i915_gem.c 132.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/stop_machine.h>
42
#include <linux/swap.h>
J
Jesse Barnes 已提交
43
#include <linux/pci.h>
44
#include <linux/dma-buf.h>
45

46
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49

50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
53
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 55
}

56 57
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
58 59 60
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

61 62 63 64 65 66
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

67
static int
68
insert_mappable_node(struct i915_ggtt *ggtt,
69 70 71
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
72
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
73 74
						   size, 0,
						   I915_COLOR_UNEVICTABLE,
75
						   0, ggtt->mappable_end,
76 77 78 79 80 81 82 83 84 85
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88
				  u64 size)
89
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97
				     u64 size)
98
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static int
106
i915_gem_wait_for_error(struct i915_gpu_error *error)
107 108 109
{
	int ret;

110 111
	might_sleep();

112
	if (!i915_reset_in_progress(error))
113 114
		return 0;

115 116 117 118 119
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
120
	ret = wait_event_interruptible_timeout(error->reset_queue,
121
					       !i915_reset_in_progress(error),
122
					       I915_RESET_TIMEOUT);
123 124 125 126
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
127
		return ret;
128 129
	} else {
		return 0;
130
	}
131 132
}

133
int i915_mutex_lock_interruptible(struct drm_device *dev)
134
{
135
	struct drm_i915_private *dev_priv = to_i915(dev);
136 137
	int ret;

138
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
139 140 141 142 143 144 145 146 147
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
148

149 150
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
151
			    struct drm_file *file)
152
{
153
	struct drm_i915_private *dev_priv = to_i915(dev);
154
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
155
	struct drm_i915_gem_get_aperture *args = data;
156
	struct i915_vma *vma;
157
	size_t pinned;
158

159
	pinned = 0;
160
	mutex_lock(&dev->struct_mutex);
161
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
165
		if (i915_vma_is_pinned(vma))
166
			pinned += vma->node.size;
167
	mutex_unlock(&dev->struct_mutex);
168

169
	args->aper_size = ggtt->base.total;
170
	args->aper_available_size = args->aper_size - pinned;
171

172 173 174
	return 0;
}

175
static struct sg_table *
176
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
177
{
178
	struct address_space *mapping = obj->base.filp->f_mapping;
179
	drm_dma_handle_t *phys;
180 181
	struct sg_table *st;
	struct scatterlist *sg;
182
	char *vaddr;
183
	int i;
184

185
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
186
		return ERR_PTR(-EINVAL);
187

188 189 190 191 192 193 194 195 196 197 198
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
199 200 201 202 203
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
204 205 206 207
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
208 209 210 211 212 213

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

214
		put_page(page);
215 216 217
		vaddr += PAGE_SIZE;
	}

218
	i915_gem_chipset_flush(to_i915(obj->base.dev));
219 220

	st = kmalloc(sizeof(*st), GFP_KERNEL);
221 222 223 224
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
225 226 227

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
228 229
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
230 231 232 233 234
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
235

236
	sg_dma_address(sg) = phys->busaddr;
237 238
	sg_dma_len(sg) = obj->base.size;

239 240 241 242 243
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
244
	return st;
245 246 247
}

static void
248
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
249 250
				struct sg_table *pages,
				bool needs_clflush)
251
{
C
Chris Wilson 已提交
252
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
253

C
Chris Wilson 已提交
254 255
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
256

257 258
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
259
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
260
		drm_clflush_sg(pages);
261 262 263 264 265 266 267 268 269

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
270
	__i915_gem_object_release_shmem(obj, pages, false);
271

C
Chris Wilson 已提交
272
	if (obj->mm.dirty) {
273
		struct address_space *mapping = obj->base.filp->f_mapping;
274
		char *vaddr = obj->phys_handle->vaddr;
275 276 277
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
278 279 280 281 282 283 284 285 286 287 288 289 290
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
291
			if (obj->mm.madv == I915_MADV_WILLNEED)
292
				mark_page_accessed(page);
293
			put_page(page);
294 295
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
296
		obj->mm.dirty = false;
297 298
	}

299 300
	sg_free_table(pages);
	kfree(pages);
301 302

	drm_pci_free(obj->base.dev, obj->phys_handle);
303 304 305 306 307
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
308
	i915_gem_object_unpin_pages(obj);
309 310 311 312 313 314 315 316
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

317
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
318 319 320
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
321 322 323
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
324

325 326 327 328
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
329
	 */
330 331 332 333 334 335
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
336 337 338 339 340
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

341 342 343 344 345 346 347 348 349 350 351 352 353
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

354 355 356 357 358
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
359
{
360
	struct drm_i915_gem_request *rq;
361

362
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
396 397
	}

398 399 400 401 402 403
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

404
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
434 435
		int ret;

436 437
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
438 439 440
		if (ret)
			return ret;

441 442 443 444 445 446
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
447

448 449 450 451 452 453 454 455
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
456 457
	}

458 459 460 461 462 463
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

530 531 532 533 534 535
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
536
 */
537 538 539 540 541
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
542
{
543 544 545 546 547 548 549
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
550

551 552 553
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
554
	return timeout < 0 ? timeout : 0;
555 556 557 558 559 560 561 562 563
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

564 565 566 567
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
568
	int ret;
569

570 571
	if (align > obj->base.size)
		return -EINVAL;
572

573
	if (obj->ops == &i915_gem_phys_ops)
574 575
		return 0;

C
Chris Wilson 已提交
576
	if (obj->mm.madv != I915_MADV_WILLNEED)
577 578 579 580 581
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
582 583 584 585
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

586
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
587 588
	if (obj->mm.pages)
		return -EBUSY;
589 590 591

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
592
	return i915_gem_object_pin_pages(obj);
593 594 595 596 597
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
598
		     struct drm_file *file)
599 600 601
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
602
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
603
	int ret;
604 605 606 607

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
608 609 610 611 612 613
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
614
				   to_rps_client(file));
615 616
	if (ret)
		return ret;
617

618
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
619 620 621 622 623 624 625 626 627 628
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
629 630 631 632
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
633 634
	}

635
	drm_clflush_virt_range(vaddr, args->size);
636
	i915_gem_chipset_flush(to_i915(dev));
637 638

out:
639
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
640
	return ret;
641 642
}

643
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
644
{
645
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
646 647 648 649
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
650
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
651
	kmem_cache_free(dev_priv->objects, obj);
652 653
}

654 655
static int
i915_gem_create(struct drm_file *file,
656
		struct drm_i915_private *dev_priv,
657 658
		uint64_t size,
		uint32_t *handle_p)
659
{
660
	struct drm_i915_gem_object *obj;
661 662
	int ret;
	u32 handle;
663

664
	size = roundup(size, PAGE_SIZE);
665 666
	if (size == 0)
		return -EINVAL;
667 668

	/* Allocate the new object */
669
	obj = i915_gem_object_create(dev_priv, size);
670 671
	if (IS_ERR(obj))
		return PTR_ERR(obj);
672

673
	ret = drm_gem_handle_create(file, &obj->base, &handle);
674
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
675
	i915_gem_object_put(obj);
676 677
	if (ret)
		return ret;
678

679
	*handle_p = handle;
680 681 682
	return 0;
}

683 684 685 686 687 688
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
689
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
690
	args->size = args->pitch * args->height;
691
	return i915_gem_create(file, to_i915(dev),
692
			       args->size, &args->handle);
693 694 695 696
}

/**
 * Creates a new mm object and returns a handle to it.
697 698 699
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
700 701 702 703 704
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
705
	struct drm_i915_private *dev_priv = to_i915(dev);
706
	struct drm_i915_gem_create *args = data;
707

708
	i915_gem_flush_free_objects(dev_priv);
709

710
	return i915_gem_create(file, dev_priv,
711
			       args->size, &args->handle);
712 713
}

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

740
static inline int
741 742
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

766 767 768 769 770 771
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
772
				    unsigned int *needs_clflush)
773 774 775
{
	int ret;

776
	lockdep_assert_held(&obj->base.dev->struct_mutex);
777

778
	*needs_clflush = 0;
779 780
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
781

782 783 784 785 786
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
787 788 789
	if (ret)
		return ret;

C
Chris Wilson 已提交
790
	ret = i915_gem_object_pin_pages(obj);
791 792 793
	if (ret)
		return ret;

794 795
	i915_gem_object_flush_gtt_write_domain(obj);

796 797 798 799 800 801
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
802 803
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
804 805 806

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
807 808 809
		if (ret)
			goto err_unpin;

810
		*needs_clflush = 0;
811 812
	}

813
	/* return with the pages pinned */
814
	return 0;
815 816 817 818

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
819 820 821 822 823 824 825
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

826 827
	lockdep_assert_held(&obj->base.dev->struct_mutex);

828 829 830 831
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

832 833 834 835 836 837
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
838 839 840
	if (ret)
		return ret;

C
Chris Wilson 已提交
841
	ret = i915_gem_object_pin_pages(obj);
842 843 844
	if (ret)
		return ret;

845 846
	i915_gem_object_flush_gtt_write_domain(obj);

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
864 865 866
		if (ret)
			goto err_unpin;

867 868 869 870 871 872 873
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
874
	obj->mm.dirty = true;
875
	/* return with the pages pinned */
876
	return 0;
877 878 879 880

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
881 882
}

883 884 885 886
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
887
	if (unlikely(swizzled)) {
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

905 906 907
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
908
shmem_pread_slow(struct page *page, int offset, int length,
909 910 911 912 913 914 915 916
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
917
		shmem_clflush_swizzled_range(vaddr + offset, length,
918
					     page_do_bit17_swizzling);
919 920

	if (page_do_bit17_swizzling)
921
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
922
	else
923
		ret = __copy_to_user(user_data, vaddr + offset, length);
924 925
	kunmap(page);

926
	return ret ? - EFAULT : 0;
927 928
}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1005 1006
{
	void *vaddr;
1007
	unsigned long unwritten;
1008 1009

	/* We can use the cpu mem copy function because this is X86. */
1010 1011 1012 1013 1014 1015 1016 1017 1018
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1019 1020 1021 1022
	return unwritten;
}

static int
1023 1024
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1025
{
1026 1027
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1028
	struct drm_mm_node node;
1029 1030 1031
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1032 1033
	int ret;

1034 1035 1036 1037 1038 1039 1040
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1041 1042 1043
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1044
		ret = i915_vma_put_fence(vma);
1045 1046 1047 1048 1049
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1050
	if (IS_ERR(vma)) {
1051
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1052
		if (ret)
1053 1054
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1055 1056 1057 1058 1059 1060
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1061
	mutex_unlock(&i915->drm.struct_mutex);
1062

1063 1064 1065
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1082
					       node.start, I915_CACHE_NONE, 0);
1083 1084 1085 1086
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1087 1088 1089

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1090 1091 1092 1093 1094 1095 1096 1097 1098
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1099
	mutex_lock(&i915->drm.struct_mutex);
1100 1101 1102 1103
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1104
				       node.start, node.size);
1105 1106
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1107
		i915_vma_unpin(vma);
1108
	}
1109 1110 1111
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1112

1113 1114 1115
	return ret;
}

1116 1117
/**
 * Reads data from the object referenced by handle.
1118 1119 1120
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1121 1122 1123 1124 1125
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1126
		     struct drm_file *file)
1127 1128
{
	struct drm_i915_gem_pread *args = data;
1129
	struct drm_i915_gem_object *obj;
1130
	int ret;
1131

1132 1133 1134 1135
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1136
		       u64_to_user_ptr(args->data_ptr),
1137 1138 1139
		       args->size))
		return -EFAULT;

1140
	obj = i915_gem_object_lookup(file, args->handle);
1141 1142
	if (!obj)
		return -ENOENT;
1143

1144
	/* Bounds check source.  */
1145
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1146
		ret = -EINVAL;
1147
		goto out;
C
Chris Wilson 已提交
1148 1149
	}

C
Chris Wilson 已提交
1150 1151
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1152 1153 1154 1155
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1156
	if (ret)
1157
		goto out;
1158

1159
	ret = i915_gem_object_pin_pages(obj);
1160
	if (ret)
1161
		goto out;
1162

1163
	ret = i915_gem_shmem_pread(obj, args);
1164
	if (ret == -EFAULT || ret == -ENODEV)
1165
		ret = i915_gem_gtt_pread(obj, args);
1166

1167 1168
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1169
	i915_gem_object_put(obj);
1170
	return ret;
1171 1172
}

1173 1174
/* This is the fast write path which cannot handle
 * page faults in the source data
1175
 */
1176

1177 1178 1179 1180
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1181
{
1182
	void *vaddr;
1183
	unsigned long unwritten;
1184

1185
	/* We can use the cpu mem copy function because this is X86. */
1186 1187
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1188
						      user_data, length);
1189 1190 1191 1192 1193 1194 1195
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1196 1197 1198 1199

	return unwritten;
}

1200 1201 1202
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1203
 * @obj: i915 GEM object
1204
 * @args: pwrite arguments structure
1205
 */
1206
static int
1207 1208
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1209
{
1210
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1211 1212
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1213 1214 1215
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1216
	int ret;
1217

1218 1219 1220
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1221

1222
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1223
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1224
				       PIN_MAPPABLE | PIN_NONBLOCK);
1225 1226 1227
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1228
		ret = i915_vma_put_fence(vma);
1229 1230 1231 1232 1233
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1234
	if (IS_ERR(vma)) {
1235
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1236
		if (ret)
1237 1238
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1239
	}
D
Daniel Vetter 已提交
1240 1241 1242 1243 1244

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1245 1246
	mutex_unlock(&i915->drm.struct_mutex);

1247
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1248

1249 1250 1251 1252
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1253 1254
		/* Operation in this page
		 *
1255 1256 1257
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1258
		 */
1259
		u32 page_base = node.start;
1260 1261
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1272
		/* If we get a fault while copying data, then (presumably) our
1273 1274
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1275 1276
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1277
		 */
1278 1279 1280 1281
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1282
		}
1283

1284 1285 1286
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1287
	}
1288
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1289 1290

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1291
out_unpin:
1292 1293 1294
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1295
				       node.start, node.size);
1296 1297
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1298
		i915_vma_unpin(vma);
1299
	}
1300
out_unlock:
1301
	intel_runtime_pm_put(i915);
1302
	mutex_unlock(&i915->drm.struct_mutex);
1303
	return ret;
1304 1305
}

1306
static int
1307
shmem_pwrite_slow(struct page *page, int offset, int length,
1308 1309 1310 1311
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1312
{
1313 1314
	char *vaddr;
	int ret;
1315

1316
	vaddr = kmap(page);
1317
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1318
		shmem_clflush_swizzled_range(vaddr + offset, length,
1319
					     page_do_bit17_swizzling);
1320
	if (page_do_bit17_swizzling)
1321 1322
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1323
	else
1324
		ret = __copy_from_user(vaddr + offset, user_data, length);
1325
	if (needs_clflush_after)
1326
		shmem_clflush_swizzled_range(vaddr + offset, length,
1327
					     page_do_bit17_swizzling);
1328
	kunmap(page);
1329

1330
	return ret ? -EFAULT : 0;
1331 1332
}

1333 1334 1335 1336 1337
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1338
static int
1339 1340 1341 1342
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1343
{
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1376
	unsigned int needs_clflush;
1377 1378
	unsigned int offset, idx;
	int ret;
1379

1380
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1381 1382 1383
	if (ret)
		return ret;

1384 1385 1386 1387
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1388

1389 1390 1391
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1392

1393 1394 1395 1396 1397 1398 1399
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1400

1401 1402 1403 1404 1405 1406
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1407

1408 1409 1410
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1411

1412 1413 1414 1415
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1416
		if (ret)
1417
			break;
1418

1419 1420 1421
		remain -= length;
		user_data += length;
		offset = 0;
1422
	}
1423

1424
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1425
	i915_gem_obj_finish_shmem_access(obj);
1426
	return ret;
1427 1428 1429 1430
}

/**
 * Writes data to the object referenced by handle.
1431 1432 1433
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1434 1435 1436 1437 1438
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1439
		      struct drm_file *file)
1440 1441
{
	struct drm_i915_gem_pwrite *args = data;
1442
	struct drm_i915_gem_object *obj;
1443 1444 1445 1446 1447 1448
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1449
		       u64_to_user_ptr(args->data_ptr),
1450 1451 1452
		       args->size))
		return -EFAULT;

1453
	obj = i915_gem_object_lookup(file, args->handle);
1454 1455
	if (!obj)
		return -ENOENT;
1456

1457
	/* Bounds check destination. */
1458
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1459
		ret = -EINVAL;
1460
		goto err;
C
Chris Wilson 已提交
1461 1462
	}

C
Chris Wilson 已提交
1463 1464
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1465 1466 1467 1468 1469
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1470 1471 1472
	if (ret)
		goto err;

1473
	ret = i915_gem_object_pin_pages(obj);
1474
	if (ret)
1475
		goto err;
1476

D
Daniel Vetter 已提交
1477
	ret = -EFAULT;
1478 1479 1480 1481 1482 1483
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1484
	if (!i915_gem_object_has_struct_page(obj) ||
1485
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1486 1487
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1488 1489
		 * textures). Fallback to the shmem path in that case.
		 */
1490
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1491

1492
	if (ret == -EFAULT || ret == -ENOSPC) {
1493 1494
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1495
		else
1496
			ret = i915_gem_shmem_pwrite(obj, args);
1497
	}
1498

1499
	i915_gem_object_unpin_pages(obj);
1500
err:
C
Chris Wilson 已提交
1501
	i915_gem_object_put(obj);
1502
	return ret;
1503 1504
}

1505
static inline enum fb_op_origin
1506 1507
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1508 1509
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1520
			break;
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1533
	list_move_tail(&obj->global_link, list);
1534 1535
}

1536
/**
1537 1538
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1539 1540 1541
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1542 1543 1544
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1545
			  struct drm_file *file)
1546 1547
{
	struct drm_i915_gem_set_domain *args = data;
1548
	struct drm_i915_gem_object *obj;
1549 1550
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1551
	int err;
1552

1553
	/* Only handle setting domains to types used by the CPU. */
1554
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1555 1556 1557 1558 1559 1560 1561 1562
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1563
	obj = i915_gem_object_lookup(file, args->handle);
1564 1565
	if (!obj)
		return -ENOENT;
1566

1567 1568 1569 1570
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1571
	err = i915_gem_object_wait(obj,
1572 1573 1574 1575
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1576
	if (err)
C
Chris Wilson 已提交
1577
		goto out;
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1589
		goto out;
1590 1591 1592

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1593
		goto out_unpin;
1594

1595
	if (read_domains & I915_GEM_DOMAIN_GTT)
1596
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1597
	else
1598
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1599

1600 1601
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1602

1603
	mutex_unlock(&dev->struct_mutex);
1604

1605 1606 1607
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1608
out_unpin:
1609
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1610 1611
out:
	i915_gem_object_put(obj);
1612
	return err;
1613 1614 1615 1616
}

/**
 * Called when user space has done writes to this buffer
1617 1618 1619
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1620 1621 1622
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1623
			 struct drm_file *file)
1624 1625
{
	struct drm_i915_gem_sw_finish *args = data;
1626
	struct drm_i915_gem_object *obj;
1627
	int err = 0;
1628

1629
	obj = i915_gem_object_lookup(file, args->handle);
1630 1631
	if (!obj)
		return -ENOENT;
1632 1633

	/* Pinned buffers may be scanout, so flush the cache */
1634 1635 1636 1637 1638 1639 1640
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1641

C
Chris Wilson 已提交
1642
	i915_gem_object_put(obj);
1643
	return err;
1644 1645 1646
}

/**
1647 1648 1649 1650 1651
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1652 1653 1654
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1665 1666 1667
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1668
		    struct drm_file *file)
1669 1670
{
	struct drm_i915_gem_mmap *args = data;
1671
	struct drm_i915_gem_object *obj;
1672 1673
	unsigned long addr;

1674 1675 1676
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1677
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1678 1679
		return -ENODEV;

1680 1681
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1682
		return -ENOENT;
1683

1684 1685 1686
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1687
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1688
		i915_gem_object_put(obj);
1689 1690 1691
		return -EINVAL;
	}

1692
	addr = vm_mmap(obj->base.filp, 0, args->size,
1693 1694
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1695 1696 1697 1698
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1699
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1700
			i915_gem_object_put(obj);
1701 1702
			return -EINTR;
		}
1703 1704 1705 1706 1707 1708 1709
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1710 1711

		/* This may race, but that's ok, it only gets set */
1712
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1713
	}
C
Chris Wilson 已提交
1714
	i915_gem_object_put(obj);
1715 1716 1717 1718 1719 1720 1721 1722
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1783 1784
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1785
 * @area: CPU VMA in question
1786
 * @vmf: fault info
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1798 1799 1800
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1801
 */
C
Chris Wilson 已提交
1802
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1803
{
1804
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1805
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1806
	struct drm_device *dev = obj->base.dev;
1807 1808
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1809
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1810
	struct i915_vma *vma;
1811
	pgoff_t page_offset;
1812
	unsigned int flags;
1813
	int ret;
1814

1815
	/* We don't use vmf->pgoff since that has the fake offset */
1816
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1817

C
Chris Wilson 已提交
1818 1819
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1820
	/* Try to flush the object off the GPU first without holding the lock.
1821
	 * Upon acquiring the lock, we will perform our sanity checks and then
1822 1823 1824
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1825 1826 1827 1828
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1829
	if (ret)
1830 1831
		goto err;

1832 1833 1834 1835
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1836 1837 1838 1839 1840
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1841

1842
	/* Access to snoopable pages through the GTT is incoherent. */
1843
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1844
		ret = -EFAULT;
1845
		goto err_unlock;
1846 1847
	}

1848 1849 1850 1851 1852 1853 1854 1855
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1856
	/* Now pin it into the GTT as needed */
1857
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1858 1859
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1860 1861
		unsigned int chunk_size;

1862
		/* Use a partial view if it is bigger than available space */
1863 1864
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
1865
			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1866

1867 1868 1869 1870
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1871
			min_t(unsigned int, chunk_size,
1872
			      vma_pages(area) - view.params.partial.offset);
1873

1874 1875 1876 1877 1878 1879
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1880 1881 1882 1883 1884
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1885 1886
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1887 1888
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1889
		goto err_unlock;
C
Chris Wilson 已提交
1890
	}
1891

1892 1893
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1894
		goto err_unpin;
1895

1896
	ret = i915_vma_get_fence(vma);
1897
	if (ret)
1898
		goto err_unpin;
1899

1900
	/* Mark as being mmapped into userspace for later revocation */
1901
	assert_rpm_wakelock_held(dev_priv);
1902 1903 1904
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1905
	/* Finally, remap it using the new GTT offset */
1906 1907 1908 1909 1910
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1911

1912
err_unpin:
C
Chris Wilson 已提交
1913
	__i915_vma_unpin(vma);
1914
err_unlock:
1915
	mutex_unlock(&dev->struct_mutex);
1916 1917
err_rpm:
	intel_runtime_pm_put(dev_priv);
1918
	i915_gem_object_unpin_pages(obj);
1919
err:
1920
	switch (ret) {
1921
	case -EIO:
1922 1923 1924 1925 1926 1927 1928
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1929 1930 1931
			ret = VM_FAULT_SIGBUS;
			break;
		}
1932
	case -EAGAIN:
D
Daniel Vetter 已提交
1933 1934 1935 1936
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1937
		 */
1938 1939
	case 0:
	case -ERESTARTSYS:
1940
	case -EINTR:
1941 1942 1943 1944 1945
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1946 1947
		ret = VM_FAULT_NOPAGE;
		break;
1948
	case -ENOMEM:
1949 1950
		ret = VM_FAULT_OOM;
		break;
1951
	case -ENOSPC:
1952
	case -EFAULT:
1953 1954
		ret = VM_FAULT_SIGBUS;
		break;
1955
	default:
1956
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1957 1958
		ret = VM_FAULT_SIGBUS;
		break;
1959
	}
1960
	return ret;
1961 1962
}

1963 1964 1965 1966
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1967
 * Preserve the reservation of the mmapping with the DRM core code, but
1968 1969 1970 1971 1972 1973 1974 1975 1976
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1977
void
1978
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1979
{
1980 1981
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1982 1983 1984
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1985 1986 1987 1988
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1989
	 */
1990
	lockdep_assert_held(&i915->drm.struct_mutex);
1991
	intel_runtime_pm_get(i915);
1992

1993
	if (list_empty(&obj->userfault_link))
1994
		goto out;
1995

1996
	list_del_init(&obj->userfault_link);
1997 1998
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1999 2000 2001 2002 2003 2004 2005 2006 2007

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2008 2009 2010

out:
	intel_runtime_pm_put(i915);
2011 2012
}

2013
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2014
{
2015
	struct drm_i915_gem_object *obj, *on;
2016
	int i;
2017

2018 2019 2020 2021 2022 2023
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2024

2025 2026 2027
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2028 2029 2030
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2048 2049
}

2050 2051
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
2052
 * @dev_priv: i915 device
2053 2054 2055 2056 2057 2058
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
2059 2060
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
2061
{
2062
	u64 ggtt_size;
2063

2064 2065
	GEM_BUG_ON(size == 0);

2066
	if (INTEL_GEN(dev_priv) >= 4 ||
2067 2068
	    tiling_mode == I915_TILING_NONE)
		return size;
2069 2070

	/* Previous chips need a power-of-two fence region when tiling */
2071
	if (IS_GEN3(dev_priv))
2072
		ggtt_size = 1024*1024;
2073
	else
2074
		ggtt_size = 512*1024;
2075

2076 2077
	while (ggtt_size < size)
		ggtt_size <<= 1;
2078

2079
	return ggtt_size;
2080 2081
}

2082
/**
2083
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2084
 * @dev_priv: i915 device
2085 2086
 * @size: object size
 * @tiling_mode: tiling mode
2087
 * @fenced: is fenced alignment required or not
2088
 *
2089
 * Return the required global GTT alignment for an object, taking into account
2090
 * potential fence register mapping.
2091
 */
2092
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2093
				int tiling_mode, bool fenced)
2094
{
2095 2096
	GEM_BUG_ON(size == 0);

2097 2098 2099 2100
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2101 2102
	if (INTEL_GEN(dev_priv) >= 4 ||
	    (!fenced && (IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))) ||
2103
	    tiling_mode == I915_TILING_NONE)
2104 2105
		return 4096;

2106 2107 2108 2109
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2110
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2111 2112
}

2113 2114
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2115
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2116
	int err;
2117

2118 2119 2120
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2121

2122 2123 2124
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2125
	 */
2126
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2127 2128 2129 2130 2131 2132 2133 2134 2135
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2136

2137
	return err;
2138 2139 2140 2141 2142 2143 2144
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2145
int
2146 2147
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2148
		  uint32_t handle,
2149
		  uint64_t *offset)
2150
{
2151
	struct drm_i915_gem_object *obj;
2152 2153
	int ret;

2154
	obj = i915_gem_object_lookup(file, handle);
2155 2156
	if (!obj)
		return -ENOENT;
2157

2158
	ret = i915_gem_object_create_mmap_offset(obj);
2159 2160
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2161

C
Chris Wilson 已提交
2162
	i915_gem_object_put(obj);
2163
	return ret;
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2187
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2188 2189
}

D
Daniel Vetter 已提交
2190 2191 2192
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2193
{
2194
	i915_gem_object_free_mmap_offset(obj);
2195

2196 2197
	if (obj->base.filp == NULL)
		return;
2198

D
Daniel Vetter 已提交
2199 2200 2201 2202 2203
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2204
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2205
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2206
}
2207

2208
/* Try to discard unwanted pages */
2209
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2210
{
2211 2212
	struct address_space *mapping;

2213 2214 2215
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2216
	switch (obj->mm.madv) {
2217 2218 2219 2220 2221 2222 2223 2224 2225
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2226
	mapping = obj->base.filp->f_mapping,
2227
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2228 2229
}

2230
static void
2231 2232
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2233
{
2234 2235
	struct sgt_iter sgt_iter;
	struct page *page;
2236

2237
	__i915_gem_object_release_shmem(obj, pages, true);
2238

2239
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2240

2241
	if (i915_gem_object_needs_bit17_swizzle(obj))
2242
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2243

2244
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2245
		if (obj->mm.dirty)
2246
			set_page_dirty(page);
2247

C
Chris Wilson 已提交
2248
		if (obj->mm.madv == I915_MADV_WILLNEED)
2249
			mark_page_accessed(page);
2250

2251
		put_page(page);
2252
	}
C
Chris Wilson 已提交
2253
	obj->mm.dirty = false;
2254

2255 2256
	sg_free_table(pages);
	kfree(pages);
2257
}
C
Chris Wilson 已提交
2258

2259 2260 2261 2262 2263
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2264 2265
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2266 2267
}

2268 2269
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2270
{
2271
	struct sg_table *pages;
2272

C
Chris Wilson 已提交
2273
	if (i915_gem_object_has_pinned_pages(obj))
2274
		return;
2275

2276
	GEM_BUG_ON(obj->bind_count);
2277 2278 2279 2280
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2281
	mutex_lock_nested(&obj->mm.lock, subclass);
2282 2283
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2284

2285 2286 2287
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2288 2289
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2290

C
Chris Wilson 已提交
2291
	if (obj->mm.mapping) {
2292 2293
		void *ptr;

C
Chris Wilson 已提交
2294
		ptr = ptr_mask_bits(obj->mm.mapping);
2295 2296
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2297
		else
2298 2299
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2300
		obj->mm.mapping = NULL;
2301 2302
	}

2303 2304
	__i915_gem_object_reset_page_iter(obj);

2305
	obj->ops->put_pages(obj, pages);
2306 2307
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2308 2309
}

2310
static unsigned int swiotlb_max_size(void)
2311 2312 2313 2314 2315 2316 2317 2318
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2319 2320 2321 2322 2323 2324 2325 2326 2327
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

2328
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2329 2330 2331 2332 2333 2334 2335 2336
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2337
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2338 2339 2340 2341 2342 2343

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2344
static struct sg_table *
C
Chris Wilson 已提交
2345
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2346
{
2347
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2348 2349
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2350
	struct address_space *mapping;
2351 2352
	struct sg_table *st;
	struct scatterlist *sg;
2353
	struct sgt_iter sgt_iter;
2354
	struct page *page;
2355
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2356
	unsigned int max_segment;
I
Imre Deak 已提交
2357
	int ret;
C
Chris Wilson 已提交
2358
	gfp_t gfp;
2359

C
Chris Wilson 已提交
2360 2361 2362 2363
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2364 2365
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2366

2367 2368
	max_segment = swiotlb_max_size();
	if (!max_segment)
2369
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2370

2371 2372
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2373
		return ERR_PTR(-ENOMEM);
2374

2375
rebuild_st:
2376 2377
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2378
		return ERR_PTR(-ENOMEM);
2379
	}
2380

2381 2382 2383 2384 2385
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2386
	mapping = obj->base.filp->f_mapping;
2387
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2388
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2389 2390 2391
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2392 2393
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2394 2395 2396 2397 2398
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2399 2400 2401 2402 2403 2404 2405
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2406
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2407 2408
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2409
				goto err_sg;
I
Imre Deak 已提交
2410
			}
C
Chris Wilson 已提交
2411
		}
2412 2413 2414
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2415 2416 2417 2418 2419 2420 2421 2422
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2423 2424 2425

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2426
	}
2427
	if (sg) /* loop terminated early; short sg table */
2428
		sg_mark_end(sg);
2429

2430 2431 2432
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2433
	ret = i915_gem_gtt_prepare_pages(obj, st);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2453

2454
	if (i915_gem_object_needs_bit17_swizzle(obj))
2455
		i915_gem_object_do_bit_17_swizzle(obj, st);
2456

2457
	return st;
2458

2459
err_sg:
2460
	sg_mark_end(sg);
2461
err_pages:
2462 2463
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2464 2465
	sg_free_table(st);
	kfree(st);
2466 2467 2468 2469 2470 2471 2472 2473 2474

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2475 2476 2477
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2478 2479 2480 2481 2482 2483
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2484
	lockdep_assert_held(&obj->mm.lock);
2485 2486 2487 2488 2489

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2490 2491 2492 2493 2494 2495 2496

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2497 2498 2499 2500 2501 2502
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2503 2504
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2516 2517
}

2518
/* Ensure that the associated pages are gathered from the backing storage
2519
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2520
 * multiple times before they are released by a single call to
2521
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2522 2523 2524
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2525
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2526
{
2527
	int err;
2528

2529 2530 2531
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2532

2533 2534 2535 2536
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2537

2538 2539 2540
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2541

2542 2543
unlock:
	mutex_unlock(&obj->mm.lock);
2544
	return err;
2545 2546
}

2547
/* The 'mapping' part of i915_gem_object_pin_map() below */
2548 2549
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2550 2551
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2552
	struct sg_table *sgt = obj->mm.pages;
2553 2554
	struct sgt_iter sgt_iter;
	struct page *page;
2555 2556
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2557
	unsigned long i = 0;
2558
	pgprot_t pgprot;
2559 2560 2561
	void *addr;

	/* A single page can always be kmapped */
2562
	if (n_pages == 1 && type == I915_MAP_WB)
2563 2564
		return kmap(sg_page(sgt->sgl));

2565 2566 2567 2568 2569 2570
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2571

2572 2573
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2574 2575 2576 2577

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2578 2579 2580 2581 2582 2583 2584 2585 2586
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2587

2588 2589
	if (pages != stack_pages)
		drm_free_large(pages);
2590 2591 2592 2593 2594

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2595 2596
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2597
{
2598 2599 2600
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2601 2602
	int ret;

2603
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2604

2605
	ret = mutex_lock_interruptible(&obj->mm.lock);
2606 2607 2608
	if (ret)
		return ERR_PTR(ret);

2609 2610
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2611 2612 2613 2614
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2615

2616 2617 2618
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2619 2620 2621
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2622

C
Chris Wilson 已提交
2623
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2624 2625 2626
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2627
			goto err_unpin;
2628
		}
2629 2630 2631 2632 2633 2634

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2635
		ptr = obj->mm.mapping = NULL;
2636 2637
	}

2638 2639 2640 2641
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2642
			goto err_unpin;
2643 2644
		}

C
Chris Wilson 已提交
2645
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2646 2647
	}

2648 2649
out_unlock:
	mutex_unlock(&obj->mm.lock);
2650 2651
	return ptr;

2652 2653 2654 2655 2656
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2657 2658
}

2659
static bool ban_context(const struct i915_gem_context *ctx)
2660
{
2661 2662
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2663 2664
}

2665
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2666
{
2667
	ctx->guilty_count++;
2668 2669 2670
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2671 2672

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2673
			 ctx->name, ctx->ban_score,
2674
			 yesno(i915_gem_context_is_banned(ctx)));
2675

2676
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2677 2678
		return;

2679 2680 2681
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2682 2683 2684 2685
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2686
	ctx->active_count++;
2687 2688
}

2689
struct drm_i915_gem_request *
2690
i915_gem_find_active_request(struct intel_engine_cs *engine)
2691
{
2692 2693
	struct drm_i915_gem_request *request;

2694 2695 2696 2697 2698 2699 2700 2701
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2702
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2703
		if (__i915_gem_request_completed(request))
2704
			continue;
2705

2706
		return request;
2707
	}
2708 2709 2710 2711

	return NULL;
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

2729 2730 2731 2732 2733
void i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
{
	i915_gem_revoke_fences(dev_priv);
}

2734
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2735 2736
{
	struct drm_i915_gem_request *request;
2737
	struct i915_gem_context *hung_ctx;
C
Chris Wilson 已提交
2738
	struct intel_timeline *timeline;
2739
	unsigned long flags;
2740 2741
	bool ring_hung;

2742 2743 2744
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2745
	request = i915_gem_find_active_request(engine);
2746
	if (!request)
2747 2748
		return;

2749 2750
	hung_ctx = request->ctx;

2751 2752 2753 2754 2755
	ring_hung = engine->hangcheck.stalled;
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n",
				 engine->name,
				 yesno(ring_hung));
2756
		ring_hung = false;
2757
	}
2758

2759
	if (ring_hung)
2760
		i915_gem_context_mark_guilty(hung_ctx);
2761
	else
2762
		i915_gem_context_mark_innocent(hung_ctx);
2763

2764 2765 2766 2767
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2768
			 engine->name, request->global_seqno);
2769 2770 2771 2772

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

2773 2774 2775 2776
	/* If this context is now banned, skip all of its pending requests. */
	if (!i915_gem_context_is_banned(hung_ctx))
		return;

2777 2778 2779 2780 2781 2782 2783 2784
	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
2785
	if (i915_gem_context_is_default(hung_ctx))
2786 2787
		return;

2788
	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2789 2790 2791 2792

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

2793
	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2794
		if (request->ctx == hung_ctx)
2795
			reset_request(request);
C
Chris Wilson 已提交
2796 2797 2798

	list_for_each_entry(request, &timeline->requests, link)
		reset_request(request);
2799 2800 2801

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2802
}
2803

2804
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2805
{
2806
	struct intel_engine_cs *engine;
2807
	enum intel_engine_id id;
2808

2809 2810
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2811 2812
	i915_gem_retire_requests(dev_priv);

2813
	for_each_engine(engine, dev_priv, id)
2814 2815
		i915_gem_reset_engine(engine);

2816
	i915_gem_restore_fences(dev_priv);
2817 2818 2819 2820 2821 2822 2823

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2824 2825 2826 2827
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
2828 2829
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2830 2831 2832 2833
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
2834 2835 2836 2837 2838 2839
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2840
	engine->submit_request = nop_submit_request;
2841

2842 2843 2844 2845
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2846
	intel_engine_init_global_seqno(engine,
2847
				       intel_engine_last_submit(engine));
2848

2849 2850 2851 2852 2853 2854
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2855
	if (i915.enable_execlists) {
2856 2857 2858 2859
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2860 2861 2862
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2863 2864
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2865 2866

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2867
	}
2868 2869
}

2870
static int __i915_gem_set_wedged_BKL(void *data)
2871
{
2872
	struct drm_i915_private *i915 = data;
2873
	struct intel_engine_cs *engine;
2874
	enum intel_engine_id id;
2875

2876 2877 2878 2879 2880 2881 2882 2883
	for_each_engine(engine, i915, id)
		i915_gem_cleanup_engine(engine);

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2884 2885
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2886

2887
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2888

2889
	i915_gem_context_lost(dev_priv);
2890
	i915_gem_retire_requests(dev_priv);
2891 2892

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2893 2894
}

2895
static void
2896 2897
i915_gem_retire_work_handler(struct work_struct *work)
{
2898
	struct drm_i915_private *dev_priv =
2899
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2900
	struct drm_device *dev = &dev_priv->drm;
2901

2902
	/* Come back later if the device is busy... */
2903
	if (mutex_trylock(&dev->struct_mutex)) {
2904
		i915_gem_retire_requests(dev_priv);
2905
		mutex_unlock(&dev->struct_mutex);
2906
	}
2907 2908 2909 2910 2911

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2912 2913
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2914 2915
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2916
				   round_jiffies_up_relative(HZ));
2917
	}
2918
}
2919

2920 2921 2922 2923
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2924
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2925
	struct drm_device *dev = &dev_priv->drm;
2926
	struct intel_engine_cs *engine;
2927
	enum intel_engine_id id;
2928 2929 2930 2931 2932
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2933 2934 2935 2936 2937 2938 2939
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2940
	if (READ_ONCE(dev_priv->gt.active_requests))
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2954 2955 2956 2957 2958 2959 2960
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2961
	if (dev_priv->gt.active_requests)
2962
		goto out_unlock;
2963

2964 2965 2966
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2967
	for_each_engine(engine, dev_priv, id)
2968
		i915_gem_batch_pool_fini(&engine->batch_pool);
2969

2970 2971 2972
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2973

2974 2975 2976 2977 2978
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2979

2980 2981 2982 2983
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2984
	}
2985 2986
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2997 2998 2999 3000 3001 3002

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3003 3004 3005
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3017 3018
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3019 3020 3021
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3046 3047
	ktime_t start;
	long ret;
3048

3049 3050 3051
	if (args->flags != 0)
		return -EINVAL;

3052
	obj = i915_gem_object_lookup(file, args->bo_handle);
3053
	if (!obj)
3054 3055
		return -ENOENT;

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3067 3068
	}

C
Chris Wilson 已提交
3069
	i915_gem_object_put(obj);
3070
	return ret;
3071 3072
}

3073
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3074
{
3075
	int ret, i;
3076

3077 3078 3079 3080 3081
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3082

3083 3084 3085 3086 3087 3088 3089
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3102 3103 3104
		if (ret)
			return ret;
	}
3105

3106
	return 0;
3107 3108
}

3109 3110
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3111 3112 3113 3114 3115
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3116
	if (!obj->mm.pages)
3117
		return;
3118

3119 3120 3121 3122
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3123
	if (obj->stolen || obj->phys_handle)
3124
		return;
3125

3126 3127 3128 3129 3130 3131 3132 3133
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3134 3135
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3136
		return;
3137
	}
3138

C
Chris Wilson 已提交
3139
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3140
	drm_clflush_sg(obj->mm.pages);
3141
	obj->cache_dirty = false;
3142 3143 3144 3145
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3146
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3147
{
3148
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3149

3150
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3151 3152
		return;

3153
	/* No actual flushing is required for the GTT write domain.  Writes
3154
	 * to it "immediately" go to main memory as far as we know, so there's
3155
	 * no chipset flush.  It also doesn't land in render cache.
3156 3157 3158 3159
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3160 3161 3162 3163 3164 3165 3166
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3167
	 */
3168
	wmb();
3169
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3170
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3171

3172
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3173

3174
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3175
	trace_i915_gem_object_change_domain(obj,
3176
					    obj->base.read_domains,
3177
					    I915_GEM_DOMAIN_GTT);
3178 3179 3180 3181
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3182
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3183
{
3184
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3185 3186
		return;

3187
	i915_gem_clflush_object(obj, obj->pin_display);
3188
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3189

3190
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3191
	trace_i915_gem_object_change_domain(obj,
3192
					    obj->base.read_domains,
3193
					    I915_GEM_DOMAIN_CPU);
3194 3195
}

3196 3197
/**
 * Moves a single object to the GTT read, and possibly write domain.
3198 3199
 * @obj: object to act on
 * @write: ask for write access or read only
3200 3201 3202 3203
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3204
int
3205
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3206
{
C
Chris Wilson 已提交
3207
	uint32_t old_write_domain, old_read_domains;
3208
	int ret;
3209

3210
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3211

3212 3213 3214 3215 3216 3217
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3218 3219 3220
	if (ret)
		return ret;

3221 3222 3223
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3224 3225 3226 3227 3228 3229 3230 3231
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3232
	ret = i915_gem_object_pin_pages(obj);
3233 3234 3235
	if (ret)
		return ret;

3236
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3237

3238 3239 3240 3241 3242 3243 3244
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3245 3246
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3247

3248 3249 3250
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3251
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3252
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3253
	if (write) {
3254 3255
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3256
		obj->mm.dirty = true;
3257 3258
	}

C
Chris Wilson 已提交
3259 3260 3261 3262
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3263
	i915_gem_object_unpin_pages(obj);
3264 3265 3266
	return 0;
}

3267 3268
/**
 * Changes the cache-level of an object across all VMA.
3269 3270
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3282 3283 3284
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3285
	struct i915_vma *vma;
3286
	int ret;
3287

3288 3289
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3290
	if (obj->cache_level == cache_level)
3291
		return 0;
3292

3293 3294 3295 3296 3297
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3298 3299
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3300 3301 3302
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3303
		if (i915_vma_is_pinned(vma)) {
3304 3305 3306 3307
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3320 3321
	}

3322 3323 3324 3325 3326 3327 3328
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3329
	if (obj->bind_count) {
3330 3331 3332 3333
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3334 3335 3336 3337 3338 3339
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3340 3341 3342
		if (ret)
			return ret;

3343 3344
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3361 3362 3363 3364 3365
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3366 3367 3368 3369 3370 3371 3372 3373
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3374 3375
		}

3376
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3377 3378 3379 3380 3381 3382 3383
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3384 3385
	}

3386 3387 3388 3389
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3390
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3391 3392 3393
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3394 3395 3396
	return 0;
}

B
Ben Widawsky 已提交
3397 3398
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3399
{
B
Ben Widawsky 已提交
3400
	struct drm_i915_gem_caching *args = data;
3401
	struct drm_i915_gem_object *obj;
3402
	int err = 0;
3403

3404 3405 3406 3407 3408 3409
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3410

3411 3412 3413 3414 3415 3416
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3417 3418 3419 3420
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3421 3422 3423 3424
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3425 3426 3427
out:
	rcu_read_unlock();
	return err;
3428 3429
}

B
Ben Widawsky 已提交
3430 3431
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3432
{
3433
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3434
	struct drm_i915_gem_caching *args = data;
3435 3436 3437 3438
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3439 3440
	switch (args->caching) {
	case I915_CACHING_NONE:
3441 3442
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3443
	case I915_CACHING_CACHED:
3444 3445 3446 3447 3448 3449
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3450
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3451 3452
			return -ENODEV;

3453 3454
		level = I915_CACHE_LLC;
		break;
3455
	case I915_CACHING_DISPLAY:
3456
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3457
		break;
3458 3459 3460 3461
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3462 3463
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3464
		return ret;
B
Ben Widawsky 已提交
3465

3466 3467
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3468 3469 3470 3471 3472
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3473
	i915_gem_object_put(obj);
3474 3475 3476 3477 3478
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3479
/*
3480 3481 3482
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3483
 */
C
Chris Wilson 已提交
3484
struct i915_vma *
3485 3486
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3487
				     const struct i915_ggtt_view *view)
3488
{
C
Chris Wilson 已提交
3489
	struct i915_vma *vma;
3490
	u32 old_read_domains, old_write_domain;
3491 3492
	int ret;

3493 3494
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3495 3496 3497
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3498
	obj->pin_display++;
3499

3500 3501 3502 3503 3504 3505 3506 3507 3508
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3509
	ret = i915_gem_object_set_cache_level(obj,
3510 3511
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3512 3513
	if (ret) {
		vma = ERR_PTR(ret);
3514
		goto err_unpin_display;
C
Chris Wilson 已提交
3515
	}
3516

3517 3518
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3519 3520 3521 3522
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3523
	 */
3524 3525 3526 3527
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3544
	if (IS_ERR(vma))
3545
		goto err_unpin_display;
3546

3547 3548
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3549 3550 3551 3552 3553
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
	if (obj->cache_dirty) {
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3554

3555
	old_write_domain = obj->base.write_domain;
3556
	old_read_domains = obj->base.read_domains;
3557 3558 3559 3560

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3561
	obj->base.write_domain = 0;
3562
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3563 3564 3565

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3566
					    old_write_domain);
3567

C
Chris Wilson 已提交
3568
	return vma;
3569 3570

err_unpin_display:
3571
	obj->pin_display--;
C
Chris Wilson 已提交
3572
	return vma;
3573 3574 3575
}

void
C
Chris Wilson 已提交
3576
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3577
{
3578
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3579

C
Chris Wilson 已提交
3580
	if (WARN_ON(vma->obj->pin_display == 0))
3581 3582
		return;

3583 3584
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3585

3586 3587 3588 3589
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3590
	i915_vma_unpin(vma);
3591 3592
}

3593 3594
/**
 * Moves a single object to the CPU read, and possibly write domain.
3595 3596
 * @obj: object to act on
 * @write: requesting write or read-only access
3597 3598 3599 3600
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3601
int
3602
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3603
{
C
Chris Wilson 已提交
3604
	uint32_t old_write_domain, old_read_domains;
3605 3606
	int ret;

3607
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3608

3609 3610 3611 3612 3613 3614
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3615 3616 3617
	if (ret)
		return ret;

3618 3619 3620
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3621
	i915_gem_object_flush_gtt_write_domain(obj);
3622

3623 3624
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3625

3626
	/* Flush the CPU cache if it's still invalid. */
3627
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3628
		i915_gem_clflush_object(obj, false);
3629

3630
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3631 3632 3633 3634 3635
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3636
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3637 3638 3639 3640 3641

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3642 3643
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3644
	}
3645

C
Chris Wilson 已提交
3646 3647 3648 3649
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3650 3651 3652
	return 0;
}

3653 3654 3655
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3656 3657 3658 3659
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3660 3661 3662
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3663
static int
3664
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3665
{
3666
	struct drm_i915_private *dev_priv = to_i915(dev);
3667
	struct drm_i915_file_private *file_priv = file->driver_priv;
3668
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3669
	struct drm_i915_gem_request *request, *target = NULL;
3670
	long ret;
3671

3672 3673 3674
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3675

3676
	spin_lock(&file_priv->mm.lock);
3677
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3678 3679
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3680

3681 3682 3683 3684 3685 3686 3687
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3688
		target = request;
3689
	}
3690
	if (target)
3691
		i915_gem_request_get(target);
3692
	spin_unlock(&file_priv->mm.lock);
3693

3694
	if (target == NULL)
3695
		return 0;
3696

3697 3698 3699
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3700
	i915_gem_request_put(target);
3701

3702
	return ret < 0 ? ret : 0;
3703 3704
}

C
Chris Wilson 已提交
3705
struct i915_vma *
3706 3707
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3708
			 u64 size,
3709 3710
			 u64 alignment,
			 u64 flags)
3711
{
3712 3713
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3714 3715
	struct i915_vma *vma;
	int ret;
3716

3717 3718
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
3719
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3720
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3721
		return vma;
3722 3723 3724 3725

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3726
			return ERR_PTR(-ENOSPC);
3727

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

3763 3764
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3765 3766 3767
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3768
		     !!(flags & PIN_MAPPABLE),
3769
		     i915_vma_is_map_and_fenceable(vma));
3770 3771
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3772
			return ERR_PTR(ret);
3773 3774
	}

C
Chris Wilson 已提交
3775 3776 3777
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3778

C
Chris Wilson 已提交
3779
	return vma;
3780 3781
}

3782
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3797 3798 3799 3800 3801 3802 3803 3804 3805
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3806 3807
}

3808
static __always_inline unsigned int
3809
__busy_set_if_active(const struct dma_fence *fence,
3810 3811
		     unsigned int (*flag)(unsigned int id))
{
3812
	struct drm_i915_gem_request *rq;
3813

3814 3815 3816 3817
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3818
	 *
3819
	 * Note we only report on the status of native fences.
3820
	 */
3821 3822 3823 3824 3825 3826 3827 3828 3829
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3830 3831
}

3832
static __always_inline unsigned int
3833
busy_check_reader(const struct dma_fence *fence)
3834
{
3835
	return __busy_set_if_active(fence, __busy_read_flag);
3836 3837
}

3838
static __always_inline unsigned int
3839
busy_check_writer(const struct dma_fence *fence)
3840
{
3841 3842 3843 3844
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3845 3846
}

3847 3848
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3849
		    struct drm_file *file)
3850 3851
{
	struct drm_i915_gem_busy *args = data;
3852
	struct drm_i915_gem_object *obj;
3853 3854
	struct reservation_object_list *list;
	unsigned int seq;
3855
	int err;
3856

3857
	err = -ENOENT;
3858 3859
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3860
	if (!obj)
3861
		goto out;
3862

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3881

3882 3883
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3884

3885 3886 3887 3888
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3889

3890 3891 3892 3893 3894 3895
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3896
	}
3897

3898 3899 3900 3901
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3902 3903 3904
out:
	rcu_read_unlock();
	return err;
3905 3906 3907 3908 3909 3910
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3911
	return i915_gem_ring_throttle(dev, file_priv);
3912 3913
}

3914 3915 3916 3917
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3918
	struct drm_i915_private *dev_priv = to_i915(dev);
3919
	struct drm_i915_gem_madvise *args = data;
3920
	struct drm_i915_gem_object *obj;
3921
	int err;
3922 3923 3924 3925 3926 3927 3928 3929 3930

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3931
	obj = i915_gem_object_lookup(file_priv, args->handle);
3932 3933 3934 3935 3936 3937
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3938

C
Chris Wilson 已提交
3939
	if (obj->mm.pages &&
3940
	    i915_gem_object_is_tiled(obj) &&
3941
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3942 3943
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3944
			__i915_gem_object_unpin_pages(obj);
3945 3946 3947
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3948
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3949
			__i915_gem_object_pin_pages(obj);
3950 3951
			obj->mm.quirked = true;
		}
3952 3953
	}

C
Chris Wilson 已提交
3954 3955
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3956

C
Chris Wilson 已提交
3957
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3958
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3959 3960
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3961
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3962
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3963

3964
out:
3965
	i915_gem_object_put(obj);
3966
	return err;
3967 3968
}

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3979 3980
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3981
{
3982 3983
	mutex_init(&obj->mm.lock);

3984
	INIT_LIST_HEAD(&obj->global_link);
3985
	INIT_LIST_HEAD(&obj->userfault_link);
3986
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3987
	INIT_LIST_HEAD(&obj->vma_list);
3988
	INIT_LIST_HEAD(&obj->batch_pool_link);
3989

3990 3991
	obj->ops = ops;

3992 3993 3994
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3995
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3996
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3997 3998 3999 4000

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4001

4002
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4003 4004
}

4005
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4006 4007
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4008 4009 4010 4011
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4012
struct drm_i915_gem_object *
4013
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4014
{
4015
	struct drm_i915_gem_object *obj;
4016
	struct address_space *mapping;
D
Daniel Vetter 已提交
4017
	gfp_t mask;
4018
	int ret;
4019

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4031
	obj = i915_gem_object_alloc(dev_priv);
4032
	if (obj == NULL)
4033
		return ERR_PTR(-ENOMEM);
4034

4035
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4036 4037
	if (ret)
		goto fail;
4038

4039
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4040
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4041 4042 4043 4044 4045
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4046
	mapping = obj->base.filp->f_mapping;
4047
	mapping_set_gfp_mask(mapping, mask);
4048

4049
	i915_gem_object_init(obj, &i915_gem_object_ops);
4050

4051 4052
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4053

4054
	if (HAS_LLC(dev_priv)) {
4055
		/* On some devices, we can have the GPU use the LLC (the CPU
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4071 4072
	trace_i915_gem_object_create(obj);

4073
	return obj;
4074 4075 4076 4077

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4078 4079
}

4080 4081 4082 4083 4084 4085 4086 4087
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4088
	if (obj->mm.madv != I915_MADV_WILLNEED)
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4104 4105
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4106
{
4107
	struct drm_i915_gem_object *obj, *on;
4108

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4124 4125
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4126

4127
		list_del(&obj->global_link);
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4138

4139 4140
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4141
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4142 4143 4144 4145 4146
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4147
		reservation_object_fini(&obj->__builtin_resv);
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4170

4171 4172 4173 4174 4175 4176 4177
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4178

4179 4180 4181
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4182

4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4197

4198 4199 4200
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4201

4202 4203 4204
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4205
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4206
		obj->mm.madv = I915_MADV_DONTNEED;
4207

4208 4209 4210 4211 4212 4213
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4214 4215
}

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4227 4228 4229 4230 4231 4232
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4233
		GEM_BUG_ON(!i915_gem_context_is_kernel(engine->last_retired_context));
4234 4235
}

4236
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4237
{
4238
	struct drm_device *dev = &dev_priv->drm;
4239
	int ret;
4240

4241 4242
	intel_suspend_gt_powersave(dev_priv);

4243
	mutex_lock(&dev->struct_mutex);
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4257 4258 4259
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4260
	if (ret)
4261
		goto err;
4262

4263
	i915_gem_retire_requests(dev_priv);
4264
	GEM_BUG_ON(dev_priv->gt.active_requests);
4265

4266
	assert_kernel_context_is_current(dev_priv);
4267
	i915_gem_context_lost(dev_priv);
4268 4269
	mutex_unlock(&dev->struct_mutex);

4270
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4271
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4272 4273 4274 4275 4276 4277 4278 4279

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4280

4281 4282 4283
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4284
	WARN_ON(dev_priv->gt.awake);
4285
	WARN_ON(!intel_execlists_idle(dev_priv));
4286

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4306
	if (HAS_HW_CONTEXTS(dev_priv)) {
4307 4308 4309 4310
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4311
	return 0;
4312 4313 4314 4315

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4316 4317
}

4318
void i915_gem_resume(struct drm_i915_private *dev_priv)
4319
{
4320
	struct drm_device *dev = &dev_priv->drm;
4321

4322 4323
	WARN_ON(dev_priv->gt.awake);

4324
	mutex_lock(&dev->struct_mutex);
4325
	i915_gem_restore_gtt_mappings(dev_priv);
4326 4327 4328 4329 4330

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4331
	dev_priv->gt.resume(dev_priv);
4332 4333 4334 4335

	mutex_unlock(&dev->struct_mutex);
}

4336
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4337
{
4338
	if (INTEL_GEN(dev_priv) < 5 ||
4339 4340 4341 4342 4343 4344
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4345
	if (IS_GEN5(dev_priv))
4346 4347
		return;

4348
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4349
	if (IS_GEN6(dev_priv))
4350
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4351
	else if (IS_GEN7(dev_priv))
4352
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4353
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4354
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4355 4356
	else
		BUG();
4357
}
D
Daniel Vetter 已提交
4358

4359
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4360 4361 4362 4363 4364 4365 4366
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4367
static void init_unused_rings(struct drm_i915_private *dev_priv)
4368
{
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4381 4382 4383
	}
}

4384
int
4385
i915_gem_init_hw(struct drm_i915_private *dev_priv)
4386
{
4387
	struct intel_engine_cs *engine;
4388
	enum intel_engine_id id;
C
Chris Wilson 已提交
4389
	int ret;
4390

4391 4392
	dev_priv->gt.last_init_time = ktime_get();

4393 4394 4395
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4396
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4397
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4398

4399
	if (IS_HASWELL(dev_priv))
4400
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4401
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4402

4403
	if (HAS_PCH_NOP(dev_priv)) {
4404
		if (IS_IVYBRIDGE(dev_priv)) {
4405 4406 4407
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4408
		} else if (INTEL_GEN(dev_priv) >= 7) {
4409 4410 4411 4412
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4413 4414
	}

4415
	i915_gem_init_swizzling(dev_priv);
4416

4417 4418 4419 4420 4421 4422
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4423
	init_unused_rings(dev_priv);
4424

4425
	BUG_ON(!dev_priv->kernel_context);
4426

4427
	ret = i915_ppgtt_init_hw(dev_priv);
4428 4429 4430 4431 4432 4433
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4434
	for_each_engine(engine, dev_priv, id) {
4435
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4436
		if (ret)
4437
			goto out;
D
Daniel Vetter 已提交
4438
	}
4439

4440
	intel_mocs_init_l3cc_table(dev_priv);
4441

4442
	/* We can't enable contexts until all firmware is loaded */
4443
	ret = intel_guc_setup(dev_priv);
4444 4445
	if (ret)
		goto out;
4446

4447 4448
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4449
	return ret;
4450 4451
}

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4473
int i915_gem_init(struct drm_i915_private *dev_priv)
4474 4475 4476
{
	int ret;

4477
	mutex_lock(&dev_priv->drm.struct_mutex);
4478

4479
	if (!i915.enable_execlists) {
4480
		dev_priv->gt.resume = intel_legacy_submission_resume;
4481
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4482
	} else {
4483
		dev_priv->gt.resume = intel_lr_context_resume;
4484
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4485 4486
	}

4487 4488 4489 4490 4491 4492 4493 4494
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4495
	i915_gem_init_userptr(dev_priv);
4496 4497 4498 4499

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4500

4501
	ret = i915_gem_context_init(dev_priv);
4502 4503
	if (ret)
		goto out_unlock;
4504

4505
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4506
	if (ret)
4507
		goto out_unlock;
4508

4509
	ret = i915_gem_init_hw(dev_priv);
4510
	if (ret == -EIO) {
4511
		/* Allow engine initialisation to fail by marking the GPU as
4512 4513 4514 4515
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4516
		i915_gem_set_wedged(dev_priv);
4517
		ret = 0;
4518
	}
4519 4520

out_unlock:
4521
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4522
	mutex_unlock(&dev_priv->drm.struct_mutex);
4523

4524
	return ret;
4525 4526
}

4527
void
4528
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4529
{
4530
	struct intel_engine_cs *engine;
4531
	enum intel_engine_id id;
4532

4533
	for_each_engine(engine, dev_priv, id)
4534
		dev_priv->gt.cleanup_engine(engine);
4535 4536
}

4537 4538 4539
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4540
	int i;
4541 4542 4543 4544

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4545 4546 4547
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4548 4549 4550 4551
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4552
	if (intel_vgpu_active(dev_priv))
4553 4554 4555 4556
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4557 4558 4559 4560 4561 4562 4563
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4564
	i915_gem_restore_fences(dev_priv);
4565

4566
	i915_gem_detect_bit_6_swizzle(dev_priv);
4567 4568
}

4569
int
4570
i915_gem_load_init(struct drm_i915_private *dev_priv)
4571
{
4572
	int err = -ENOMEM;
4573

4574 4575
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4576 4577
		goto err_out;

4578 4579
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4580 4581
		goto err_objects;

4582 4583 4584 4585 4586
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4587 4588
		goto err_vmas;

4589 4590 4591 4592 4593 4594
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4595 4596
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4597
	err = i915_gem_timeline_init__global(dev_priv);
4598 4599
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4600
		goto err_dependencies;
4601

4602
	INIT_LIST_HEAD(&dev_priv->context_list);
4603 4604
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4605 4606
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4607
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4608
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4609
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4610
			  i915_gem_retire_work_handler);
4611
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4612
			  i915_gem_idle_work_handler);
4613
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4614
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4615

4616 4617
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4618
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4619

4620 4621
	dev_priv->mm.interruptible = true;

4622 4623
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4624
	spin_lock_init(&dev_priv->fb_tracking.lock);
4625 4626 4627

	return 0;

4628 4629
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4630 4631 4632 4633 4634 4635 4636 4637
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4638
}
4639

4640
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4641
{
4642 4643
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4644 4645 4646 4647 4648
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4649
	kmem_cache_destroy(dev_priv->dependencies);
4650 4651 4652
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4653 4654 4655

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4656 4657
}

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4671 4672 4673
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4674 4675 4676 4677 4678
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4689 4690 4691
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4692 4693
	 */

4694 4695
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4696

4697
	for (p = phases; *p; p++) {
4698
		list_for_each_entry(obj, *p, global_link) {
4699 4700 4701
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4702
	}
4703
	mutex_unlock(&dev_priv->drm.struct_mutex);
4704 4705 4706 4707

	return 0;
}

4708
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4709
{
4710
	struct drm_i915_file_private *file_priv = file->driver_priv;
4711
	struct drm_i915_gem_request *request;
4712 4713 4714 4715 4716

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4717
	spin_lock(&file_priv->mm.lock);
4718
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4719
		request->file_priv = NULL;
4720
	spin_unlock(&file_priv->mm.lock);
4721

4722
	if (!list_empty(&file_priv->rps.link)) {
4723
		spin_lock(&to_i915(dev)->rps.client_lock);
4724
		list_del(&file_priv->rps.link);
4725
		spin_unlock(&to_i915(dev)->rps.client_lock);
4726
	}
4727 4728 4729 4730 4731
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4732
	int ret;
4733

4734
	DRM_DEBUG("\n");
4735 4736 4737 4738 4739 4740

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4741
	file_priv->dev_priv = to_i915(dev);
4742
	file_priv->file = file;
4743
	INIT_LIST_HEAD(&file_priv->rps.link);
4744 4745 4746 4747

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4748
	file_priv->bsd_engine = -1;
4749

4750 4751 4752
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4753

4754
	return ret;
4755 4756
}

4757 4758
/**
 * i915_gem_track_fb - update frontbuffer tracking
4759 4760 4761
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4762 4763 4764 4765
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4766 4767 4768 4769
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4770 4771 4772 4773 4774 4775 4776 4777 4778
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4779
	if (old) {
4780 4781
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4782 4783 4784
	}

	if (new) {
4785 4786
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4787 4788 4789
	}
}

4790 4791
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4792
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4793 4794 4795 4796 4797 4798 4799
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4800
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4801
	if (IS_ERR(obj))
4802 4803 4804 4805 4806 4807
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4808
	ret = i915_gem_object_pin_pages(obj);
4809 4810 4811
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4812
	sg = obj->mm.pages;
4813
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4814
	obj->mm.dirty = true; /* Backing store is now out of date */
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4826
	i915_gem_object_put(obj);
4827 4828
	return ERR_PTR(ret);
}
4829 4830 4831 4832 4833 4834

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4835
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4836 4837 4838 4839 4840
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4841
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4966
	if (!obj->mm.dirty)
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}