i915_gem.c 133.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/stop_machine.h>
42
#include <linux/swap.h>
J
Jesse Barnes 已提交
43
#include <linux/pci.h>
44
#include <linux/dma-buf.h>
45

46
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49

50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
53
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 55
}

56 57
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
58 59 60
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

61 62 63 64 65 66
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

67
static int
68
insert_mappable_node(struct i915_ggtt *ggtt,
69 70 71
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
72 73 74 75
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
76 77 78 79 80 81 82 83
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86
				  u64 size)
87
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95
				     u64 size)
96
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108 109
	might_sleep();

110
	if (!i915_reset_in_progress(error))
111 112
		return 0;

113 114 115 116 117
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
118
	ret = wait_event_interruptible_timeout(error->reset_queue,
119
					       !i915_reset_in_progress(error),
120
					       I915_RESET_TIMEOUT);
121 122 123 124
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
125
		return ret;
126 127
	} else {
		return 0;
128
	}
129 130
}

131
int i915_mutex_lock_interruptible(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134 135
	int ret;

136
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 138 139 140 141 142 143 144 145
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
146

147 148
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149
			    struct drm_file *file)
150
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153
	struct drm_i915_gem_get_aperture *args = data;
154
	struct i915_vma *vma;
155
	size_t pinned;
156

157
	pinned = 0;
158
	mutex_lock(&dev->struct_mutex);
159
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163
		if (i915_vma_is_pinned(vma))
164
			pinned += vma->node.size;
165
	mutex_unlock(&dev->struct_mutex);
166

167
	args->aper_size = ggtt->base.total;
168
	args->aper_available_size = args->aper_size - pinned;
169

170 171 172
	return 0;
}

173
static struct sg_table *
174
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175
{
176
	struct address_space *mapping = obj->base.filp->f_mapping;
177
	drm_dma_handle_t *phys;
178 179
	struct sg_table *st;
	struct scatterlist *sg;
180
	char *vaddr;
181
	int i;
182

183
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184
		return ERR_PTR(-EINVAL);
185

186 187 188 189 190 191 192 193 194 195 196
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
197 198 199 200 201
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
202 203 204 205
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
206 207 208 209 210 211

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

212
		put_page(page);
213 214 215
		vaddr += PAGE_SIZE;
	}

216
	i915_gem_chipset_flush(to_i915(obj->base.dev));
217 218

	st = kmalloc(sizeof(*st), GFP_KERNEL);
219 220 221 222
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
223 224 225

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
226 227
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
228 229 230 231 232
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
233

234
	sg_dma_address(sg) = phys->busaddr;
235 236
	sg_dma_len(sg) = obj->base.size;

237 238 239 240 241
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
242
	return st;
243 244 245
}

static void
246
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 248
				struct sg_table *pages,
				bool needs_clflush)
249
{
C
Chris Wilson 已提交
250
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251

C
Chris Wilson 已提交
252 253
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
254

255 256
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258
		drm_clflush_sg(pages);
259 260 261 262 263 264 265 266 267

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
268
	__i915_gem_object_release_shmem(obj, pages, false);
269

C
Chris Wilson 已提交
270
	if (obj->mm.dirty) {
271
		struct address_space *mapping = obj->base.filp->f_mapping;
272
		char *vaddr = obj->phys_handle->vaddr;
273 274 275
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 277 278 279 280 281 282 283 284 285 286 287 288
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
289
			if (obj->mm.madv == I915_MADV_WILLNEED)
290
				mark_page_accessed(page);
291
			put_page(page);
292 293
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
294
		obj->mm.dirty = false;
295 296
	}

297 298
	sg_free_table(pages);
	kfree(pages);
299 300

	drm_pci_free(obj->base.dev, obj->phys_handle);
301 302 303 304 305
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
306
	i915_gem_object_unpin_pages(obj);
307 308 309 310 311 312 313 314
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

402
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
432 433
		int ret;

434 435
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
436 437 438
		if (ret)
			return ret;

439 440 441 442 443 444
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
445

446 447 448 449 450 451 452 453
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
454 455
	}

456 457 458 459 460 461
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

528 529 530 531 532 533
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
534
 */
535 536 537 538 539
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
540
{
541 542 543 544 545 546 547
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
548

549 550 551
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
552
	return timeout < 0 ? timeout : 0;
553 554 555 556 557 558 559 560 561
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

562 563 564 565
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
566
	int ret;
567

568 569
	if (align > obj->base.size)
		return -EINVAL;
570

571
	if (obj->ops == &i915_gem_phys_ops)
572 573
		return 0;

C
Chris Wilson 已提交
574
	if (obj->mm.madv != I915_MADV_WILLNEED)
575 576 577 578 579
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
580 581 582 583
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

584
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 586
	if (obj->mm.pages)
		return -EBUSY;
587 588 589

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
590
	return i915_gem_object_pin_pages(obj);
591 592 593 594 595
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
596
		     struct drm_file *file)
597 598
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
599
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
600 601 602 603

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
604
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605 606
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
607

608
	drm_clflush_virt_range(vaddr, args->size);
609
	i915_gem_chipset_flush(to_i915(obj->base.dev));
610

611
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612
	return 0;
613 614
}

615
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
616
{
617
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
618 619 620 621
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
622
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
623
	kmem_cache_free(dev_priv->objects, obj);
624 625
}

626 627
static int
i915_gem_create(struct drm_file *file,
628
		struct drm_i915_private *dev_priv,
629 630
		uint64_t size,
		uint32_t *handle_p)
631
{
632
	struct drm_i915_gem_object *obj;
633 634
	int ret;
	u32 handle;
635

636
	size = roundup(size, PAGE_SIZE);
637 638
	if (size == 0)
		return -EINVAL;
639 640

	/* Allocate the new object */
641
	obj = i915_gem_object_create(dev_priv, size);
642 643
	if (IS_ERR(obj))
		return PTR_ERR(obj);
644

645
	ret = drm_gem_handle_create(file, &obj->base, &handle);
646
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
647
	i915_gem_object_put(obj);
648 649
	if (ret)
		return ret;
650

651
	*handle_p = handle;
652 653 654
	return 0;
}

655 656 657 658 659 660
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
661
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
662
	args->size = args->pitch * args->height;
663
	return i915_gem_create(file, to_i915(dev),
664
			       args->size, &args->handle);
665 666 667 668
}

/**
 * Creates a new mm object and returns a handle to it.
669 670 671
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
672 673 674 675 676
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
677
	struct drm_i915_private *dev_priv = to_i915(dev);
678
	struct drm_i915_gem_create *args = data;
679

680
	i915_gem_flush_free_objects(dev_priv);
681

682
	return i915_gem_create(file, dev_priv,
683
			       args->size, &args->handle);
684 685
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

712
static inline int
713 714
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

738 739 740 741 742 743
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744
				    unsigned int *needs_clflush)
745 746 747
{
	int ret;

748
	lockdep_assert_held(&obj->base.dev->struct_mutex);
749

750
	*needs_clflush = 0;
751 752
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
753

754 755 756 757 758
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
759 760 761
	if (ret)
		return ret;

C
Chris Wilson 已提交
762
	ret = i915_gem_object_pin_pages(obj);
763 764 765
	if (ret)
		return ret;

766 767
	i915_gem_object_flush_gtt_write_domain(obj);

768 769 770 771 772 773
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774 775
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
776 777 778

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
779 780 781
		if (ret)
			goto err_unpin;

782
		*needs_clflush = 0;
783 784
	}

785
	/* return with the pages pinned */
786
	return 0;
787 788 789 790

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
791 792 793 794 795 796 797
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

798 799
	lockdep_assert_held(&obj->base.dev->struct_mutex);

800 801 802 803
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

804 805 806 807 808 809
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
810 811 812
	if (ret)
		return ret;

C
Chris Wilson 已提交
813
	ret = i915_gem_object_pin_pages(obj);
814 815 816
	if (ret)
		return ret;

817 818
	i915_gem_object_flush_gtt_write_domain(obj);

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
836 837 838
		if (ret)
			goto err_unpin;

839 840 841 842 843 844 845
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
846
	obj->mm.dirty = true;
847
	/* return with the pages pinned */
848
	return 0;
849 850 851 852

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
853 854
}

855 856 857 858
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
859
	if (unlikely(swizzled)) {
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

877 878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
880
shmem_pread_slow(struct page *page, int offset, int length,
881 882 883 884 885 886 887 888
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
889
		shmem_clflush_swizzled_range(vaddr + offset, length,
890
					     page_do_bit17_swizzling);
891 892

	if (page_do_bit17_swizzling)
893
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894
	else
895
		ret = __copy_to_user(user_data, vaddr + offset, length);
896 897
	kunmap(page);

898
	return ret ? - EFAULT : 0;
899 900
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
977 978
{
	void *vaddr;
979
	unsigned long unwritten;
980 981

	/* We can use the cpu mem copy function because this is X86. */
982 983 984 985 986 987 988 989 990
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
991 992 993 994
	return unwritten;
}

static int
995 996
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
997
{
998 999
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1000
	struct drm_mm_node node;
1001 1002 1003
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1004 1005
	int ret;

1006 1007 1008 1009 1010 1011 1012
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1013 1014 1015
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1016
		ret = i915_vma_put_fence(vma);
1017 1018 1019 1020 1021
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1022
	if (IS_ERR(vma)) {
1023
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024
		if (ret)
1025 1026
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1027 1028 1029 1030 1031 1032
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1033
	mutex_unlock(&i915->drm.struct_mutex);
1034

1035 1036 1037
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054
					       node.start, I915_CACHE_NONE, 0);
1055 1056 1057 1058
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1059 1060 1061

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1062 1063 1064 1065 1066 1067 1068 1069 1070
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1071
	mutex_lock(&i915->drm.struct_mutex);
1072 1073 1074 1075
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1076
				       node.start, node.size);
1077 1078
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1079
		i915_vma_unpin(vma);
1080
	}
1081 1082 1083
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1084

1085 1086 1087
	return ret;
}

1088 1089
/**
 * Reads data from the object referenced by handle.
1090 1091 1092
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1093 1094 1095 1096 1097
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098
		     struct drm_file *file)
1099 1100
{
	struct drm_i915_gem_pread *args = data;
1101
	struct drm_i915_gem_object *obj;
1102
	int ret;
1103

1104 1105 1106 1107
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1108
		       u64_to_user_ptr(args->data_ptr),
1109 1110 1111
		       args->size))
		return -EFAULT;

1112
	obj = i915_gem_object_lookup(file, args->handle);
1113 1114
	if (!obj)
		return -ENOENT;
1115

1116
	/* Bounds check source.  */
1117
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1118
		ret = -EINVAL;
1119
		goto out;
C
Chris Wilson 已提交
1120 1121
	}

C
Chris Wilson 已提交
1122 1123
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1124 1125 1126 1127
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1128
	if (ret)
1129
		goto out;
1130

1131
	ret = i915_gem_object_pin_pages(obj);
1132
	if (ret)
1133
		goto out;
1134

1135
	ret = i915_gem_shmem_pread(obj, args);
1136
	if (ret == -EFAULT || ret == -ENODEV)
1137
		ret = i915_gem_gtt_pread(obj, args);
1138

1139 1140
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1141
	i915_gem_object_put(obj);
1142
	return ret;
1143 1144
}

1145 1146
/* This is the fast write path which cannot handle
 * page faults in the source data
1147
 */
1148

1149 1150 1151 1152
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1153
{
1154
	void *vaddr;
1155
	unsigned long unwritten;
1156

1157
	/* We can use the cpu mem copy function because this is X86. */
1158 1159
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1160
						      user_data, length);
1161 1162 1163 1164 1165 1166 1167
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1168 1169 1170 1171

	return unwritten;
}

1172 1173 1174
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1175
 * @obj: i915 GEM object
1176
 * @args: pwrite arguments structure
1177
 */
1178
static int
1179 1180
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1181
{
1182
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1183 1184
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1185 1186 1187
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1188
	int ret;
1189

1190 1191 1192
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1193

1194
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1195
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1196
				       PIN_MAPPABLE | PIN_NONBLOCK);
1197 1198 1199
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1200
		ret = i915_vma_put_fence(vma);
1201 1202 1203 1204 1205
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1206
	if (IS_ERR(vma)) {
1207
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1208
		if (ret)
1209 1210
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1211
	}
D
Daniel Vetter 已提交
1212 1213 1214 1215 1216

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1217 1218
	mutex_unlock(&i915->drm.struct_mutex);

1219
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1220

1221 1222 1223 1224
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1225 1226
		/* Operation in this page
		 *
1227 1228 1229
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1230
		 */
1231
		u32 page_base = node.start;
1232 1233
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1244
		/* If we get a fault while copying data, then (presumably) our
1245 1246
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1247 1248
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1249
		 */
1250 1251 1252 1253
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1254
		}
1255

1256 1257 1258
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1259
	}
1260
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1261 1262

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1263
out_unpin:
1264 1265 1266
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1267
				       node.start, node.size);
1268 1269
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1270
		i915_vma_unpin(vma);
1271
	}
1272
out_unlock:
1273
	intel_runtime_pm_put(i915);
1274
	mutex_unlock(&i915->drm.struct_mutex);
1275
	return ret;
1276 1277
}

1278
static int
1279
shmem_pwrite_slow(struct page *page, int offset, int length,
1280 1281 1282 1283
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1284
{
1285 1286
	char *vaddr;
	int ret;
1287

1288
	vaddr = kmap(page);
1289
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1290
		shmem_clflush_swizzled_range(vaddr + offset, length,
1291
					     page_do_bit17_swizzling);
1292
	if (page_do_bit17_swizzling)
1293 1294
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1295
	else
1296
		ret = __copy_from_user(vaddr + offset, user_data, length);
1297
	if (needs_clflush_after)
1298
		shmem_clflush_swizzled_range(vaddr + offset, length,
1299
					     page_do_bit17_swizzling);
1300
	kunmap(page);
1301

1302
	return ret ? -EFAULT : 0;
1303 1304
}

1305 1306 1307 1308 1309
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1310
static int
1311 1312 1313 1314
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1315
{
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1348
	unsigned int needs_clflush;
1349 1350
	unsigned int offset, idx;
	int ret;
1351

1352
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1353 1354 1355
	if (ret)
		return ret;

1356 1357 1358 1359
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1360

1361 1362 1363
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1364

1365 1366 1367 1368 1369 1370 1371
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1372

1373 1374 1375 1376 1377 1378
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1379

1380 1381 1382
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1383

1384 1385 1386 1387
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1388
		if (ret)
1389
			break;
1390

1391 1392 1393
		remain -= length;
		user_data += length;
		offset = 0;
1394
	}
1395

1396
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1397
	i915_gem_obj_finish_shmem_access(obj);
1398
	return ret;
1399 1400 1401 1402
}

/**
 * Writes data to the object referenced by handle.
1403 1404 1405
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1406 1407 1408 1409 1410
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1411
		      struct drm_file *file)
1412 1413
{
	struct drm_i915_gem_pwrite *args = data;
1414
	struct drm_i915_gem_object *obj;
1415 1416 1417 1418 1419 1420
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1421
		       u64_to_user_ptr(args->data_ptr),
1422 1423 1424
		       args->size))
		return -EFAULT;

1425
	obj = i915_gem_object_lookup(file, args->handle);
1426 1427
	if (!obj)
		return -ENOENT;
1428

1429
	/* Bounds check destination. */
1430
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1431
		ret = -EINVAL;
1432
		goto err;
C
Chris Wilson 已提交
1433 1434
	}

C
Chris Wilson 已提交
1435 1436
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1437 1438 1439 1440 1441
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1442 1443 1444
	if (ret)
		goto err;

1445
	ret = i915_gem_object_pin_pages(obj);
1446
	if (ret)
1447
		goto err;
1448

D
Daniel Vetter 已提交
1449
	ret = -EFAULT;
1450 1451 1452 1453 1454 1455
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1456
	if (!i915_gem_object_has_struct_page(obj) ||
1457
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1458 1459
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1460 1461
		 * textures). Fallback to the shmem path in that case.
		 */
1462
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1463

1464
	if (ret == -EFAULT || ret == -ENOSPC) {
1465 1466
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1467
		else
1468
			ret = i915_gem_shmem_pwrite(obj, args);
1469
	}
1470

1471
	i915_gem_object_unpin_pages(obj);
1472
err:
C
Chris Wilson 已提交
1473
	i915_gem_object_put(obj);
1474
	return ret;
1475 1476
}

1477
static inline enum fb_op_origin
1478 1479
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1480 1481
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1482 1483
}

1484 1485 1486 1487 1488 1489 1490 1491
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1492
			break;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1505
	list_move_tail(&obj->global_link, list);
1506 1507
}

1508
/**
1509 1510
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1511 1512 1513
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1514 1515 1516
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1517
			  struct drm_file *file)
1518 1519
{
	struct drm_i915_gem_set_domain *args = data;
1520
	struct drm_i915_gem_object *obj;
1521 1522
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1523
	int err;
1524

1525
	/* Only handle setting domains to types used by the CPU. */
1526
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1527 1528 1529 1530 1531 1532 1533 1534
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1535
	obj = i915_gem_object_lookup(file, args->handle);
1536 1537
	if (!obj)
		return -ENOENT;
1538

1539 1540 1541 1542
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1543
	err = i915_gem_object_wait(obj,
1544 1545 1546 1547
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1548
	if (err)
C
Chris Wilson 已提交
1549
		goto out;
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1561
		goto out;
1562 1563 1564

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1565
		goto out_unpin;
1566

1567
	if (read_domains & I915_GEM_DOMAIN_GTT)
1568
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1569
	else
1570
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1571

1572 1573
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1574

1575
	mutex_unlock(&dev->struct_mutex);
1576

1577 1578 1579
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1580
out_unpin:
1581
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1582 1583
out:
	i915_gem_object_put(obj);
1584
	return err;
1585 1586 1587 1588
}

/**
 * Called when user space has done writes to this buffer
1589 1590 1591
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1592 1593 1594
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1595
			 struct drm_file *file)
1596 1597
{
	struct drm_i915_gem_sw_finish *args = data;
1598
	struct drm_i915_gem_object *obj;
1599
	int err = 0;
1600

1601
	obj = i915_gem_object_lookup(file, args->handle);
1602 1603
	if (!obj)
		return -ENOENT;
1604 1605

	/* Pinned buffers may be scanout, so flush the cache */
1606 1607 1608 1609 1610 1611 1612
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1613

C
Chris Wilson 已提交
1614
	i915_gem_object_put(obj);
1615
	return err;
1616 1617 1618
}

/**
1619 1620 1621 1622 1623
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1624 1625 1626
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1637 1638 1639
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1640
		    struct drm_file *file)
1641 1642
{
	struct drm_i915_gem_mmap *args = data;
1643
	struct drm_i915_gem_object *obj;
1644 1645
	unsigned long addr;

1646 1647 1648
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1649
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1650 1651
		return -ENODEV;

1652 1653
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1654
		return -ENOENT;
1655

1656 1657 1658
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1659
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1660
		i915_gem_object_put(obj);
1661 1662 1663
		return -EINVAL;
	}

1664
	addr = vm_mmap(obj->base.filp, 0, args->size,
1665 1666
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1667 1668 1669 1670
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1671
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1672
			i915_gem_object_put(obj);
1673 1674
			return -EINTR;
		}
1675 1676 1677 1678 1679 1680 1681
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1682 1683

		/* This may race, but that's ok, it only gets set */
1684
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1685
	}
C
Chris Wilson 已提交
1686
	i915_gem_object_put(obj);
1687 1688 1689 1690 1691 1692 1693 1694
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1695 1696
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1697
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1761 1762
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1763
		min_t(unsigned int, chunk,
1764
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1765 1766 1767 1768 1769 1770 1771 1772

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1773 1774
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1775
 * @area: CPU VMA in question
1776
 * @vmf: fault info
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1788 1789 1790
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1791
 */
C
Chris Wilson 已提交
1792
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1793
{
1794
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1795
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1796
	struct drm_device *dev = obj->base.dev;
1797 1798
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1799
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1800
	struct i915_vma *vma;
1801
	pgoff_t page_offset;
1802
	unsigned int flags;
1803
	int ret;
1804

1805
	/* We don't use vmf->pgoff since that has the fake offset */
1806
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1807

C
Chris Wilson 已提交
1808 1809
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1810
	/* Try to flush the object off the GPU first without holding the lock.
1811
	 * Upon acquiring the lock, we will perform our sanity checks and then
1812 1813 1814
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1815 1816 1817 1818
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1819
	if (ret)
1820 1821
		goto err;

1822 1823 1824 1825
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1826 1827 1828 1829 1830
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1831

1832
	/* Access to snoopable pages through the GTT is incoherent. */
1833
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1834
		ret = -EFAULT;
1835
		goto err_unlock;
1836 1837
	}

1838 1839 1840 1841 1842 1843 1844 1845
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1846
	/* Now pin it into the GTT as needed */
1847
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1848 1849
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1850
		struct i915_ggtt_view view =
1851
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1852

1853 1854 1855 1856 1857
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1858 1859
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1860 1861
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1862
		goto err_unlock;
C
Chris Wilson 已提交
1863
	}
1864

1865 1866
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1867
		goto err_unpin;
1868

1869
	ret = i915_vma_get_fence(vma);
1870
	if (ret)
1871
		goto err_unpin;
1872

1873
	/* Mark as being mmapped into userspace for later revocation */
1874
	assert_rpm_wakelock_held(dev_priv);
1875 1876 1877
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1878
	/* Finally, remap it using the new GTT offset */
1879
	ret = remap_io_mapping(area,
1880
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1881 1882 1883
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1884

1885
err_unpin:
C
Chris Wilson 已提交
1886
	__i915_vma_unpin(vma);
1887
err_unlock:
1888
	mutex_unlock(&dev->struct_mutex);
1889 1890
err_rpm:
	intel_runtime_pm_put(dev_priv);
1891
	i915_gem_object_unpin_pages(obj);
1892
err:
1893
	switch (ret) {
1894
	case -EIO:
1895 1896 1897 1898 1899 1900 1901
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1902 1903 1904
			ret = VM_FAULT_SIGBUS;
			break;
		}
1905
	case -EAGAIN:
D
Daniel Vetter 已提交
1906 1907 1908 1909
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1910
		 */
1911 1912
	case 0:
	case -ERESTARTSYS:
1913
	case -EINTR:
1914 1915 1916 1917 1918
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1919 1920
		ret = VM_FAULT_NOPAGE;
		break;
1921
	case -ENOMEM:
1922 1923
		ret = VM_FAULT_OOM;
		break;
1924
	case -ENOSPC:
1925
	case -EFAULT:
1926 1927
		ret = VM_FAULT_SIGBUS;
		break;
1928
	default:
1929
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1930 1931
		ret = VM_FAULT_SIGBUS;
		break;
1932
	}
1933
	return ret;
1934 1935
}

1936 1937 1938 1939
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1940
 * Preserve the reservation of the mmapping with the DRM core code, but
1941 1942 1943 1944 1945 1946 1947 1948 1949
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1950
void
1951
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1952
{
1953 1954
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1955 1956 1957
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1958 1959 1960 1961
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1962
	 */
1963
	lockdep_assert_held(&i915->drm.struct_mutex);
1964
	intel_runtime_pm_get(i915);
1965

1966
	if (list_empty(&obj->userfault_link))
1967
		goto out;
1968

1969
	list_del_init(&obj->userfault_link);
1970 1971
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1972 1973 1974 1975 1976 1977 1978 1979 1980

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1981 1982 1983

out:
	intel_runtime_pm_put(i915);
1984 1985
}

1986
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1987
{
1988
	struct drm_i915_gem_object *obj, *on;
1989
	int i;
1990

1991 1992 1993 1994 1995 1996
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1997

1998 1999 2000
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2001 2002 2003
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2004 2005 2006 2007 2008 2009 2010 2011

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2022 2023 2024 2025 2026 2027 2028

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2029 2030
}

2031 2032
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2033
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2034
	int err;
2035

2036
	err = drm_gem_create_mmap_offset(&obj->base);
2037
	if (likely(!err))
2038
		return 0;
2039

2040 2041 2042 2043 2044
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2045

2046
		i915_gem_drain_freed_objects(dev_priv);
2047
		err = drm_gem_create_mmap_offset(&obj->base);
2048 2049 2050 2051
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2052

2053
	return err;
2054 2055 2056 2057 2058 2059 2060
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2061
int
2062 2063
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2064
		  uint32_t handle,
2065
		  uint64_t *offset)
2066
{
2067
	struct drm_i915_gem_object *obj;
2068 2069
	int ret;

2070
	obj = i915_gem_object_lookup(file, handle);
2071 2072
	if (!obj)
		return -ENOENT;
2073

2074
	ret = i915_gem_object_create_mmap_offset(obj);
2075 2076
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2077

C
Chris Wilson 已提交
2078
	i915_gem_object_put(obj);
2079
	return ret;
2080 2081
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2103
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2104 2105
}

D
Daniel Vetter 已提交
2106 2107 2108
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2109
{
2110
	i915_gem_object_free_mmap_offset(obj);
2111

2112 2113
	if (obj->base.filp == NULL)
		return;
2114

D
Daniel Vetter 已提交
2115 2116 2117 2118 2119
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2120
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2121
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2122
}
2123

2124
/* Try to discard unwanted pages */
2125
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2126
{
2127 2128
	struct address_space *mapping;

2129 2130 2131
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2132
	switch (obj->mm.madv) {
2133 2134 2135 2136 2137 2138 2139 2140 2141
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2142
	mapping = obj->base.filp->f_mapping,
2143
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2144 2145
}

2146
static void
2147 2148
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2149
{
2150 2151
	struct sgt_iter sgt_iter;
	struct page *page;
2152

2153
	__i915_gem_object_release_shmem(obj, pages, true);
2154

2155
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2156

2157
	if (i915_gem_object_needs_bit17_swizzle(obj))
2158
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2159

2160
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2161
		if (obj->mm.dirty)
2162
			set_page_dirty(page);
2163

C
Chris Wilson 已提交
2164
		if (obj->mm.madv == I915_MADV_WILLNEED)
2165
			mark_page_accessed(page);
2166

2167
		put_page(page);
2168
	}
C
Chris Wilson 已提交
2169
	obj->mm.dirty = false;
2170

2171 2172
	sg_free_table(pages);
	kfree(pages);
2173
}
C
Chris Wilson 已提交
2174

2175 2176 2177 2178 2179
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2180 2181
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2182 2183
}

2184 2185
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2186
{
2187
	struct sg_table *pages;
2188

C
Chris Wilson 已提交
2189
	if (i915_gem_object_has_pinned_pages(obj))
2190
		return;
2191

2192
	GEM_BUG_ON(obj->bind_count);
2193 2194 2195 2196
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2197
	mutex_lock_nested(&obj->mm.lock, subclass);
2198 2199
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2200

2201 2202 2203
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2204 2205
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2206

C
Chris Wilson 已提交
2207
	if (obj->mm.mapping) {
2208 2209
		void *ptr;

C
Chris Wilson 已提交
2210
		ptr = ptr_mask_bits(obj->mm.mapping);
2211 2212
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2213
		else
2214 2215
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2216
		obj->mm.mapping = NULL;
2217 2218
	}

2219 2220
	__i915_gem_object_reset_page_iter(obj);

2221
	obj->ops->put_pages(obj, pages);
2222 2223
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2224 2225
}

2226 2227 2228 2229 2230 2231 2232 2233 2234
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

2235
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2236 2237 2238 2239 2240 2241 2242 2243
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2244
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2245 2246 2247 2248 2249 2250

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2251
static struct sg_table *
C
Chris Wilson 已提交
2252
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2253
{
2254
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2255 2256
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2257
	struct address_space *mapping;
2258 2259
	struct sg_table *st;
	struct scatterlist *sg;
2260
	struct sgt_iter sgt_iter;
2261
	struct page *page;
2262
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2263
	unsigned int max_segment;
I
Imre Deak 已提交
2264
	int ret;
C
Chris Wilson 已提交
2265
	gfp_t gfp;
2266

C
Chris Wilson 已提交
2267 2268 2269 2270
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2271 2272
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2273

2274
	max_segment = swiotlb_max_segment();
2275
	if (!max_segment)
2276
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2277

2278 2279
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2280
		return ERR_PTR(-ENOMEM);
2281

2282
rebuild_st:
2283 2284
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2285
		return ERR_PTR(-ENOMEM);
2286
	}
2287

2288 2289 2290 2291 2292
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2293
	mapping = obj->base.filp->f_mapping;
2294
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2295
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2296 2297 2298
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2299 2300
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2301 2302 2303 2304 2305
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2306 2307 2308 2309 2310 2311 2312
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2313
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2314 2315
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2316
				goto err_sg;
I
Imre Deak 已提交
2317
			}
C
Chris Wilson 已提交
2318
		}
2319 2320 2321
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2322 2323 2324 2325 2326 2327 2328 2329
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2330 2331 2332

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2333
	}
2334
	if (sg) /* loop terminated early; short sg table */
2335
		sg_mark_end(sg);
2336

2337 2338 2339
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2340
	ret = i915_gem_gtt_prepare_pages(obj, st);
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2360

2361
	if (i915_gem_object_needs_bit17_swizzle(obj))
2362
		i915_gem_object_do_bit_17_swizzle(obj, st);
2363

2364
	return st;
2365

2366
err_sg:
2367
	sg_mark_end(sg);
2368
err_pages:
2369 2370
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2371 2372
	sg_free_table(st);
	kfree(st);
2373 2374 2375 2376 2377 2378 2379 2380 2381

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2382 2383 2384
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2385 2386 2387 2388 2389 2390
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2391
	lockdep_assert_held(&obj->mm.lock);
2392 2393 2394 2395 2396

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2397 2398 2399 2400 2401 2402 2403

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2404 2405 2406 2407 2408 2409
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2410 2411
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2423 2424
}

2425
/* Ensure that the associated pages are gathered from the backing storage
2426
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2427
 * multiple times before they are released by a single call to
2428
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2429 2430 2431
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2432
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2433
{
2434
	int err;
2435

2436 2437 2438
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2439

2440 2441 2442 2443
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2444

2445 2446 2447
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2448

2449 2450
unlock:
	mutex_unlock(&obj->mm.lock);
2451
	return err;
2452 2453
}

2454
/* The 'mapping' part of i915_gem_object_pin_map() below */
2455 2456
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2457 2458
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2459
	struct sg_table *sgt = obj->mm.pages;
2460 2461
	struct sgt_iter sgt_iter;
	struct page *page;
2462 2463
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2464
	unsigned long i = 0;
2465
	pgprot_t pgprot;
2466 2467 2468
	void *addr;

	/* A single page can always be kmapped */
2469
	if (n_pages == 1 && type == I915_MAP_WB)
2470 2471
		return kmap(sg_page(sgt->sgl));

2472 2473 2474 2475 2476 2477
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2478

2479 2480
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2481 2482 2483 2484

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2485 2486 2487 2488 2489 2490 2491 2492 2493
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2494

2495 2496
	if (pages != stack_pages)
		drm_free_large(pages);
2497 2498 2499 2500 2501

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2502 2503
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2504
{
2505 2506 2507
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2508 2509
	int ret;

2510
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2511

2512
	ret = mutex_lock_interruptible(&obj->mm.lock);
2513 2514 2515
	if (ret)
		return ERR_PTR(ret);

2516 2517
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2518 2519 2520 2521
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2522

2523 2524 2525
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2526 2527 2528
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2529

C
Chris Wilson 已提交
2530
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2531 2532 2533
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2534
			goto err_unpin;
2535
		}
2536 2537 2538 2539 2540 2541

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2542
		ptr = obj->mm.mapping = NULL;
2543 2544
	}

2545 2546 2547 2548
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2549
			goto err_unpin;
2550 2551
		}

C
Chris Wilson 已提交
2552
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2553 2554
	}

2555 2556
out_unlock:
	mutex_unlock(&obj->mm.lock);
2557 2558
	return ptr;

2559 2560 2561 2562 2563
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2564 2565
}

2566
static bool ban_context(const struct i915_gem_context *ctx)
2567
{
2568 2569
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2570 2571
}

2572
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2573
{
2574
	ctx->guilty_count++;
2575 2576 2577
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2578 2579

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2580
			 ctx->name, ctx->ban_score,
2581
			 yesno(i915_gem_context_is_banned(ctx)));
2582

2583
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2584 2585
		return;

2586 2587 2588
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2589 2590 2591 2592
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2593
	ctx->active_count++;
2594 2595
}

2596
struct drm_i915_gem_request *
2597
i915_gem_find_active_request(struct intel_engine_cs *engine)
2598
{
2599 2600
	struct drm_i915_gem_request *request;

2601 2602 2603 2604 2605 2606 2607 2608
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2609
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2610
		if (__i915_gem_request_completed(request))
2611
			continue;
2612

2613
		GEM_BUG_ON(request->engine != engine);
2614
		return request;
2615
	}
2616 2617 2618 2619

	return NULL;
}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2634
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2635 2636 2637
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2638
	int err = 0;
2639 2640

	/* Ensure irq handler finishes, and not run again. */
2641 2642 2643
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2644 2645 2646 2647 2648 2649 2650 2651 2652
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
		tasklet_disable(&engine->irq_tasklet);
2653 2654
		tasklet_kill(&engine->irq_tasklet);

2655 2656 2657
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2658 2659 2660 2661 2662 2663 2664
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2665
	i915_gem_revoke_fences(dev_priv);
2666 2667

	return err;
2668 2669
}

2670
static void skip_request(struct drm_i915_gem_request *request)
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2685 2686

	dma_fence_set_error(&request->fence, -EIO);
2687 2688
}

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2712 2713 2714 2715 2716 2717
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2750
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2751 2752 2753
{
	struct drm_i915_gem_request *request;

2754
	request = i915_gem_find_active_request(engine);
2755 2756 2757
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2758

2759 2760 2761 2762
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2763 2764 2765

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2766
}
2767

2768
void i915_gem_reset(struct drm_i915_private *dev_priv)
2769
{
2770
	struct intel_engine_cs *engine;
2771
	enum intel_engine_id id;
2772

2773 2774
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2775 2776
	i915_gem_retire_requests(dev_priv);

2777
	for_each_engine(engine, dev_priv, id)
2778 2779
		i915_gem_reset_engine(engine);

2780
	i915_gem_restore_fences(dev_priv);
2781 2782 2783 2784 2785 2786 2787

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2788 2789
}

2790 2791
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2792 2793 2794
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2795
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2796 2797 2798

	for_each_engine(engine, dev_priv, id)
		tasklet_enable(&engine->irq_tasklet);
2799 2800
}

2801 2802
static void nop_submit_request(struct drm_i915_gem_request *request)
{
2803
	dma_fence_set_error(&request->fence, -EIO);
2804 2805
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2806 2807
}

2808
static void engine_set_wedged(struct intel_engine_cs *engine)
2809
{
2810 2811 2812
	struct drm_i915_gem_request *request;
	unsigned long flags;

2813 2814 2815 2816 2817 2818
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2819
	engine->submit_request = nop_submit_request;
2820

2821 2822 2823 2824 2825 2826
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2827 2828 2829 2830
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2831
	intel_engine_init_global_seqno(engine,
2832
				       intel_engine_last_submit(engine));
2833

2834 2835 2836 2837 2838 2839
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2840
	if (i915.enable_execlists) {
2841 2842 2843 2844
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2845 2846 2847
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2848 2849
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2850 2851

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2852
	}
2853 2854
}

2855
static int __i915_gem_set_wedged_BKL(void *data)
2856
{
2857
	struct drm_i915_private *i915 = data;
2858
	struct intel_engine_cs *engine;
2859
	enum intel_engine_id id;
2860

2861
	for_each_engine(engine, i915, id)
2862
		engine_set_wedged(engine);
2863 2864 2865 2866 2867 2868

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2869 2870
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2871

2872
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2873

2874
	i915_gem_context_lost(dev_priv);
2875
	i915_gem_retire_requests(dev_priv);
2876 2877

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2878 2879
}

2880
static void
2881 2882
i915_gem_retire_work_handler(struct work_struct *work)
{
2883
	struct drm_i915_private *dev_priv =
2884
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2885
	struct drm_device *dev = &dev_priv->drm;
2886

2887
	/* Come back later if the device is busy... */
2888
	if (mutex_trylock(&dev->struct_mutex)) {
2889
		i915_gem_retire_requests(dev_priv);
2890
		mutex_unlock(&dev->struct_mutex);
2891
	}
2892 2893 2894 2895 2896

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2897 2898
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2899 2900
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2901
				   round_jiffies_up_relative(HZ));
2902
	}
2903
}
2904

2905 2906 2907 2908
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2909
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2910
	struct drm_device *dev = &dev_priv->drm;
2911
	struct intel_engine_cs *engine;
2912
	enum intel_engine_id id;
2913 2914 2915 2916 2917
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2918 2919 2920 2921 2922 2923 2924
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2925
	if (READ_ONCE(dev_priv->gt.active_requests))
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2939 2940 2941 2942 2943 2944 2945
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2946
	if (dev_priv->gt.active_requests)
2947
		goto out_unlock;
2948

2949 2950 2951
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2952
	for_each_engine(engine, dev_priv, id)
2953
		i915_gem_batch_pool_fini(&engine->batch_pool);
2954

2955 2956 2957
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2958

2959 2960 2961 2962 2963
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2964

2965 2966 2967 2968
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2969
	}
2970 2971
}

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2982 2983 2984 2985 2986 2987

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2988 2989 2990
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3002 3003
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3004 3005 3006
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3031 3032
	ktime_t start;
	long ret;
3033

3034 3035 3036
	if (args->flags != 0)
		return -EINVAL;

3037
	obj = i915_gem_object_lookup(file, args->bo_handle);
3038
	if (!obj)
3039 3040
		return -ENOENT;

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3052 3053
	}

C
Chris Wilson 已提交
3054
	i915_gem_object_put(obj);
3055
	return ret;
3056 3057
}

3058
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3059
{
3060
	int ret, i;
3061

3062 3063 3064 3065 3066
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3067

3068 3069 3070 3071 3072 3073 3074
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3087 3088 3089
		if (ret)
			return ret;
	}
3090

3091
	return 0;
3092 3093
}

3094 3095
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3096 3097 3098 3099 3100
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3101
	if (!obj->mm.pages)
3102
		return;
3103

3104 3105 3106 3107
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3108
	if (obj->stolen || obj->phys_handle)
3109
		return;
3110

3111 3112 3113 3114 3115 3116 3117 3118
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3119 3120
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3121
		return;
3122
	}
3123

C
Chris Wilson 已提交
3124
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3125
	drm_clflush_sg(obj->mm.pages);
3126
	obj->cache_dirty = false;
3127 3128 3129 3130
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3131
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3132
{
3133
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3134

3135
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3136 3137
		return;

3138
	/* No actual flushing is required for the GTT write domain.  Writes
3139
	 * to it "immediately" go to main memory as far as we know, so there's
3140
	 * no chipset flush.  It also doesn't land in render cache.
3141 3142 3143 3144
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3145 3146 3147 3148 3149 3150 3151
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3152
	 */
3153
	wmb();
3154
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3155
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3156

3157
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3158

3159
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3160
	trace_i915_gem_object_change_domain(obj,
3161
					    obj->base.read_domains,
3162
					    I915_GEM_DOMAIN_GTT);
3163 3164 3165 3166
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3167
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3168
{
3169
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3170 3171
		return;

3172
	i915_gem_clflush_object(obj, obj->pin_display);
3173
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3174

3175
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3176
	trace_i915_gem_object_change_domain(obj,
3177
					    obj->base.read_domains,
3178
					    I915_GEM_DOMAIN_CPU);
3179 3180
}

3181 3182
/**
 * Moves a single object to the GTT read, and possibly write domain.
3183 3184
 * @obj: object to act on
 * @write: ask for write access or read only
3185 3186 3187 3188
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3189
int
3190
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3191
{
C
Chris Wilson 已提交
3192
	uint32_t old_write_domain, old_read_domains;
3193
	int ret;
3194

3195
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3196

3197 3198 3199 3200 3201 3202
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3203 3204 3205
	if (ret)
		return ret;

3206 3207 3208
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3209 3210 3211 3212 3213 3214 3215 3216
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3217
	ret = i915_gem_object_pin_pages(obj);
3218 3219 3220
	if (ret)
		return ret;

3221
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3222

3223 3224 3225 3226 3227 3228 3229
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3230 3231
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3232

3233 3234 3235
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3236
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3237
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3238
	if (write) {
3239 3240
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3241
		obj->mm.dirty = true;
3242 3243
	}

C
Chris Wilson 已提交
3244 3245 3246 3247
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3248
	i915_gem_object_unpin_pages(obj);
3249 3250 3251
	return 0;
}

3252 3253
/**
 * Changes the cache-level of an object across all VMA.
3254 3255
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3267 3268 3269
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3270
	struct i915_vma *vma;
3271
	int ret;
3272

3273 3274
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3275
	if (obj->cache_level == cache_level)
3276
		return 0;
3277

3278 3279 3280 3281 3282
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3283 3284
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3285 3286 3287
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3288
		if (i915_vma_is_pinned(vma)) {
3289 3290 3291 3292
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3305 3306
	}

3307 3308 3309 3310 3311 3312 3313
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3314
	if (obj->bind_count) {
3315 3316 3317 3318
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3319 3320 3321 3322 3323 3324
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3325 3326 3327
		if (ret)
			return ret;

3328 3329
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3346 3347 3348 3349 3350
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3351 3352 3353 3354 3355 3356 3357 3358
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3359 3360
		}

3361
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3362 3363 3364 3365 3366 3367 3368
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3369 3370
	}

3371 3372 3373 3374
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3375
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3376 3377 3378
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3379 3380 3381
	return 0;
}

B
Ben Widawsky 已提交
3382 3383
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3384
{
B
Ben Widawsky 已提交
3385
	struct drm_i915_gem_caching *args = data;
3386
	struct drm_i915_gem_object *obj;
3387
	int err = 0;
3388

3389 3390 3391 3392 3393 3394
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3395

3396 3397 3398 3399 3400 3401
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3402 3403 3404 3405
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3406 3407 3408 3409
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3410 3411 3412
out:
	rcu_read_unlock();
	return err;
3413 3414
}

B
Ben Widawsky 已提交
3415 3416
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3417
{
3418
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3419
	struct drm_i915_gem_caching *args = data;
3420 3421
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3422
	int ret = 0;
3423

B
Ben Widawsky 已提交
3424 3425
	switch (args->caching) {
	case I915_CACHING_NONE:
3426 3427
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3428
	case I915_CACHING_CACHED:
3429 3430 3431 3432 3433 3434
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3435
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3436 3437
			return -ENODEV;

3438 3439
		level = I915_CACHE_LLC;
		break;
3440
	case I915_CACHING_DISPLAY:
3441
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3442
		break;
3443 3444 3445 3446
	default:
		return -EINVAL;
	}

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3458
	if (ret)
3459
		goto out;
B
Ben Widawsky 已提交
3460

3461 3462 3463
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3464 3465 3466

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3467 3468 3469

out:
	i915_gem_object_put(obj);
3470 3471 3472
	return ret;
}

3473
/*
3474 3475 3476
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3477
 */
C
Chris Wilson 已提交
3478
struct i915_vma *
3479 3480
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3481
				     const struct i915_ggtt_view *view)
3482
{
C
Chris Wilson 已提交
3483
	struct i915_vma *vma;
3484
	u32 old_read_domains, old_write_domain;
3485 3486
	int ret;

3487 3488
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3489 3490 3491
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3492
	obj->pin_display++;
3493

3494 3495 3496 3497 3498 3499 3500 3501 3502
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3503
	ret = i915_gem_object_set_cache_level(obj,
3504 3505
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3506 3507
	if (ret) {
		vma = ERR_PTR(ret);
3508
		goto err_unpin_display;
C
Chris Wilson 已提交
3509
	}
3510

3511 3512
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3513 3514 3515 3516
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3517
	 */
3518
	vma = ERR_PTR(-ENOSPC);
3519
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3520 3521
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3538
	if (IS_ERR(vma))
3539
		goto err_unpin_display;
3540

3541 3542
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3543
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3544
	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3545 3546 3547
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3548

3549
	old_write_domain = obj->base.write_domain;
3550
	old_read_domains = obj->base.read_domains;
3551 3552 3553 3554

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3555
	obj->base.write_domain = 0;
3556
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3557 3558 3559

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3560
					    old_write_domain);
3561

C
Chris Wilson 已提交
3562
	return vma;
3563 3564

err_unpin_display:
3565
	obj->pin_display--;
C
Chris Wilson 已提交
3566
	return vma;
3567 3568 3569
}

void
C
Chris Wilson 已提交
3570
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3571
{
3572
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3573

C
Chris Wilson 已提交
3574
	if (WARN_ON(vma->obj->pin_display == 0))
3575 3576
		return;

3577
	if (--vma->obj->pin_display == 0)
3578
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3579

3580
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3581
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3582

C
Chris Wilson 已提交
3583
	i915_vma_unpin(vma);
3584 3585
}

3586 3587
/**
 * Moves a single object to the CPU read, and possibly write domain.
3588 3589
 * @obj: object to act on
 * @write: requesting write or read-only access
3590 3591 3592 3593
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3594
int
3595
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3596
{
C
Chris Wilson 已提交
3597
	uint32_t old_write_domain, old_read_domains;
3598 3599
	int ret;

3600
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3601

3602 3603 3604 3605 3606 3607
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3608 3609 3610
	if (ret)
		return ret;

3611 3612 3613
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3614
	i915_gem_object_flush_gtt_write_domain(obj);
3615

3616 3617
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3618

3619
	/* Flush the CPU cache if it's still invalid. */
3620
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3621
		i915_gem_clflush_object(obj, false);
3622

3623
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3624 3625 3626 3627 3628
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3629
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3630 3631 3632 3633 3634

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3635 3636
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3637
	}
3638

C
Chris Wilson 已提交
3639 3640 3641 3642
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3643 3644 3645
	return 0;
}

3646 3647 3648
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3649 3650 3651 3652
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3653 3654 3655
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3656
static int
3657
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3658
{
3659
	struct drm_i915_private *dev_priv = to_i915(dev);
3660
	struct drm_i915_file_private *file_priv = file->driver_priv;
3661
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3662
	struct drm_i915_gem_request *request, *target = NULL;
3663
	long ret;
3664

3665 3666 3667
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3668

3669
	spin_lock(&file_priv->mm.lock);
3670
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3671 3672
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3673

3674 3675 3676 3677 3678 3679 3680
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3681
		target = request;
3682
	}
3683
	if (target)
3684
		i915_gem_request_get(target);
3685
	spin_unlock(&file_priv->mm.lock);
3686

3687
	if (target == NULL)
3688
		return 0;
3689

3690 3691 3692
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3693
	i915_gem_request_put(target);
3694

3695
	return ret < 0 ? ret : 0;
3696 3697
}

C
Chris Wilson 已提交
3698
struct i915_vma *
3699 3700
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3701
			 u64 size,
3702 3703
			 u64 alignment,
			 u64 flags)
3704
{
3705 3706
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3707 3708
	struct i915_vma *vma;
	int ret;
3709

3710 3711
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3712
	vma = i915_vma_instance(obj, vm, view);
3713
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3714
		return vma;
3715 3716 3717 3718

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3719
			return ERR_PTR(-ENOSPC);
3720

3721 3722 3723 3724 3725 3726 3727 3728
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3729
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3748
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3749 3750 3751
				return ERR_PTR(-ENOSPC);
		}

3752 3753
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3754 3755 3756
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3757
		     !!(flags & PIN_MAPPABLE),
3758
		     i915_vma_is_map_and_fenceable(vma));
3759 3760
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3761
			return ERR_PTR(ret);
3762 3763
	}

C
Chris Wilson 已提交
3764 3765 3766
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3767

C
Chris Wilson 已提交
3768
	return vma;
3769 3770
}

3771
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3786 3787 3788 3789 3790 3791 3792 3793 3794
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3795 3796
}

3797
static __always_inline unsigned int
3798
__busy_set_if_active(const struct dma_fence *fence,
3799 3800
		     unsigned int (*flag)(unsigned int id))
{
3801
	struct drm_i915_gem_request *rq;
3802

3803 3804 3805 3806
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3807
	 *
3808
	 * Note we only report on the status of native fences.
3809
	 */
3810 3811 3812 3813 3814 3815 3816 3817 3818
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3819 3820
}

3821
static __always_inline unsigned int
3822
busy_check_reader(const struct dma_fence *fence)
3823
{
3824
	return __busy_set_if_active(fence, __busy_read_flag);
3825 3826
}

3827
static __always_inline unsigned int
3828
busy_check_writer(const struct dma_fence *fence)
3829
{
3830 3831 3832 3833
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3834 3835
}

3836 3837
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3838
		    struct drm_file *file)
3839 3840
{
	struct drm_i915_gem_busy *args = data;
3841
	struct drm_i915_gem_object *obj;
3842 3843
	struct reservation_object_list *list;
	unsigned int seq;
3844
	int err;
3845

3846
	err = -ENOENT;
3847 3848
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3849
	if (!obj)
3850
		goto out;
3851

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3870

3871 3872
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3873

3874 3875 3876 3877
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3878

3879 3880 3881 3882 3883 3884
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3885
	}
3886

3887 3888 3889 3890
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3891 3892 3893
out:
	rcu_read_unlock();
	return err;
3894 3895 3896 3897 3898 3899
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3900
	return i915_gem_ring_throttle(dev, file_priv);
3901 3902
}

3903 3904 3905 3906
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3907
	struct drm_i915_private *dev_priv = to_i915(dev);
3908
	struct drm_i915_gem_madvise *args = data;
3909
	struct drm_i915_gem_object *obj;
3910
	int err;
3911 3912 3913 3914 3915 3916 3917 3918 3919

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3920
	obj = i915_gem_object_lookup(file_priv, args->handle);
3921 3922 3923 3924 3925 3926
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3927

C
Chris Wilson 已提交
3928
	if (obj->mm.pages &&
3929
	    i915_gem_object_is_tiled(obj) &&
3930
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3931 3932
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3933
			__i915_gem_object_unpin_pages(obj);
3934 3935 3936
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3937
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3938
			__i915_gem_object_pin_pages(obj);
3939 3940
			obj->mm.quirked = true;
		}
3941 3942
	}

C
Chris Wilson 已提交
3943 3944
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3945

C
Chris Wilson 已提交
3946
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3947
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3948 3949
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3950
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3951
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3952

3953
out:
3954
	i915_gem_object_put(obj);
3955
	return err;
3956 3957
}

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3968 3969
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3970
{
3971 3972
	mutex_init(&obj->mm.lock);

3973
	INIT_LIST_HEAD(&obj->global_link);
3974
	INIT_LIST_HEAD(&obj->userfault_link);
3975
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3976
	INIT_LIST_HEAD(&obj->vma_list);
3977
	INIT_LIST_HEAD(&obj->batch_pool_link);
3978

3979 3980
	obj->ops = ops;

3981 3982 3983
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3984
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3985
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3986 3987 3988 3989

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3990

3991
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3992 3993
}

3994
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3995 3996
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3997 3998 3999 4000
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4001
struct drm_i915_gem_object *
4002
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4003
{
4004
	struct drm_i915_gem_object *obj;
4005
	struct address_space *mapping;
D
Daniel Vetter 已提交
4006
	gfp_t mask;
4007
	int ret;
4008

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4020
	obj = i915_gem_object_alloc(dev_priv);
4021
	if (obj == NULL)
4022
		return ERR_PTR(-ENOMEM);
4023

4024
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4025 4026
	if (ret)
		goto fail;
4027

4028
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4029
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4030 4031 4032 4033 4034
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4035
	mapping = obj->base.filp->f_mapping;
4036
	mapping_set_gfp_mask(mapping, mask);
4037

4038
	i915_gem_object_init(obj, &i915_gem_object_ops);
4039

4040 4041
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4042

4043
	if (HAS_LLC(dev_priv)) {
4044
		/* On some devices, we can have the GPU use the LLC (the CPU
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4060 4061
	trace_i915_gem_object_create(obj);

4062
	return obj;
4063 4064 4065 4066

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4067 4068
}

4069 4070 4071 4072 4073 4074 4075 4076
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4077
	if (obj->mm.madv != I915_MADV_WILLNEED)
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4093 4094
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4095
{
4096
	struct drm_i915_gem_object *obj, *on;
4097

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4113 4114
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4115

4116
		list_del(&obj->global_link);
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4127

4128 4129
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4130
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4131 4132 4133 4134 4135
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4136
		reservation_object_fini(&obj->__builtin_resv);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4159

4160 4161 4162 4163 4164 4165 4166
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4167

4168 4169 4170
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4171

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4186

4187 4188 4189
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4190

4191 4192 4193
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4194
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4195
		obj->mm.madv = I915_MADV_DONTNEED;
4196

4197 4198 4199 4200 4201 4202
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4203 4204
}

4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4216 4217 4218 4219 4220 4221
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4222 4223
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4224 4225
}

4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
	 * of the reset, so we only reset recent machines with logical
	 * context support (that must be reset to remove any stray contexts).
	 */
	if (HAS_HW_CONTEXTS(i915)) {
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4243
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4244
{
4245
	struct drm_device *dev = &dev_priv->drm;
4246
	int ret;
4247

4248 4249
	intel_suspend_gt_powersave(dev_priv);

4250
	mutex_lock(&dev->struct_mutex);
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4264 4265 4266
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4267
	if (ret)
4268
		goto err;
4269

4270
	i915_gem_retire_requests(dev_priv);
4271
	GEM_BUG_ON(dev_priv->gt.active_requests);
4272

4273
	assert_kernel_context_is_current(dev_priv);
4274
	i915_gem_context_lost(dev_priv);
4275 4276
	mutex_unlock(&dev->struct_mutex);

4277
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4278
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4279 4280 4281 4282 4283 4284 4285 4286

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4287

4288 4289 4290
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4291
	WARN_ON(dev_priv->gt.awake);
4292
	WARN_ON(!intel_execlists_idle(dev_priv));
4293

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4313
	i915_gem_sanitize(dev_priv);
4314

4315
	return 0;
4316 4317 4318 4319

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4320 4321
}

4322
void i915_gem_resume(struct drm_i915_private *dev_priv)
4323
{
4324
	struct drm_device *dev = &dev_priv->drm;
4325

4326 4327
	WARN_ON(dev_priv->gt.awake);

4328
	mutex_lock(&dev->struct_mutex);
4329
	i915_gem_restore_gtt_mappings(dev_priv);
4330 4331 4332 4333 4334

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4335
	dev_priv->gt.resume(dev_priv);
4336 4337 4338 4339

	mutex_unlock(&dev->struct_mutex);
}

4340
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4341
{
4342
	if (INTEL_GEN(dev_priv) < 5 ||
4343 4344 4345 4346 4347 4348
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4349
	if (IS_GEN5(dev_priv))
4350 4351
		return;

4352
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4353
	if (IS_GEN6(dev_priv))
4354
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4355
	else if (IS_GEN7(dev_priv))
4356
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4357
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4358
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4359 4360
	else
		BUG();
4361
}
D
Daniel Vetter 已提交
4362

4363
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4364 4365 4366 4367 4368 4369 4370
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4371
static void init_unused_rings(struct drm_i915_private *dev_priv)
4372
{
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4385 4386 4387
	}
}

4388
static int __i915_gem_restart_engines(void *data)
4389
{
4390
	struct drm_i915_private *i915 = data;
4391
	struct intel_engine_cs *engine;
4392
	enum intel_engine_id id;
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4406
	int ret;
4407

4408 4409
	dev_priv->gt.last_init_time = ktime_get();

4410 4411 4412
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4413
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4414
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4415

4416
	if (IS_HASWELL(dev_priv))
4417
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4418
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4419

4420
	if (HAS_PCH_NOP(dev_priv)) {
4421
		if (IS_IVYBRIDGE(dev_priv)) {
4422 4423 4424
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4425
		} else if (INTEL_GEN(dev_priv) >= 7) {
4426 4427 4428 4429
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4430 4431
	}

4432
	i915_gem_init_swizzling(dev_priv);
4433

4434 4435 4436 4437 4438 4439
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4440
	init_unused_rings(dev_priv);
4441

4442
	BUG_ON(!dev_priv->kernel_context);
4443

4444
	ret = i915_ppgtt_init_hw(dev_priv);
4445 4446 4447 4448 4449 4450
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4451 4452 4453
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4454

4455
	intel_mocs_init_l3cc_table(dev_priv);
4456

4457
	/* We can't enable contexts until all firmware is loaded */
4458
	ret = intel_guc_setup(dev_priv);
4459 4460
	if (ret)
		goto out;
4461

4462 4463
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4464
	return ret;
4465 4466
}

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4488
int i915_gem_init(struct drm_i915_private *dev_priv)
4489 4490 4491
{
	int ret;

4492
	mutex_lock(&dev_priv->drm.struct_mutex);
4493

4494
	if (!i915.enable_execlists) {
4495
		dev_priv->gt.resume = intel_legacy_submission_resume;
4496
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4497
	} else {
4498
		dev_priv->gt.resume = intel_lr_context_resume;
4499
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4500 4501
	}

4502 4503 4504 4505 4506 4507 4508 4509
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4510
	i915_gem_init_userptr(dev_priv);
4511 4512 4513 4514

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4515

4516
	ret = i915_gem_context_init(dev_priv);
4517 4518
	if (ret)
		goto out_unlock;
4519

4520
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4521
	if (ret)
4522
		goto out_unlock;
4523

4524
	ret = i915_gem_init_hw(dev_priv);
4525
	if (ret == -EIO) {
4526
		/* Allow engine initialisation to fail by marking the GPU as
4527 4528 4529 4530
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4531
		i915_gem_set_wedged(dev_priv);
4532
		ret = 0;
4533
	}
4534 4535

out_unlock:
4536
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4537
	mutex_unlock(&dev_priv->drm.struct_mutex);
4538

4539
	return ret;
4540 4541
}

4542 4543 4544 4545 4546
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4547
void
4548
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4549
{
4550
	struct intel_engine_cs *engine;
4551
	enum intel_engine_id id;
4552

4553
	for_each_engine(engine, dev_priv, id)
4554
		dev_priv->gt.cleanup_engine(engine);
4555 4556
}

4557 4558 4559
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4560
	int i;
4561 4562 4563 4564

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4565 4566 4567
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4568 4569 4570 4571
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4572
	if (intel_vgpu_active(dev_priv))
4573 4574 4575 4576
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4577 4578 4579 4580 4581 4582 4583
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4584
	i915_gem_restore_fences(dev_priv);
4585

4586
	i915_gem_detect_bit_6_swizzle(dev_priv);
4587 4588
}

4589
int
4590
i915_gem_load_init(struct drm_i915_private *dev_priv)
4591
{
4592
	int err = -ENOMEM;
4593

4594 4595
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4596 4597
		goto err_out;

4598 4599
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4600 4601
		goto err_objects;

4602 4603 4604 4605 4606
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4607 4608
		goto err_vmas;

4609 4610 4611 4612 4613 4614
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4615 4616
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4617
	err = i915_gem_timeline_init__global(dev_priv);
4618 4619
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4620
		goto err_dependencies;
4621

4622
	INIT_LIST_HEAD(&dev_priv->context_list);
4623 4624
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4625 4626
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4627
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4628
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4629
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4630
			  i915_gem_retire_work_handler);
4631
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4632
			  i915_gem_idle_work_handler);
4633
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4634
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4635

4636 4637
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4638
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4639

4640 4641
	dev_priv->mm.interruptible = true;

4642 4643
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4644
	spin_lock_init(&dev_priv->fb_tracking.lock);
4645 4646 4647

	return 0;

4648 4649
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4650 4651 4652 4653 4654 4655 4656 4657
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4658
}
4659

4660
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4661
{
4662
	i915_gem_drain_freed_objects(dev_priv);
4663
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4664
	WARN_ON(dev_priv->mm.object_count);
4665

4666 4667 4668 4669 4670
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4671
	kmem_cache_destroy(dev_priv->dependencies);
4672 4673 4674
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4675 4676 4677

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4678 4679
}

4680 4681 4682 4683 4684 4685 4686 4687 4688
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;
}

4689 4690 4691
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4692 4693 4694 4695 4696
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4707 4708 4709
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4710 4711
	 */

4712 4713
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4714

4715
	for (p = phases; *p; p++) {
4716
		list_for_each_entry(obj, *p, global_link) {
4717 4718 4719
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4720
	}
4721
	mutex_unlock(&dev_priv->drm.struct_mutex);
4722 4723 4724 4725

	return 0;
}

4726
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4727
{
4728
	struct drm_i915_file_private *file_priv = file->driver_priv;
4729
	struct drm_i915_gem_request *request;
4730 4731 4732 4733 4734

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4735
	spin_lock(&file_priv->mm.lock);
4736
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4737
		request->file_priv = NULL;
4738
	spin_unlock(&file_priv->mm.lock);
4739

4740
	if (!list_empty(&file_priv->rps.link)) {
4741
		spin_lock(&to_i915(dev)->rps.client_lock);
4742
		list_del(&file_priv->rps.link);
4743
		spin_unlock(&to_i915(dev)->rps.client_lock);
4744
	}
4745 4746 4747 4748 4749
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4750
	int ret;
4751

4752
	DRM_DEBUG("\n");
4753 4754 4755 4756 4757 4758

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4759
	file_priv->dev_priv = to_i915(dev);
4760
	file_priv->file = file;
4761
	INIT_LIST_HEAD(&file_priv->rps.link);
4762 4763 4764 4765

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4766
	file_priv->bsd_engine = -1;
4767

4768 4769 4770
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4771

4772
	return ret;
4773 4774
}

4775 4776
/**
 * i915_gem_track_fb - update frontbuffer tracking
4777 4778 4779
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4780 4781 4782 4783
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4784 4785 4786 4787
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4788 4789 4790 4791 4792 4793 4794 4795 4796
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4797
	if (old) {
4798 4799
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4800 4801 4802
	}

	if (new) {
4803 4804
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4805 4806 4807
	}
}

4808 4809
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4810
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4811 4812 4813 4814 4815 4816 4817
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4818
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4819
	if (IS_ERR(obj))
4820 4821 4822 4823 4824 4825
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4826
	ret = i915_gem_object_pin_pages(obj);
4827 4828 4829
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4830
	sg = obj->mm.pages;
4831
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4832
	obj->mm.dirty = true; /* Backing store is now out of date */
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4844
	i915_gem_object_put(obj);
4845 4846
	return ERR_PTR(ret);
}
4847 4848 4849 4850 4851 4852

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4853
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4854 4855 4856 4857 4858
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4859
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4984
	if (!obj->mm.dirty)
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}