i915_gem.c 123.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

301 302 303 304 305 306 307 308 309 310 311 312 313
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

361 362 363
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
364 365
 */
static __must_check int
366 367 368
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
369 370 371
{
	struct i915_gem_active *active;
	unsigned long active_mask;
372
	int idx;
373

374
	active_mask = __I915_BO_ACTIVE(obj);
375 376 377 378 379 380 381 382 383 384
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

385 386
	for_each_active(active_mask, idx) {
		int ret;
387

388 389 390 391
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
392 393
	}

394
	return 0;
395 396 397 398 399 400 401 402 403
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

404 405 406 407 408
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
409
	int ret;
410 411 412 413 414 415 416 417 418 419 420 421 422 423

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
424 425 426 427 428
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
429 430 431
	if (ret)
		return ret;

432 433 434 435 436 437
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
438 439 440
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
441 442 443 444 445 446 447 448 449
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
450
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
451
	int ret = 0;
452 453 454 455 456 457 458

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
459

460
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
461 462 463 464 465 466 467 468 469 470
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
471 472 473 474
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
475 476
	}

477
	drm_clflush_virt_range(vaddr, args->size);
478
	i915_gem_chipset_flush(to_i915(dev));
479 480

out:
481
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
482
	return ret;
483 484
}

485 486
void *i915_gem_object_alloc(struct drm_device *dev)
{
487
	struct drm_i915_private *dev_priv = to_i915(dev);
488
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
489 490 491 492
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
493
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
494
	kmem_cache_free(dev_priv->objects, obj);
495 496
}

497 498 499 500 501
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
502
{
503
	struct drm_i915_gem_object *obj;
504 505
	int ret;
	u32 handle;
506

507
	size = roundup(size, PAGE_SIZE);
508 509
	if (size == 0)
		return -EINVAL;
510 511

	/* Allocate the new object */
512
	obj = i915_gem_object_create(dev, size);
513 514
	if (IS_ERR(obj))
		return PTR_ERR(obj);
515

516
	ret = drm_gem_handle_create(file, &obj->base, &handle);
517
	/* drop reference from allocate - handle holds it now */
518
	i915_gem_object_put_unlocked(obj);
519 520
	if (ret)
		return ret;
521

522
	*handle_p = handle;
523 524 525
	return 0;
}

526 527 528 529 530 531
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
532
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
533 534
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
535
			       args->size, &args->handle);
536 537 538 539
}

/**
 * Creates a new mm object and returns a handle to it.
540 541 542
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
543 544 545 546 547 548
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
549

550
	return i915_gem_create(file, dev,
551
			       args->size, &args->handle);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

580
static inline int
581 582
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

606 607 608 609 610 611 612 613 614 615 616 617
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

618
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
619 620
		return -EINVAL;

621 622 623 624
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

643 644 645
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
646
static int
647 648 649 650 651 652 653
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

654
	if (unlikely(page_do_bit17_swizzling))
655 656 657 658 659 660 661 662 663 664 665
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

666
	return ret ? -EFAULT : 0;
667 668
}

669 670 671 672
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
673
	if (unlikely(swizzled)) {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

691 692 693 694 695 696 697 698 699 700 701 702
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
703 704 705
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
706 707 708 709 710 711 712 713 714 715 716

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

717
	return ret ? - EFAULT : 0;
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
747
	struct drm_i915_private *dev_priv = to_i915(dev);
748
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
749
	struct i915_vma *vma;
750 751 752 753 754 755
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

C
Chris Wilson 已提交
756 757
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
	if (IS_ERR(vma)) {
758 759 760 761 762 763 764 765 766 767 768 769
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
770
		node.start = i915_ggtt_offset(vma);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
851
		i915_vma_unpin(vma);
852 853 854 855 856
	}
out:
	return ret;
}

857
static int
858 859 860 861
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
862
{
863
	char __user *user_data;
864
	ssize_t remain;
865
	loff_t offset;
866
	int shmem_page_offset, page_length, ret = 0;
867
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
868
	int prefaulted = 0;
869
	int needs_clflush = 0;
870
	struct sg_page_iter sg_iter;
871

872
	if (!i915_gem_object_has_struct_page(obj))
873 874
		return -ENODEV;

875
	user_data = u64_to_user_ptr(args->data_ptr);
876 877
	remain = args->size;

878
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
879

880
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
881 882 883
	if (ret)
		return ret;

884
	offset = args->offset;
885

886 887
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
888
		struct page *page = sg_page_iter_page(&sg_iter);
889 890 891 892

		if (remain <= 0)
			break;

893 894 895 896 897
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
898
		shmem_page_offset = offset_in_page(offset);
899 900 901 902
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

903 904 905
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

906 907 908 909 910
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
911 912 913

		mutex_unlock(&dev->struct_mutex);

914
		if (likely(!i915.prefault_disable) && !prefaulted) {
915
			ret = fault_in_multipages_writeable(user_data, remain);
916 917 918 919 920 921 922
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
923

924 925 926
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
927

928
		mutex_lock(&dev->struct_mutex);
929 930

		if (ret)
931 932
			goto out;

933
next_page:
934
		remain -= page_length;
935
		user_data += page_length;
936 937 938
		offset += page_length;
	}

939
out:
940 941
	i915_gem_object_unpin_pages(obj);

942 943 944
	return ret;
}

945 946
/**
 * Reads data from the object referenced by handle.
947 948 949
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
950 951 952 953 954
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
955
		     struct drm_file *file)
956 957
{
	struct drm_i915_gem_pread *args = data;
958
	struct drm_i915_gem_object *obj;
959
	int ret = 0;
960

961 962 963 964
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
965
		       u64_to_user_ptr(args->data_ptr),
966 967 968
		       args->size))
		return -EFAULT;

969
	obj = i915_gem_object_lookup(file, args->handle);
970 971
	if (!obj)
		return -ENOENT;
972

973
	/* Bounds check source.  */
974 975
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
976
		ret = -EINVAL;
977
		goto err;
C
Chris Wilson 已提交
978 979
	}

C
Chris Wilson 已提交
980 981
	trace_i915_gem_object_pread(obj, args->offset, args->size);

982 983 984 985 986 987 988 989
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

990
	ret = i915_gem_shmem_pread(dev, obj, args, file);
991

992
	/* pread for non shmem backed objects */
993 994
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
995 996
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
997 998
		intel_runtime_pm_put(to_i915(dev));
	}
999

1000
	i915_gem_object_put(obj);
1001
	mutex_unlock(&dev->struct_mutex);
1002 1003 1004 1005 1006

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1007
	return ret;
1008 1009
}

1010 1011
/* This is the fast write path which cannot handle
 * page faults in the source data
1012
 */
1013 1014 1015 1016 1017 1018

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1019
{
1020 1021
	void __iomem *vaddr_atomic;
	void *vaddr;
1022
	unsigned long unwritten;
1023

P
Peter Zijlstra 已提交
1024
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1025 1026 1027
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1028
						      user_data, length);
P
Peter Zijlstra 已提交
1029
	io_mapping_unmap_atomic(vaddr_atomic);
1030
	return unwritten;
1031 1032
}

1033 1034 1035
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1036
 * @i915: i915 device private data
1037 1038 1039
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1040
 */
1041
static int
1042
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1043
			 struct drm_i915_gem_object *obj,
1044
			 struct drm_i915_gem_pwrite *args,
1045
			 struct drm_file *file)
1046
{
1047
	struct i915_ggtt *ggtt = &i915->ggtt;
1048
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1049
	struct i915_vma *vma;
1050 1051
	struct drm_mm_node node;
	uint64_t remain, offset;
1052
	char __user *user_data;
1053
	int ret;
1054 1055
	bool hit_slow_path = false;

1056
	if (i915_gem_object_is_tiled(obj))
1057
		return -EFAULT;
D
Daniel Vetter 已提交
1058

C
Chris Wilson 已提交
1059
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1060
				       PIN_MAPPABLE | PIN_NONBLOCK);
C
Chris Wilson 已提交
1061
	if (IS_ERR(vma)) {
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
1074
		node.start = i915_ggtt_offset(vma);
1075
		node.allocated = false;
1076 1077 1078
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
1079
	}
D
Daniel Vetter 已提交
1080 1081 1082 1083 1084

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1085
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
1086
	obj->dirty = true;
1087

1088 1089 1090 1091
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1092 1093
		/* Operation in this page
		 *
1094 1095 1096
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1097
		 */
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1111
		/* If we get a fault while copying data, then (presumably) our
1112 1113
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1114 1115
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1116
		 */
1117
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1118
				    page_offset, user_data, page_length)) {
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1131
		}
1132

1133 1134 1135
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1136 1137
	}

1138
out_flush:
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1152
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1153
out_unpin:
1154 1155 1156 1157 1158 1159 1160 1161
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1162
		i915_vma_unpin(vma);
1163
	}
D
Daniel Vetter 已提交
1164
out:
1165
	return ret;
1166 1167
}

1168 1169 1170 1171
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1172
static int
1173 1174 1175 1176 1177
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1178
{
1179
	char *vaddr;
1180
	int ret;
1181

1182
	if (unlikely(page_do_bit17_swizzling))
1183
		return -EINVAL;
1184

1185 1186 1187 1188
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1189 1190
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1191 1192 1193 1194
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1195

1196
	return ret ? -EFAULT : 0;
1197 1198
}

1199 1200
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1201
static int
1202 1203 1204 1205 1206
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1207
{
1208 1209
	char *vaddr;
	int ret;
1210

1211
	vaddr = kmap(page);
1212
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1213 1214 1215
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1216 1217
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1218 1219
						user_data,
						page_length);
1220 1221 1222 1223 1224
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1225 1226 1227
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1228
	kunmap(page);
1229

1230
	return ret ? -EFAULT : 0;
1231 1232 1233
}

static int
1234 1235 1236 1237
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1238 1239
{
	ssize_t remain;
1240 1241
	loff_t offset;
	char __user *user_data;
1242
	int shmem_page_offset, page_length, ret = 0;
1243
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1244
	int hit_slowpath = 0;
1245 1246
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1247
	struct sg_page_iter sg_iter;
1248

1249
	user_data = u64_to_user_ptr(args->data_ptr);
1250 1251
	remain = args->size;

1252
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1253

1254 1255 1256 1257
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1258 1259 1260 1261 1262
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1263
		needs_clflush_after = cpu_write_needs_clflush(obj);
1264
	}
1265 1266 1267 1268 1269
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1270

1271 1272 1273 1274
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1275
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1276

1277 1278
	i915_gem_object_pin_pages(obj);

1279
	offset = args->offset;
1280
	obj->dirty = 1;
1281

1282 1283
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1284
		struct page *page = sg_page_iter_page(&sg_iter);
1285
		int partial_cacheline_write;
1286

1287 1288 1289
		if (remain <= 0)
			break;

1290 1291 1292 1293 1294
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1295
		shmem_page_offset = offset_in_page(offset);
1296 1297 1298 1299 1300

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1301 1302 1303 1304 1305 1306 1307
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1308 1309 1310
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1311 1312 1313 1314 1315 1316
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1317 1318 1319

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1320 1321 1322 1323
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1324

1325
		mutex_lock(&dev->struct_mutex);
1326 1327

		if (ret)
1328 1329
			goto out;

1330
next_page:
1331
		remain -= page_length;
1332
		user_data += page_length;
1333
		offset += page_length;
1334 1335
	}

1336
out:
1337 1338
	i915_gem_object_unpin_pages(obj);

1339
	if (hit_slowpath) {
1340 1341 1342 1343 1344 1345 1346
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1347
			if (i915_gem_clflush_object(obj, obj->pin_display))
1348
				needs_clflush_after = true;
1349
		}
1350
	}
1351

1352
	if (needs_clflush_after)
1353
		i915_gem_chipset_flush(to_i915(dev));
1354 1355
	else
		obj->cache_dirty = true;
1356

1357
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1358
	return ret;
1359 1360 1361 1362
}

/**
 * Writes data to the object referenced by handle.
1363 1364 1365
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1366 1367 1368 1369 1370
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1371
		      struct drm_file *file)
1372
{
1373
	struct drm_i915_private *dev_priv = to_i915(dev);
1374
	struct drm_i915_gem_pwrite *args = data;
1375
	struct drm_i915_gem_object *obj;
1376 1377 1378 1379 1380 1381
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1382
		       u64_to_user_ptr(args->data_ptr),
1383 1384 1385
		       args->size))
		return -EFAULT;

1386
	if (likely(!i915.prefault_disable)) {
1387
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1388 1389 1390 1391
						   args->size);
		if (ret)
			return -EFAULT;
	}
1392

1393
	obj = i915_gem_object_lookup(file, args->handle);
1394 1395
	if (!obj)
		return -ENOENT;
1396

1397
	/* Bounds check destination. */
1398 1399
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1400
		ret = -EINVAL;
1401
		goto err;
C
Chris Wilson 已提交
1402 1403
	}

C
Chris Wilson 已提交
1404 1405
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1416
	ret = -EFAULT;
1417 1418 1419 1420 1421 1422
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1423 1424
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1425
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1426 1427 1428
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1429
	}
1430

1431
	if (ret == -EFAULT || ret == -ENOSPC) {
1432 1433
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1434
		else if (i915_gem_object_has_struct_page(obj))
1435
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1436 1437
		else
			ret = -ENODEV;
1438
	}
1439

1440
	i915_gem_object_put(obj);
1441
	mutex_unlock(&dev->struct_mutex);
1442 1443
	intel_runtime_pm_put(dev_priv);

1444
	return ret;
1445 1446 1447 1448 1449 1450

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1451 1452
}

1453 1454 1455 1456 1457 1458 1459
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1460
/**
1461 1462
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1463 1464 1465
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1466 1467 1468
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1469
			  struct drm_file *file)
1470 1471
{
	struct drm_i915_gem_set_domain *args = data;
1472
	struct drm_i915_gem_object *obj;
1473 1474
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1475 1476
	int ret;

1477
	/* Only handle setting domains to types used by the CPU. */
1478
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1479 1480 1481 1482 1483 1484 1485 1486
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1487
	obj = i915_gem_object_lookup(file, args->handle);
1488 1489
	if (!obj)
		return -ENOENT;
1490

1491 1492 1493 1494
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1495 1496 1497 1498 1499
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1500
	if (ret)
1501
		goto err;
1502

1503
	if (read_domains & I915_GEM_DOMAIN_GTT)
1504
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1505
	else
1506
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1507

1508
	if (write_domain != 0)
1509
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1510

1511
	i915_gem_object_put(obj);
1512 1513
	mutex_unlock(&dev->struct_mutex);
	return ret;
1514 1515 1516 1517

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1518 1519 1520 1521
}

/**
 * Called when user space has done writes to this buffer
1522 1523 1524
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1525 1526 1527
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1528
			 struct drm_file *file)
1529 1530
{
	struct drm_i915_gem_sw_finish *args = data;
1531
	struct drm_i915_gem_object *obj;
1532
	int err = 0;
1533

1534
	obj = i915_gem_object_lookup(file, args->handle);
1535 1536
	if (!obj)
		return -ENOENT;
1537 1538

	/* Pinned buffers may be scanout, so flush the cache */
1539 1540 1541 1542 1543 1544 1545
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1546

1547 1548
	i915_gem_object_put_unlocked(obj);
	return err;
1549 1550 1551
}

/**
1552 1553 1554 1555 1556
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1557 1558 1559
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1570 1571 1572
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1573
		    struct drm_file *file)
1574 1575
{
	struct drm_i915_gem_mmap *args = data;
1576
	struct drm_i915_gem_object *obj;
1577 1578
	unsigned long addr;

1579 1580 1581
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1582
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1583 1584
		return -ENODEV;

1585 1586
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1587
		return -ENOENT;
1588

1589 1590 1591
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1592
	if (!obj->base.filp) {
1593
		i915_gem_object_put_unlocked(obj);
1594 1595 1596
		return -EINVAL;
	}

1597
	addr = vm_mmap(obj->base.filp, 0, args->size,
1598 1599
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1600 1601 1602 1603
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1604
		if (down_write_killable(&mm->mmap_sem)) {
1605
			i915_gem_object_put_unlocked(obj);
1606 1607
			return -EINTR;
		}
1608 1609 1610 1611 1612 1613 1614
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1615 1616

		/* This may race, but that's ok, it only gets set */
1617
		WRITE_ONCE(obj->has_wc_mmap, true);
1618
	}
1619
	i915_gem_object_put_unlocked(obj);
1620 1621 1622 1623 1624 1625 1626 1627
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1628 1629
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1630
 * @area: CPU VMA in question
1631
 * @vmf: fault info
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
C
Chris Wilson 已提交
1644
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1645
{
C
Chris Wilson 已提交
1646
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1647
	struct drm_device *dev = obj->base.dev;
1648 1649
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1650
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1651
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1652
	struct i915_vma *vma;
1653 1654
	pgoff_t page_offset;
	unsigned long pfn;
1655
	int ret;
1656

1657
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1658
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1659 1660
		PAGE_SHIFT;

C
Chris Wilson 已提交
1661 1662
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1663
	/* Try to flush the object off the GPU first without holding the lock.
1664
	 * Upon acquiring the lock, we will perform our sanity checks and then
1665 1666 1667
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1668
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1669
	if (ret)
1670 1671 1672 1673 1674 1675 1676
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1677

1678 1679
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1680
		ret = -EFAULT;
1681
		goto err_unlock;
1682 1683
	}

1684
	/* Use a partial view if the object is bigger than the aperture. */
1685
	if (obj->base.size >= ggtt->mappable_end &&
1686
	    !i915_gem_object_is_tiled(obj)) {
1687
		static const unsigned int chunk_size = 256; // 1 MiB
1688

1689 1690 1691 1692 1693 1694
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
C
Chris Wilson 已提交
1695
			      (area->vm_end - area->vm_start) / PAGE_SIZE -
1696 1697 1698 1699
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
C
Chris Wilson 已提交
1700 1701 1702
	vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1703
		goto err_unlock;
C
Chris Wilson 已提交
1704
	}
1705

1706 1707
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1708
		goto err_unpin;
1709

1710
	ret = i915_gem_object_get_fence(obj);
1711
	if (ret)
1712
		goto err_unpin;
1713

1714
	/* Finally, remap it using the new GTT offset */
1715
	pfn = ggtt->mappable_base + i915_ggtt_offset(vma);
1716
	pfn >>= PAGE_SHIFT;
1717

1718 1719 1720 1721 1722 1723
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
C
Chris Wilson 已提交
1724
		unsigned long base = area->vm_start +
1725 1726
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1727

1728
		for (i = 0; i < view.params.partial.size; i++) {
C
Chris Wilson 已提交
1729 1730 1731
			ret = vm_insert_pfn(area,
					    base + i * PAGE_SIZE,
					    pfn + i);
1732 1733 1734 1735 1736
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1737 1738
	} else {
		if (!obj->fault_mappable) {
C
Chris Wilson 已提交
1739 1740 1741 1742 1743
			unsigned long size =
				min_t(unsigned long,
				      area->vm_end - area->vm_start,
				      obj->base.size) >> PAGE_SHIFT;
			unsigned long base = area->vm_start;
1744 1745
			int i;

C
Chris Wilson 已提交
1746 1747 1748
			for (i = 0; i < size; i++) {
				ret = vm_insert_pfn(area,
						    base + i * PAGE_SIZE,
1749 1750 1751 1752 1753 1754 1755
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
C
Chris Wilson 已提交
1756
			ret = vm_insert_pfn(area,
1757 1758 1759
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1760
err_unpin:
C
Chris Wilson 已提交
1761
	__i915_vma_unpin(vma);
1762
err_unlock:
1763
	mutex_unlock(&dev->struct_mutex);
1764 1765 1766
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1767
	switch (ret) {
1768
	case -EIO:
1769 1770 1771 1772 1773 1774 1775
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1776 1777 1778
			ret = VM_FAULT_SIGBUS;
			break;
		}
1779
	case -EAGAIN:
D
Daniel Vetter 已提交
1780 1781 1782 1783
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1784
		 */
1785 1786
	case 0:
	case -ERESTARTSYS:
1787
	case -EINTR:
1788 1789 1790 1791 1792
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1793 1794
		ret = VM_FAULT_NOPAGE;
		break;
1795
	case -ENOMEM:
1796 1797
		ret = VM_FAULT_OOM;
		break;
1798
	case -ENOSPC:
1799
	case -EFAULT:
1800 1801
		ret = VM_FAULT_SIGBUS;
		break;
1802
	default:
1803
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1804 1805
		ret = VM_FAULT_SIGBUS;
		break;
1806
	}
1807
	return ret;
1808 1809
}

1810 1811 1812 1813
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1814
 * Preserve the reservation of the mmapping with the DRM core code, but
1815 1816 1817 1818 1819 1820 1821 1822 1823
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1824
void
1825
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1826
{
1827 1828 1829 1830 1831 1832
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1833 1834
	if (!obj->fault_mappable)
		return;
1835

1836 1837
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1848
	obj->fault_mappable = false;
1849 1850
}

1851 1852 1853 1854 1855 1856 1857 1858 1859
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1860 1861
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1862
 * @dev_priv: i915 device
1863 1864 1865 1866 1867 1868
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1869 1870
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1871
{
1872
	u64 ggtt_size;
1873

1874 1875
	GEM_BUG_ON(size == 0);

1876
	if (INTEL_GEN(dev_priv) >= 4 ||
1877 1878
	    tiling_mode == I915_TILING_NONE)
		return size;
1879 1880

	/* Previous chips need a power-of-two fence region when tiling */
1881
	if (IS_GEN3(dev_priv))
1882
		ggtt_size = 1024*1024;
1883
	else
1884
		ggtt_size = 512*1024;
1885

1886 1887
	while (ggtt_size < size)
		ggtt_size <<= 1;
1888

1889
	return ggtt_size;
1890 1891
}

1892
/**
1893
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1894
 * @dev_priv: i915 device
1895 1896
 * @size: object size
 * @tiling_mode: tiling mode
1897
 * @fenced: is fenced alignment required or not
1898
 *
1899
 * Return the required global GTT alignment for an object, taking into account
1900
 * potential fence register mapping.
1901
 */
1902
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1903
				int tiling_mode, bool fenced)
1904
{
1905 1906
	GEM_BUG_ON(size == 0);

1907 1908 1909 1910
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1911
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1912
	    tiling_mode == I915_TILING_NONE)
1913 1914
		return 4096;

1915 1916 1917 1918
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1919
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1920 1921
}

1922 1923
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1924
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1925
	int err;
1926

1927 1928 1929
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1930

1931 1932 1933
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1934
	 */
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
1945

1946
	return err;
1947 1948 1949 1950 1951 1952 1953
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1954
int
1955 1956
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1957
		  uint32_t handle,
1958
		  uint64_t *offset)
1959
{
1960
	struct drm_i915_gem_object *obj;
1961 1962
	int ret;

1963
	obj = i915_gem_object_lookup(file, handle);
1964 1965
	if (!obj)
		return -ENOENT;
1966

1967
	ret = i915_gem_object_create_mmap_offset(obj);
1968 1969
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1970

1971
	i915_gem_object_put_unlocked(obj);
1972
	return ret;
1973 1974
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1996
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1997 1998
}

D
Daniel Vetter 已提交
1999 2000 2001
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2002
{
2003
	i915_gem_object_free_mmap_offset(obj);
2004

2005 2006
	if (obj->base.filp == NULL)
		return;
2007

D
Daniel Vetter 已提交
2008 2009 2010 2011 2012
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2013
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2014 2015
	obj->madv = __I915_MADV_PURGED;
}
2016

2017 2018 2019
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2020
{
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2033
	mapping = obj->base.filp->f_mapping,
2034
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2035 2036
}

2037
static void
2038
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2039
{
2040 2041
	struct sgt_iter sgt_iter;
	struct page *page;
2042
	int ret;
2043

2044
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2045

C
Chris Wilson 已提交
2046
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2047
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2048 2049 2050
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2051
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2052 2053 2054
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2055 2056
	i915_gem_gtt_finish_object(obj);

2057
	if (i915_gem_object_needs_bit17_swizzle(obj))
2058 2059
		i915_gem_object_save_bit_17_swizzle(obj);

2060 2061
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2062

2063
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2064
		if (obj->dirty)
2065
			set_page_dirty(page);
2066

2067
		if (obj->madv == I915_MADV_WILLNEED)
2068
			mark_page_accessed(page);
2069

2070
		put_page(page);
2071
	}
2072
	obj->dirty = 0;
2073

2074 2075
	sg_free_table(obj->pages);
	kfree(obj->pages);
2076
}
C
Chris Wilson 已提交
2077

2078
int
2079 2080 2081 2082
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2083
	if (obj->pages == NULL)
2084 2085
		return 0;

2086 2087 2088
	if (obj->pages_pin_count)
		return -EBUSY;

2089
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2090

2091 2092 2093
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2094
	list_del(&obj->global_list);
2095

2096
	if (obj->mapping) {
2097
		/* low bits are ignored by is_vmalloc_addr and kmap_to_page */
2098 2099 2100 2101
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2102 2103 2104
		obj->mapping = NULL;
	}

2105
	ops->put_pages(obj);
2106
	obj->pages = NULL;
2107

2108
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2109 2110 2111 2112

	return 0;
}

2113
static int
C
Chris Wilson 已提交
2114
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2115
{
2116
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2117 2118
	int page_count, i;
	struct address_space *mapping;
2119 2120
	struct sg_table *st;
	struct scatterlist *sg;
2121
	struct sgt_iter sgt_iter;
2122
	struct page *page;
2123
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2124
	int ret;
C
Chris Wilson 已提交
2125
	gfp_t gfp;
2126

C
Chris Wilson 已提交
2127 2128 2129 2130 2131 2132 2133
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2134 2135 2136 2137
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2138
	page_count = obj->base.size / PAGE_SIZE;
2139 2140
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2141
		return -ENOMEM;
2142
	}
2143

2144 2145 2146 2147 2148
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2149
	mapping = obj->base.filp->f_mapping;
2150
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2151
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2152 2153 2154
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2155 2156
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2157 2158 2159 2160 2161
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2162 2163 2164 2165 2166 2167 2168 2169
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2170
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2171 2172
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2173
				goto err_pages;
I
Imre Deak 已提交
2174
			}
C
Chris Wilson 已提交
2175
		}
2176 2177 2178 2179 2180 2181 2182 2183
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2184 2185 2186 2187 2188 2189 2190 2191 2192
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2193 2194 2195

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2196
	}
2197 2198 2199 2200
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2201 2202
	obj->pages = st;

I
Imre Deak 已提交
2203 2204 2205 2206
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2207
	if (i915_gem_object_needs_bit17_swizzle(obj))
2208 2209
		i915_gem_object_do_bit_17_swizzle(obj);

2210
	if (i915_gem_object_is_tiled(obj) &&
2211 2212 2213
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2214 2215 2216
	return 0;

err_pages:
2217
	sg_mark_end(sg);
2218 2219
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2220 2221
	sg_free_table(st);
	kfree(st);
2222 2223 2224 2225 2226 2227 2228 2229 2230

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2231 2232 2233 2234
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2247
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2248 2249 2250
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2251
	if (obj->pages)
2252 2253
		return 0;

2254
	if (obj->madv != I915_MADV_WILLNEED) {
2255
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2256
		return -EFAULT;
2257 2258
	}

2259 2260
	BUG_ON(obj->pages_pin_count);

2261 2262 2263 2264
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2265
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2266 2267 2268 2269

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2270
	return 0;
2271 2272
}

2273
/* The 'mapping' part of i915_gem_object_pin_map() below */
2274 2275
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2276 2277 2278
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2279 2280
	struct sgt_iter sgt_iter;
	struct page *page;
2281 2282
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2283
	unsigned long i = 0;
2284
	pgprot_t pgprot;
2285 2286 2287
	void *addr;

	/* A single page can always be kmapped */
2288
	if (n_pages == 1 && type == I915_MAP_WB)
2289 2290
		return kmap(sg_page(sgt->sgl));

2291 2292 2293 2294 2295 2296
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2297

2298 2299
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2300 2301 2302 2303

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2304 2305 2306 2307 2308 2309 2310 2311 2312
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2313

2314 2315
	if (pages != stack_pages)
		drm_free_large(pages);
2316 2317 2318 2319 2320

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2321 2322
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2323
{
2324 2325 2326
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2327 2328 2329
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2330
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2331 2332 2333 2334 2335 2336

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2337
	pinned = obj->pages_pin_count > 1;
2338

2339 2340 2341 2342 2343
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2344
		}
2345 2346 2347 2348 2349 2350 2351

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2352 2353
	}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2369 2370
}

2371
static void
2372 2373
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2374
{
2375 2376
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2377

2378
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2379 2380
}

2381
static void
2382 2383
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2384
{
2385 2386 2387
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2388

2389
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2390

2391 2392
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2393
		return;
2394

2395 2396 2397 2398
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2399 2400 2401
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2402

2403
	i915_gem_object_put(obj);
2404 2405
}

2406
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2407
{
2408
	unsigned long elapsed;
2409

2410
	if (ctx->hang_stats.banned)
2411 2412
		return true;

2413
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2414 2415
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2416 2417
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2418 2419 2420 2421 2422
	}

	return false;
}

2423
static void i915_set_reset_status(struct i915_gem_context *ctx,
2424
				  const bool guilty)
2425
{
2426
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2427 2428

	if (guilty) {
2429
		hs->banned = i915_context_is_banned(ctx);
2430 2431 2432 2433
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2434 2435 2436
	}
}

2437
struct drm_i915_gem_request *
2438
i915_gem_find_active_request(struct intel_engine_cs *engine)
2439
{
2440 2441
	struct drm_i915_gem_request *request;

2442 2443 2444 2445 2446 2447 2448 2449
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2450
	list_for_each_entry(request, &engine->request_list, link) {
2451
		if (i915_gem_request_completed(request))
2452
			continue;
2453

2454
		return request;
2455
	}
2456 2457 2458 2459

	return NULL;
}

2460
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2461 2462 2463 2464
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2465
	request = i915_gem_find_active_request(engine);
2466 2467 2468
	if (request == NULL)
		return;

2469
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2470

2471
	i915_set_reset_status(request->ctx, ring_hung);
2472
	list_for_each_entry_continue(request, &engine->request_list, link)
2473
		i915_set_reset_status(request->ctx, false);
2474
}
2475

2476
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2477
{
2478
	struct drm_i915_gem_request *request;
2479
	struct intel_ring *ring;
2480

2481 2482 2483 2484
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2485
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2486

2487 2488 2489 2490 2491 2492
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2493
	if (i915.enable_execlists) {
2494 2495
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2496

2497
		intel_execlists_cancel_requests(engine);
2498 2499
	}

2500 2501 2502 2503 2504 2505 2506
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2507 2508
	request = i915_gem_active_raw(&engine->last_request,
				      &engine->i915->drm.struct_mutex);
2509
	if (request)
2510
		i915_gem_request_retire_upto(request);
2511
	GEM_BUG_ON(intel_engine_is_active(engine));
2512 2513 2514 2515 2516 2517 2518 2519

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2520 2521 2522
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2523
	}
2524

2525
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2526 2527
}

2528
void i915_gem_reset(struct drm_device *dev)
2529
{
2530
	struct drm_i915_private *dev_priv = to_i915(dev);
2531
	struct intel_engine_cs *engine;
2532

2533 2534 2535 2536 2537
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2538
	for_each_engine(engine, dev_priv)
2539
		i915_gem_reset_engine_status(engine);
2540

2541
	for_each_engine(engine, dev_priv)
2542
		i915_gem_reset_engine_cleanup(engine);
2543
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2544

2545 2546
	i915_gem_context_reset(dev);

2547
	i915_gem_restore_fences(dev);
2548 2549
}

2550
static void
2551 2552
i915_gem_retire_work_handler(struct work_struct *work)
{
2553
	struct drm_i915_private *dev_priv =
2554
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2555
	struct drm_device *dev = &dev_priv->drm;
2556

2557
	/* Come back later if the device is busy... */
2558
	if (mutex_trylock(&dev->struct_mutex)) {
2559
		i915_gem_retire_requests(dev_priv);
2560
		mutex_unlock(&dev->struct_mutex);
2561
	}
2562 2563 2564 2565 2566

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2567 2568
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2569 2570
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2571
				   round_jiffies_up_relative(HZ));
2572
	}
2573
}
2574

2575 2576 2577 2578
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2579
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2580
	struct drm_device *dev = &dev_priv->drm;
2581
	struct intel_engine_cs *engine;
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2603

2604
	for_each_engine(engine, dev_priv)
2605
		i915_gem_batch_pool_fini(&engine->batch_pool);
2606

2607 2608 2609
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2610

2611 2612 2613 2614 2615
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2616

2617 2618 2619 2620
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2621
	}
2622 2623
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2637 2638
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2639 2640 2641
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2665
	struct intel_rps_client *rps = to_rps_client(file);
2666
	struct drm_i915_gem_object *obj;
2667 2668
	unsigned long active;
	int idx, ret = 0;
2669

2670 2671 2672
	if (args->flags != 0)
		return -EINVAL;

2673
	obj = i915_gem_object_lookup(file, args->bo_handle);
2674
	if (!obj)
2675 2676
		return -ENOENT;

2677 2678 2679 2680 2681 2682 2683
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2684 2685
	}

2686
	i915_gem_object_put_unlocked(obj);
2687
	return ret;
2688 2689
}

2690
static int
2691
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2692
		       struct drm_i915_gem_request *from)
2693 2694 2695
{
	int ret;

2696
	if (to->engine == from->engine)
2697 2698
		return 0;

2699
	if (!i915.semaphores) {
2700 2701 2702 2703
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2704 2705 2706
		if (ret)
			return ret;
	} else {
2707
		int idx = intel_engine_sync_index(from->engine, to->engine);
2708
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2709 2710
			return 0;

2711
		trace_i915_gem_ring_sync_to(to, from);
2712
		ret = to->engine->semaphore.sync_to(to, from);
2713 2714 2715
		if (ret)
			return ret;

2716
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2717 2718 2719 2720 2721
	}

	return 0;
}

2722 2723 2724 2725
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2726
 * @to: request we are wishing to use
2727 2728
 *
 * This code is meant to abstract object synchronization with the GPU.
2729 2730 2731
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2732 2733 2734 2735 2736 2737 2738
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2739 2740 2741
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2742 2743
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2744
		     struct drm_i915_gem_request *to)
2745
{
C
Chris Wilson 已提交
2746 2747 2748
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2749

C
Chris Wilson 已提交
2750
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2751

2752
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2753 2754
	if (!active_mask)
		return 0;
2755

C
Chris Wilson 已提交
2756 2757
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2758
	} else {
C
Chris Wilson 已提交
2759 2760
		active_mask = 1;
		active = &obj->last_write;
2761
	}
C
Chris Wilson 已提交
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2772
		ret = __i915_gem_object_sync(to, request);
2773 2774 2775
		if (ret)
			return ret;
	}
2776

2777
	return 0;
2778 2779
}

2780 2781 2782 2783 2784 2785 2786
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2787 2788 2789
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2801 2802
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2803
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2804 2805 2806 2807 2808 2809 2810 2811

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2812
int i915_vma_unbind(struct i915_vma *vma)
2813
{
2814
	struct drm_i915_gem_object *obj = vma->obj;
2815
	unsigned long active;
2816
	int ret;
2817

2818 2819 2820 2821
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2822
	if (active) {
2823 2824
		int idx;

2825 2826 2827 2828 2829
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2830
		__i915_vma_pin(vma);
2831

2832 2833 2834 2835
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2836
				break;
2837 2838
		}

2839
		__i915_vma_unpin(vma);
2840 2841 2842
		if (ret)
			return ret;

2843 2844 2845
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2846
	if (i915_vma_is_pinned(vma))
2847 2848
		return -EBUSY;

2849 2850
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2851

2852 2853
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2854

2855 2856
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2857
		i915_gem_object_finish_gtt(obj);
2858

2859 2860 2861 2862
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2863 2864

		__i915_vma_iounmap(vma);
2865
	}
2866

2867 2868 2869 2870
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2871
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2872

2873 2874 2875
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2876
	if (i915_vma_is_ggtt(vma)) {
2877 2878
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
2879 2880 2881
		} else if (vma->pages) {
			sg_free_table(vma->pages);
			kfree(vma->pages);
2882 2883
		}
	}
2884
	vma->pages = NULL;
2885

B
Ben Widawsky 已提交
2886
	/* Since the unbound list is global, only move to that list if
2887
	 * no more VMAs exist. */
2888 2889 2890
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2891

2892 2893 2894 2895 2896 2897
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2898
destroy:
2899
	if (unlikely(i915_vma_is_closed(vma)))
2900 2901
		i915_vma_destroy(vma);

2902
	return 0;
2903 2904
}

2905 2906
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2907
{
2908
	struct intel_engine_cs *engine;
2909
	int ret;
2910

2911
	for_each_engine(engine, dev_priv) {
2912 2913 2914
		if (engine->last_context == NULL)
			continue;

2915
		ret = intel_engine_idle(engine, interruptible);
2916 2917 2918
		if (ret)
			return ret;
	}
2919

2920
	return 0;
2921 2922
}

2923
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2924 2925
				     unsigned long cache_level)
{
2926
	struct drm_mm_node *gtt_space = &vma->node;
2927 2928
	struct drm_mm_node *other;

2929 2930 2931 2932 2933 2934
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2935
	 */
2936
	if (vma->vm->mm.color_adjust == NULL)
2937 2938
		return true;

2939
	if (!drm_mm_node_allocated(gtt_space))
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2956
/**
2957 2958
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2959
 * @size: requested size in bytes (can be larger than the VMA)
2960
 * @alignment: required alignment
2961
 * @flags: mask of PIN_* flags to use
2962 2963 2964 2965 2966 2967 2968
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
2969
 */
2970 2971
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2972
{
2973 2974
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
2975 2976
	u64 start, end;
	u64 min_alignment;
2977
	int ret;
2978

2979
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2980
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2981 2982 2983

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
2984 2985
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
2986 2987

	min_alignment =
2988 2989
		i915_gem_get_ggtt_alignment(dev_priv, size,
					    i915_gem_object_get_tiling(obj),
2990 2991 2992 2993 2994 2995
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
2996
		return -EINVAL;
2997
	}
2998

2999
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3000 3001

	end = vma->vm->total;
3002
	if (flags & PIN_MAPPABLE)
3003
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3004
	if (flags & PIN_ZONE_4G)
3005
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3006

3007 3008 3009
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3010
	 */
3011
	if (size > end) {
3012
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3013
			  size, obj->base.size,
3014
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3015
			  end);
3016
		return -E2BIG;
3017 3018
	}

3019
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3020
	if (ret)
3021
		return ret;
C
Chris Wilson 已提交
3022

3023 3024
	i915_gem_object_pin_pages(obj);

3025
	if (flags & PIN_OFFSET_FIXED) {
3026
		u64 offset = flags & PIN_OFFSET_MASK;
3027
		if (offset & (alignment - 1) || offset > end - size) {
3028
			ret = -EINVAL;
3029
			goto err_unpin;
3030
		}
3031

3032 3033 3034
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3035
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3036 3037 3038
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3039 3040 3041
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3042
		}
3043
	} else {
3044 3045
		u32 search_flag, alloc_flag;

3046 3047 3048 3049 3050 3051 3052
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3053

3054 3055 3056 3057 3058 3059 3060 3061 3062
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3063
search_free:
3064 3065
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3066 3067 3068 3069 3070 3071
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3072
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3073 3074 3075 3076 3077
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3078

3079
			goto err_unpin;
3080
		}
3081
	}
3082
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3083

3084
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3085
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3086
	obj->bind_count++;
3087

3088
	return 0;
B
Ben Widawsky 已提交
3089

3090
err_unpin:
B
Ben Widawsky 已提交
3091
	i915_gem_object_unpin_pages(obj);
3092
	return ret;
3093 3094
}

3095
bool
3096 3097
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3098 3099 3100 3101 3102
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3103
	if (obj->pages == NULL)
3104
		return false;
3105

3106 3107 3108 3109
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3110
	if (obj->stolen || obj->phys_handle)
3111
		return false;
3112

3113 3114 3115 3116 3117 3118 3119 3120
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3121 3122
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3123
		return false;
3124
	}
3125

C
Chris Wilson 已提交
3126
	trace_i915_gem_object_clflush(obj);
3127
	drm_clflush_sg(obj->pages);
3128
	obj->cache_dirty = false;
3129 3130

	return true;
3131 3132 3133 3134
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3135
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3136
{
C
Chris Wilson 已提交
3137 3138
	uint32_t old_write_domain;

3139
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3140 3141
		return;

3142
	/* No actual flushing is required for the GTT write domain.  Writes
3143 3144
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3145 3146 3147 3148
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3149
	 */
3150 3151
	wmb();

3152 3153
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3154

3155
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3156

C
Chris Wilson 已提交
3157
	trace_i915_gem_object_change_domain(obj,
3158
					    obj->base.read_domains,
C
Chris Wilson 已提交
3159
					    old_write_domain);
3160 3161 3162 3163
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3164
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3165
{
C
Chris Wilson 已提交
3166
	uint32_t old_write_domain;
3167

3168
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3169 3170
		return;

3171
	if (i915_gem_clflush_object(obj, obj->pin_display))
3172
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3173

3174 3175
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3176

3177
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3178

C
Chris Wilson 已提交
3179
	trace_i915_gem_object_change_domain(obj,
3180
					    obj->base.read_domains,
C
Chris Wilson 已提交
3181
					    old_write_domain);
3182 3183
}

3184 3185
/**
 * Moves a single object to the GTT read, and possibly write domain.
3186 3187
 * @obj: object to act on
 * @write: ask for write access or read only
3188 3189 3190 3191
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3192
int
3193
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3194
{
C
Chris Wilson 已提交
3195
	uint32_t old_write_domain, old_read_domains;
3196
	struct i915_vma *vma;
3197
	int ret;
3198

3199
	ret = i915_gem_object_wait_rendering(obj, !write);
3200 3201 3202
	if (ret)
		return ret;

3203 3204 3205
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3218
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3219

3220 3221 3222 3223 3224 3225 3226
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3227 3228
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3229

3230 3231 3232
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3233 3234
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3235
	if (write) {
3236 3237 3238
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3239 3240
	}

C
Chris Wilson 已提交
3241 3242 3243 3244
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3245
	/* And bump the LRU for this access */
C
Chris Wilson 已提交
3246
	vma = i915_gem_object_to_ggtt(obj, NULL);
3247 3248 3249 3250
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3251

3252 3253 3254
	return 0;
}

3255 3256
/**
 * Changes the cache-level of an object across all VMA.
3257 3258
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3270 3271 3272
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3273
	struct i915_vma *vma;
3274
	int ret = 0;
3275 3276

	if (obj->cache_level == cache_level)
3277
		goto out;
3278

3279 3280 3281 3282 3283
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3284 3285
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3286 3287 3288
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3289
		if (i915_vma_is_pinned(vma)) {
3290 3291 3292 3293
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3306 3307
	}

3308 3309 3310 3311 3312 3313 3314
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3315
	if (obj->bind_count) {
3316 3317 3318 3319
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3320
		ret = i915_gem_object_wait_rendering(obj, false);
3321 3322 3323
		if (ret)
			return ret;

3324
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3341 3342 3343
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3344 3345 3346 3347 3348 3349 3350 3351
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3352 3353
		}

3354
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3355 3356 3357 3358 3359 3360 3361
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3362 3363
	}

3364
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3365 3366 3367
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3368
out:
3369 3370 3371 3372
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3373
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3374
		if (i915_gem_clflush_object(obj, true))
3375
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3376 3377 3378 3379 3380
	}

	return 0;
}

B
Ben Widawsky 已提交
3381 3382
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3383
{
B
Ben Widawsky 已提交
3384
	struct drm_i915_gem_caching *args = data;
3385 3386
	struct drm_i915_gem_object *obj;

3387 3388
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3389
		return -ENOENT;
3390

3391 3392 3393 3394 3395 3396
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3397 3398 3399 3400
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3401 3402 3403 3404
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3405

3406
	i915_gem_object_put_unlocked(obj);
3407
	return 0;
3408 3409
}

B
Ben Widawsky 已提交
3410 3411
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3412
{
3413
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3414
	struct drm_i915_gem_caching *args = data;
3415 3416 3417 3418
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3419 3420
	switch (args->caching) {
	case I915_CACHING_NONE:
3421 3422
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3423
	case I915_CACHING_CACHED:
3424 3425 3426 3427 3428 3429
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3430
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3431 3432
			return -ENODEV;

3433 3434
		level = I915_CACHE_LLC;
		break;
3435 3436 3437
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3438 3439 3440 3441
	default:
		return -EINVAL;
	}

3442 3443
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3444 3445
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3446
		goto rpm_put;
B
Ben Widawsky 已提交
3447

3448 3449
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3450 3451 3452 3453 3454 3455
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3456
	i915_gem_object_put(obj);
3457 3458
unlock:
	mutex_unlock(&dev->struct_mutex);
3459 3460 3461
rpm_put:
	intel_runtime_pm_put(dev_priv);

3462 3463 3464
	return ret;
}

3465
/*
3466 3467 3468
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3469
 */
C
Chris Wilson 已提交
3470
struct i915_vma *
3471 3472
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3473
				     const struct i915_ggtt_view *view)
3474
{
C
Chris Wilson 已提交
3475
	struct i915_vma *vma;
3476
	u32 old_read_domains, old_write_domain;
3477 3478
	int ret;

3479 3480 3481
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3482
	obj->pin_display++;
3483

3484 3485 3486 3487 3488 3489 3490 3491 3492
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3493 3494
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3495 3496
	if (ret) {
		vma = ERR_PTR(ret);
3497
		goto err_unpin_display;
C
Chris Wilson 已提交
3498
	}
3499

3500 3501 3502 3503
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
C
Chris Wilson 已提交
3504
	vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3505 3506
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
C
Chris Wilson 已提交
3507
	if (IS_ERR(vma))
3508
		goto err_unpin_display;
3509

C
Chris Wilson 已提交
3510 3511
	WARN_ON(obj->pin_display > i915_vma_pin_count(vma));

3512
	i915_gem_object_flush_cpu_write_domain(obj);
3513

3514
	old_write_domain = obj->base.write_domain;
3515
	old_read_domains = obj->base.read_domains;
3516 3517 3518 3519

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3520
	obj->base.write_domain = 0;
3521
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3522 3523 3524

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3525
					    old_write_domain);
3526

C
Chris Wilson 已提交
3527
	return vma;
3528 3529

err_unpin_display:
3530
	obj->pin_display--;
C
Chris Wilson 已提交
3531
	return vma;
3532 3533 3534
}

void
C
Chris Wilson 已提交
3535
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3536
{
C
Chris Wilson 已提交
3537
	if (WARN_ON(vma->obj->pin_display == 0))
3538 3539
		return;

C
Chris Wilson 已提交
3540
	vma->obj->pin_display--;
3541

C
Chris Wilson 已提交
3542 3543
	i915_vma_unpin(vma);
	WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3544 3545
}

3546 3547
/**
 * Moves a single object to the CPU read, and possibly write domain.
3548 3549
 * @obj: object to act on
 * @write: requesting write or read-only access
3550 3551 3552 3553
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3554
int
3555
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3556
{
C
Chris Wilson 已提交
3557
	uint32_t old_write_domain, old_read_domains;
3558 3559
	int ret;

3560
	ret = i915_gem_object_wait_rendering(obj, !write);
3561 3562 3563
	if (ret)
		return ret;

3564 3565 3566
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3567
	i915_gem_object_flush_gtt_write_domain(obj);
3568

3569 3570
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3571

3572
	/* Flush the CPU cache if it's still invalid. */
3573
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3574
		i915_gem_clflush_object(obj, false);
3575

3576
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3577 3578 3579 3580 3581
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3582
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3583 3584 3585 3586 3587

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3588 3589
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3590
	}
3591

C
Chris Wilson 已提交
3592 3593 3594 3595
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3596 3597 3598
	return 0;
}

3599 3600 3601
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3602 3603 3604 3605
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3606 3607 3608
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3609
static int
3610
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3611
{
3612
	struct drm_i915_private *dev_priv = to_i915(dev);
3613
	struct drm_i915_file_private *file_priv = file->driver_priv;
3614
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3615
	struct drm_i915_gem_request *request, *target = NULL;
3616
	int ret;
3617

3618 3619 3620 3621
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3622 3623 3624
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3625

3626
	spin_lock(&file_priv->mm.lock);
3627
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3628 3629
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3630

3631 3632 3633 3634 3635 3636 3637
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3638
		target = request;
3639
	}
3640
	if (target)
3641
		i915_gem_request_get(target);
3642
	spin_unlock(&file_priv->mm.lock);
3643

3644
	if (target == NULL)
3645
		return 0;
3646

3647
	ret = i915_wait_request(target, true, NULL, NULL);
3648
	i915_gem_request_put(target);
3649

3650 3651 3652
	return ret;
}

3653
static bool
3654
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3655 3656 3657
{
	struct drm_i915_gem_object *obj = vma->obj;

3658 3659 3660
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3661 3662 3663 3664
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3665 3666 3667 3668 3669 3670 3671 3672 3673
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3674 3675 3676 3677
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3678 3679 3680
	return false;
}

3681 3682 3683
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3684
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3685 3686 3687
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3688
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3689
					    obj->base.size,
3690
					    i915_gem_object_get_tiling(obj));
3691
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3692
						      obj->base.size,
3693
						      i915_gem_object_get_tiling(obj),
3694
						      true);
3695 3696 3697 3698 3699

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3700
		    dev_priv->ggtt.mappable_end);
3701 3702 3703 3704

	obj->map_and_fenceable = mappable && fenceable;
}

3705 3706
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3707
{
3708
	unsigned int bound = vma->flags;
3709 3710
	int ret;

3711
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3712
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3713

3714 3715 3716 3717
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3718

3719
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3720 3721 3722
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3723
	}
3724

3725
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3726
	if (ret)
3727
		goto err;
3728

3729
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3730
		__i915_vma_set_map_and_fenceable(vma);
3731

3732
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3733 3734
	return 0;

3735 3736 3737
err:
	__i915_vma_unpin(vma);
	return ret;
3738 3739
}

C
Chris Wilson 已提交
3740
struct i915_vma *
3741 3742
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3743
			 u64 size,
3744 3745
			 u64 alignment,
			 u64 flags)
3746
{
C
Chris Wilson 已提交
3747
	struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3748 3749
	struct i915_vma *vma;
	int ret;
3750

C
Chris Wilson 已提交
3751
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3752
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3753
		return vma;
3754 3755 3756 3757

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3758
			return ERR_PTR(-ENOSPC);
3759 3760 3761

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3762
		     " offset=%08x, req.alignment=%llx, req.map_and_fenceable=%d,"
3763
		     " obj->map_and_fenceable=%d\n",
3764
		     i915_ggtt_offset(vma),
3765 3766 3767 3768 3769
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3770
			return ERR_PTR(ret);
3771 3772
	}

C
Chris Wilson 已提交
3773 3774 3775
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3776

C
Chris Wilson 已提交
3777
	return vma;
3778 3779
}

3780
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3795 3796 3797 3798 3799 3800 3801 3802 3803
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3804 3805
}

3806
static __always_inline unsigned int
3807 3808 3809
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
3810
	struct drm_i915_gem_request *request;
3811

3812 3813 3814
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
3815

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
3872 3873
}

3874
static __always_inline unsigned int
3875 3876 3877 3878 3879
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3880
static __always_inline unsigned int
3881 3882 3883 3884 3885
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3886 3887
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3888
		    struct drm_file *file)
3889 3890
{
	struct drm_i915_gem_busy *args = data;
3891
	struct drm_i915_gem_object *obj;
3892
	unsigned long active;
3893

3894
	obj = i915_gem_object_lookup(file, args->handle);
3895 3896
	if (!obj)
		return -ENOENT;
3897

3898
	args->busy = 0;
3899 3900 3901
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
3902

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
3919 3920 3921 3922 3923 3924
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
3925 3926 3927 3928 3929 3930 3931
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
3932 3933 3934 3935 3936
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
3937 3938 3939 3940 3941 3942 3943 3944 3945
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
3946
	}
3947

3948 3949
	i915_gem_object_put_unlocked(obj);
	return 0;
3950 3951 3952 3953 3954 3955
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3956
	return i915_gem_ring_throttle(dev, file_priv);
3957 3958
}

3959 3960 3961 3962
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3963
	struct drm_i915_private *dev_priv = to_i915(dev);
3964
	struct drm_i915_gem_madvise *args = data;
3965
	struct drm_i915_gem_object *obj;
3966
	int ret;
3967 3968 3969 3970 3971 3972 3973 3974 3975

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3976 3977 3978 3979
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3980 3981
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3982 3983
		ret = -ENOENT;
		goto unlock;
3984 3985
	}

3986
	if (obj->pages &&
3987
	    i915_gem_object_is_tiled(obj) &&
3988 3989 3990 3991 3992 3993 3994
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3995 3996
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3997

C
Chris Wilson 已提交
3998
	/* if the object is no longer attached, discard its backing storage */
3999
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4000 4001
		i915_gem_object_truncate(obj);

4002
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4003

4004
	i915_gem_object_put(obj);
4005
unlock:
4006
	mutex_unlock(&dev->struct_mutex);
4007
	return ret;
4008 4009
}

4010 4011
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4012
{
4013 4014
	int i;

4015
	INIT_LIST_HEAD(&obj->global_list);
4016
	for (i = 0; i < I915_NUM_ENGINES; i++)
4017 4018 4019 4020 4021
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
4022
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4023
	INIT_LIST_HEAD(&obj->vma_list);
4024
	INIT_LIST_HEAD(&obj->batch_pool_link);
4025

4026 4027
	obj->ops = ops;

4028 4029 4030
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4031
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4032 4033
}

4034
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4035
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4036 4037 4038 4039
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4040
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4041
						  size_t size)
4042
{
4043
	struct drm_i915_gem_object *obj;
4044
	struct address_space *mapping;
D
Daniel Vetter 已提交
4045
	gfp_t mask;
4046
	int ret;
4047

4048
	obj = i915_gem_object_alloc(dev);
4049
	if (obj == NULL)
4050
		return ERR_PTR(-ENOMEM);
4051

4052 4053 4054
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4055

4056 4057 4058 4059 4060 4061 4062
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4063
	mapping = obj->base.filp->f_mapping;
4064
	mapping_set_gfp_mask(mapping, mask);
4065

4066
	i915_gem_object_init(obj, &i915_gem_object_ops);
4067

4068 4069
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4070

4071 4072
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4088 4089
	trace_i915_gem_object_create(obj);

4090
	return obj;
4091 4092 4093 4094 4095

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4096 4097
}

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4122
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4123
{
4124
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4125
	struct drm_device *dev = obj->base.dev;
4126
	struct drm_i915_private *dev_priv = to_i915(dev);
4127
	struct i915_vma *vma, *next;
4128

4129 4130
	intel_runtime_pm_get(dev_priv);

4131 4132
	trace_i915_gem_object_destroy(obj);

4133 4134 4135 4136 4137 4138 4139
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4140
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4141
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4142
		GEM_BUG_ON(i915_vma_is_active(vma));
4143
		vma->flags &= ~I915_VMA_PIN_MASK;
4144
		i915_vma_close(vma);
4145
	}
4146
	GEM_BUG_ON(obj->bind_count);
4147

B
Ben Widawsky 已提交
4148 4149 4150 4151 4152
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4153
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4154

4155 4156
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4157
	    i915_gem_object_is_tiled(obj))
4158 4159
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4160 4161
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4162
	if (discard_backing_storage(obj))
4163
		obj->madv = I915_MADV_DONTNEED;
4164
	i915_gem_object_put_pages(obj);
4165

4166 4167
	BUG_ON(obj->pages);

4168 4169
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4170

4171 4172 4173
	if (obj->ops->release)
		obj->ops->release(obj);

4174 4175
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4176

4177
	kfree(obj->bit_17);
4178
	i915_gem_object_free(obj);
4179 4180

	intel_runtime_pm_put(dev_priv);
4181 4182
}

4183
int i915_gem_suspend(struct drm_device *dev)
4184
{
4185
	struct drm_i915_private *dev_priv = to_i915(dev);
4186
	int ret;
4187

4188 4189
	intel_suspend_gt_powersave(dev_priv);

4190
	mutex_lock(&dev->struct_mutex);
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4204
	ret = i915_gem_wait_for_idle(dev_priv, true);
4205
	if (ret)
4206
		goto err;
4207

4208
	i915_gem_retire_requests(dev_priv);
4209

4210
	i915_gem_context_lost(dev_priv);
4211 4212
	mutex_unlock(&dev->struct_mutex);

4213
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4214 4215
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4216

4217 4218 4219
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4220
	WARN_ON(dev_priv->gt.awake);
4221

4222
	return 0;
4223 4224 4225 4226

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4227 4228
}

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4246 4247
void i915_gem_init_swizzling(struct drm_device *dev)
{
4248
	struct drm_i915_private *dev_priv = to_i915(dev);
4249

4250
	if (INTEL_INFO(dev)->gen < 5 ||
4251 4252 4253 4254 4255 4256
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4257 4258 4259
	if (IS_GEN5(dev))
		return;

4260 4261
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4262
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4263
	else if (IS_GEN7(dev))
4264
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4265 4266
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4267 4268
	else
		BUG();
4269
}
D
Daniel Vetter 已提交
4270

4271 4272
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4273
	struct drm_i915_private *dev_priv = to_i915(dev);
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4298 4299 4300
int
i915_gem_init_hw(struct drm_device *dev)
{
4301
	struct drm_i915_private *dev_priv = to_i915(dev);
4302
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4303
	int ret;
4304

4305 4306 4307
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4308
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4309
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4310

4311 4312 4313
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4314

4315
	if (HAS_PCH_NOP(dev)) {
4316 4317 4318 4319 4320 4321 4322 4323 4324
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4325 4326
	}

4327 4328
	i915_gem_init_swizzling(dev);

4329 4330 4331 4332 4333 4334 4335 4336
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4337
	BUG_ON(!dev_priv->kernel_context);
4338

4339 4340 4341 4342 4343 4344 4345
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4346
	for_each_engine(engine, dev_priv) {
4347
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4348
		if (ret)
4349
			goto out;
D
Daniel Vetter 已提交
4350
	}
4351

4352 4353
	intel_mocs_init_l3cc_table(dev);

4354
	/* We can't enable contexts until all firmware is loaded */
4355 4356 4357
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4358

4359 4360
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4361
	return ret;
4362 4363
}

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4385 4386
int i915_gem_init(struct drm_device *dev)
{
4387
	struct drm_i915_private *dev_priv = to_i915(dev);
4388 4389 4390
	int ret;

	mutex_lock(&dev->struct_mutex);
4391

4392
	if (!i915.enable_execlists) {
4393
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4394
	} else {
4395
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4396 4397
	}

4398 4399 4400 4401 4402 4403 4404 4405
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4406
	i915_gem_init_userptr(dev_priv);
4407 4408 4409 4410

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4411

4412
	ret = i915_gem_context_init(dev);
4413 4414
	if (ret)
		goto out_unlock;
4415

4416
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4417
	if (ret)
4418
		goto out_unlock;
4419

4420
	ret = i915_gem_init_hw(dev);
4421
	if (ret == -EIO) {
4422
		/* Allow engine initialisation to fail by marking the GPU as
4423 4424 4425 4426
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4427
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4428
		ret = 0;
4429
	}
4430 4431

out_unlock:
4432
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4433
	mutex_unlock(&dev->struct_mutex);
4434

4435
	return ret;
4436 4437
}

4438
void
4439
i915_gem_cleanup_engines(struct drm_device *dev)
4440
{
4441
	struct drm_i915_private *dev_priv = to_i915(dev);
4442
	struct intel_engine_cs *engine;
4443

4444
	for_each_engine(engine, dev_priv)
4445
		dev_priv->gt.cleanup_engine(engine);
4446 4447
}

4448
static void
4449
init_engine_lists(struct intel_engine_cs *engine)
4450
{
4451
	INIT_LIST_HEAD(&engine->request_list);
4452 4453
}

4454 4455 4456
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4457
	struct drm_device *dev = &dev_priv->drm;
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4468
	if (intel_vgpu_active(dev_priv))
4469 4470 4471 4472 4473 4474 4475 4476 4477
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4478
void
4479
i915_gem_load_init(struct drm_device *dev)
4480
{
4481
	struct drm_i915_private *dev_priv = to_i915(dev);
4482 4483
	int i;

4484
	dev_priv->objects =
4485 4486 4487 4488
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4489 4490 4491 4492 4493
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4494 4495 4496
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4497 4498 4499
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4500
				  NULL);
4501

4502
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4503 4504
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4505
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4506 4507
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4508
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4509
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4510
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4511
			  i915_gem_retire_work_handler);
4512
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4513
			  i915_gem_idle_work_handler);
4514
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4515
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4516

4517 4518
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4519
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4520

4521
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4522

4523 4524
	dev_priv->mm.interruptible = true;

4525
	spin_lock_init(&dev_priv->fb_tracking.lock);
4526
}
4527

4528 4529 4530 4531 4532 4533 4534
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4535 4536 4537

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4538 4539
}

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4568
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4569
{
4570
	struct drm_i915_file_private *file_priv = file->driver_priv;
4571
	struct drm_i915_gem_request *request;
4572 4573 4574 4575 4576

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4577
	spin_lock(&file_priv->mm.lock);
4578
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4579
		request->file_priv = NULL;
4580
	spin_unlock(&file_priv->mm.lock);
4581

4582
	if (!list_empty(&file_priv->rps.link)) {
4583
		spin_lock(&to_i915(dev)->rps.client_lock);
4584
		list_del(&file_priv->rps.link);
4585
		spin_unlock(&to_i915(dev)->rps.client_lock);
4586
	}
4587 4588 4589 4590 4591
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4592
	int ret;
4593 4594 4595 4596 4597 4598 4599 4600

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4601
	file_priv->dev_priv = to_i915(dev);
4602
	file_priv->file = file;
4603
	INIT_LIST_HEAD(&file_priv->rps.link);
4604 4605 4606 4607

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4608
	file_priv->bsd_engine = -1;
4609

4610 4611 4612
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4613

4614
	return ret;
4615 4616
}

4617 4618
/**
 * i915_gem_track_fb - update frontbuffer tracking
4619 4620 4621
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4622 4623 4624 4625
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4626 4627 4628 4629
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4630 4631 4632 4633 4634 4635 4636 4637 4638
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4639
	if (old) {
4640 4641
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4642 4643 4644
	}

	if (new) {
4645 4646
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4647 4648 4649
	}
}

4650 4651 4652 4653 4654 4655 4656
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4657
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4658 4659 4660 4661 4662 4663 4664
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4675
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4676
	if (IS_ERR(obj))
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4690
	obj->dirty = 1;		/* Backing store is now out of date */
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4702
	i915_gem_object_put(obj);
4703 4704
	return ERR_PTR(ret);
}