i915_gem.c 131.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38 39 40 41 42 43 44 45 46
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 49 50
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51
static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52
static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
53 54 55
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
56

57 58 59
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

J
Jesse Barnes 已提交
60 61
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
62 63 64
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
65 66 67
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
68 69 70
		return -EINVAL;
	}

J
Jesse Barnes 已提交
71 72
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
73

J
Jesse Barnes 已提交
74 75 76 77
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
78

J
Jesse Barnes 已提交
79 80 81 82 83 84 85 86 87
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
88 89
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
90
	return ret;
91 92
}

93 94 95 96 97 98 99 100 101 102
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
103 104
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
105 106 107 108

	return 0;
}

109 110 111 112 113 114 115 116 117 118

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
119 120
	int ret;
	u32 handle;
121 122 123 124

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
125
	obj = i915_gem_alloc_object(dev, args->size);
126 127 128 129
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
130
	drm_gem_object_handle_unreference_unlocked(obj);
131 132 133 134 135 136 137 138 139

	if (ret)
		return ret;

	args->handle = handle;

	return 0;
}

140 141 142 143 144 145 146
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
147
	int unwritten;
148 149 150 151

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
152
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
153 154
	kunmap_atomic(vaddr, KM_USER0);

155 156 157 158
	if (unwritten)
		return -EFAULT;

	return 0;
159 160
}

161 162 163
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
164
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
165 166 167 168 169

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static inline int
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

	dst_vaddr = kmap_atomic(dst_page, KM_USER0);
	if (dst_vaddr == NULL)
		return -ENOMEM;

	src_vaddr = kmap_atomic(src_page, KM_USER1);
	if (src_vaddr == NULL) {
		kunmap_atomic(dst_vaddr, KM_USER0);
		return -ENOMEM;
	}

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

	kunmap_atomic(src_vaddr, KM_USER1);
	kunmap_atomic(dst_vaddr, KM_USER0);

	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static inline int
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

	gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
	if (gpu_vaddr == NULL)
		return -ENOMEM;

	cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
	if (cpu_vaddr == NULL) {
		kunmap_atomic(gpu_vaddr, KM_USER0);
		return -ENOMEM;
	}

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	kunmap_atomic(cpu_vaddr, KM_USER1);
	kunmap_atomic(gpu_vaddr, KM_USER0);

	return 0;
}

255 256 257 258 259 260 261 262 263 264
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
265
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
266 267 268 269 270 271 272 273 274 275 276
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

277
	ret = i915_gem_object_get_pages(obj, 0);
278 279 280 281 282 283 284 285
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

286
	obj_priv = to_intel_bo(obj);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

321 322 323 324 325
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

326
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
327 328 329 330 331 332 333 334 335 336 337

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

		ret = i915_gem_evict_something(dev, obj->size);
		if (ret)
			return ret;

338
		ret = i915_gem_object_get_pages(obj, 0);
339 340 341 342 343
	}

	return ret;
}

344 345 346 347 348 349 350 351 352 353 354
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
355
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
356 357 358 359 360 361 362 363 364 365
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
366
	int do_bit17_swizzling;
367 368 369 370 371 372 373 374 375 376 377

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

378
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
379 380 381 382 383
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
384
				      num_pages, 1, 0, user_pages, NULL);
385 386 387 388 389 390
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

391 392
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

393 394
	mutex_lock(&dev->struct_mutex);

395 396
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
397 398 399 400 401 402 403
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

404
	obj_priv = to_intel_bo(obj);
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

427 428 429 430 431 432 433 434 435 436 437 438 439 440
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    1);
		} else {
			ret = slow_shmem_copy(user_pages[data_page_index],
					      data_page_offset,
					      obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      page_length);
		}
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
458
	drm_free_large(user_pages);
459 460 461 462

	return ret;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
480
	obj_priv = to_intel_bo(obj);
481 482 483 484 485 486 487

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
488
		drm_gem_object_unreference_unlocked(obj);
489 490 491
		return -EINVAL;
	}

492
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
493
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
494 495 496 497 498 499
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
500

501
	drm_gem_object_unreference_unlocked(obj);
502

503
	return ret;
504 505
}

506 507
/* This is the fast write path which cannot handle
 * page faults in the source data
508
 */
509 510 511 512 513 514

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
515 516
{
	char *vaddr_atomic;
517
	unsigned long unwritten;
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
	io_mapping_unmap_atomic(vaddr_atomic);
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

static inline int
533 534 535 536
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
537
{
538
	char *src_vaddr, *dst_vaddr;
539 540
	unsigned long unwritten;

541 542 543 544 545 546 547
	dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
	src_vaddr = kmap_atomic(user_page, KM_USER1);
	unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
						      src_vaddr + user_offset,
						      length);
	kunmap_atomic(src_vaddr, KM_USER1);
	io_mapping_unmap_atomic(dst_vaddr);
548 549
	if (unwritten)
		return -EFAULT;
550 551 552
	return 0;
}

553 554 555 556 557 558 559
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
560
	unsigned long unwritten;
561 562 563 564

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
565
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
566 567
	kunmap_atomic(vaddr, KM_USER0);

568 569
	if (unwritten)
		return -EFAULT;
570 571 572
	return 0;
}

573 574 575 576
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
577
static int
578 579 580
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
581
{
582
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
583
	drm_i915_private_t *dev_priv = dev->dev_private;
584
	ssize_t remain;
585
	loff_t offset, page_base;
586
	char __user *user_data;
587 588
	int page_offset, page_length;
	int ret;
589 590 591 592 593 594 595 596 597 598 599 600 601

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
602
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
603 604 605
	if (ret)
		goto fail;

606
	obj_priv = to_intel_bo(obj);
607 608 609 610 611
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
612 613 614
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
615
		 */
616 617 618 619 620 621 622 623 624 625
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
626 627
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
628
		 */
629 630
		if (ret)
			goto fail;
631

632 633 634
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
635 636 637 638 639 640 641 642 643
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

644 645 646 647 648 649 650
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
651
static int
652 653 654
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
655
{
656
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
657 658 659 660 661 662 663 664
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
665
	int ret;
666 667 668 669 670 671 672 673 674 675 676 677
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

678
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
679 680 681 682 683 684 685 686 687 688 689
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
690 691

	mutex_lock(&dev->struct_mutex);
692 693 694 695 696 697 698 699
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

700
	obj_priv = to_intel_bo(obj);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

		ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
					gtt_page_base, gtt_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
			goto out_unpin_object;

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
748
	drm_free_large(user_pages);
749 750 751 752

	return ret;
}

753 754 755 756
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
757
static int
758 759 760
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
761
{
762
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
763 764 765 766
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
767
	int ret;
768 769 770

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
771 772 773

	mutex_lock(&dev->struct_mutex);

774
	ret = i915_gem_object_get_pages(obj, 0);
775 776
	if (ret != 0)
		goto fail_unlock;
777

778
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
779 780 781
	if (ret != 0)
		goto fail_put_pages;

782
	obj_priv = to_intel_bo(obj);
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
830
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
831 832 833 834 835 836 837 838 839 840
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
841
	int do_bit17_swizzling;
842 843 844 845 846 847 848 849 850 851 852

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

853
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
854 855 856 857 858 859 860 861 862 863
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
864 865
	}

866 867
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

868 869
	mutex_lock(&dev->struct_mutex);

870 871
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
872 873 874 875 876 877
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

878
	obj_priv = to_intel_bo(obj);
879
	offset = args->offset;
880
	obj_priv->dirty = 1;
881

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

902 903 904 905 906 907 908 909 910 911 912 913 914 915
		if (do_bit17_swizzling) {
			ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
						    shmem_page_offset,
						    user_pages[data_page_index],
						    data_page_offset,
						    page_length,
						    0);
		} else {
			ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length);
		}
916 917 918 919 920 921
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
922 923
	}

924 925 926
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
927
	mutex_unlock(&dev->struct_mutex);
928 929 930
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
931
	drm_free_large(user_pages);
932

933
	return ret;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
953
	obj_priv = to_intel_bo(obj);
954 955 956 957 958 959 960

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
961
		drm_gem_object_unreference_unlocked(obj);
962 963 964 965 966 967 968 969 970
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
971 972 973
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
974 975 976 977 978 979
		 dev->gtt_total != 0) {
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
980 981
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
982 983 984 985 986 987 988
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
989 990 991 992 993 994

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

995
	drm_gem_object_unreference_unlocked(obj);
996 997 998 999 1000

	return ret;
}

/**
1001 1002
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1003 1004 1005 1006 1007
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1008
	struct drm_i915_private *dev_priv = dev->dev_private;
1009 1010
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1011
	struct drm_i915_gem_object *obj_priv;
1012 1013
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1014 1015 1016 1017 1018
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1019
	/* Only handle setting domains to types used by the CPU. */
1020
	if (write_domain & I915_GEM_GPU_DOMAINS)
1021 1022
		return -EINVAL;

1023
	if (read_domains & I915_GEM_GPU_DOMAINS)
1024 1025 1026 1027 1028 1029 1030 1031
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1032 1033 1034
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;
1035
	obj_priv = to_intel_bo(obj);
1036 1037

	mutex_lock(&dev->struct_mutex);
1038 1039 1040

	intel_mark_busy(dev, obj);

1041
#if WATCH_BUF
1042
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1043
		 obj, obj->size, read_domains, write_domain);
1044
#endif
1045 1046
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1047

1048 1049 1050 1051
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1052 1053 1054
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1055 1056 1057
				       &dev_priv->mm.fence_list);
		}

1058 1059 1060 1061 1062 1063
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1064
	} else {
1065
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1066 1067
	}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

#if WATCH_BUF
1096
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1097 1098
		 __func__, args->handle, obj, obj->size);
#endif
1099
	obj_priv = to_intel_bo(obj);
1100 1101

	/* Pinned buffers may be scanout, so flush the cache */
1102 1103 1104
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1140
	drm_gem_object_unreference_unlocked(obj);
1141 1142 1143 1144 1145 1146 1147 1148
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1170
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1171 1172 1173
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1174
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1175 1176 1177 1178 1179 1180 1181 1182

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1183
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1184 1185
		if (ret)
			goto unlock;
1186

J
Jesse Barnes 已提交
1187
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1188 1189

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1190 1191
		if (ret)
			goto unlock;
1192 1193 1194
	}

	/* Need a new fence register? */
1195
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1196
		ret = i915_gem_object_get_fence_reg(obj);
1197 1198
		if (ret)
			goto unlock;
1199
	}
1200 1201 1202 1203 1204 1205

	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1206
unlock:
1207 1208 1209
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1210 1211 1212
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1213 1214 1215 1216
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1217
		return VM_FAULT_SIGBUS;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1237
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1238
	struct drm_map_list *list;
1239
	struct drm_local_map *map;
1240 1241 1242 1243
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1244
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
1272
		ret = -ENOMEM;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1285
	kfree(list->map);
1286 1287 1288 1289

	return ret;
}

1290 1291 1292 1293
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1294
 * Preserve the reservation of the mmapping with the DRM core code, but
1295 1296 1297 1298 1299 1300 1301 1302 1303
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1304
void
1305 1306 1307
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1308
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1309 1310 1311 1312 1313 1314

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1315 1316 1317 1318
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1319
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1332
		kfree(list->map);
1333 1334 1335 1336 1337 1338
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1350
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
		return -EBADF;

	mutex_lock(&dev->struct_mutex);

1409
	obj_priv = to_intel_bo(obj);
1410

1411 1412 1413 1414 1415 1416 1417 1418
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1419 1420
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1421 1422 1423
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1424
			return ret;
1425
		}
1426 1427 1428 1429 1430 1431 1432 1433 1434
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1435
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1436 1437 1438 1439 1440
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
J
Jesse Barnes 已提交
1441
		list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1442 1443 1444 1445 1446 1447 1448 1449
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1450
void
1451
i915_gem_object_put_pages(struct drm_gem_object *obj)
1452
{
1453
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1454 1455 1456
	int page_count = obj->size / PAGE_SIZE;
	int i;

1457
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1458
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1459

1460 1461
	if (--obj_priv->pages_refcount != 0)
		return;
1462

1463 1464 1465
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1466
	if (obj_priv->madv == I915_MADV_DONTNEED)
1467
		obj_priv->dirty = 0;
1468 1469 1470 1471 1472 1473

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1474
			mark_page_accessed(obj_priv->pages[i]);
1475 1476 1477

		page_cache_release(obj_priv->pages[i]);
	}
1478 1479
	obj_priv->dirty = 0;

1480
	drm_free_large(obj_priv->pages);
1481
	obj_priv->pages = NULL;
1482 1483 1484
}

static void
1485 1486
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1487 1488 1489
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1490
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1491 1492
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1493 1494 1495 1496 1497 1498 1499

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
	/* Move from whatever list we were on to the tail of execution. */
1500
	spin_lock(&dev_priv->mm.active_list_lock);
1501
	list_move_tail(&obj_priv->list, &ring->active_list);
1502
	spin_unlock(&dev_priv->mm.active_list_lock);
1503
	obj_priv->last_rendering_seqno = seqno;
1504 1505
}

1506 1507 1508 1509 1510
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1511
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1512 1513 1514 1515 1516

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1517

1518 1519 1520 1521
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1522
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1523
	struct inode *inode;
1524

C
Chris Wilson 已提交
1525 1526 1527 1528 1529
	inode = obj->filp->f_path.dentry->d_inode;
	if (inode->i_op->truncate)
		inode->i_op->truncate (inode);

	obj_priv->madv = __I915_MADV_PURGED;
1530 1531 1532 1533 1534 1535 1536 1537
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1538 1539 1540 1541 1542
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1543
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1544 1545 1546 1547 1548 1549 1550

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1551 1552
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1553
	obj_priv->last_rendering_seqno = 0;
1554
	obj_priv->ring = NULL;
1555 1556 1557 1558 1559 1560 1561
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

1562 1563
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1564 1565
			       uint32_t flush_domains, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1566 1567 1568 1569 1570 1571 1572
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1573
		struct drm_gem_object *obj = &obj_priv->base;
1574 1575

		if ((obj->write_domain & flush_domains) ==
1576 1577
		    obj->write_domain &&
		    obj_priv->ring->ring_flag == ring->ring_flag) {
1578 1579 1580 1581
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1582
			i915_gem_object_move_to_active(obj, seqno, ring);
1583 1584

			/* update the fence lru list */
1585 1586 1587 1588
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1589
						&dev_priv->mm.fence_list);
1590
			}
1591 1592 1593 1594 1595 1596 1597

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1598

1599
uint32_t
1600
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1601
		 uint32_t flush_domains, struct intel_ring_buffer *ring)
1602 1603
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1604
	struct drm_i915_file_private *i915_file_priv = NULL;
1605 1606 1607 1608
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;

1609 1610 1611
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1612
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1613 1614 1615
	if (request == NULL)
		return 0;

1616
	seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1617 1618

	request->seqno = seqno;
1619
	request->ring = ring;
1620
	request->emitted_jiffies = jiffies;
1621 1622 1623
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1624 1625 1626 1627 1628 1629
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1630

1631 1632 1633
	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with our flush.
	 */
1634
	if (flush_domains != 0) 
1635
		i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1636

B
Ben Gamari 已提交
1637 1638 1639 1640 1641
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1642 1643 1644 1645 1646 1647 1648 1649 1650
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1651
static uint32_t
1652
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1653 1654 1655 1656 1657 1658
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1659 1660 1661

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

C
Chris Wilson 已提交
1675 1676
	trace_i915_gem_request_retire(dev, request->seqno);

1677 1678 1679
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1680
	spin_lock(&dev_priv->mm.active_list_lock);
1681
	while (!list_empty(&request->ring->active_list)) {
1682 1683 1684
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

1685
		obj_priv = list_first_entry(&request->ring->active_list,
1686 1687
					    struct drm_i915_gem_object,
					    list);
1688
		obj = &obj_priv->base;
1689 1690 1691 1692 1693 1694

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1695
			goto out;
1696

1697 1698 1699 1700 1701
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1702 1703
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1704 1705 1706 1707 1708 1709 1710 1711
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1712
			i915_gem_object_move_to_inactive(obj);
1713 1714 1715 1716
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1717
	}
1718 1719
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1720 1721 1722 1723 1724
}

/**
 * Returns true if seq1 is later than seq2.
 */
1725
bool
1726 1727 1728 1729 1730 1731
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
1732 1733
i915_get_gem_seqno(struct drm_device *dev,
		struct intel_ring_buffer *ring)
1734
{
1735
	return ring->get_gem_seqno(dev, ring);
1736 1737 1738 1739 1740 1741
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
void
1742 1743
i915_gem_retire_requests(struct drm_device *dev,
		struct intel_ring_buffer *ring)
1744 1745 1746 1747
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1748
	if (!ring->status_page.page_addr
1749
			|| list_empty(&ring->request_list))
1750 1751
		return;

1752
	seqno = i915_get_gem_seqno(dev, ring);
1753

1754
	while (!list_empty(&ring->request_list)) {
1755 1756 1757
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

1758
		request = list_first_entry(&ring->request_list,
1759 1760 1761 1762 1763
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1764
		    atomic_read(&dev_priv->mm.wedged)) {
1765 1766 1767
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1768
			list_del(&request->client_list);
1769
			kfree(request);
1770 1771 1772
		} else
			break;
	}
1773 1774 1775

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1776 1777

		ring->user_irq_put(dev, ring);
1778 1779
		dev_priv->trace_irq_seqno = 0;
	}
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
}

void
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
1793 1794
	i915_gem_retire_requests(dev, &dev_priv->render_ring);

1795
	if (!dev_priv->mm.suspended &&
1796
			(!list_empty(&dev_priv->render_ring.request_list)))
1797
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1798 1799 1800
	mutex_unlock(&dev->struct_mutex);
}

1801
int
1802 1803
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
		int interruptible, struct intel_ring_buffer *ring)
1804 1805
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1806
	u32 ier;
1807 1808 1809 1810
	int ret = 0;

	BUG_ON(seqno == 0);

1811
	if (atomic_read(&dev_priv->mm.wedged))
1812 1813
		return -EIO;

1814
	if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1815
		if (HAS_PCH_SPLIT(dev))
1816 1817 1818
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1819 1820 1821 1822 1823 1824 1825
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1826 1827
		trace_i915_gem_request_wait_begin(dev, seqno);

1828
		ring->waiting_gem_seqno = seqno;
1829
		ring->user_irq_get(dev, ring);
1830
		if (interruptible)
1831 1832 1833 1834
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1835
		else
1836 1837 1838 1839
			wait_event(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1840

1841
		ring->user_irq_put(dev, ring);
1842
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1843 1844

		trace_i915_gem_request_wait_end(dev, seqno);
1845
	}
1846
	if (atomic_read(&dev_priv->mm.wedged))
1847 1848 1849 1850
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1851
			  __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1852 1853 1854 1855 1856 1857 1858

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1859
		i915_gem_retire_requests(dev, ring);
1860 1861 1862 1863

	return ret;
}

1864 1865 1866 1867 1868
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
1869 1870
i915_wait_request(struct drm_device *dev, uint32_t seqno,
		struct intel_ring_buffer *ring)
1871
{
1872
	return i915_do_wait_request(dev, seqno, 1, ring);
1873 1874
}

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
	dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
			invalidate_domains,
			flush_domains);
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static void
i915_gem_flush_ring(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains,
	       struct intel_ring_buffer *ring)
{
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
	ring->flush(dev, ring,
			invalidate_domains,
			flush_domains);
}

1901 1902 1903 1904 1905 1906 1907 1908
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1909
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1910 1911
	int ret;

1912 1913
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1914
	 */
1915
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1916 1917 1918 1919 1920 1921 1922 1923 1924

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
1925 1926
		ret = i915_wait_request(dev,
				obj_priv->last_rendering_seqno, obj_priv->ring);
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1937
int
1938 1939 1940
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1941
	drm_i915_private_t *dev_priv = dev->dev_private;
1942
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

1957 1958 1959
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

1960 1961 1962 1963 1964 1965
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
1966
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1967
	if (ret) {
1968 1969
		if (ret != -ERESTARTSYS)
			DRM_ERROR("set_domain failed: %d\n", ret);
1970 1971 1972
		return ret;
	}

1973 1974
	BUG_ON(obj_priv->active);

1975 1976 1977 1978
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

1979 1980 1981 1982 1983 1984
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

1985
	i915_gem_object_put_pages(obj);
1986
	BUG_ON(obj_priv->pages_refcount);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
1997
	spin_lock(&dev_priv->mm.active_list_lock);
1998 1999
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);
2000
	spin_unlock(&dev_priv->mm.active_list_lock);
2001

2002 2003 2004
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2005 2006
	trace_i915_gem_object_unbind(obj);

2007 2008 2009
	return 0;
}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
static struct drm_gem_object *
i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	struct drm_gem_object *best = NULL;
	struct drm_gem_object *first = NULL;

	/* Try to find the smallest clean object */
	list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2020
		struct drm_gem_object *obj = &obj_priv->base;
2021
		if (obj->size >= min_size) {
2022 2023
			if ((!obj_priv->dirty ||
			     i915_gem_object_is_purgeable(obj_priv)) &&
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
			    (!best || obj->size < best->size)) {
				best = obj;
				if (best->size == min_size)
					return best;
			}
			if (!first)
			    first = obj;
		}
	}

	return best ? best : first;
}

2037 2038 2039 2040 2041 2042
static int
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
	uint32_t seqno;
2043
	int ret;
2044 2045 2046

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
2047
		      list_empty(&dev_priv->render_ring.active_list);
2048 2049 2050 2051 2052 2053 2054
	spin_unlock(&dev_priv->mm.active_list_lock);

	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2055 2056
	seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
			&dev_priv->render_ring);
2057 2058
	if (seqno == 0)
		return -ENOMEM;
2059
	ret = i915_wait_request(dev, seqno, &dev_priv->render_ring);
2060

2061
	return ret;
2062 2063
}

2064
static int
2065 2066 2067 2068 2069 2070 2071 2072 2073
i915_gem_evict_everything(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
	bool lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
2074
		       list_empty(&dev_priv->render_ring.active_list));
2075 2076
	spin_unlock(&dev_priv->mm.active_list_lock);

2077
	if (lists_empty)
2078 2079 2080
		return -ENOSPC;

	/* Flush everything (on to the inactive lists) and evict */
2081
	ret = i915_gpu_idle(dev);
2082 2083 2084
	if (ret)
		return ret;

2085 2086
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));

2087
	ret = i915_gem_evict_from_inactive_list(dev);
2088 2089 2090 2091 2092 2093
	if (ret)
		return ret;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
		       list_empty(&dev_priv->mm.flushing_list) &&
2094
		       list_empty(&dev_priv->render_ring.active_list));
2095 2096 2097 2098 2099 2100
	spin_unlock(&dev_priv->mm.active_list_lock);
	BUG_ON(!lists_empty);

	return 0;
}

2101
static int
2102
i915_gem_evict_something(struct drm_device *dev, int min_size)
2103 2104 2105
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
2106
	int ret;
2107

2108
	struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
2109
	for (;;) {
2110
		i915_gem_retire_requests(dev, render_ring);
2111

2112 2113 2114
		/* If there's an inactive buffer available now, grab it
		 * and be done.
		 */
2115 2116 2117 2118
		obj = i915_gem_find_inactive_object(dev, min_size);
		if (obj) {
			struct drm_i915_gem_object *obj_priv;

2119 2120 2121
#if WATCH_LRU
			DRM_INFO("%s: evicting %p\n", __func__, obj);
#endif
2122
			obj_priv = to_intel_bo(obj);
2123
			BUG_ON(obj_priv->pin_count != 0);
2124 2125 2126
			BUG_ON(obj_priv->active);

			/* Wait on the rendering and unbind the buffer. */
2127
			return i915_gem_object_unbind(obj);
2128 2129 2130
		}

		/* If we didn't get anything, but the ring is still processing
2131 2132
		 * things, wait for the next to finish and hopefully leave us
		 * a buffer to evict.
2133
		 */
2134
		if (!list_empty(&render_ring->request_list)) {
2135 2136
			struct drm_i915_gem_request *request;

2137
			request = list_first_entry(&render_ring->request_list,
2138 2139 2140
						   struct drm_i915_gem_request,
						   list);

2141 2142
			ret = i915_wait_request(dev,
					request->seqno, request->ring);
2143
			if (ret)
2144
				return ret;
2145

2146
			continue;
2147 2148 2149 2150 2151 2152 2153 2154
		}

		/* If we didn't have anything on the request list but there
		 * are buffers awaiting a flush, emit one and try again.
		 * When we wait on it, those buffers waiting for that flush
		 * will get moved to inactive.
		 */
		if (!list_empty(&dev_priv->mm.flushing_list)) {
2155
			struct drm_i915_gem_object *obj_priv;
2156

2157 2158
			/* Find an object that we can immediately reuse */
			list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2159
				obj = &obj_priv->base;
2160 2161
				if (obj->size >= min_size)
					break;
2162

2163 2164
				obj = NULL;
			}
2165

2166 2167
			if (obj != NULL) {
				uint32_t seqno;
2168

2169 2170
				i915_gem_flush_ring(dev,
					       obj->write_domain,
2171
					       obj->write_domain,
2172 2173 2174 2175
					       obj_priv->ring);
				seqno = i915_add_request(dev, NULL,
						obj->write_domain,
						obj_priv->ring);
2176 2177 2178 2179
				if (seqno == 0)
					return -ENOMEM;
				continue;
			}
2180 2181
		}

2182 2183 2184
		/* If we didn't do any of the above, there's no single buffer
		 * large enough to swap out for the new one, so just evict
		 * everything and start again. (This should be rare.)
2185
		 */
2186
		if (!list_empty (&dev_priv->mm.inactive_list))
2187
			return i915_gem_evict_from_inactive_list(dev);
2188
		else
2189
			return i915_gem_evict_everything(dev);
2190 2191 2192
	}
}

2193
int
2194 2195
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2196
{
2197
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2198 2199 2200 2201 2202
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2203
	if (obj_priv->pages_refcount++ != 0)
2204 2205 2206 2207 2208 2209
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2210
	BUG_ON(obj_priv->pages != NULL);
2211
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2212 2213
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2214 2215 2216 2217 2218 2219
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2220 2221 2222 2223
		page = read_cache_page_gfp(mapping, i,
					   mapping_gfp_mask (mapping) |
					   __GFP_COLD |
					   gfpmask);
2224 2225 2226
		if (IS_ERR(page))
			goto err_pages;

2227
		obj_priv->pages[i] = page;
2228
	}
2229 2230 2231 2232

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2233
	return 0;
2234 2235 2236 2237 2238 2239 2240 2241 2242

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2243 2244
}

2245 2246 2247 2248 2249
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2250
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2267 2268 2269 2270 2271
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2272
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2292
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2293
	int regnum = obj_priv->fence_reg;
2294
	int tile_width;
2295
	uint32_t fence_reg, val;
2296 2297 2298 2299
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2300
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2301
		     __func__, obj_priv->gtt_offset, obj->size);
2302 2303 2304
		return;
	}

2305 2306 2307
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2308
	else
2309 2310 2311 2312 2313
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2314

2315 2316 2317 2318 2319 2320
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2321 2322 2323 2324 2325 2326 2327
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2328 2329 2330 2331 2332
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2333 2334 2335 2336 2337 2338 2339
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2340
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2341 2342 2343
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2344
	uint32_t fence_size_bits;
2345

2346
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2347
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2348
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2349
		     __func__, obj_priv->gtt_offset);
2350 2351 2352
		return;
	}

2353 2354 2355 2356
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2357 2358 2359
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2360 2361 2362
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2363 2364 2365 2366 2367 2368
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
static int i915_find_fence_reg(struct drm_device *dev)
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2384
		obj_priv = to_intel_bo(reg->obj);
2385 2386 2387 2388 2389 2390 2391 2392 2393
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2394 2395 2396 2397
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
	ret = i915_gem_object_put_fence_reg(obj);
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2435 2436
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2437 2438
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2439
	struct drm_i915_private *dev_priv = dev->dev_private;
2440
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2441
	struct drm_i915_fence_reg *reg = NULL;
2442
	int ret;
2443

2444 2445
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2446 2447
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2448 2449 2450
		return 0;
	}

2451 2452 2453 2454 2455
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2456 2457 2458 2459 2460
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2461 2462
		break;
	case I915_TILING_Y:
2463 2464 2465 2466 2467
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2468 2469 2470
		break;
	}

2471 2472 2473
	ret = i915_find_fence_reg(dev);
	if (ret < 0)
		return ret;
2474

2475 2476
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2477
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2478

2479 2480
	reg->obj = obj;

2481 2482 2483
	if (IS_GEN6(dev))
		sandybridge_write_fence_reg(reg);
	else if (IS_I965G(dev))
2484 2485 2486 2487 2488
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2489

2490 2491
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2492

2493
	return 0;
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2507
	drm_i915_private_t *dev_priv = dev->dev_private;
2508
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2509 2510
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2511

2512 2513 2514 2515
	if (IS_GEN6(dev)) {
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
	} else if (IS_I965G(dev)) {
2516
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2517
	} else {
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2528

2529
	reg->obj = NULL;
2530
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2531
	list_del_init(&reg->lru_list);
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2546
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2547 2548 2549 2550

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2551 2552 2553 2554 2555 2556
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

		i915_gem_object_flush_gpu_write_domain(obj);
		ret = i915_gem_object_wait_rendering(obj);
		if (ret != 0)
			return ret;
	}

2570
	i915_gem_object_flush_gtt_write_domain(obj);
2571 2572 2573 2574 2575
	i915_gem_clear_fence_reg (obj);

	return 0;
}

2576 2577 2578 2579 2580 2581 2582 2583
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2584
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2585
	struct drm_mm_node *free_space;
2586
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2587
	int ret;
2588

C
Chris Wilson 已提交
2589
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2590 2591 2592 2593
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2594
	if (alignment == 0)
2595
		alignment = i915_gem_get_gtt_alignment(obj);
2596
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
		if (obj_priv->gtt_space != NULL) {
			obj_priv->gtt_space->private = obj;
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
		}
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2619
		ret = i915_gem_evict_something(dev, obj->size);
2620
		if (ret)
2621
			return ret;
2622

2623 2624 2625 2626
		goto search_free;
	}

#if WATCH_BUF
2627
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2628 2629
		 obj->size, obj_priv->gtt_offset);
#endif
2630
	ret = i915_gem_object_get_pages(obj, gfpmask);
2631 2632 2633
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2634 2635 2636 2637 2638 2639

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
			ret = i915_gem_evict_something(dev, obj->size);
			if (ret) {
				/* now try to shrink everyone else */
2640 2641 2642
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2643 2644 2645 2646 2647 2648 2649 2650
				}

				return ret;
			}

			goto search_free;
		}

2651 2652 2653 2654 2655 2656 2657
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2658
					       obj_priv->pages,
2659
					       obj->size >> PAGE_SHIFT,
2660 2661
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2662
	if (obj_priv->agp_mem == NULL) {
2663
		i915_gem_object_put_pages(obj);
2664 2665
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2666 2667

		ret = i915_gem_evict_something(dev, obj->size);
2668
		if (ret)
2669 2670 2671
			return ret;

		goto search_free;
2672 2673 2674 2675 2676 2677 2678 2679
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2680 2681
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2682

C
Chris Wilson 已提交
2683 2684
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2685 2686 2687 2688 2689 2690
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2691
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2692 2693 2694 2695 2696

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2697
	if (obj_priv->pages == NULL)
2698 2699
		return;

C
Chris Wilson 已提交
2700
	trace_i915_gem_object_clflush(obj);
2701

2702
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2703 2704
}

2705 2706 2707 2708 2709
/** Flushes any GPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2710
	uint32_t old_write_domain;
2711
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2712 2713 2714 2715 2716

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
		return;

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2717
	old_write_domain = obj->write_domain;
2718
	i915_gem_flush(dev, 0, obj->write_domain);
2719
	(void) i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring);
2720
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2721 2722 2723 2724

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2725 2726 2727 2728 2729 2730
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2731 2732
	uint32_t old_write_domain;

2733 2734 2735 2736 2737 2738 2739
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2740
	old_write_domain = obj->write_domain;
2741
	obj->write_domain = 0;
C
Chris Wilson 已提交
2742 2743 2744 2745

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2746 2747 2748 2749 2750 2751 2752
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2753
	uint32_t old_write_domain;
2754 2755 2756 2757 2758 2759

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2760
	old_write_domain = obj->write_domain;
2761
	obj->write_domain = 0;
C
Chris Wilson 已提交
2762 2763 2764 2765

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2766 2767
}

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
void
i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
{
	switch (obj->write_domain) {
	case I915_GEM_DOMAIN_GTT:
		i915_gem_object_flush_gtt_write_domain(obj);
		break;
	case I915_GEM_DOMAIN_CPU:
		i915_gem_object_flush_cpu_write_domain(obj);
		break;
	default:
		i915_gem_object_flush_gpu_write_domain(obj);
		break;
	}
}

2784 2785 2786 2787 2788 2789
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2790
int
2791 2792
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2793
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2794
	uint32_t old_write_domain, old_read_domains;
2795
	int ret;
2796

2797 2798 2799 2800
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2801 2802 2803 2804 2805 2806
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;

C
Chris Wilson 已提交
2807 2808 2809
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2810 2811
	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2812
	 */
2813 2814
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2815

2816
	i915_gem_object_flush_cpu_write_domain(obj);
2817

2818 2819 2820 2821 2822 2823 2824 2825
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2826 2827
	}

C
Chris Wilson 已提交
2828 2829 2830 2831
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2832 2833 2834
	return 0;
}

2835 2836 2837 2838 2839 2840 2841 2842
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2843
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	uint32_t old_write_domain, old_read_domains;
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

	i915_gem_object_flush_gpu_write_domain(obj);

	/* Wait on any GPU rendering and flushing to occur. */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
2859 2860 2861 2862
		ret = i915_do_wait_request(dev,
				obj_priv->last_rendering_seqno,
				0,
				obj_priv->ring);
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		if (ret != 0)
			return ret;
	}

	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

	obj->read_domains &= I915_GEM_DOMAIN_GTT;

	i915_gem_object_flush_cpu_write_domain(obj);

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	obj->write_domain = I915_GEM_DOMAIN_GTT;
	obj_priv->dirty = 1;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

	return 0;
}

2889 2890 2891 2892 2893 2894 2895 2896 2897
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2898
	uint32_t old_write_domain, old_read_domains;
2899 2900 2901
	int ret;

	i915_gem_object_flush_gpu_write_domain(obj);
2902
	/* Wait on any GPU rendering and flushing to occur. */
2903 2904 2905
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;
2906

2907
	i915_gem_object_flush_gtt_write_domain(obj);
2908

2909 2910
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2911
	 */
2912
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2913

C
Chris Wilson 已提交
2914 2915 2916
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2917 2918
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2919 2920
		i915_gem_clflush_object(obj);

2921
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2922 2923 2924 2925 2926
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2927 2928 2929 2930 2931 2932 2933 2934 2935
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2936

C
Chris Wilson 已提交
2937 2938 2939 2940
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2941 2942 2943
	return 0;
}

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3055
static void
3056
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3057 3058
{
	struct drm_device		*dev = obj->dev;
3059
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3060 3061
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3062
	uint32_t			old_read_domains;
3063

3064 3065
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3066

3067 3068
	intel_mark_busy(dev, obj);

3069 3070 3071
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
3072 3073
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
3074 3075 3076 3077 3078
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3079 3080
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3081 3082 3083 3084 3085 3086 3087 3088 3089
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3090 3091
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3092
		flush_domains |= obj->write_domain;
3093 3094
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3095 3096 3097 3098 3099
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3100
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3101 3102 3103 3104 3105 3106 3107 3108
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
3109 3110
	old_read_domains = obj->read_domains;

3111 3112 3113 3114 3115 3116 3117 3118
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3119
	obj->read_domains = obj->pending_read_domains;
3120 3121 3122 3123 3124 3125 3126 3127 3128

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3129 3130 3131 3132

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3133 3134 3135
}

/**
3136
 * Moves the object from a partially CPU read to a full one.
3137
 *
3138 3139
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3140
 */
3141 3142
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3143
{
3144
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3145

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3157
			drm_clflush_pages(obj_priv->pages + i, 1);
3158 3159 3160 3161 3162 3163
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3164
	kfree(obj_priv->page_cpu_valid);
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3184
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3185
	uint32_t old_read_domains;
3186
	int i, ret;
3187

3188 3189
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3190

3191 3192
	i915_gem_object_flush_gpu_write_domain(obj);
	/* Wait on any GPU rendering and flushing to occur. */
3193
	ret = i915_gem_object_wait_rendering(obj);
3194
	if (ret != 0)
3195
		return ret;
3196 3197 3198 3199 3200 3201
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3202

3203 3204 3205
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3206
	if (obj_priv->page_cpu_valid == NULL) {
3207 3208
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3209 3210 3211 3212
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3213 3214 3215 3216

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3217 3218
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3219 3220 3221
		if (obj_priv->page_cpu_valid[i])
			continue;

3222
		drm_clflush_pages(obj_priv->pages + i, 1);
3223 3224 3225 3226

		obj_priv->page_cpu_valid[i] = 1;
	}

3227 3228 3229 3230 3231
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3232
	old_read_domains = obj->read_domains;
3233 3234
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3235 3236 3237 3238
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3239 3240 3241 3242 3243 3244 3245 3246 3247
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3248
				 struct drm_i915_gem_exec_object2 *entry,
3249
				 struct drm_i915_gem_relocation_entry *relocs)
3250 3251
{
	struct drm_device *dev = obj->dev;
3252
	drm_i915_private_t *dev_priv = dev->dev_private;
3253
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3254
	int i, ret;
3255
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3256 3257 3258 3259 3260 3261
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3262 3263
	if (need_fence && !i915_gem_object_fence_offset_ok(obj,
	    obj_priv->tiling_mode))
J
Jesse Barnes 已提交
3264
		i915_gem_object_unbind(obj);
3265 3266 3267 3268 3269 3270

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
		ret = i915_gem_object_get_fence_reg(obj);
		if (ret != 0) {
			if (ret != -EBUSY && ret != -ERESTARTSYS)
				DRM_ERROR("Failure to install fence: %d\n",
					  ret);
			i915_gem_object_unpin(obj);
			return ret;
		}
	}

3286 3287 3288 3289 3290 3291
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3292
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3293 3294
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3295 3296
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3297 3298

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3299
						   reloc->target_handle);
3300 3301 3302 3303
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
			return -EBADF;
		}
3304
		target_obj_priv = to_intel_bo(target_obj);
3305

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3321 3322 3323 3324 3325
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3326
				  reloc->target_handle);
3327 3328 3329 3330 3331
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3332
		/* Validate that the target is in a valid r/w GPU domain */
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3343 3344
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3345 3346 3347
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3348 3349 3350 3351
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3352 3353
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3354 3355
			return -EINVAL;
		}
3356 3357
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3358 3359 3360
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3361 3362 3363
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3364 3365 3366 3367 3368 3369
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3370 3371
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3372 3373 3374 3375

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3376
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3377 3378 3379 3380
			drm_gem_object_unreference(target_obj);
			continue;
		}

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3412 3413 3414 3415 3416
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3417 3418 3419 3420 3421
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3422
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3423 3424 3425
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
						       ~(PAGE_SIZE - 1)));
3426
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3427
						   (reloc_offset & (PAGE_SIZE - 1)));
3428
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3429 3430 3431

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3432
			  obj, (unsigned int) reloc->offset,
3433 3434 3435
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3436
		io_mapping_unmap_atomic(reloc_page);
3437

3438 3439
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3440
		 */
3441
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3456 3457 3458 3459
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3460 3461 3462 3463 3464 3465 3466 3467
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3468
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3469 3470

	mutex_lock(&dev->struct_mutex);
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3481
		ret = i915_wait_request(dev, request->seqno, request->ring);
3482 3483 3484
		if (ret != 0)
			break;
	}
3485
	mutex_unlock(&dev->struct_mutex);
3486

3487 3488 3489
	return ret;
}

3490
static int
J
Jesse Barnes 已提交
3491
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3505
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3506 3507
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3508
		return -ENOMEM;
J
Jesse Barnes 已提交
3509
	}
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3521
			drm_free_large(*relocs);
3522
			*relocs = NULL;
3523
			return -EFAULT;
3524 3525 3526 3527 3528
		}

		reloc_index += exec_list[i].relocation_count;
	}

3529
	return 0;
3530 3531 3532
}

static int
J
Jesse Barnes 已提交
3533
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3534 3535 3536 3537
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3538
	int ret = 0;
3539

3540 3541 3542
	if (relocs == NULL)
	    return 0;

3543 3544
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3545
		int unwritten;
3546 3547 3548

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3549 3550 3551 3552 3553 3554 3555 3556
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3557 3558 3559 3560 3561
		}

		reloc_count += exec_list[i].relocation_count;
	}

3562
err:
3563
	drm_free_large(relocs);
3564 3565 3566 3567

	return ret;
}

3568
static int
J
Jesse Barnes 已提交
3569
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
static int
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3600
			obj_priv = to_intel_bo(object_list[i]);
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

3621
int
J
Jesse Barnes 已提交
3622 3623 3624 3625
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3626 3627 3628 3629
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3630
	struct drm_i915_gem_object *obj_priv;
3631
	struct drm_clip_rect *cliprects = NULL;
3632
	struct drm_i915_gem_relocation_entry *relocs = NULL;
J
Jesse Barnes 已提交
3633
	int ret = 0, ret2, i, pinned = 0;
3634
	uint64_t exec_offset;
3635
	uint32_t seqno, flush_domains, reloc_index;
3636
	int pin_tries, flips;
3637

3638 3639
	struct intel_ring_buffer *ring = NULL;

3640 3641 3642 3643 3644
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

3645 3646 3647 3648
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3649
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3650 3651
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3652 3653 3654 3655 3656
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3657
	if (args->num_cliprects != 0) {
3658 3659
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3660 3661
		if (cliprects == NULL) {
			ret = -ENOMEM;
3662
			goto pre_mutex_err;
3663
		}
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
			goto pre_mutex_err;
		}
	}

3676 3677 3678 3679 3680
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3681 3682 3683 3684
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3685
	if (atomic_read(&dev_priv->mm.wedged)) {
3686
		mutex_unlock(&dev->struct_mutex);
3687 3688
		ret = -EIO;
		goto pre_mutex_err;
3689 3690 3691 3692
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3693 3694
		ret = -EBUSY;
		goto pre_mutex_err;
3695 3696
	}

3697 3698
	ring = &dev_priv->render_ring;

3699
	/* Look up object handles */
3700
	flips = 0;
3701 3702 3703 3704 3705 3706
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3707 3708
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3709 3710 3711
			ret = -EBADF;
			goto err;
		}
3712

3713
		obj_priv = to_intel_bo(object_list[i]);
3714 3715 3716
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3717 3718
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3719 3720 3721 3722
			ret = -EBADF;
			goto err;
		}
		obj_priv->in_execbuffer = true;
3723 3724 3725 3726 3727 3728 3729 3730
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3731
	}
3732

3733 3734 3735
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3736 3737
		reloc_index = 0;

3738 3739 3740 3741 3742
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3743 3744
							       &exec_list[i],
							       &relocs[reloc_index]);
3745 3746 3747
			if (ret)
				break;
			pinned = i + 1;
3748
			reloc_index += exec_list[i].relocation_count;
3749 3750 3751 3752 3753 3754
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3755
		if (ret != -ENOSPC || pin_tries >= 1) {
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
				for (i = 0; i < args->buffer_count; i++)
					total_size += object_list[i]->size;
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
					  pinned+1, args->buffer_count,
					  total_size, ret);
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3773 3774
			goto err;
		}
3775 3776 3777 3778

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3779
		pinned = 0;
3780 3781 3782

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3783
		if (ret && ret != -ENOSPC)
3784
			goto err;
3785 3786 3787 3788
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3789 3790 3791 3792 3793 3794
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3795

3796 3797 3798 3799 3800 3801 3802 3803
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3804 3805
	i915_verify_inactive(dev, __FILE__, __LINE__);

3806 3807 3808 3809 3810 3811 3812
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;

3813 3814 3815
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3816
		/* Compute new gpu domains and update invalidate/flush */
3817
		i915_gem_object_set_to_gpu_domain(obj);
3818 3819 3820 3821
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
3832
		if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
3833
			(void)i915_add_request(dev, file_priv,
3834 3835 3836 3837
					dev->flush_domains,
					&dev_priv->render_ring);

		}
3838
	}
3839

3840 3841
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3842
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3843
		uint32_t old_write_domain = obj->write_domain;
3844 3845

		obj->write_domain = obj->pending_write_domain;
3846 3847 3848 3849 3850 3851
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3852 3853 3854
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3855 3856
	}

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3867
	i915_gem_dump_object(batch_obj,
3868 3869 3870 3871 3872 3873
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3874 3875
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3876 3877 3878 3879 3880 3881 3882 3883 3884
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3885
	flush_domains = i915_retire_commands(dev, ring);
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3896
	seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3897 3898 3899
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3900
		obj_priv = to_intel_bo(obj);
3901

3902
		i915_gem_object_move_to_active(obj, seqno, ring);
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3914 3915 3916
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3917 3918
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3919
			obj_priv = to_intel_bo(object_list[i]);
3920 3921
			obj_priv->in_execbuffer = false;
		}
3922
		drm_gem_object_unreference(object_list[i]);
3923
	}
3924 3925 3926

	mutex_unlock(&dev->struct_mutex);

3927
pre_mutex_err:
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3942
	drm_free_large(object_list);
3943
	kfree(cliprects);
3944 3945 3946 3947

	return ret;
}

J
Jesse Barnes 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (!IS_I965G(dev))
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4014
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4093 4094 4095 4096
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
4097
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4098 4099 4100 4101 4102
	int ret;

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4103
		if (ret)
4104
			return ret;
4105
	}
J
Jesse Barnes 已提交
4106

4107 4108 4109 4110 4111 4112 4113 4114 4115
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
4116
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
		    !list_empty(&obj_priv->list))
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4130
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
4143
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}
4170
	obj_priv = to_intel_bo(obj);
4171

C
Chris Wilson 已提交
4172 4173
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4174 4175 4176 4177 4178
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4179 4180 4181
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4182
		drm_gem_object_unreference(obj);
4183
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4196 4197 4198 4199 4200
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4201
	i915_gem_object_flush_cpu_write_domain(obj);
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4215
	struct drm_i915_gem_object *obj_priv;
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
		return -EBADF;
	}

4227
	obj_priv = to_intel_bo(obj);
J
Jesse Barnes 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4253
	drm_i915_private_t *dev_priv = dev->dev_private;
4254 4255 4256 4257 4258 4259 4260 4261

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

4262
	mutex_lock(&dev->struct_mutex);
4263 4264 4265 4266 4267
	/* Update the active list for the hardware's current position.
	 * Otherwise this only updates on a delayed timer or when irqs are
	 * actually unmasked, and our working set ends up being larger than
	 * required.
	 */
4268
	i915_gem_retire_requests(dev, &dev_priv->render_ring);
4269

4270
	obj_priv = to_intel_bo(obj);
4271 4272 4273 4274 4275 4276 4277 4278
	/* Don't count being on the flushing list against the object being
	 * done.  Otherwise, a buffer left on the flushing list but not getting
	 * flushed (because nobody's flushing that domain) won't ever return
	 * unbusy and get reused by libdrm's bo cache.  The other expected
	 * consumer of this interface, OpenGL's occlusion queries, also specs
	 * that the objects get unbusy "eventually" without any interference.
	 */
	args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
		return -EBADF;
	}

	mutex_lock(&dev->struct_mutex);
4316
	obj_priv = to_intel_bo(obj);
4317 4318 4319 4320 4321 4322 4323 4324 4325

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4326 4327
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4328

4329 4330 4331 4332 4333
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4334 4335
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4336 4337 4338 4339 4340 4341
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4342 4343 4344
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4345
	struct drm_i915_gem_object *obj;
4346

4347 4348 4349
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4350

4351 4352 4353 4354
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4355

4356 4357
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4358

4359
	obj->agp_type = AGP_USER_MEMORY;
4360
	obj->base.driver_private = NULL;
4361 4362 4363 4364
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4365

4366 4367 4368 4369 4370 4371 4372 4373
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4374

4375 4376 4377 4378 4379
	return 0;
}

void i915_gem_free_object(struct drm_gem_object *obj)
{
4380
	struct drm_device *dev = obj->dev;
4381
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4382

C
Chris Wilson 已提交
4383 4384
	trace_i915_gem_object_destroy(obj);

4385 4386 4387
	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

4388 4389 4390
	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

4391 4392
	i915_gem_object_unbind(obj);

4393 4394
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4395

4396 4397
	drm_gem_object_release(obj);

4398
	kfree(obj_priv->page_cpu_valid);
4399
	kfree(obj_priv->bit_17);
4400
	kfree(obj_priv);
4401 4402
}

4403
/** Unbinds all inactive objects. */
4404
static int
4405
i915_gem_evict_from_inactive_list(struct drm_device *dev)
4406
{
4407
	drm_i915_private_t *dev_priv = dev->dev_private;
4408

4409 4410 4411
	while (!list_empty(&dev_priv->mm.inactive_list)) {
		struct drm_gem_object *obj;
		int ret;
4412

4413 4414 4415
		obj = &list_first_entry(&dev_priv->mm.inactive_list,
					struct drm_i915_gem_object,
					list)->base;
4416 4417 4418

		ret = i915_gem_object_unbind(obj);
		if (ret != 0) {
4419
			DRM_ERROR("Error unbinding object: %d\n", ret);
4420 4421 4422 4423 4424 4425 4426
			return ret;
		}
	}

	return 0;
}

4427 4428 4429 4430 4431
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4432

4433
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4434

4435 4436
	if (dev_priv->mm.suspended ||
			dev_priv->render_ring.gem_object == NULL) {
4437 4438
		mutex_unlock(&dev->struct_mutex);
		return 0;
4439 4440
	}

4441
	ret = i915_gpu_idle(dev);
4442 4443
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4444
		return ret;
4445
	}
4446

4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
		ret = i915_gem_evict_from_inactive_list(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
	del_timer(&dev_priv->hangcheck_timer);

	i915_kernel_lost_context(dev);
4464
	i915_gem_cleanup_ringbuffer(dev);
4465

4466 4467
	mutex_unlock(&dev->struct_mutex);

4468 4469 4470
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4471 4472 4473
	return 0;
}

4474 4475 4476 4477
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4478
static int
4479 4480 4481 4482 4483 4484 4485
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4486
	obj = i915_gem_alloc_object(dev, 4096);
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4517 4518

static void
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4533 4534
}

4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
	dev_priv->render_ring = render_ring;
	if (!I915_NEED_GFX_HWS(dev)) {
		dev_priv->render_ring.status_page.page_addr
			= dev_priv->status_page_dmah->vaddr;
		memset(dev_priv->render_ring.status_page.page_addr,
				0, PAGE_SIZE);
	}
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
	ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4566 4567 4568 4569 4570 4571 4572
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4573 4574 4575
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4576
	if (atomic_read(&dev_priv->mm.wedged)) {
4577
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4578
		atomic_set(&dev_priv->mm.wedged, 0);
4579 4580 4581
	}

	mutex_lock(&dev->struct_mutex);
4582 4583 4584
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4585 4586
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4587
		return ret;
4588
	}
4589

4590
	spin_lock(&dev_priv->mm.active_list_lock);
4591
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4592 4593
	spin_unlock(&dev_priv->mm.active_list_lock);

4594 4595
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4596
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4597
	mutex_unlock(&dev->struct_mutex);
4598 4599 4600

	drm_irq_install(dev);

4601 4602 4603 4604 4605 4606 4607
	return 0;
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4608 4609 4610
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4611
	drm_irq_uninstall(dev);
4612
	return i915_gem_idle(dev);
4613 4614 4615 4616 4617 4618 4619
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4620 4621 4622
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4623 4624 4625
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4626 4627 4628 4629 4630
}

void
i915_gem_load(struct drm_device *dev)
{
4631
	int i;
4632 4633
	drm_i915_private_t *dev_priv = dev->dev_private;

4634
	spin_lock_init(&dev_priv->mm.active_list_lock);
4635
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4636
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4637
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4638
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4639 4640
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4641 4642
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4643 4644
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4645 4646 4647 4648
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4649
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4650 4651
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4652

4653
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4654 4655 4656 4657
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}
4669
	i915_gem_detect_bit_6_swizzle(dev);
4670
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4671
}
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
			      int id, int size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4687
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4688 4689 4690 4691 4692
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4693
	phys_obj->handle = drm_pci_alloc(dev, size, 0);
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4706
	kfree(phys_obj);
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4735
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4747
	obj_priv = to_intel_bo(obj);
4748 4749 4750
	if (!obj_priv->phys_obj)
		return;

4751
	ret = i915_gem_object_get_pages(obj, 0);
4752 4753 4754 4755 4756 4757
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4758
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4759 4760 4761 4762 4763
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4764
	drm_clflush_pages(obj_priv->pages, page_count);
4765
	drm_agp_chipset_flush(dev);
4766 4767

	i915_gem_object_put_pages(obj);
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
			    struct drm_gem_object *obj, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4786
	obj_priv = to_intel_bo(obj);
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}


	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
						obj->size);
		if (ret) {
4800
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4801 4802 4803 4804 4805 4806 4807 4808
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4809
	ret = i915_gem_object_get_pages(obj, 0);
4810 4811 4812 4813 4814 4815 4816 4817
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4818
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4819 4820 4821 4822 4823 4824
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4825 4826
	i915_gem_object_put_pages(obj);

4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4837
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4838 4839 4840 4841 4842 4843 4844
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4845
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4846 4847 4848 4849 4850 4851 4852
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4867

4868 4869 4870 4871 4872 4873 4874 4875
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4876
		      list_empty(&dev_priv->render_ring.active_list);
4877 4878 4879 4880 4881
	spin_unlock(&dev_priv->mm.active_list_lock);

	return !lists_empty;
}

4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
static int
i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4911
rescan:
4912 4913 4914 4915 4916 4917 4918 4919 4920
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4921
		i915_gem_retire_requests(dev, &dev_priv->render_ring);
4922 4923 4924 4925 4926

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4927
				i915_gem_object_unbind(&obj_priv->base);
4928 4929 4930 4931 4932 4933 4934 4935
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4936 4937
		would_deadlock = 0;

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
4956
				i915_gem_object_unbind(&obj_priv->base);
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}