i915_gem.c 161.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
M
Matthew Auld 已提交
38
#include "i915_gemfs.h"
39
#include <linux/dma-fence-array.h>
40
#include <linux/kthread.h>
41
#include <linux/reservation.h>
42
#include <linux/shmem_fs.h>
43
#include <linux/slab.h>
44
#include <linux/stop_machine.h>
45
#include <linux/swap.h>
J
Jesse Barnes 已提交
46
#include <linux/pci.h>
47
#include <linux/dma-buf.h>
48

49
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50

51 52
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
53
	if (obj->cache_dirty)
54 55
		return false;

56
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 58
		return true;

59
	return obj->pin_global; /* currently in use by HW, keep flushed */
60 61
}

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67 68 69 70
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81
				  u64 size)
82
{
83
	spin_lock(&dev_priv->mm.object_stat_lock);
84 85
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
86
	spin_unlock(&dev_priv->mm.object_stat_lock);
87 88 89
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90
				     u64 size)
91
{
92
	spin_lock(&dev_priv->mm.object_stat_lock);
93 94
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
95
	spin_unlock(&dev_priv->mm.object_stat_lock);
96 97
}

98
static int
99
i915_gem_wait_for_error(struct i915_gpu_error *error)
100 101 102
{
	int ret;

103 104
	might_sleep();

105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
110
	ret = wait_event_interruptible_timeout(error->reset_queue,
111
					       !i915_reset_backoff(error),
112
					       I915_RESET_TIMEOUT);
113 114 115 116
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
117
		return ret;
118 119
	} else {
		return 0;
120
	}
121 122
}

123
int i915_mutex_lock_interruptible(struct drm_device *dev)
124
{
125
	struct drm_i915_private *dev_priv = to_i915(dev);
126 127
	int ret;

128
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 130 131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
	i915_gem_timelines_park(i915);

	i915_pmu_gt_parked(i915);

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

233 234
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
235
			    struct drm_file *file)
236
{
237
	struct drm_i915_private *dev_priv = to_i915(dev);
238
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
239
	struct drm_i915_gem_get_aperture *args = data;
240
	struct i915_vma *vma;
241
	u64 pinned;
242

243
	pinned = ggtt->base.reserved;
244
	mutex_lock(&dev->struct_mutex);
245
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
246
		if (i915_vma_is_pinned(vma))
247
			pinned += vma->node.size;
248
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
249
		if (i915_vma_is_pinned(vma))
250
			pinned += vma->node.size;
251
	mutex_unlock(&dev->struct_mutex);
252

253
	args->aper_size = ggtt->base.total;
254
	args->aper_available_size = args->aper_size - pinned;
255

256 257 258
	return 0;
}

259
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
260
{
261
	struct address_space *mapping = obj->base.filp->f_mapping;
262
	drm_dma_handle_t *phys;
263 264
	struct sg_table *st;
	struct scatterlist *sg;
265
	char *vaddr;
266
	int i;
267
	int err;
268

269
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
270
		return -EINVAL;
271

272 273 274 275 276
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
277
			     roundup_pow_of_two(obj->base.size),
278 279
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
280
		return -ENOMEM;
281 282

	vaddr = phys->vaddr;
283 284 285 286 287
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
288
		if (IS_ERR(page)) {
289
			err = PTR_ERR(page);
290 291
			goto err_phys;
		}
292 293 294 295 296 297

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

298
		put_page(page);
299 300 301
		vaddr += PAGE_SIZE;
	}

302
	i915_gem_chipset_flush(to_i915(obj->base.dev));
303 304

	st = kmalloc(sizeof(*st), GFP_KERNEL);
305
	if (!st) {
306
		err = -ENOMEM;
307 308
		goto err_phys;
	}
309 310 311

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
312
		err = -ENOMEM;
313
		goto err_phys;
314 315 316 317 318
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
319

320
	sg_dma_address(sg) = phys->busaddr;
321 322
	sg_dma_len(sg) = obj->base.size;

323
	obj->phys_handle = phys;
324

325
	__i915_gem_object_set_pages(obj, st, sg->length);
326 327

	return 0;
328 329 330

err_phys:
	drm_pci_free(obj->base.dev, phys);
331 332

	return err;
333 334
}

335 336
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
337 338
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
339 340 341 342
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

343
static void
344
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
345 346
				struct sg_table *pages,
				bool needs_clflush)
347
{
C
Chris Wilson 已提交
348
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
349

C
Chris Wilson 已提交
350 351
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
352

353
	if (needs_clflush &&
354
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
355
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
356
		drm_clflush_sg(pages);
357

358
	__start_cpu_write(obj);
359 360 361 362 363 364
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
365
	__i915_gem_object_release_shmem(obj, pages, false);
366

C
Chris Wilson 已提交
367
	if (obj->mm.dirty) {
368
		struct address_space *mapping = obj->base.filp->f_mapping;
369
		char *vaddr = obj->phys_handle->vaddr;
370 371 372
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
373 374 375 376 377 378 379 380 381 382 383 384 385
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
386
			if (obj->mm.madv == I915_MADV_WILLNEED)
387
				mark_page_accessed(page);
388
			put_page(page);
389 390
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
391
		obj->mm.dirty = false;
392 393
	}

394 395
	sg_free_table(pages);
	kfree(pages);
396 397

	drm_pci_free(obj->base.dev, obj->phys_handle);
398 399 400 401 402
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
403
	i915_gem_object_unpin_pages(obj);
404 405 406 407 408 409 410 411
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

412 413
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

414
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
415 416 417
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
418 419 420
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
421

422 423 424 425
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
426
	 */
427
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
428 429 430
	if (ret)
		return ret;

431 432 433 434 435 436 437 438 439 440 441 442 443
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

444 445 446 447
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
448
			   struct intel_rps_client *rps_client)
449
{
450
	struct i915_request *rq;
451

452
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
453

454 455 456 457 458 459 460 461 462
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
463
	if (i915_request_completed(rq))
464 465
		goto out;

466 467
	/*
	 * This client is about to stall waiting for the GPU. In many cases
468 469 470 471 472 473 474 475 476 477 478 479 480 481
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
482
	if (rps_client && !i915_request_started(rq)) {
483
		if (INTEL_GEN(rq->i915) >= 6)
484
			gen6_rps_boost(rq, rps_client);
485 486
	}

487
	timeout = i915_request_wait(rq, flags, timeout);
488 489

out:
490 491
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
492 493 494 495 496 497 498 499

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
500
				 struct intel_rps_client *rps_client)
501
{
502
	unsigned int seq = __read_seqcount_begin(&resv->seq);
503
	struct dma_fence *excl;
504
	bool prune_fences = false;
505 506 507 508

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
509 510
		int ret;

511 512
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
513 514 515
		if (ret)
			return ret;

516 517 518
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
519
							     rps_client);
520
			if (timeout < 0)
521
				break;
522

523 524 525 526 527 528
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
529

530 531 532 533 534 535 536 537 538
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
539
		prune_fences = count && timeout >= 0;
540 541
	} else {
		excl = reservation_object_get_excl_rcu(resv);
542 543
	}

544
	if (excl && timeout >= 0)
545 546
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
547 548 549

	dma_fence_put(excl);

550 551
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
552 553 554
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
555
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
556 557 558 559 560
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
561 562
	}

563
	return timeout;
564 565
}

566 567
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
568
	struct i915_request *rq;
569 570
	struct intel_engine_cs *engine;

571
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
572 573 574 575 576
		return;

	rq = to_request(fence);
	engine = rq->engine;

577 578 579 580
	rcu_read_lock();
	if (engine->schedule)
		engine->schedule(rq, prio);
	rcu_read_unlock();
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

631 632 633 634 635
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
636
 * @rps_client: client (user process) to charge for any waitboosting
637
 */
638 639 640 641
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
642
		     struct intel_rps_client *rps_client)
643
{
644 645 646 647 648 649 650
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
651

652 653
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
654
						   rps_client);
655
	return timeout < 0 ? timeout : 0;
656 657 658 659 660 661
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

662
	return &fpriv->rps_client;
663 664
}

665 666 667
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
668
		     struct drm_file *file)
669 670
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
671
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
672 673 674 675

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
676
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
677 678
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
679

680
	drm_clflush_virt_range(vaddr, args->size);
681
	i915_gem_chipset_flush(to_i915(obj->base.dev));
682

683
	intel_fb_obj_flush(obj, ORIGIN_CPU);
684
	return 0;
685 686
}

687
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
688
{
689
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
690 691 692 693
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
694
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
695
	kmem_cache_free(dev_priv->objects, obj);
696 697
}

698 699
static int
i915_gem_create(struct drm_file *file,
700
		struct drm_i915_private *dev_priv,
701 702
		uint64_t size,
		uint32_t *handle_p)
703
{
704
	struct drm_i915_gem_object *obj;
705 706
	int ret;
	u32 handle;
707

708
	size = roundup(size, PAGE_SIZE);
709 710
	if (size == 0)
		return -EINVAL;
711 712

	/* Allocate the new object */
713
	obj = i915_gem_object_create(dev_priv, size);
714 715
	if (IS_ERR(obj))
		return PTR_ERR(obj);
716

717
	ret = drm_gem_handle_create(file, &obj->base, &handle);
718
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
719
	i915_gem_object_put(obj);
720 721
	if (ret)
		return ret;
722

723
	*handle_p = handle;
724 725 726
	return 0;
}

727 728 729 730 731 732
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
733
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
734
	args->size = args->pitch * args->height;
735
	return i915_gem_create(file, to_i915(dev),
736
			       args->size, &args->handle);
737 738
}

739 740 741 742 743 744
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

745 746
/**
 * Creates a new mm object and returns a handle to it.
747 748 749
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
750 751 752 753 754
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
755
	struct drm_i915_private *dev_priv = to_i915(dev);
756
	struct drm_i915_gem_create *args = data;
757

758
	i915_gem_flush_free_objects(dev_priv);
759

760
	return i915_gem_create(file, dev_priv,
761
			       args->size, &args->handle);
762 763
}

764 765 766 767 768 769 770
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

771
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
772
{
773 774 775 776 777
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
778 779 780 781 782 783 784 785 786 787
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
788 789
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
790
	 */
791

792 793
	wmb();

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

809
	if (!(obj->write_domain & flush_domains))
810 811
		return;

812
	switch (obj->write_domain) {
813
	case I915_GEM_DOMAIN_GTT:
814
		i915_gem_flush_ggtt_writes(dev_priv);
815 816 817

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
818

819
		for_each_ggtt_vma(vma, obj) {
820 821 822 823 824
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
825 826 827 828 829
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
830 831 832 833 834

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
835 836
	}

837
	obj->write_domain = 0;
838 839
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

866
static inline int
867 868
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

892 893 894 895 896 897
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
898
				    unsigned int *needs_clflush)
899 900 901
{
	int ret;

902
	lockdep_assert_held(&obj->base.dev->struct_mutex);
903

904
	*needs_clflush = 0;
905 906
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
907

908 909 910 911 912
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
913 914 915
	if (ret)
		return ret;

C
Chris Wilson 已提交
916
	ret = i915_gem_object_pin_pages(obj);
917 918 919
	if (ret)
		return ret;

920 921
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
922 923 924 925 926 927 928
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

929
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
930

931 932 933 934 935
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
936
	if (!obj->cache_dirty &&
937
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
938
		*needs_clflush = CLFLUSH_BEFORE;
939

940
out:
941
	/* return with the pages pinned */
942
	return 0;
943 944 945 946

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
947 948 949 950 951 952 953
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

954 955
	lockdep_assert_held(&obj->base.dev->struct_mutex);

956 957 958 959
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

960 961 962 963 964 965
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
966 967 968
	if (ret)
		return ret;

C
Chris Wilson 已提交
969
	ret = i915_gem_object_pin_pages(obj);
970 971 972
	if (ret)
		return ret;

973 974
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
975 976 977 978 979 980 981
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

982
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
983

984 985 986 987 988
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
989
	if (!obj->cache_dirty) {
990
		*needs_clflush |= CLFLUSH_AFTER;
991

992 993 994 995
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
996
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
997 998
			*needs_clflush |= CLFLUSH_BEFORE;
	}
999

1000
out:
1001
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1002
	obj->mm.dirty = true;
1003
	/* return with the pages pinned */
1004
	return 0;
1005 1006 1007 1008

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1009 1010
}

1011 1012 1013 1014
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1015
	if (unlikely(swizzled)) {
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1033 1034 1035
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1036
shmem_pread_slow(struct page *page, int offset, int length,
1037 1038 1039 1040 1041 1042 1043 1044
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1045
		shmem_clflush_swizzled_range(vaddr + offset, length,
1046
					     page_do_bit17_swizzling);
1047 1048

	if (page_do_bit17_swizzling)
1049
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1050
	else
1051
		ret = __copy_to_user(user_data, vaddr + offset, length);
1052 1053
	kunmap(page);

1054
	return ret ? - EFAULT : 0;
1055 1056
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1133
{
1134
	void __iomem *vaddr;
1135
	unsigned long unwritten;
1136 1137

	/* We can use the cpu mem copy function because this is X86. */
1138 1139 1140 1141
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1142 1143
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1144 1145 1146 1147
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1148 1149
		io_mapping_unmap(vaddr);
	}
1150 1151 1152 1153
	return unwritten;
}

static int
1154 1155
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1156
{
1157 1158
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1159
	struct drm_mm_node node;
1160 1161 1162
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1163 1164
	int ret;

1165 1166 1167 1168 1169 1170
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1171 1172 1173
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1174 1175 1176
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1177
		ret = i915_vma_put_fence(vma);
1178 1179 1180 1181 1182
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1183
	if (IS_ERR(vma)) {
1184
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1185
		if (ret)
1186 1187
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1188 1189 1190 1191 1192 1193
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1194
	mutex_unlock(&i915->drm.struct_mutex);
1195

1196 1197 1198
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1215
					       node.start, I915_CACHE_NONE, 0);
1216 1217 1218 1219
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1220

1221
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1222
				  user_data, page_length)) {
1223 1224 1225 1226 1227 1228 1229 1230 1231
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1232
	mutex_lock(&i915->drm.struct_mutex);
1233 1234 1235 1236
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1237
				       node.start, node.size);
1238 1239
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1240
		i915_vma_unpin(vma);
1241
	}
1242 1243 1244
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1245

1246 1247 1248
	return ret;
}

1249 1250
/**
 * Reads data from the object referenced by handle.
1251 1252 1253
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1254 1255 1256 1257 1258
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1259
		     struct drm_file *file)
1260 1261
{
	struct drm_i915_gem_pread *args = data;
1262
	struct drm_i915_gem_object *obj;
1263
	int ret;
1264

1265 1266 1267 1268
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1269
		       u64_to_user_ptr(args->data_ptr),
1270 1271 1272
		       args->size))
		return -EFAULT;

1273
	obj = i915_gem_object_lookup(file, args->handle);
1274 1275
	if (!obj)
		return -ENOENT;
1276

1277
	/* Bounds check source.  */
1278
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1279
		ret = -EINVAL;
1280
		goto out;
C
Chris Wilson 已提交
1281 1282
	}

C
Chris Wilson 已提交
1283 1284
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1285 1286 1287 1288
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1289
	if (ret)
1290
		goto out;
1291

1292
	ret = i915_gem_object_pin_pages(obj);
1293
	if (ret)
1294
		goto out;
1295

1296
	ret = i915_gem_shmem_pread(obj, args);
1297
	if (ret == -EFAULT || ret == -ENODEV)
1298
		ret = i915_gem_gtt_pread(obj, args);
1299

1300 1301
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1302
	i915_gem_object_put(obj);
1303
	return ret;
1304 1305
}

1306 1307
/* This is the fast write path which cannot handle
 * page faults in the source data
1308
 */
1309

1310 1311 1312 1313
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1314
{
1315
	void __iomem *vaddr;
1316
	unsigned long unwritten;
1317

1318
	/* We can use the cpu mem copy function because this is X86. */
1319 1320
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1321
						      user_data, length);
1322 1323
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1324 1325 1326
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1327 1328
		io_mapping_unmap(vaddr);
	}
1329 1330 1331 1332

	return unwritten;
}

1333 1334 1335
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1336
 * @obj: i915 GEM object
1337
 * @args: pwrite arguments structure
1338
 */
1339
static int
1340 1341
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1342
{
1343
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1344 1345
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1346 1347 1348
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1349
	int ret;
1350

1351 1352 1353
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1372
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1373 1374 1375
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1376 1377 1378
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1379
		ret = i915_vma_put_fence(vma);
1380 1381 1382 1383 1384
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1385
	if (IS_ERR(vma)) {
1386
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1387
		if (ret)
1388
			goto out_rpm;
1389
		GEM_BUG_ON(!node.allocated);
1390
	}
D
Daniel Vetter 已提交
1391 1392 1393 1394 1395

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1396 1397
	mutex_unlock(&i915->drm.struct_mutex);

1398
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1399

1400 1401 1402 1403
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1404 1405
		/* Operation in this page
		 *
1406 1407 1408
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1409
		 */
1410
		u32 page_base = node.start;
1411 1412
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1423
		/* If we get a fault while copying data, then (presumably) our
1424 1425
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1426 1427
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1428
		 */
1429
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1430 1431 1432
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1433
		}
1434

1435 1436 1437
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1438
	}
1439
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1440 1441

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1442
out_unpin:
1443 1444 1445
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1446
				       node.start, node.size);
1447 1448
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1449
		i915_vma_unpin(vma);
1450
	}
1451
out_rpm:
1452
	intel_runtime_pm_put(i915);
1453
out_unlock:
1454
	mutex_unlock(&i915->drm.struct_mutex);
1455
	return ret;
1456 1457
}

1458
static int
1459
shmem_pwrite_slow(struct page *page, int offset, int length,
1460 1461 1462 1463
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1464
{
1465 1466
	char *vaddr;
	int ret;
1467

1468
	vaddr = kmap(page);
1469
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1470
		shmem_clflush_swizzled_range(vaddr + offset, length,
1471
					     page_do_bit17_swizzling);
1472
	if (page_do_bit17_swizzling)
1473 1474
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1475
	else
1476
		ret = __copy_from_user(vaddr + offset, user_data, length);
1477
	if (needs_clflush_after)
1478
		shmem_clflush_swizzled_range(vaddr + offset, length,
1479
					     page_do_bit17_swizzling);
1480
	kunmap(page);
1481

1482
	return ret ? -EFAULT : 0;
1483 1484
}

1485 1486 1487 1488 1489
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1490
static int
1491 1492 1493 1494
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1495
{
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1528
	unsigned int needs_clflush;
1529 1530
	unsigned int offset, idx;
	int ret;
1531

1532
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1533 1534 1535
	if (ret)
		return ret;

1536 1537 1538 1539
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1540

1541 1542 1543
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1544

1545 1546 1547 1548 1549 1550 1551
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1552

1553 1554 1555 1556 1557 1558
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1559

1560 1561 1562
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1563

1564 1565 1566 1567
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1568
		if (ret)
1569
			break;
1570

1571 1572 1573
		remain -= length;
		user_data += length;
		offset = 0;
1574
	}
1575

1576
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1577
	i915_gem_obj_finish_shmem_access(obj);
1578
	return ret;
1579 1580 1581 1582
}

/**
 * Writes data to the object referenced by handle.
1583 1584 1585
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1586 1587 1588 1589 1590
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1591
		      struct drm_file *file)
1592 1593
{
	struct drm_i915_gem_pwrite *args = data;
1594
	struct drm_i915_gem_object *obj;
1595 1596 1597 1598 1599 1600
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1601
		       u64_to_user_ptr(args->data_ptr),
1602 1603 1604
		       args->size))
		return -EFAULT;

1605
	obj = i915_gem_object_lookup(file, args->handle);
1606 1607
	if (!obj)
		return -ENOENT;
1608

1609
	/* Bounds check destination. */
1610
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1611
		ret = -EINVAL;
1612
		goto err;
C
Chris Wilson 已提交
1613 1614
	}

C
Chris Wilson 已提交
1615 1616
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1617 1618 1619 1620 1621 1622
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1623 1624 1625 1626 1627
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1628 1629 1630
	if (ret)
		goto err;

1631
	ret = i915_gem_object_pin_pages(obj);
1632
	if (ret)
1633
		goto err;
1634

D
Daniel Vetter 已提交
1635
	ret = -EFAULT;
1636 1637 1638 1639 1640 1641
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1642
	if (!i915_gem_object_has_struct_page(obj) ||
1643
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1644 1645
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1646 1647
		 * textures). Fallback to the shmem path in that case.
		 */
1648
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1649

1650
	if (ret == -EFAULT || ret == -ENOSPC) {
1651 1652
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1653
		else
1654
			ret = i915_gem_shmem_pwrite(obj, args);
1655
	}
1656

1657
	i915_gem_object_unpin_pages(obj);
1658
err:
C
Chris Wilson 已提交
1659
	i915_gem_object_put(obj);
1660
	return ret;
1661 1662
}

1663 1664 1665 1666 1667 1668
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1669 1670
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1671
	for_each_ggtt_vma(vma, obj) {
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1682
	spin_lock(&i915->mm.obj_lock);
1683
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1684 1685
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1686 1687
}

1688
/**
1689 1690
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1691 1692 1693
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1694 1695 1696
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1697
			  struct drm_file *file)
1698 1699
{
	struct drm_i915_gem_set_domain *args = data;
1700
	struct drm_i915_gem_object *obj;
1701 1702
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1703
	int err;
1704

1705
	/* Only handle setting domains to types used by the CPU. */
1706
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1707 1708 1709 1710 1711 1712 1713 1714
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1715
	obj = i915_gem_object_lookup(file, args->handle);
1716 1717
	if (!obj)
		return -ENOENT;
1718

1719 1720 1721 1722
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1723
	err = i915_gem_object_wait(obj,
1724 1725 1726 1727
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1728
	if (err)
C
Chris Wilson 已提交
1729
		goto out;
1730

T
Tina Zhang 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1744 1745 1746 1747 1748 1749 1750 1751 1752
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1753
		goto out;
1754 1755 1756

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1757
		goto out_unpin;
1758

1759 1760 1761 1762
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1763
	else
1764
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1765

1766 1767
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1768

1769
	mutex_unlock(&dev->struct_mutex);
1770

1771
	if (write_domain != 0)
1772 1773
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1774

C
Chris Wilson 已提交
1775
out_unpin:
1776
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1777 1778
out:
	i915_gem_object_put(obj);
1779
	return err;
1780 1781 1782 1783
}

/**
 * Called when user space has done writes to this buffer
1784 1785 1786
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1787 1788 1789
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1790
			 struct drm_file *file)
1791 1792
{
	struct drm_i915_gem_sw_finish *args = data;
1793
	struct drm_i915_gem_object *obj;
1794

1795
	obj = i915_gem_object_lookup(file, args->handle);
1796 1797
	if (!obj)
		return -ENOENT;
1798

T
Tina Zhang 已提交
1799 1800 1801 1802 1803
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1804
	/* Pinned buffers may be scanout, so flush the cache */
1805
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1806
	i915_gem_object_put(obj);
1807 1808

	return 0;
1809 1810 1811
}

/**
1812 1813 1814 1815 1816
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1817 1818 1819
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1830 1831 1832
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1833
		    struct drm_file *file)
1834 1835
{
	struct drm_i915_gem_mmap *args = data;
1836
	struct drm_i915_gem_object *obj;
1837 1838
	unsigned long addr;

1839 1840 1841
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1842
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1843 1844
		return -ENODEV;

1845 1846
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1847
		return -ENOENT;
1848

1849 1850 1851
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1852
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1853
		i915_gem_object_put(obj);
1854
		return -ENXIO;
1855 1856
	}

1857
	addr = vm_mmap(obj->base.filp, 0, args->size,
1858 1859
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1860 1861 1862 1863
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1864
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1865
			i915_gem_object_put(obj);
1866 1867
			return -EINTR;
		}
1868 1869 1870 1871 1872 1873 1874
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1875 1876

		/* This may race, but that's ok, it only gets set */
1877
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1878
	}
C
Chris Wilson 已提交
1879
	i915_gem_object_put(obj);
1880 1881 1882 1883 1884 1885 1886 1887
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1888 1889
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1890
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1891 1892
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1913 1914 1915
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1943
	return 2;
1944 1945
}

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1957 1958
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1959
		min_t(unsigned int, chunk,
1960
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1961 1962 1963 1964 1965 1966 1967 1968

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1969 1970
/**
 * i915_gem_fault - fault a page into the GTT
1971
 * @vmf: fault info
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1983 1984 1985
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1986
 */
1987
int i915_gem_fault(struct vm_fault *vmf)
1988
{
1989
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1990
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1991
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1992
	struct drm_device *dev = obj->base.dev;
1993 1994
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1995
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1996
	struct i915_vma *vma;
1997
	pgoff_t page_offset;
1998
	unsigned int flags;
1999
	int ret;
2000

2001
	/* We don't use vmf->pgoff since that has the fake offset */
2002
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2003

C
Chris Wilson 已提交
2004 2005
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2006
	/* Try to flush the object off the GPU first without holding the lock.
2007
	 * Upon acquiring the lock, we will perform our sanity checks and then
2008 2009 2010
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2011 2012 2013 2014
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2015
	if (ret)
2016 2017
		goto err;

2018 2019 2020 2021
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2022 2023 2024 2025 2026
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2027

2028
	/* Access to snoopable pages through the GTT is incoherent. */
2029
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2030
		ret = -EFAULT;
2031
		goto err_unlock;
2032 2033
	}

2034 2035 2036 2037 2038 2039 2040 2041
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

2042
	/* Now pin it into the GTT as needed */
2043
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2044 2045
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2046
		struct i915_ggtt_view view =
2047
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2048

2049 2050 2051 2052 2053
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2054 2055
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
2056 2057
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2058
		goto err_unlock;
C
Chris Wilson 已提交
2059
	}
2060

2061 2062
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2063
		goto err_unpin;
2064

2065
	ret = i915_vma_pin_fence(vma);
2066
	if (ret)
2067
		goto err_unpin;
2068

2069
	/* Finally, remap it using the new GTT offset */
2070
	ret = remap_io_mapping(area,
2071
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2072
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2073
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2074
			       &ggtt->iomap);
2075 2076
	if (ret)
		goto err_fence;
2077

2078 2079 2080 2081 2082 2083
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2084 2085
	i915_vma_set_ggtt_write(vma);

2086
err_fence:
2087
	i915_vma_unpin_fence(vma);
2088
err_unpin:
C
Chris Wilson 已提交
2089
	__i915_vma_unpin(vma);
2090
err_unlock:
2091
	mutex_unlock(&dev->struct_mutex);
2092 2093
err_rpm:
	intel_runtime_pm_put(dev_priv);
2094
	i915_gem_object_unpin_pages(obj);
2095
err:
2096
	switch (ret) {
2097
	case -EIO:
2098 2099 2100 2101 2102 2103 2104
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2105 2106 2107
			ret = VM_FAULT_SIGBUS;
			break;
		}
2108
	case -EAGAIN:
D
Daniel Vetter 已提交
2109 2110 2111 2112
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2113
		 */
2114 2115
	case 0:
	case -ERESTARTSYS:
2116
	case -EINTR:
2117 2118 2119 2120 2121
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2122 2123
		ret = VM_FAULT_NOPAGE;
		break;
2124
	case -ENOMEM:
2125 2126
		ret = VM_FAULT_OOM;
		break;
2127
	case -ENOSPC:
2128
	case -EFAULT:
2129 2130
		ret = VM_FAULT_SIGBUS;
		break;
2131
	default:
2132
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2133 2134
		ret = VM_FAULT_SIGBUS;
		break;
2135
	}
2136
	return ret;
2137 2138
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2150
	for_each_ggtt_vma(vma, obj)
2151 2152 2153
		i915_vma_unset_userfault(vma);
}

2154 2155 2156 2157
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2158
 * Preserve the reservation of the mmapping with the DRM core code, but
2159 2160 2161 2162 2163 2164 2165 2166 2167
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2168
void
2169
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2170
{
2171 2172
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2173 2174 2175
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2176 2177 2178 2179
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2180
	 */
2181
	lockdep_assert_held(&i915->drm.struct_mutex);
2182
	intel_runtime_pm_get(i915);
2183

2184
	if (!obj->userfault_count)
2185
		goto out;
2186

2187
	__i915_gem_object_release_mmap(obj);
2188 2189 2190 2191 2192 2193 2194 2195 2196

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2197 2198 2199

out:
	intel_runtime_pm_put(i915);
2200 2201
}

2202
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2203
{
2204
	struct drm_i915_gem_object *obj, *on;
2205
	int i;
2206

2207 2208 2209 2210 2211 2212
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2213

2214
	list_for_each_entry_safe(obj, on,
2215 2216
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2217 2218 2219 2220 2221 2222 2223 2224

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2235 2236 2237 2238

		if (!reg->vma)
			continue;

2239
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2240 2241
		reg->dirty = true;
	}
2242 2243
}

2244 2245
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2246
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2247
	int err;
2248

2249
	err = drm_gem_create_mmap_offset(&obj->base);
2250
	if (likely(!err))
2251
		return 0;
2252

2253 2254 2255 2256 2257
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2258

2259
		i915_gem_drain_freed_objects(dev_priv);
2260
		err = drm_gem_create_mmap_offset(&obj->base);
2261 2262 2263 2264
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2265

2266
	return err;
2267 2268 2269 2270 2271 2272 2273
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2274
int
2275 2276
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2277
		  uint32_t handle,
2278
		  uint64_t *offset)
2279
{
2280
	struct drm_i915_gem_object *obj;
2281 2282
	int ret;

2283
	obj = i915_gem_object_lookup(file, handle);
2284 2285
	if (!obj)
		return -ENOENT;
2286

2287
	ret = i915_gem_object_create_mmap_offset(obj);
2288 2289
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2290

C
Chris Wilson 已提交
2291
	i915_gem_object_put(obj);
2292
	return ret;
2293 2294
}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2316
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2317 2318
}

D
Daniel Vetter 已提交
2319 2320 2321
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2322
{
2323
	i915_gem_object_free_mmap_offset(obj);
2324

2325 2326
	if (obj->base.filp == NULL)
		return;
2327

D
Daniel Vetter 已提交
2328 2329 2330 2331 2332
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2333
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2334
	obj->mm.madv = __I915_MADV_PURGED;
2335
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2336
}
2337

2338
/* Try to discard unwanted pages */
2339
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2340
{
2341 2342
	struct address_space *mapping;

2343
	lockdep_assert_held(&obj->mm.lock);
2344
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2345

C
Chris Wilson 已提交
2346
	switch (obj->mm.madv) {
2347 2348 2349 2350 2351 2352 2353 2354 2355
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2356
	mapping = obj->base.filp->f_mapping,
2357
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2358 2359
}

2360
static void
2361 2362
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2363
{
2364 2365
	struct sgt_iter sgt_iter;
	struct page *page;
2366

2367
	__i915_gem_object_release_shmem(obj, pages, true);
2368

2369
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2370

2371
	if (i915_gem_object_needs_bit17_swizzle(obj))
2372
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2373

2374
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2375
		if (obj->mm.dirty)
2376
			set_page_dirty(page);
2377

C
Chris Wilson 已提交
2378
		if (obj->mm.madv == I915_MADV_WILLNEED)
2379
			mark_page_accessed(page);
2380

2381
		put_page(page);
2382
	}
C
Chris Wilson 已提交
2383
	obj->mm.dirty = false;
2384

2385 2386
	sg_free_table(pages);
	kfree(pages);
2387
}
C
Chris Wilson 已提交
2388

2389 2390 2391
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2392
	void __rcu **slot;
2393

2394
	rcu_read_lock();
C
Chris Wilson 已提交
2395 2396
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2397
	rcu_read_unlock();
2398 2399
}

2400 2401
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2402
{
2403
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2404
	struct sg_table *pages;
2405

C
Chris Wilson 已提交
2406
	if (i915_gem_object_has_pinned_pages(obj))
2407
		return;
2408

2409
	GEM_BUG_ON(obj->bind_count);
2410
	if (!i915_gem_object_has_pages(obj))
2411 2412 2413
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2414
	mutex_lock_nested(&obj->mm.lock, subclass);
2415 2416
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2417

2418 2419 2420
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2421 2422
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2423

2424 2425 2426 2427
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2428
	if (obj->mm.mapping) {
2429 2430
		void *ptr;

2431
		ptr = page_mask_bits(obj->mm.mapping);
2432 2433
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2434
		else
2435 2436
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2437
		obj->mm.mapping = NULL;
2438 2439
	}

2440 2441
	__i915_gem_object_reset_page_iter(obj);

2442 2443 2444
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2445 2446
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2447 2448
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2449 2450
}

2451
static bool i915_sg_trim(struct sg_table *orig_st)
2452 2453 2454 2455 2456 2457
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2458
		return false;
2459

2460
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2461
		return false;
2462 2463 2464 2465 2466 2467 2468

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2469
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2470 2471 2472 2473

	sg_free_table(orig_st);

	*orig_st = new_st;
2474
	return true;
2475 2476
}

2477
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2478
{
2479
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2480 2481
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2482
	struct address_space *mapping;
2483 2484
	struct sg_table *st;
	struct scatterlist *sg;
2485
	struct sgt_iter sgt_iter;
2486
	struct page *page;
2487
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2488
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2489
	unsigned int sg_page_sizes;
2490
	gfp_t noreclaim;
I
Imre Deak 已提交
2491
	int ret;
2492

C
Chris Wilson 已提交
2493 2494 2495 2496
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2497 2498
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2499

2500 2501
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2502
		return -ENOMEM;
2503

2504
rebuild_st:
2505 2506
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2507
		return -ENOMEM;
2508
	}
2509

2510 2511 2512 2513 2514
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2515
	mapping = obj->base.filp->f_mapping;
2516
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2517 2518
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2519 2520
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2521
	sg_page_sizes = 0;
2522
	for (i = 0; i < page_count; i++) {
2523 2524 2525 2526 2527 2528 2529
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2530
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2531 2532 2533 2534 2535 2536 2537 2538
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2539
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2540
			cond_resched();
2541

C
Chris Wilson 已提交
2542 2543 2544
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2545 2546 2547 2548
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2549
			 */
2550 2551 2552
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2565
				 * this we want __GFP_RETRY_MAYFAIL.
2566
				 */
M
Michal Hocko 已提交
2567
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2568
			}
2569 2570
		} while (1);

2571 2572 2573
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2574
			if (i) {
M
Matthew Auld 已提交
2575
				sg_page_sizes |= sg->length;
2576
				sg = sg_next(sg);
2577
			}
2578 2579 2580 2581 2582 2583
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2584 2585 2586

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2587
	}
2588
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2589
		sg_page_sizes |= sg->length;
2590
		sg_mark_end(sg);
2591
	}
2592

2593 2594 2595
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2596
	ret = i915_gem_gtt_prepare_pages(obj, st);
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2616

2617
	if (i915_gem_object_needs_bit17_swizzle(obj))
2618
		i915_gem_object_do_bit_17_swizzle(obj, st);
2619

M
Matthew Auld 已提交
2620
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2621 2622

	return 0;
2623

2624
err_sg:
2625
	sg_mark_end(sg);
2626
err_pages:
2627 2628
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2629 2630
	sg_free_table(st);
	kfree(st);
2631 2632 2633 2634 2635 2636 2637 2638 2639

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2640 2641 2642
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2643
	return ret;
2644 2645 2646
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2647
				 struct sg_table *pages,
M
Matthew Auld 已提交
2648
				 unsigned int sg_page_sizes)
2649
{
2650 2651 2652 2653
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2654
	lockdep_assert_held(&obj->mm.lock);
2655 2656 2657 2658 2659

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2660 2661

	if (i915_gem_object_is_tiled(obj) &&
2662
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2663 2664 2665 2666
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2667

M
Matthew Auld 已提交
2668 2669
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2670 2671

	/*
M
Matthew Auld 已提交
2672 2673 2674 2675 2676 2677
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2678 2679 2680 2681 2682 2683 2684
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2685 2686 2687 2688

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2689 2690 2691 2692
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2693
	int err;
2694 2695 2696 2697 2698 2699

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2700
	err = obj->ops->get_pages(obj);
2701
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2702

2703
	return err;
2704 2705
}

2706
/* Ensure that the associated pages are gathered from the backing storage
2707
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2708
 * multiple times before they are released by a single call to
2709
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2710 2711 2712
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2713
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2714
{
2715
	int err;
2716

2717 2718 2719
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2720

2721
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2722 2723
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2724 2725 2726
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2727

2728 2729 2730
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2731

2732 2733
unlock:
	mutex_unlock(&obj->mm.lock);
2734
	return err;
2735 2736
}

2737
/* The 'mapping' part of i915_gem_object_pin_map() below */
2738 2739
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2740 2741
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2742
	struct sg_table *sgt = obj->mm.pages;
2743 2744
	struct sgt_iter sgt_iter;
	struct page *page;
2745 2746
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2747
	unsigned long i = 0;
2748
	pgprot_t pgprot;
2749 2750 2751
	void *addr;

	/* A single page can always be kmapped */
2752
	if (n_pages == 1 && type == I915_MAP_WB)
2753 2754
		return kmap(sg_page(sgt->sgl));

2755 2756
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2757
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2758 2759 2760
		if (!pages)
			return NULL;
	}
2761

2762 2763
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2764 2765 2766 2767

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2768
	switch (type) {
2769 2770 2771
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2772 2773 2774 2775 2776 2777 2778 2779
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2780

2781
	if (pages != stack_pages)
M
Michal Hocko 已提交
2782
		kvfree(pages);
2783 2784 2785 2786 2787

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2788 2789
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2790
{
2791 2792 2793
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2794 2795
	int ret;

T
Tina Zhang 已提交
2796 2797
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2798

2799
	ret = mutex_lock_interruptible(&obj->mm.lock);
2800 2801 2802
	if (ret)
		return ERR_PTR(ret);

2803 2804 2805
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2806
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2807
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2808 2809
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2810 2811 2812
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2813

2814 2815 2816
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2817 2818
		pinned = false;
	}
2819
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2820

2821
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2822 2823 2824
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2825
			goto err_unpin;
2826
		}
2827 2828 2829 2830 2831 2832

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2833
		ptr = obj->mm.mapping = NULL;
2834 2835
	}

2836 2837 2838 2839
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2840
			goto err_unpin;
2841 2842
		}

2843
		obj->mm.mapping = page_pack_bits(ptr, type);
2844 2845
	}

2846 2847
out_unlock:
	mutex_unlock(&obj->mm.lock);
2848 2849
	return ptr;

2850 2851 2852 2853 2854
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2855 2856
}

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2874
	if (i915_gem_object_has_pages(obj))
2875 2876
		return -ENODEV;

2877 2878 2879
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2929
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2930
{
2931
	bool banned;
2932

2933
	atomic_inc(&ctx->guilty_count);
2934

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	banned = false;
	if (i915_gem_context_is_bannable(ctx)) {
		unsigned int score;

		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
					  &ctx->ban_score);
		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;

		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
				 ctx->name, score, yesno(banned));
	}
2946
	if (!banned)
2947 2948
		return;

2949 2950 2951 2952 2953 2954
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2955 2956 2957 2958
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2959
	atomic_inc(&ctx->active_count);
2960 2961
}

2962
struct i915_request *
2963
i915_gem_find_active_request(struct intel_engine_cs *engine)
2964
{
2965
	struct i915_request *request, *active = NULL;
2966
	unsigned long flags;
2967

2968 2969 2970 2971 2972 2973 2974 2975
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2976
	spin_lock_irqsave(&engine->timeline->lock, flags);
2977
	list_for_each_entry(request, &engine->timeline->requests, link) {
2978
		if (__i915_request_completed(request, request->global_seqno))
2979
			continue;
2980

2981
		GEM_BUG_ON(request->engine != engine);
2982 2983
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2984 2985 2986

		active = request;
		break;
2987
	}
2988
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2989

2990
	return active;
2991 2992
}

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

3007 3008 3009 3010
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3011
struct i915_request *
3012 3013
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3014
	struct i915_request *request = NULL;
3015

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

3037 3038
	/*
	 * Prevent request submission to the hardware until we have
3039 3040
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
3041
	 * to a second via its execlists->tasklet *just* as we are
3042
	 * calling engine->init_hw() and also writing the ELSP.
3043
	 * Turning off the execlists->tasklet until the reset is over
3044
	 * prevents the race.
3045 3046 3047 3048 3049 3050 3051
	 *
	 * Note that this needs to be a single atomic operation on the
	 * tasklet (flush existing tasks, prevent new tasks) to prevent
	 * a race between reset and set-wedged. It is not, so we do the best
	 * we can atm and make sure we don't lock the machine up in the more
	 * common case of recursively being called from set-wedged from inside
	 * i915_reset.
3052
	 */
3053 3054
	if (!atomic_read(&engine->execlists.tasklet.count))
		tasklet_kill(&engine->execlists.tasklet);
3055
	tasklet_disable(&engine->execlists.tasklet);
3056

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	/*
	 * We're using worker to queue preemption requests from the tasklet in
	 * GuC submission mode.
	 * Even though tasklet was disabled, we may still have a worker queued.
	 * Let's make sure that all workers scheduled before disabling the
	 * tasklet are completed before continuing with the reset.
	 */
	if (engine->i915->guc.preempt_wq)
		flush_workqueue(engine->i915->guc.preempt_wq);

3067 3068 3069
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

3070 3071 3072
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3073 3074 3075 3076

	return request;
}

3077
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3078 3079
{
	struct intel_engine_cs *engine;
3080
	struct i915_request *request;
3081
	enum intel_engine_id id;
3082
	int err = 0;
3083

3084
	for_each_engine(engine, dev_priv, id) {
3085 3086 3087 3088
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3089
		}
3090 3091

		engine->hangcheck.active_request = request;
3092 3093
	}

3094
	i915_gem_revoke_fences(dev_priv);
3095
	intel_uc_sanitize(dev_priv);
3096 3097

	return err;
3098 3099
}

3100
static void skip_request(struct i915_request *request)
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3115 3116

	dma_fence_set_error(&request->fence, -EIO);
3117 3118
}

3119
static void engine_skip_context(struct i915_request *request)
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

3142
/* Returns the request if it was guilty of the hang */
3143
static struct i915_request *
3144
i915_gem_reset_request(struct intel_engine_cs *engine,
3145
		       struct i915_request *request)
3146
{
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3168
	if (engine_stalled(engine)) {
3169 3170
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
3171 3172 3173 3174

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
3175
	} else {
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
3193 3194
	}

3195
	return request;
3196 3197
}

3198
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3199
			   struct i915_request *request)
3200
{
3201 3202 3203 3204 3205 3206
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3207

3208 3209 3210 3211
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
3212 3213 3214
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3215 3216 3217

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3218
}
3219

3220
void i915_gem_reset(struct drm_i915_private *dev_priv)
3221
{
3222
	struct intel_engine_cs *engine;
3223
	enum intel_engine_id id;
3224

3225 3226
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3227
	i915_retire_requests(dev_priv);
3228

3229 3230 3231
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3232
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3233 3234 3235
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3247
		if (intel_engine_is_idle(engine)) {
3248
			struct i915_request *rq;
3249

3250 3251
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3252
			if (!IS_ERR(rq))
3253
				__i915_request_add(rq, false);
3254
		}
3255
	}
3256

3257
	i915_gem_restore_fences(dev_priv);
3258 3259 3260 3261 3262 3263 3264

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
3265 3266
}

3267 3268
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3269
	tasklet_enable(&engine->execlists.tasklet);
3270
	kthread_unpark(engine->breadcrumbs.signaler);
3271 3272

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3273 3274
}

3275 3276
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3277 3278 3279
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3280
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3281

3282
	for_each_engine(engine, dev_priv, id) {
3283
		engine->hangcheck.active_request = NULL;
3284
		i915_gem_reset_finish_engine(engine);
3285
	}
3286 3287
}

3288
static void nop_submit_request(struct i915_request *request)
3289
{
3290 3291 3292
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3293 3294
	dma_fence_set_error(&request->fence, -EIO);

3295
	i915_request_submit(request);
3296 3297
}

3298
static void nop_complete_submit_request(struct i915_request *request)
3299
{
3300 3301
	unsigned long flags;

3302 3303 3304
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3305
	dma_fence_set_error(&request->fence, -EIO);
3306 3307

	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3308
	__i915_request_submit(request);
3309
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3310
	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3311 3312
}

3313
void i915_gem_set_wedged(struct drm_i915_private *i915)
3314
{
3315 3316 3317
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3318 3319
	GEM_TRACE("start\n");

3320 3321 3322 3323 3324 3325 3326
	if (drm_debug & DRM_UT_DRIVER) {
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3327 3328 3329
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3330 3331 3332 3333 3334
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3335 3336
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3337

3338
		engine->submit_request = nop_submit_request;
3339
		engine->schedule = NULL;
3340
	}
3341
	i915->caps.scheduler = 0;
3342

3343 3344 3345
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3346 3347 3348 3349
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3350
	 */
3351
	synchronize_rcu();
3352

3353 3354 3355
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3356

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3368
	 */
3369
	synchronize_rcu();
3370

3371 3372
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3373

3374 3375
		/*
		 * Mark all pending requests as complete so that any concurrent
3376 3377 3378 3379 3380 3381 3382
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
		spin_lock_irqsave(&engine->timeline->lock, flags);
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3383 3384

		i915_gem_reset_finish_engine(engine);
3385
	}
3386

3387 3388
	GEM_TRACE("end\n");

3389
	wake_up_all(&i915->gpu_error.reset_queue);
3390 3391
}

3392 3393 3394 3395 3396 3397 3398 3399 3400
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3401 3402
	GEM_TRACE("start\n");

3403 3404
	/*
	 * Before unwedging, make sure that all pending operations
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3415
			struct i915_request *rq;
3416 3417 3418 3419 3420 3421

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

3422 3423
			/*
			 * We can't use our normal waiter as we want to
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}
3438 3439
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3440

3441 3442
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3443 3444 3445 3446 3447 3448 3449 3450
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3451
	i915_gem_contexts_lost(i915);
3452

3453 3454
	GEM_TRACE("end\n");

3455 3456 3457 3458 3459 3460
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3461
static void
3462 3463
i915_gem_retire_work_handler(struct work_struct *work)
{
3464
	struct drm_i915_private *dev_priv =
3465
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3466
	struct drm_device *dev = &dev_priv->drm;
3467

3468
	/* Come back later if the device is busy... */
3469
	if (mutex_trylock(&dev->struct_mutex)) {
3470
		i915_retire_requests(dev_priv);
3471
		mutex_unlock(&dev->struct_mutex);
3472
	}
3473

3474 3475
	/*
	 * Keep the retire handler running until we are finally idle.
3476 3477 3478
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3479
	if (READ_ONCE(dev_priv->gt.awake))
3480 3481
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3482
				   round_jiffies_up_relative(HZ));
3483
}
3484

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3544 3545 3546 3547 3548 3549 3550
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3551 3552 3553 3554
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3555
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3556
	unsigned int epoch = I915_EPOCH_INVALID;
3557 3558 3559 3560 3561
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3562 3563
	/*
	 * Wait for last execlists context complete, but bail out in case a
3564 3565 3566 3567 3568
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3569
	 */
3570 3571 3572 3573
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3574 3575 3576 3577

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3578
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3579 3580 3581 3582 3583 3584 3585
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3586 3587 3588 3589
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3590
	if (new_requests_since_last_retire(dev_priv))
3591
		goto out_unlock;
3592

3593
	epoch = __i915_gem_park(dev_priv);
3594

3595 3596
	rearm_hangcheck = false;
out_unlock:
3597
	mutex_unlock(&dev_priv->drm.struct_mutex);
3598

3599 3600 3601 3602
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3603
	}
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3621 3622
}

3623 3624
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3625
	struct drm_i915_private *i915 = to_i915(gem->dev);
3626 3627
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3628
	struct i915_lut_handle *lut, *ln;
3629

3630 3631 3632 3633 3634 3635
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3636
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3637 3638 3639 3640
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3641 3642 3643 3644 3645 3646 3647
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3648
			i915_vma_close(vma);
3649

3650 3651
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3652

3653 3654
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3655
	}
3656 3657

	mutex_unlock(&i915->drm.struct_mutex);
3658 3659
}

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3671 3672
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3673 3674 3675
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3676 3677 3678 3679 3680 3681 3682
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3683
 *  -EAGAIN: incomplete, restart syscall
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3700 3701
	ktime_t start;
	long ret;
3702

3703 3704 3705
	if (args->flags != 0)
		return -EINVAL;

3706
	obj = i915_gem_object_lookup(file, args->bo_handle);
3707
	if (!obj)
3708 3709
		return -ENOENT;

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3731 3732 3733 3734

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3735 3736
	}

C
Chris Wilson 已提交
3737
	i915_gem_object_put(obj);
3738
	return ret;
3739 3740
}

3741
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3742
{
3743
	int ret, i;
3744

3745 3746 3747 3748 3749
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3750

3751 3752 3753
	return 0;
}

3754 3755
static int wait_for_engines(struct drm_i915_private *i915)
{
3756
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3757 3758
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3759
		GEM_TRACE_DUMP();
3760 3761
		i915_gem_set_wedged(i915);
		return -EIO;
3762 3763 3764 3765 3766
	}

	return 0;
}

3767 3768 3769 3770
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3771 3772 3773 3774
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3785
		i915_retire_requests(i915);
3786 3787

		ret = wait_for_engines(i915);
3788 3789
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3790
	}
3791

3792
	return ret;
3793 3794
}

3795 3796
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3797 3798 3799 3800 3801 3802 3803
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3804
	obj->write_domain = 0;
3805 3806 3807 3808
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3809
	if (!READ_ONCE(obj->pin_global))
3810 3811 3812 3813 3814 3815 3816
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3841
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3862
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3863 3864 3865 3866 3867
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3868 3869
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3870
	if (write) {
3871 3872
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3873 3874 3875 3876 3877 3878 3879
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3880 3881
/**
 * Moves a single object to the GTT read, and possibly write domain.
3882 3883
 * @obj: object to act on
 * @write: ask for write access or read only
3884 3885 3886 3887
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3888
int
3889
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3890
{
3891
	int ret;
3892

3893
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3894

3895 3896 3897 3898 3899 3900
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3901 3902 3903
	if (ret)
		return ret;

3904
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3905 3906
		return 0;

3907 3908 3909 3910 3911 3912 3913 3914
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3915
	ret = i915_gem_object_pin_pages(obj);
3916 3917 3918
	if (ret)
		return ret;

3919
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3920

3921 3922 3923 3924
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3925
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3926 3927
		mb();

3928 3929 3930
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3931 3932
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3933
	if (write) {
3934 3935
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3936
		obj->mm.dirty = true;
3937 3938
	}

C
Chris Wilson 已提交
3939
	i915_gem_object_unpin_pages(obj);
3940 3941 3942
	return 0;
}

3943 3944
/**
 * Changes the cache-level of an object across all VMA.
3945 3946
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3958 3959 3960
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3961
	struct i915_vma *vma;
3962
	int ret;
3963

3964 3965
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3966
	if (obj->cache_level == cache_level)
3967
		return 0;
3968

3969 3970 3971 3972 3973
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3974 3975
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3976 3977 3978
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3979
		if (i915_vma_is_pinned(vma)) {
3980 3981 3982 3983
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3984 3985
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3997 3998
	}

3999 4000 4001 4002 4003 4004 4005
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4006
	if (obj->bind_count) {
4007 4008 4009 4010
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4011 4012 4013 4014 4015 4016
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4017 4018 4019
		if (ret)
			return ret;

4020 4021
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4038
			for_each_ggtt_vma(vma, obj) {
4039 4040 4041 4042
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4043 4044 4045 4046 4047 4048 4049 4050
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4051 4052
		}

4053
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4054 4055 4056 4057 4058 4059 4060
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4061 4062
	}

4063
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4064
		vma->node.color = cache_level;
4065
	i915_gem_object_set_cache_coherency(obj, cache_level);
4066
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4067

4068 4069 4070
	return 0;
}

B
Ben Widawsky 已提交
4071 4072
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4073
{
B
Ben Widawsky 已提交
4074
	struct drm_i915_gem_caching *args = data;
4075
	struct drm_i915_gem_object *obj;
4076
	int err = 0;
4077

4078 4079 4080 4081 4082 4083
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4084

4085 4086 4087 4088 4089 4090
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4091 4092 4093 4094
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4095 4096 4097 4098
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4099 4100 4101
out:
	rcu_read_unlock();
	return err;
4102 4103
}

B
Ben Widawsky 已提交
4104 4105
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4106
{
4107
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4108
	struct drm_i915_gem_caching *args = data;
4109 4110
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4111
	int ret = 0;
4112

B
Ben Widawsky 已提交
4113 4114
	switch (args->caching) {
	case I915_CACHING_NONE:
4115 4116
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4117
	case I915_CACHING_CACHED:
4118 4119 4120 4121 4122 4123
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4124
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4125 4126
			return -ENODEV;

4127 4128
		level = I915_CACHE_LLC;
		break;
4129
	case I915_CACHING_DISPLAY:
4130
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4131
		break;
4132 4133 4134 4135
	default:
		return -EINVAL;
	}

4136 4137 4138 4139
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4140 4141 4142 4143 4144 4145 4146 4147 4148
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4149 4150 4151 4152 4153 4154 4155
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4156
	if (ret)
4157
		goto out;
B
Ben Widawsky 已提交
4158

4159 4160 4161
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4162 4163 4164

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4165 4166 4167

out:
	i915_gem_object_put(obj);
4168 4169 4170
	return ret;
}

4171
/*
4172 4173 4174 4175
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4176
 */
C
Chris Wilson 已提交
4177
struct i915_vma *
4178 4179
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4180 4181
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4182
{
C
Chris Wilson 已提交
4183
	struct i915_vma *vma;
4184 4185
	int ret;

4186 4187
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4188
	/* Mark the global pin early so that we account for the
4189 4190
	 * display coherency whilst setting up the cache domains.
	 */
4191
	obj->pin_global++;
4192

4193 4194 4195 4196 4197 4198 4199 4200 4201
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4202
	ret = i915_gem_object_set_cache_level(obj,
4203 4204
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4205 4206
	if (ret) {
		vma = ERR_PTR(ret);
4207
		goto err_unpin_global;
C
Chris Wilson 已提交
4208
	}
4209

4210 4211
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4212 4213 4214 4215
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4216
	 */
4217
	vma = ERR_PTR(-ENOSPC);
4218 4219
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4220
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4221 4222 4223 4224
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4225
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4226
	if (IS_ERR(vma))
4227
		goto err_unpin_global;
4228

4229 4230
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4231
	__i915_gem_object_flush_for_display(obj);
4232

4233 4234 4235
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4236
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4237

C
Chris Wilson 已提交
4238
	return vma;
4239

4240 4241
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4242
	return vma;
4243 4244 4245
}

void
C
Chris Wilson 已提交
4246
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4247
{
4248
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4249

4250
	if (WARN_ON(vma->obj->pin_global == 0))
4251 4252
		return;

4253
	if (--vma->obj->pin_global == 0)
4254
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4255

4256
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4257
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4258

C
Chris Wilson 已提交
4259
	i915_vma_unpin(vma);
4260 4261
}

4262 4263
/**
 * Moves a single object to the CPU read, and possibly write domain.
4264 4265
 * @obj: object to act on
 * @write: requesting write or read-only access
4266 4267 4268 4269
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4270
int
4271
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4272 4273 4274
{
	int ret;

4275
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4276

4277 4278 4279 4280 4281 4282
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4283 4284 4285
	if (ret)
		return ret;

4286
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4287

4288
	/* Flush the CPU cache if it's still invalid. */
4289
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4290
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4291
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4292 4293 4294 4295 4296
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4297
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4298 4299 4300 4301

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4302 4303
	if (write)
		__start_cpu_write(obj);
4304 4305 4306 4307

	return 0;
}

4308 4309 4310
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4311 4312 4313 4314
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4315 4316 4317
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4318
static int
4319
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4320
{
4321
	struct drm_i915_private *dev_priv = to_i915(dev);
4322
	struct drm_i915_file_private *file_priv = file->driver_priv;
4323
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4324
	struct i915_request *request, *target = NULL;
4325
	long ret;
4326

4327 4328 4329
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4330

4331
	spin_lock(&file_priv->mm.lock);
4332
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4333 4334
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4335

4336 4337 4338 4339
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4340

4341
		target = request;
4342
	}
4343
	if (target)
4344
		i915_request_get(target);
4345
	spin_unlock(&file_priv->mm.lock);
4346

4347
	if (target == NULL)
4348
		return 0;
4349

4350
	ret = i915_request_wait(target,
4351 4352
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4353
	i915_request_put(target);
4354

4355
	return ret < 0 ? ret : 0;
4356 4357
}

C
Chris Wilson 已提交
4358
struct i915_vma *
4359 4360
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4361
			 u64 size,
4362 4363
			 u64 alignment,
			 u64 flags)
4364
{
4365 4366
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4367 4368
	struct i915_vma *vma;
	int ret;
4369

4370 4371
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4372 4373
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4404
	vma = i915_vma_instance(obj, vm, view);
4405
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4406
		return vma;
4407 4408

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4409 4410 4411
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4412

4413
			if (flags & PIN_MAPPABLE &&
4414
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4415 4416 4417
				return ERR_PTR(-ENOSPC);
		}

4418 4419
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4420 4421 4422
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4423
		     !!(flags & PIN_MAPPABLE),
4424
		     i915_vma_is_map_and_fenceable(vma));
4425 4426
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4427
			return ERR_PTR(ret);
4428 4429
	}

C
Chris Wilson 已提交
4430 4431 4432
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4433

C
Chris Wilson 已提交
4434
	return vma;
4435 4436
}

4437
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4452 4453 4454 4455 4456 4457 4458 4459 4460
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4461 4462
}

4463
static __always_inline unsigned int
4464
__busy_set_if_active(const struct dma_fence *fence,
4465 4466
		     unsigned int (*flag)(unsigned int id))
{
4467
	struct i915_request *rq;
4468

4469 4470 4471 4472
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4473
	 *
4474
	 * Note we only report on the status of native fences.
4475
	 */
4476 4477 4478 4479
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4480 4481
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4482 4483
		return 0;

4484
	return flag(rq->engine->uabi_id);
4485 4486
}

4487
static __always_inline unsigned int
4488
busy_check_reader(const struct dma_fence *fence)
4489
{
4490
	return __busy_set_if_active(fence, __busy_read_flag);
4491 4492
}

4493
static __always_inline unsigned int
4494
busy_check_writer(const struct dma_fence *fence)
4495
{
4496 4497 4498 4499
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4500 4501
}

4502 4503
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4504
		    struct drm_file *file)
4505 4506
{
	struct drm_i915_gem_busy *args = data;
4507
	struct drm_i915_gem_object *obj;
4508 4509
	struct reservation_object_list *list;
	unsigned int seq;
4510
	int err;
4511

4512
	err = -ENOENT;
4513 4514
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4515
	if (!obj)
4516
		goto out;
4517

4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4536

4537 4538
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4539

4540 4541 4542 4543
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4544

4545 4546 4547 4548 4549 4550
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4551
	}
4552

4553 4554 4555 4556
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4557 4558 4559
out:
	rcu_read_unlock();
	return err;
4560 4561 4562 4563 4564 4565
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4566
	return i915_gem_ring_throttle(dev, file_priv);
4567 4568
}

4569 4570 4571 4572
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4573
	struct drm_i915_private *dev_priv = to_i915(dev);
4574
	struct drm_i915_gem_madvise *args = data;
4575
	struct drm_i915_gem_object *obj;
4576
	int err;
4577 4578 4579 4580 4581 4582 4583 4584 4585

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4586
	obj = i915_gem_object_lookup(file_priv, args->handle);
4587 4588 4589 4590 4591 4592
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4593

4594
	if (i915_gem_object_has_pages(obj) &&
4595
	    i915_gem_object_is_tiled(obj) &&
4596
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4597 4598
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4599
			__i915_gem_object_unpin_pages(obj);
4600 4601 4602
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4603
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4604
			__i915_gem_object_pin_pages(obj);
4605 4606
			obj->mm.quirked = true;
		}
4607 4608
	}

C
Chris Wilson 已提交
4609 4610
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4611

C
Chris Wilson 已提交
4612
	/* if the object is no longer attached, discard its backing storage */
4613 4614
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4615 4616
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4617
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4618
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4619

4620
out:
4621
	i915_gem_object_put(obj);
4622
	return err;
4623 4624
}

4625
static void
4626
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4627 4628 4629 4630
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4631
	intel_fb_obj_flush(obj, ORIGIN_CS);
4632 4633
}

4634 4635
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4636
{
4637 4638
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4639
	INIT_LIST_HEAD(&obj->vma_list);
4640
	INIT_LIST_HEAD(&obj->lut_list);
4641
	INIT_LIST_HEAD(&obj->batch_pool_link);
4642

4643 4644
	obj->ops = ops;

4645 4646 4647
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4648
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4649
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4650 4651 4652 4653

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4654

4655
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4656 4657
}

4658
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4659 4660
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4661

4662 4663
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4664 4665

	.pwrite = i915_gem_object_pwrite_gtt,
4666 4667
};

M
Matthew Auld 已提交
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4692
struct drm_i915_gem_object *
4693
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4694
{
4695
	struct drm_i915_gem_object *obj;
4696
	struct address_space *mapping;
4697
	unsigned int cache_level;
D
Daniel Vetter 已提交
4698
	gfp_t mask;
4699
	int ret;
4700

4701 4702 4703 4704 4705
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4706
	if (size >> PAGE_SHIFT > INT_MAX)
4707 4708 4709 4710 4711
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4712
	obj = i915_gem_object_alloc(dev_priv);
4713
	if (obj == NULL)
4714
		return ERR_PTR(-ENOMEM);
4715

M
Matthew Auld 已提交
4716
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4717 4718
	if (ret)
		goto fail;
4719

4720
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4721
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4722 4723 4724 4725 4726
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4727
	mapping = obj->base.filp->f_mapping;
4728
	mapping_set_gfp_mask(mapping, mask);
4729
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4730

4731
	i915_gem_object_init(obj, &i915_gem_object_ops);
4732

4733 4734
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4735

4736
	if (HAS_LLC(dev_priv))
4737
		/* On some devices, we can have the GPU use the LLC (the CPU
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4749 4750 4751
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4752

4753
	i915_gem_object_set_cache_coherency(obj, cache_level);
4754

4755 4756
	trace_i915_gem_object_create(obj);

4757
	return obj;
4758 4759 4760 4761

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4762 4763
}

4764 4765 4766 4767 4768 4769 4770 4771
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4772
	if (obj->mm.madv != I915_MADV_WILLNEED)
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4788 4789
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4790
{
4791
	struct drm_i915_gem_object *obj, *on;
4792

4793
	intel_runtime_pm_get(i915);
4794
	llist_for_each_entry_safe(obj, on, freed, freed) {
4795 4796 4797 4798
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4799 4800
		mutex_lock(&i915->drm.struct_mutex);

4801 4802 4803 4804 4805 4806 4807
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4808 4809
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4810

4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4823
		mutex_unlock(&i915->drm.struct_mutex);
4824 4825

		GEM_BUG_ON(obj->bind_count);
4826
		GEM_BUG_ON(obj->userfault_count);
4827
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4828
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4829 4830 4831

		if (obj->ops->release)
			obj->ops->release(obj);
4832

4833 4834
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4835
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4836
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4837 4838 4839 4840

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4841
		reservation_object_fini(&obj->__builtin_resv);
4842 4843 4844 4845 4846
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4847

4848 4849 4850
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4851 4852
		if (on)
			cond_resched();
4853
	}
4854
	intel_runtime_pm_put(i915);
4855 4856 4857 4858 4859 4860
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4871
		__i915_gem_free_objects(i915, freed);
4872
	}
4873 4874 4875 4876 4877 4878 4879
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4880

4881 4882
	/*
	 * All file-owned VMA should have been released by this point through
4883 4884 4885 4886 4887 4888
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4889

4890
	spin_lock(&i915->mm.free_lock);
4891
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4892 4893
		spin_unlock(&i915->mm.free_lock);

4894
		__i915_gem_free_objects(i915, freed);
4895
		if (need_resched())
4896 4897 4898
			return;

		spin_lock(&i915->mm.free_lock);
4899
	}
4900
	spin_unlock(&i915->mm.free_lock);
4901
}
4902

4903 4904 4905 4906 4907 4908
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4909 4910 4911 4912 4913 4914 4915 4916 4917
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4918 4919
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4920
		queue_work(i915->wq, &i915->mm.free_work);
4921
}
4922

4923 4924 4925
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4926

4927 4928 4929
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4930
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4931
		obj->mm.madv = I915_MADV_DONTNEED;
4932

4933 4934
	/*
	 * Before we free the object, make sure any pure RCU-only
4935 4936 4937 4938
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4939
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4940
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4941 4942
}

4943 4944 4945 4946
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4947 4948
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4949 4950 4951 4952 4953
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4954
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4955
{
4956
	struct i915_gem_context *kernel_context = i915->kernel_context;
4957 4958 4959
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

4960 4961 4962 4963
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
		GEM_BUG_ON(engine->last_retired_context != kernel_context);
	}
4964 4965
}

4966 4967
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4968 4969 4970 4971 4972 4973
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4974 4975 4976 4977 4978 4979
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4980
	 * of the reset, so this could be applied to even earlier gen.
4981
	 */
4982 4983
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4984 4985
}

4986
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4987
{
4988
	struct drm_device *dev = &dev_priv->drm;
4989
	int ret;
4990

4991
	intel_runtime_pm_get(dev_priv);
4992 4993
	intel_suspend_gt_powersave(dev_priv);

4994
	mutex_lock(&dev->struct_mutex);
4995 4996 4997 4998 4999 5000 5001 5002 5003

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
5004 5005 5006 5007
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
5008

5009 5010 5011 5012 5013
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
					     I915_WAIT_LOCKED);
		if (ret && ret != -EIO)
			goto err_unlock;
5014

5015 5016
		assert_kernel_context_is_current(dev_priv);
	}
5017
	i915_gem_contexts_lost(dev_priv);
5018 5019
	mutex_unlock(&dev->struct_mutex);

5020
	intel_uc_suspend(dev_priv);
5021

5022
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5023
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5024 5025 5026 5027

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
5028
	drain_delayed_work(&dev_priv->gt.idle_work);
5029

5030 5031 5032
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
5033
	WARN_ON(dev_priv->gt.awake);
5034 5035
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5036

5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
5056
	intel_uc_sanitize(dev_priv);
5057
	i915_gem_sanitize(dev_priv);
5058 5059 5060

	intel_runtime_pm_put(dev_priv);
	return 0;
5061

5062
err_unlock:
5063
	mutex_unlock(&dev->struct_mutex);
5064
	intel_runtime_pm_put(dev_priv);
5065
	return ret;
5066 5067
}

5068
void i915_gem_resume(struct drm_i915_private *i915)
5069
{
5070
	WARN_ON(i915->gt.awake);
5071

5072 5073
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5074

5075 5076
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5077

5078 5079
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5080 5081 5082
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5083
	i915->gt.resume(i915);
5084

5085 5086 5087
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5088
	intel_uc_resume(i915);
5089

5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5100 5101 5102 5103
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5104
	goto out_unlock;
5105 5106
}

5107
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5108
{
5109
	if (INTEL_GEN(dev_priv) < 5 ||
5110 5111 5112 5113 5114 5115
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5116
	if (IS_GEN5(dev_priv))
5117 5118
		return;

5119
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5120
	if (IS_GEN6(dev_priv))
5121
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5122
	else if (IS_GEN7(dev_priv))
5123
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5124
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5125
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5126 5127
	else
		BUG();
5128
}
D
Daniel Vetter 已提交
5129

5130
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5131 5132 5133 5134 5135 5136 5137
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5138
static void init_unused_rings(struct drm_i915_private *dev_priv)
5139
{
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5152 5153 5154
	}
}

5155
static int __i915_gem_restart_engines(void *data)
5156
{
5157
	struct drm_i915_private *i915 = data;
5158
	struct intel_engine_cs *engine;
5159
	enum intel_engine_id id;
5160 5161 5162 5163
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5164 5165 5166
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5167
			return err;
5168
		}
5169 5170 5171 5172 5173 5174 5175
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5176
	int ret;
5177

5178 5179
	dev_priv->gt.last_init_time = ktime_get();

5180 5181 5182
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5183
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5184
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5185

5186
	if (IS_HASWELL(dev_priv))
5187
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5188
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5189

5190
	if (HAS_PCH_NOP(dev_priv)) {
5191
		if (IS_IVYBRIDGE(dev_priv)) {
5192 5193 5194
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5195
		} else if (INTEL_GEN(dev_priv) >= 7) {
5196 5197 5198 5199
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5200 5201
	}

5202
	i915_gem_init_swizzling(dev_priv);
5203

5204 5205 5206 5207 5208 5209
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5210
	init_unused_rings(dev_priv);
5211

5212
	BUG_ON(!dev_priv->kernel_context);
5213 5214 5215 5216
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5217

5218
	ret = i915_ppgtt_init_hw(dev_priv);
5219
	if (ret) {
5220
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5221 5222 5223
		goto out;
	}

5224 5225 5226 5227 5228 5229
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5230 5231
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5232 5233
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5234
		goto out;
5235
	}
5236

5237
	intel_mocs_init_l3cc_table(dev_priv);
5238

5239 5240
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5241 5242
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5243
	return ret;
5244 5245
}

5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5267
		struct i915_request *rq;
5268

5269
		rq = i915_request_alloc(engine, ctx);
5270 5271 5272 5273 5274
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5275
		err = 0;
5276 5277 5278
		if (engine->init_context)
			err = engine->init_context(rq);

5279
		__i915_request_add(rq, true);
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

		state = ctx->engine[id].state;
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5360
int i915_gem_init(struct drm_i915_private *dev_priv)
5361 5362 5363
{
	int ret;

5364 5365 5366 5367 5368 5369 5370 5371 5372
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5373
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5374

5375
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5376
		dev_priv->gt.resume = intel_lr_context_resume;
5377
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5378 5379 5380
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5381 5382
	}

5383 5384 5385 5386
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5387 5388 5389 5390
	ret = intel_wopcm_init(&dev_priv->wopcm);
	if (ret)
		return ret;

5391
	ret = intel_uc_init_misc(dev_priv);
5392 5393 5394
	if (ret)
		return ret;

5395 5396 5397 5398 5399 5400
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5401
	mutex_lock(&dev_priv->drm.struct_mutex);
5402 5403
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5404
	ret = i915_gem_init_ggtt(dev_priv);
5405 5406 5407 5408
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5409

5410
	ret = i915_gem_contexts_init(dev_priv);
5411 5412 5413 5414
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5415

5416
	ret = intel_engines_init(dev_priv);
5417 5418 5419 5420
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5421

5422 5423
	intel_init_gt_powersave(dev_priv);

5424
	ret = intel_uc_init(dev_priv);
5425
	if (ret)
5426
		goto err_pm;
5427

5428 5429 5430 5431
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5443
	ret = __intel_engines_record_defaults(dev_priv);
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
	i915_gem_contexts_lost(dev_priv);
	intel_uc_fini_hw(dev_priv);
5472 5473
err_uc_init:
	intel_uc_fini(dev_priv);
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5487
	intel_uc_fini_misc(dev_priv);
5488

5489 5490 5491
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5492
	if (ret == -EIO) {
5493 5494
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5495 5496 5497
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5498 5499 5500 5501
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5502
		ret = 0;
5503 5504
	}

5505
	i915_gem_drain_freed_objects(dev_priv);
5506
	return ret;
5507 5508
}

5509 5510 5511 5512 5513
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5514
void
5515
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5516
{
5517
	struct intel_engine_cs *engine;
5518
	enum intel_engine_id id;
5519

5520
	for_each_engine(engine, dev_priv, id)
5521
		dev_priv->gt.cleanup_engine(engine);
5522 5523
}

5524 5525 5526
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5527
	int i;
5528

5529
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5530 5531
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5532
	else if (INTEL_GEN(dev_priv) >= 4 ||
5533 5534
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5535 5536 5537 5538
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5539
	if (intel_vgpu_active(dev_priv))
5540 5541 5542 5543
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5544 5545 5546 5547 5548 5549 5550
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5551
	i915_gem_restore_fences(dev_priv);
5552

5553
	i915_gem_detect_bit_6_swizzle(dev_priv);
5554 5555
}

5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5572
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5573
{
5574
	int err = -ENOMEM;
5575

5576 5577
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5578 5579
		goto err_out;

5580 5581
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5582 5583
		goto err_objects;

5584 5585 5586 5587
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5588
	dev_priv->requests = KMEM_CACHE(i915_request,
5589 5590
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5591
					SLAB_TYPESAFE_BY_RCU);
5592
	if (!dev_priv->requests)
5593
		goto err_luts;
5594

5595 5596 5597 5598 5599 5600
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5601 5602 5603 5604
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5605 5606
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5607
	err = i915_gem_timeline_init__global(dev_priv);
5608 5609
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
5610
		goto err_priorities;
5611

5612
	i915_gem_init__mm(dev_priv);
5613

5614
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5615
			  i915_gem_retire_work_handler);
5616
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5617
			  i915_gem_idle_work_handler);
5618
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5619
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5620

5621 5622
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5623
	spin_lock_init(&dev_priv->fb_tracking.lock);
5624

M
Matthew Auld 已提交
5625 5626 5627 5628
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5629 5630
	return 0;

5631 5632
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
5633 5634
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5635 5636
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5637 5638
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5639 5640 5641 5642 5643 5644
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5645
}
5646

5647
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5648
{
5649
	i915_gem_drain_freed_objects(dev_priv);
5650 5651
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5652
	WARN_ON(dev_priv->mm.object_count);
5653

5654 5655 5656 5657 5658
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

5659
	kmem_cache_destroy(dev_priv->priorities);
5660
	kmem_cache_destroy(dev_priv->dependencies);
5661
	kmem_cache_destroy(dev_priv->requests);
5662
	kmem_cache_destroy(dev_priv->luts);
5663 5664
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5665 5666 5667

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5668 5669

	i915_gemfs_fini(dev_priv);
5670 5671
}

5672 5673
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5674 5675 5676
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5677 5678 5679 5680 5681
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5682 5683 5684
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5685 5686 5687 5688 5689
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5700 5701
	 *
	 * To try and reduce the hibernation image, we manually shrink
5702
	 * the objects as well, see i915_gem_freeze()
5703 5704
	 */

5705
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5706
	i915_gem_drain_freed_objects(dev_priv);
5707

5708
	spin_lock(&dev_priv->mm.obj_lock);
5709
	for (p = phases; *p; p++) {
5710
		list_for_each_entry(obj, *p, mm.link)
5711
			__start_cpu_write(obj);
5712
	}
5713
	spin_unlock(&dev_priv->mm.obj_lock);
5714 5715 5716 5717

	return 0;
}

5718
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5719
{
5720
	struct drm_i915_file_private *file_priv = file->driver_priv;
5721
	struct i915_request *request;
5722 5723 5724 5725 5726

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5727
	spin_lock(&file_priv->mm.lock);
5728
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5729
		request->file_priv = NULL;
5730
	spin_unlock(&file_priv->mm.lock);
5731 5732
}

5733
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5734 5735
{
	struct drm_i915_file_private *file_priv;
5736
	int ret;
5737

5738
	DRM_DEBUG("\n");
5739 5740 5741 5742 5743 5744

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5745
	file_priv->dev_priv = i915;
5746
	file_priv->file = file;
5747 5748 5749 5750

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5751
	file_priv->bsd_engine = -1;
5752

5753
	ret = i915_gem_context_open(i915, file);
5754 5755
	if (ret)
		kfree(file_priv);
5756

5757
	return ret;
5758 5759
}

5760 5761
/**
 * i915_gem_track_fb - update frontbuffer tracking
5762 5763 5764
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5765 5766 5767 5768
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5769 5770 5771 5772
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5773 5774 5775 5776 5777 5778 5779 5780 5781
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5782
	if (old) {
5783 5784
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5785 5786 5787
	}

	if (new) {
5788 5789
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5790 5791 5792
	}
}

5793 5794
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5795
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5796 5797 5798
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5799 5800 5801
	struct file *file;
	size_t offset;
	int err;
5802

5803
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5804
	if (IS_ERR(obj))
5805 5806
		return obj;

5807
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5808

5809 5810 5811 5812 5813 5814
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5815

5816 5817 5818 5819 5820
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5821

5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5836 5837 5838 5839

	return obj;

fail:
5840
	i915_gem_object_put(obj);
5841
	return ERR_PTR(err);
5842
}
5843 5844 5845 5846 5847 5848

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5849
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5850 5851 5852 5853 5854
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5855
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5980
	if (!obj->mm.dirty)
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5996

5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

6043 6044
	obj->ops = &i915_gem_phys_ops;

6045
	err = ____i915_gem_object_get_pages(obj);
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6065 6066
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6067
#include "selftests/mock_gem_device.c"
6068
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6069
#include "selftests/huge_pages.c"
6070
#include "selftests/i915_gem_object.c"
6071
#include "selftests/i915_gem_coherency.c"
6072
#endif