IS_GEN5(dev))
		return;

4322 4323
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4324
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4325
	else if (IS_GEN7(dev))
4326
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4327 4328
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4329 4330
	else
		BUG();
4331
}
D
Daniel Vetter 已提交
4332

4333 4334
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4335
	struct drm_i915_private *dev_priv = to_i915(dev);
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4360 4361 4362
int
i915_gem_init_hw(struct drm_device *dev)
{
4363
	struct drm_i915_private *dev_priv = to_i915(dev);
4364
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4365
	int ret;
4366

4367 4368 4369
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4370
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4371
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4372

4373 4374 4375
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4376

4377
	if (HAS_PCH_NOP(dev)) {
4378 4379 4380 4381 4382 4383 4384 4385 4386
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4387 4388
	}

4389 4390
	i915_gem_init_swizzling(dev);

4391 4392 4393 4394 4395 4396 4397 4398
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4399
	BUG_ON(!dev_priv->kernel_context);
4400

4401 4402 4403 4404 4405 4406 4407
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4408
	for_each_engine(engine, dev_priv) {
4409
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4410
		if (ret)
4411
			goto out;
D
Daniel Vetter 已提交
4412
	}
4413

4414 4415
	intel_mocs_init_l3cc_table(dev);

4416
	/* We can't enable contexts until all firmware is loaded */
4417 4418 4419
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4420

4421 4422
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4423
	return ret;
4424 4425
}

4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4447 4448
int i915_gem_init(struct drm_device *dev)
{
4449
	struct drm_i915_private *dev_priv = to_i915(dev);
4450 4451 4452
	int ret;

	mutex_lock(&dev->struct_mutex);
4453

4454
	if (!i915.enable_execlists) {
4455
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4456
	} else {
4457
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4458 4459
	}

4460 4461 4462 4463 4464 4465 4466 4467
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4468
	i915_gem_init_userptr(dev_priv);
4469 4470 4471 4472

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4473

4474
	ret = i915_gem_context_init(dev);
4475 4476
	if (ret)
		goto out_unlock;
4477

4478
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4479
	if (ret)
4480
		goto out_unlock;
4481

4482
	ret = i915_gem_init_hw(dev);
4483
	if (ret == -EIO) {
4484
		/* Allow engine initialisation to fail by marking the GPU as
4485 4486 4487 4488
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4489
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4490
		ret = 0;
4491
	}
4492 4493

out_unlock:
4494
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4495
	mutex_unlock(&dev->struct_mutex);
4496

4497
	return ret;
4498 4499
}

4500
void
4501
i915_gem_cleanup_engines(struct drm_device *dev)
4502
{
4503
	struct drm_i915_private *dev_priv = to_i915(dev);
4504
	struct intel_engine_cs *engine;
4505

4506
	for_each_engine(engine, dev_priv)
4507
		dev_priv->gt.cleanup_engine(engine);
4508 4509
}

4510
static void
4511
init_engine_lists(struct intel_engine_cs *engine)
4512
{
4513
	INIT_LIST_HEAD(&engine->request_list);
4514 4515
}

4516 4517 4518
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4519
	struct drm_device *dev = &dev_priv->drm;
4520
	int i;
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4531
	if (intel_vgpu_active(dev_priv))
4532 4533 4534 4535
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4536 4537 4538 4539 4540 4541 4542
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4543 4544 4545 4546 4547
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4548
void
4549
i915_gem_load_init(struct drm_device *dev)
4550
{
4551
	struct drm_i915_private *dev_priv = to_i915(dev);
4552 4553
	int i;

4554
	dev_priv->objects =
4555 4556 4557 4558
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4559 4560 4561 4562 4563
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4564 4565 4566
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4567 4568 4569
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4570
				  NULL);
4571

4572
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4573 4574
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4575
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4576 4577
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4578
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4579
			  i915_gem_retire_work_handler);
4580
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4581
			  i915_gem_idle_work_handler);
4582
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4583
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4584

4585 4586
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4587
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4588

4589 4590
	dev_priv->mm.interruptible = true;

4591
	spin_lock_init(&dev_priv->fb_tracking.lock);
4592
}
4593

4594 4595 4596 4597 4598 4599 4600
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4601 4602 4603

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4604 4605
}

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4634
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4635
{
4636
	struct drm_i915_file_private *file_priv = file->driver_priv;
4637
	struct drm_i915_gem_request *request;
4638 4639 4640 4641 4642

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4643
	spin_lock(&file_priv->mm.lock);
4644
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4645
		request->file_priv = NULL;
4646
	spin_unlock(&file_priv->mm.lock);
4647

4648
	if (!list_empty(&file_priv->rps.link)) {
4649
		spin_lock(&to_i915(dev)->rps.client_lock);
4650
		list_del(&file_priv->rps.link);
4651
		spin_unlock(&to_i915(dev)->rps.client_lock);
4652
	}
4653 4654 4655 4656 4657
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4658
	int ret;
4659 4660 4661 4662 4663 4664 4665 4666

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4667
	file_priv->dev_priv = to_i915(dev);
4668
	file_priv->file = file;
4669
	INIT_LIST_HEAD(&file_priv->rps.link);
4670 4671 4672 4673

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4674
	file_priv->bsd_engine = -1;
4675

4676 4677 4678
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4679

4680
	return ret;
4681 4682
}

4683 4684
/**
 * i915_gem_track_fb - update frontbuffer tracking
4685 4686 4687
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4688 4689 4690 4691
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4692 4693 4694 4695
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4696 4697 4698 4699 4700 4701 4702 4703 4704
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4705
	if (old) {
4706 4707
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4708 4709 4710
	}

	if (new) {
4711 4712
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4713 4714 4715
	}
}

4716 4717 4718 4719 4720 4721 4722
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4723
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4724 4725 4726 4727 4728 4729 4730
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4741
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4742
	if (IS_ERR(obj))
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4756
	obj->dirty = 1;		/* Backing store is now out of date */
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4768
	i915_gem_object_put(obj);
4769 4770
	return ERR_PTR(ret);
}