i915_gem.c 131.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static __must_check int
44 45
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
46 47 48
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
382 383 384 385 386 387 388 389
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
521 522

		i915_gem_object_retire(obj);
523 524 525 526 527 528 529 530 531 532 533
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

534 535 536
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
537
static int
538 539 540 541 542 543 544
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

545
	if (unlikely(page_do_bit17_swizzling))
546 547 548 549 550 551 552 553 554 555 556
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

557
	return ret ? -EFAULT : 0;
558 559
}

560 561 562 563
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
564
	if (unlikely(swizzled)) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

582 583 584 585 586 587 588 589 590 591 592 593
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
594 595 596
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
597 598 599 600 601 602 603 604 605 606 607

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

608
	return ret ? - EFAULT : 0;
609 610
}

611
static int
612 613 614 615
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
616
{
617
	char __user *user_data;
618
	ssize_t remain;
619
	loff_t offset;
620
	int shmem_page_offset, page_length, ret = 0;
621
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622
	int prefaulted = 0;
623
	int needs_clflush = 0;
624
	struct sg_page_iter sg_iter;
625

V
Ville Syrjälä 已提交
626
	user_data = to_user_ptr(args->data_ptr);
627 628
	remain = args->size;

629
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630

631
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 633 634
	if (ret)
		return ret;

635
	offset = args->offset;
636

637 638
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
639
		struct page *page = sg_page_iter_page(&sg_iter);
640 641 642 643

		if (remain <= 0)
			break;

644 645 646 647 648
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
649
		shmem_page_offset = offset_in_page(offset);
650 651 652 653
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

654 655 656
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

657 658 659 660 661
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
662 663 664

		mutex_unlock(&dev->struct_mutex);

665
		if (likely(!i915.prefault_disable) && !prefaulted) {
666
			ret = fault_in_multipages_writeable(user_data, remain);
667 668 669 670 671 672 673
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
674

675 676 677
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
678

679
		mutex_lock(&dev->struct_mutex);
680 681

		if (ret)
682 683
			goto out;

684
next_page:
685
		remain -= page_length;
686
		user_data += page_length;
687 688 689
		offset += page_length;
	}

690
out:
691 692
	i915_gem_object_unpin_pages(obj);

693 694 695
	return ret;
}

696 697 698 699 700 701 702
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703
		     struct drm_file *file)
704 705
{
	struct drm_i915_gem_pread *args = data;
706
	struct drm_i915_gem_object *obj;
707
	int ret = 0;
708

709 710 711 712
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
713
		       to_user_ptr(args->data_ptr),
714 715 716
		       args->size))
		return -EFAULT;

717
	ret = i915_mutex_lock_interruptible(dev);
718
	if (ret)
719
		return ret;
720

721
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722
	if (&obj->base == NULL) {
723 724
		ret = -ENOENT;
		goto unlock;
725
	}
726

727
	/* Bounds check source.  */
728 729
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
730
		ret = -EINVAL;
731
		goto out;
C
Chris Wilson 已提交
732 733
	}

734 735 736 737 738 739 740 741
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
742 743
	trace_i915_gem_object_pread(obj, args->offset, args->size);

744
	ret = i915_gem_shmem_pread(dev, obj, args, file);
745

746
out:
747
	drm_gem_object_unreference(&obj->base);
748
unlock:
749
	mutex_unlock(&dev->struct_mutex);
750
	return ret;
751 752
}

753 754
/* This is the fast write path which cannot handle
 * page faults in the source data
755
 */
756 757 758 759 760 761

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
762
{
763 764
	void __iomem *vaddr_atomic;
	void *vaddr;
765
	unsigned long unwritten;
766

P
Peter Zijlstra 已提交
767
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 769 770
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
771
						      user_data, length);
P
Peter Zijlstra 已提交
772
	io_mapping_unmap_atomic(vaddr_atomic);
773
	return unwritten;
774 775
}

776 777 778 779
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
780
static int
781 782
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
783
			 struct drm_i915_gem_pwrite *args,
784
			 struct drm_file *file)
785
{
786
	struct drm_i915_private *dev_priv = dev->dev_private;
787
	ssize_t remain;
788
	loff_t offset, page_base;
789
	char __user *user_data;
D
Daniel Vetter 已提交
790 791
	int page_offset, page_length, ret;

792
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
793 794 795 796 797 798 799 800 801 802
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
803

V
Ville Syrjälä 已提交
804
	user_data = to_user_ptr(args->data_ptr);
805 806
	remain = args->size;

807
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808

809 810
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

811 812 813
	while (remain > 0) {
		/* Operation in this page
		 *
814 815 816
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
817
		 */
818 819
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
820 821 822 823 824
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
825 826
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
827
		 */
B
Ben Widawsky 已提交
828
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
829 830
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
831
			goto out_flush;
D
Daniel Vetter 已提交
832
		}
833

834 835 836
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
837 838
	}

839 840
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
841
out_unpin:
B
Ben Widawsky 已提交
842
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
843
out:
844
	return ret;
845 846
}

847 848 849 850
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
851
static int
852 853 854 855 856
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
857
{
858
	char *vaddr;
859
	int ret;
860

861
	if (unlikely(page_do_bit17_swizzling))
862
		return -EINVAL;
863

864 865 866 867
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
868 869
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
870 871 872 873
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
874

875
	return ret ? -EFAULT : 0;
876 877
}

878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
880
static int
881 882 883 884 885
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
886
{
887 888
	char *vaddr;
	int ret;
889

890
	vaddr = kmap(page);
891
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 893 894
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
895 896
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 898
						user_data,
						page_length);
899 900 901 902 903
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
904 905 906
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
907
	kunmap(page);
908

909
	return ret ? -EFAULT : 0;
910 911 912
}

static int
913 914 915 916
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
917 918
{
	ssize_t remain;
919 920
	loff_t offset;
	char __user *user_data;
921
	int shmem_page_offset, page_length, ret = 0;
922
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923
	int hit_slowpath = 0;
924 925
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
926
	struct sg_page_iter sg_iter;
927

V
Ville Syrjälä 已提交
928
	user_data = to_user_ptr(args->data_ptr);
929 930
	remain = args->size;

931
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932

933 934 935 936 937
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
938
		needs_clflush_after = cpu_write_needs_clflush(obj);
939 940 941
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
942 943

		i915_gem_object_retire(obj);
944
	}
945 946 947 948 949
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
950

951 952 953 954
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

955 956
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

957 958
	i915_gem_object_pin_pages(obj);

959
	offset = args->offset;
960
	obj->dirty = 1;
961

962 963
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
964
		struct page *page = sg_page_iter_page(&sg_iter);
965
		int partial_cacheline_write;
966

967 968 969
		if (remain <= 0)
			break;

970 971 972 973 974
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
975
		shmem_page_offset = offset_in_page(offset);
976 977 978 979 980

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

981 982 983 984 985 986 987
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

988 989 990
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

991 992 993 994 995 996
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
997 998 999

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1000 1001 1002 1003
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1004

1005
		mutex_lock(&dev->struct_mutex);
1006 1007

		if (ret)
1008 1009
			goto out;

1010
next_page:
1011
		remain -= page_length;
1012
		user_data += page_length;
1013
		offset += page_length;
1014 1015
	}

1016
out:
1017 1018
	i915_gem_object_unpin_pages(obj);

1019
	if (hit_slowpath) {
1020 1021 1022 1023 1024 1025 1026
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 1028
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1029
		}
1030
	}
1031

1032
	if (needs_clflush_after)
1033
		i915_gem_chipset_flush(dev);
1034

1035
	intel_fb_obj_flush(obj, false);
1036
	return ret;
1037 1038 1039 1040 1041 1042 1043 1044 1045
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046
		      struct drm_file *file)
1047
{
1048
	struct drm_i915_private *dev_priv = dev->dev_private;
1049
	struct drm_i915_gem_pwrite *args = data;
1050
	struct drm_i915_gem_object *obj;
1051 1052 1053 1054 1055 1056
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1057
		       to_user_ptr(args->data_ptr),
1058 1059 1060
		       args->size))
		return -EFAULT;

1061
	if (likely(!i915.prefault_disable)) {
1062 1063 1064 1065 1066
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1067

1068 1069
	intel_runtime_pm_get(dev_priv);

1070
	ret = i915_mutex_lock_interruptible(dev);
1071
	if (ret)
1072
		goto put_rpm;
1073

1074
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075
	if (&obj->base == NULL) {
1076 1077
		ret = -ENOENT;
		goto unlock;
1078
	}
1079

1080
	/* Bounds check destination. */
1081 1082
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1083
		ret = -EINVAL;
1084
		goto out;
C
Chris Wilson 已提交
1085 1086
	}

1087 1088 1089 1090 1091 1092 1093 1094
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1097
	ret = -EFAULT;
1098 1099 1100 1101 1102 1103
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1104 1105 1106
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1107
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1108 1109 1110
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1111
	}
1112

1113 1114 1115 1116 1117 1118
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1119

1120
out:
1121
	drm_gem_object_unreference(&obj->base);
1122
unlock:
1123
	mutex_unlock(&dev->struct_mutex);
1124 1125 1126
put_rpm:
	intel_runtime_pm_put(dev_priv);

1127 1128 1129
	return ret;
}

1130
int
1131
i915_gem_check_wedge(struct i915_gpu_error *error,
1132 1133
		     bool interruptible)
{
1134
	if (i915_reset_in_progress(error)) {
1135 1136 1137 1138 1139
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1140 1141
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1142 1143
			return -EIO;

1144 1145 1146 1147 1148 1149 1150
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1151 1152 1153 1154 1155 1156
	}

	return 0;
}

/*
1157
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158
 */
1159
int
1160
i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 1162 1163
{
	int ret;

1164
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165 1166

	ret = 0;
1167
	if (req == req->ring->outstanding_lazy_request)
1168
		ret = i915_add_request(req->ring);
1169 1170 1171 1172

	return ret;
}

1173 1174 1175 1176 1177 1178
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1179
		       struct intel_engine_cs *ring)
1180 1181 1182 1183
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1184
/**
1185 1186 1187
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1188 1189 1190
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1191 1192 1193 1194 1195 1196 1197
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1198
 * Returns 0 if the request was found within the alloted time. Else returns the
1199 1200
 * errno with remaining time filled in timeout argument.
 */
1201
int __i915_wait_request(struct drm_i915_gem_request *req,
1202
			unsigned reset_counter,
1203
			bool interruptible,
1204
			s64 *timeout,
1205
			struct drm_i915_file_private *file_priv)
1206
{
1207
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1208
	struct drm_device *dev = ring->dev;
1209
	struct drm_i915_private *dev_priv = dev->dev_private;
1210 1211
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1212
	DEFINE_WAIT(wait);
1213
	unsigned long timeout_expire;
1214
	s64 before, now;
1215 1216
	int ret;

1217
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1218

1219
	if (i915_gem_request_completed(req, true))
1220 1221
		return 0;

1222 1223
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1224

1225
	if (INTEL_INFO(dev)->gen >= 6)
1226
		gen6_rps_boost(dev_priv, file_priv);
1227

1228
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1229 1230
		return -ENODEV;

1231
	/* Record current time in case interrupted by signal, or wedged */
1232
	trace_i915_gem_request_wait_begin(req);
1233
	before = ktime_get_raw_ns();
1234 1235
	for (;;) {
		struct timer_list timer;
1236

1237 1238
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1239

1240 1241
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1242 1243 1244 1245 1246 1247 1248 1249
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1250

1251
		if (i915_gem_request_completed(req, false)) {
1252 1253 1254
			ret = 0;
			break;
		}
1255

1256 1257 1258 1259 1260
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1261
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1262 1263 1264 1265 1266 1267
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1268 1269
			unsigned long expire;

1270
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1271
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1272 1273 1274
			mod_timer(&timer, expire);
		}

1275
		io_schedule();
1276 1277 1278 1279 1280 1281

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1282
	now = ktime_get_raw_ns();
1283
	trace_i915_gem_request_wait_end(req);
1284

1285 1286
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1287 1288

	finish_wait(&ring->irq_queue, &wait);
1289 1290

	if (timeout) {
1291 1292 1293
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1304 1305
	}

1306
	return ret;
1307 1308 1309
}

/**
1310
 * Waits for a request to be signaled, and cleans up the
1311 1312 1313
 * request and object lists appropriately for that event.
 */
int
1314
i915_wait_request(struct drm_i915_gem_request *req)
1315
{
1316 1317 1318
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1319
	unsigned reset_counter;
1320 1321
	int ret;

1322 1323 1324 1325 1326 1327
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1328 1329
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1330
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1331 1332 1333
	if (ret)
		return ret;

1334
	ret = i915_gem_check_olr(req);
1335 1336 1337
	if (ret)
		return ret;

1338
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1339
	i915_gem_request_reference(req);
1340 1341
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1342 1343
	i915_gem_request_unreference(req);
	return ret;
1344 1345
}

1346
static int
1347
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1348
{
1349 1350
	if (!obj->active)
		return 0;
1351 1352 1353 1354

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1355 1356
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1357 1358
	 * we know we have passed the last write.
	 */
1359
	i915_gem_request_assign(&obj->last_write_req, NULL);
1360 1361 1362 1363

	return 0;
}

1364 1365 1366 1367 1368 1369 1370 1371
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1372
	struct drm_i915_gem_request *req;
1373 1374
	int ret;

1375 1376
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1377 1378
		return 0;

1379
	ret = i915_wait_request(req);
1380 1381 1382
	if (ret)
		return ret;

1383
	return i915_gem_object_wait_rendering__tail(obj);
1384 1385
}

1386 1387 1388 1389 1390
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1391
					    struct drm_i915_file_private *file_priv,
1392 1393
					    bool readonly)
{
1394
	struct drm_i915_gem_request *req;
1395 1396
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1397
	unsigned reset_counter;
1398 1399 1400 1401 1402
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1403 1404
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1405 1406
		return 0;

1407
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1408 1409 1410
	if (ret)
		return ret;

1411
	ret = i915_gem_check_olr(req);
1412 1413 1414
	if (ret)
		return ret;

1415
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1416
	i915_gem_request_reference(req);
1417
	mutex_unlock(&dev->struct_mutex);
1418
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1419
	mutex_lock(&dev->struct_mutex);
1420
	i915_gem_request_unreference(req);
1421 1422
	if (ret)
		return ret;
1423

1424
	return i915_gem_object_wait_rendering__tail(obj);
1425 1426
}

1427
/**
1428 1429
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1430 1431 1432
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1433
			  struct drm_file *file)
1434 1435
{
	struct drm_i915_gem_set_domain *args = data;
1436
	struct drm_i915_gem_object *obj;
1437 1438
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1439 1440
	int ret;

1441
	/* Only handle setting domains to types used by the CPU. */
1442
	if (write_domain & I915_GEM_GPU_DOMAINS)
1443 1444
		return -EINVAL;

1445
	if (read_domains & I915_GEM_GPU_DOMAINS)
1446 1447 1448 1449 1450 1451 1452 1453
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1454
	ret = i915_mutex_lock_interruptible(dev);
1455
	if (ret)
1456
		return ret;
1457

1458
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1459
	if (&obj->base == NULL) {
1460 1461
		ret = -ENOENT;
		goto unlock;
1462
	}
1463

1464 1465 1466 1467
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1468 1469 1470
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1471 1472 1473
	if (ret)
		goto unref;

1474
	if (read_domains & I915_GEM_DOMAIN_GTT)
1475
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1476
	else
1477
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1478

1479
unref:
1480
	drm_gem_object_unreference(&obj->base);
1481
unlock:
1482 1483 1484 1485 1486 1487 1488 1489 1490
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1491
			 struct drm_file *file)
1492 1493
{
	struct drm_i915_gem_sw_finish *args = data;
1494
	struct drm_i915_gem_object *obj;
1495 1496
	int ret = 0;

1497
	ret = i915_mutex_lock_interruptible(dev);
1498
	if (ret)
1499
		return ret;
1500

1501
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1502
	if (&obj->base == NULL) {
1503 1504
		ret = -ENOENT;
		goto unlock;
1505 1506 1507
	}

	/* Pinned buffers may be scanout, so flush the cache */
1508
	if (obj->pin_display)
1509
		i915_gem_object_flush_cpu_write_domain(obj);
1510

1511
	drm_gem_object_unreference(&obj->base);
1512
unlock:
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1533 1534 1535
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1536
		    struct drm_file *file)
1537 1538 1539 1540 1541
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1542 1543 1544 1545 1546 1547
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1548
	obj = drm_gem_object_lookup(dev, file, args->handle);
1549
	if (obj == NULL)
1550
		return -ENOENT;
1551

1552 1553 1554 1555 1556 1557 1558 1559
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1560
	addr = vm_mmap(obj->filp, 0, args->size,
1561 1562
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1576
	drm_gem_object_unreference_unlocked(obj);
1577 1578 1579 1580 1581 1582 1583 1584
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1603 1604
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1605
	struct drm_i915_private *dev_priv = dev->dev_private;
1606 1607 1608
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1609
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1610

1611 1612
	intel_runtime_pm_get(dev_priv);

1613 1614 1615 1616
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1617 1618 1619
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1620

C
Chris Wilson 已提交
1621 1622
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1623 1624 1625 1626 1627 1628 1629 1630 1631
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1632 1633
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1634
		ret = -EFAULT;
1635 1636 1637
		goto unlock;
	}

1638
	/* Now bind it into the GTT if needed */
1639
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1640 1641
	if (ret)
		goto unlock;
1642

1643 1644 1645
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1646

1647
	ret = i915_gem_object_get_fence(obj);
1648
	if (ret)
1649
		goto unpin;
1650

1651
	/* Finally, remap it using the new GTT offset */
1652 1653
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1654

1655
	if (!obj->fault_mappable) {
1656 1657 1658
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1659 1660
		int i;

1661
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1674
unpin:
B
Ben Widawsky 已提交
1675
	i915_gem_object_ggtt_unpin(obj);
1676
unlock:
1677
	mutex_unlock(&dev->struct_mutex);
1678
out:
1679
	switch (ret) {
1680
	case -EIO:
1681 1682 1683 1684 1685 1686 1687
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1688 1689 1690
			ret = VM_FAULT_SIGBUS;
			break;
		}
1691
	case -EAGAIN:
D
Daniel Vetter 已提交
1692 1693 1694 1695
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1696
		 */
1697 1698
	case 0:
	case -ERESTARTSYS:
1699
	case -EINTR:
1700 1701 1702 1703 1704
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1705 1706
		ret = VM_FAULT_NOPAGE;
		break;
1707
	case -ENOMEM:
1708 1709
		ret = VM_FAULT_OOM;
		break;
1710
	case -ENOSPC:
1711
	case -EFAULT:
1712 1713
		ret = VM_FAULT_SIGBUS;
		break;
1714
	default:
1715
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1716 1717
		ret = VM_FAULT_SIGBUS;
		break;
1718
	}
1719 1720 1721

	intel_runtime_pm_put(dev_priv);
	return ret;
1722 1723
}

1724 1725 1726 1727
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1728
 * Preserve the reservation of the mmapping with the DRM core code, but
1729 1730 1731 1732 1733 1734 1735 1736 1737
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1738
void
1739
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1740
{
1741 1742
	if (!obj->fault_mappable)
		return;
1743

1744 1745
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1746
	obj->fault_mappable = false;
1747 1748
}

1749 1750 1751 1752 1753 1754 1755 1756 1757
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1758
uint32_t
1759
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1760
{
1761
	uint32_t gtt_size;
1762 1763

	if (INTEL_INFO(dev)->gen >= 4 ||
1764 1765
	    tiling_mode == I915_TILING_NONE)
		return size;
1766 1767 1768

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1769
		gtt_size = 1024*1024;
1770
	else
1771
		gtt_size = 512*1024;
1772

1773 1774
	while (gtt_size < size)
		gtt_size <<= 1;
1775

1776
	return gtt_size;
1777 1778
}

1779 1780 1781 1782 1783
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1784
 * potential fence register mapping.
1785
 */
1786 1787 1788
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1789 1790 1791 1792 1793
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1794
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1795
	    tiling_mode == I915_TILING_NONE)
1796 1797
		return 4096;

1798 1799 1800 1801
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1802
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1803 1804
}

1805 1806 1807 1808 1809
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1810
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1811 1812
		return 0;

1813 1814
	dev_priv->mm.shrinker_no_lock_stealing = true;

1815 1816
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1817
		goto out;
1818 1819 1820 1821 1822 1823 1824 1825

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1826 1827 1828 1829 1830
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1831 1832
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1833
		goto out;
1834 1835

	i915_gem_shrink_all(dev_priv);
1836 1837 1838 1839 1840
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1841 1842 1843 1844 1845 1846 1847
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1848
int
1849 1850
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1851
		  uint32_t handle,
1852
		  uint64_t *offset)
1853
{
1854
	struct drm_i915_private *dev_priv = dev->dev_private;
1855
	struct drm_i915_gem_object *obj;
1856 1857
	int ret;

1858
	ret = i915_mutex_lock_interruptible(dev);
1859
	if (ret)
1860
		return ret;
1861

1862
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1863
	if (&obj->base == NULL) {
1864 1865 1866
		ret = -ENOENT;
		goto unlock;
	}
1867

B
Ben Widawsky 已提交
1868
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1869
		ret = -E2BIG;
1870
		goto out;
1871 1872
	}

1873
	if (obj->madv != I915_MADV_WILLNEED) {
1874
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1875
		ret = -EFAULT;
1876
		goto out;
1877 1878
	}

1879 1880 1881
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1882

1883
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1884

1885
out:
1886
	drm_gem_object_unreference(&obj->base);
1887
unlock:
1888
	mutex_unlock(&dev->struct_mutex);
1889
	return ret;
1890 1891
}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1913
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1914 1915
}

D
Daniel Vetter 已提交
1916 1917 1918
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1919
{
1920
	i915_gem_object_free_mmap_offset(obj);
1921

1922 1923
	if (obj->base.filp == NULL)
		return;
1924

D
Daniel Vetter 已提交
1925 1926 1927 1928 1929
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1930
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1931 1932
	obj->madv = __I915_MADV_PURGED;
}
1933

1934 1935 1936
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1937
{
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1952 1953
}

1954
static void
1955
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1956
{
1957 1958
	struct sg_page_iter sg_iter;
	int ret;
1959

1960
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1961

C
Chris Wilson 已提交
1962 1963 1964 1965 1966 1967
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1968
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1969 1970 1971
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1972
	if (i915_gem_object_needs_bit17_swizzle(obj))
1973 1974
		i915_gem_object_save_bit_17_swizzle(obj);

1975 1976
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1977

1978
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1979
		struct page *page = sg_page_iter_page(&sg_iter);
1980

1981
		if (obj->dirty)
1982
			set_page_dirty(page);
1983

1984
		if (obj->madv == I915_MADV_WILLNEED)
1985
			mark_page_accessed(page);
1986

1987
		page_cache_release(page);
1988
	}
1989
	obj->dirty = 0;
1990

1991 1992
	sg_free_table(obj->pages);
	kfree(obj->pages);
1993
}
C
Chris Wilson 已提交
1994

1995
int
1996 1997 1998 1999
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2000
	if (obj->pages == NULL)
2001 2002
		return 0;

2003 2004 2005
	if (obj->pages_pin_count)
		return -EBUSY;

2006
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2007

2008 2009 2010
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2011
	list_del(&obj->global_list);
2012

2013
	ops->put_pages(obj);
2014
	obj->pages = NULL;
2015

2016
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2017 2018 2019 2020

	return 0;
}

2021
static int
C
Chris Wilson 已提交
2022
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2023
{
C
Chris Wilson 已提交
2024
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2025 2026
	int page_count, i;
	struct address_space *mapping;
2027 2028
	struct sg_table *st;
	struct scatterlist *sg;
2029
	struct sg_page_iter sg_iter;
2030
	struct page *page;
2031
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2032
	gfp_t gfp;
2033

C
Chris Wilson 已提交
2034 2035 2036 2037 2038 2039 2040
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2041 2042 2043 2044
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2045
	page_count = obj->base.size / PAGE_SIZE;
2046 2047
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2048
		return -ENOMEM;
2049
	}
2050

2051 2052 2053 2054 2055
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2056
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2057
	gfp = mapping_gfp_mask(mapping);
2058
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2059
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2060 2061 2062
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2063 2064
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2065 2066 2067 2068 2069
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2070 2071 2072 2073 2074 2075 2076 2077
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2078
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2079 2080 2081
			if (IS_ERR(page))
				goto err_pages;
		}
2082 2083 2084 2085 2086 2087 2088 2089
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2090 2091 2092 2093 2094 2095 2096 2097 2098
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2099 2100 2101

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2102
	}
2103 2104 2105 2106
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2107 2108
	obj->pages = st;

2109
	if (i915_gem_object_needs_bit17_swizzle(obj))
2110 2111
		i915_gem_object_do_bit_17_swizzle(obj);

2112 2113 2114 2115
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2116 2117 2118
	return 0;

err_pages:
2119 2120
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2121
		page_cache_release(sg_page_iter_page(&sg_iter));
2122 2123
	sg_free_table(st);
	kfree(st);
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2137 2138
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2153
	if (obj->pages)
2154 2155
		return 0;

2156
	if (obj->madv != I915_MADV_WILLNEED) {
2157
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2158
		return -EFAULT;
2159 2160
	}

2161 2162
	BUG_ON(obj->pages_pin_count);

2163 2164 2165 2166
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2167
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2168 2169 2170 2171

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2172
	return 0;
2173 2174
}

B
Ben Widawsky 已提交
2175
static void
2176
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2177
			       struct intel_engine_cs *ring)
2178
{
2179 2180
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2181

2182
	BUG_ON(ring == NULL);
2183 2184 2185 2186 2187

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2188 2189
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2190
	}
2191 2192

	/* Add a reference if we're newly entering the active list. */
2193 2194 2195
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2196
	}
2197

2198
	list_move_tail(&obj->ring_list, &ring->active_list);
2199

2200
	i915_gem_request_assign(&obj->last_read_req, req);
2201 2202
}

B
Ben Widawsky 已提交
2203
void i915_vma_move_to_active(struct i915_vma *vma,
2204
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2205 2206 2207 2208 2209
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2210 2211
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2212
{
2213
	struct i915_vma *vma;
2214

2215
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2216
	BUG_ON(!obj->active);
2217

2218 2219 2220
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2221
	}
2222

2223 2224
	intel_fb_obj_flush(obj, true);

2225
	list_del_init(&obj->ring_list);
2226

2227 2228
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2229 2230
	obj->base.write_domain = 0;

2231
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2232 2233 2234 2235 2236

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2237
}
2238

2239 2240 2241
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2242
	if (obj->last_read_req == NULL)
2243 2244
		return;

2245
	if (i915_gem_request_completed(obj->last_read_req, true))
2246 2247 2248
		i915_gem_object_move_to_inactive(obj);
}

2249
static int
2250
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2251
{
2252
	struct drm_i915_private *dev_priv = dev->dev_private;
2253
	struct intel_engine_cs *ring;
2254
	int ret, i, j;
2255

2256
	/* Carefully retire all requests without writing to the rings */
2257
	for_each_ring(ring, dev_priv, i) {
2258 2259 2260
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2261 2262
	}
	i915_gem_retire_requests(dev);
2263 2264

	/* Finally reset hw state */
2265
	for_each_ring(ring, dev_priv, i) {
2266
		intel_ring_init_seqno(ring, seqno);
2267

2268 2269
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2270
	}
2271

2272
	return 0;
2273 2274
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2301 2302
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2303
{
2304 2305 2306 2307
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2308
		int ret = i915_gem_init_seqno(dev, 0);
2309 2310
		if (ret)
			return ret;
2311

2312 2313
		dev_priv->next_seqno = 1;
	}
2314

2315
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2316
	return 0;
2317 2318
}

2319
int __i915_add_request(struct intel_engine_cs *ring,
2320
		       struct drm_file *file,
2321
		       struct drm_i915_gem_object *obj)
2322
{
2323
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2324
	struct drm_i915_gem_request *request;
2325
	struct intel_ringbuffer *ringbuf;
2326
	u32 request_start;
2327 2328
	int ret;

2329
	request = ring->outstanding_lazy_request;
2330 2331 2332 2333
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2334
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2335 2336 2337 2338
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2339 2340 2341 2342 2343 2344 2345
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2346
	if (i915.enable_execlists) {
2347
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2348 2349 2350 2351 2352 2353 2354
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2355

2356 2357 2358 2359 2360
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2361
	request->postfix = intel_ring_get_tail(ringbuf);
2362

2363
	if (i915.enable_execlists) {
2364
		ret = ring->emit_request(ringbuf, request);
2365 2366 2367 2368 2369 2370 2371
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2372

2373
	request->head = request_start;
2374
	request->tail = intel_ring_get_tail(ringbuf);
2375 2376 2377 2378 2379 2380 2381

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2382
	request->batch_obj = obj;
2383

2384 2385 2386 2387 2388 2389 2390 2391
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2392

2393
	request->emitted_jiffies = jiffies;
2394
	list_add_tail(&request->list, &ring->request_list);
2395
	request->file_priv = NULL;
2396

C
Chris Wilson 已提交
2397 2398 2399
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2400
		spin_lock(&file_priv->mm.lock);
2401
		request->file_priv = file_priv;
2402
		list_add_tail(&request->client_list,
2403
			      &file_priv->mm.request_list);
2404
		spin_unlock(&file_priv->mm.lock);
2405 2406

		request->pid = get_pid(task_pid(current));
2407
	}
2408

2409
	trace_i915_gem_request_add(request);
2410
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2411

2412
	i915_queue_hangcheck(ring->dev);
2413

2414 2415 2416 2417 2418
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2419

2420
	return 0;
2421 2422
}

2423 2424
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2425
{
2426
	struct drm_i915_file_private *file_priv = request->file_priv;
2427

2428 2429
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2430

2431
	spin_lock(&file_priv->mm.lock);
2432 2433
	list_del(&request->client_list);
	request->file_priv = NULL;
2434
	spin_unlock(&file_priv->mm.lock);
2435 2436
}

2437
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2438
				   const struct intel_context *ctx)
2439
{
2440
	unsigned long elapsed;
2441

2442 2443 2444
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2445 2446
		return true;

2447 2448
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2449
		if (!i915_gem_context_is_default(ctx)) {
2450
			DRM_DEBUG("context hanging too fast, banning!\n");
2451
			return true;
2452 2453 2454
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2455
			return true;
2456
		}
2457 2458 2459 2460 2461
	}

	return false;
}

2462
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2463
				  struct intel_context *ctx,
2464
				  const bool guilty)
2465
{
2466 2467 2468 2469
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2470

2471 2472 2473
	hs = &ctx->hang_stats;

	if (guilty) {
2474
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2475 2476 2477 2478
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2479 2480 2481
	}
}

2482 2483 2484 2485 2486
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2487 2488
	put_pid(request->pid);

2489 2490 2491 2492 2493 2494 2495 2496 2497
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2498 2499
	if (ctx) {
		if (i915.enable_execlists) {
2500
			struct intel_engine_cs *ring = req->ring;
2501

2502 2503 2504
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2505

2506 2507
		i915_gem_context_unreference(ctx);
	}
2508 2509

	kfree(req);
2510 2511
}

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
	int ret;
	struct drm_i915_gem_request *request;
	struct drm_i915_private *dev_private = ring->dev->dev_private;

	if (ring->outstanding_lazy_request)
		return 0;

	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL)
		return -ENOMEM;

	ret = i915_gem_get_seqno(ring->dev, &request->seqno);
	if (ret) {
		kfree(request);
		return ret;
	}

	kref_init(&request->ref);
	request->ring = ring;
	request->uniq = dev_private->request_uniq++;

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(request, ctx);
	else
		ret = intel_ring_alloc_request_extras(request);
	if (ret) {
		kfree(request);
		return ret;
	}

	ring->outstanding_lazy_request = request;
	return 0;
}

2549
struct drm_i915_gem_request *
2550
i915_gem_find_active_request(struct intel_engine_cs *ring)
2551
{
2552 2553 2554
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2555
		if (i915_gem_request_completed(request, false))
2556
			continue;
2557

2558
		return request;
2559
	}
2560 2561 2562 2563 2564

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2565
				       struct intel_engine_cs *ring)
2566 2567 2568 2569
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2570
	request = i915_gem_find_active_request(ring);
2571 2572 2573 2574 2575 2576

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2577
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2578 2579

	list_for_each_entry_continue(request, &ring->request_list, list)
2580
		i915_set_reset_status(dev_priv, request->ctx, false);
2581
}
2582

2583
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2584
					struct intel_engine_cs *ring)
2585
{
2586
	while (!list_empty(&ring->active_list)) {
2587
		struct drm_i915_gem_object *obj;
2588

2589 2590 2591
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2592

2593
		i915_gem_object_move_to_inactive(obj);
2594
	}
2595

2596 2597 2598 2599 2600 2601
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2602
		struct drm_i915_gem_request *submit_req;
2603 2604

		submit_req = list_first_entry(&ring->execlist_queue,
2605
				struct drm_i915_gem_request,
2606 2607 2608
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
2609 2610 2611 2612

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2613
		i915_gem_request_unreference(submit_req);
2614 2615
	}

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2632

2633 2634
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2635 2636
}

2637
void i915_gem_restore_fences(struct drm_device *dev)
2638 2639 2640 2641
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2642
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2643
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2644

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2655 2656 2657
	}
}

2658
void i915_gem_reset(struct drm_device *dev)
2659
{
2660
	struct drm_i915_private *dev_priv = dev->dev_private;
2661
	struct intel_engine_cs *ring;
2662
	int i;
2663

2664 2665 2666 2667 2668 2669 2670 2671
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2672
	for_each_ring(ring, dev_priv, i)
2673
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2674

2675 2676
	i915_gem_context_reset(dev);

2677
	i915_gem_restore_fences(dev);
2678 2679 2680 2681 2682
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2683
void
2684
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2685
{
C
Chris Wilson 已提交
2686
	if (list_empty(&ring->request_list))
2687 2688
		return;

C
Chris Wilson 已提交
2689
	WARN_ON(i915_verify_lists(ring->dev));
2690

2691 2692 2693 2694
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2695
	 */
2696
	while (!list_empty(&ring->request_list)) {
2697 2698
		struct drm_i915_gem_request *request;

2699
		request = list_first_entry(&ring->request_list,
2700 2701 2702
					   struct drm_i915_gem_request,
					   list);

2703
		if (!i915_gem_request_completed(request, true))
2704 2705
			break;

2706
		trace_i915_gem_request_retire(request);
2707

2708 2709 2710 2711 2712
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2713
		request->ringbuf->last_retired_head = request->postfix;
2714

2715
		i915_gem_free_request(request);
2716
	}
2717

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_gem_request_completed(obj->last_read_req, true))
			break;

		i915_gem_object_move_to_inactive(obj);
	}

2735 2736
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2737
		ring->irq_put(ring);
2738
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2739
	}
2740

C
Chris Wilson 已提交
2741
	WARN_ON(i915_verify_lists(ring->dev));
2742 2743
}

2744
bool
2745 2746
i915_gem_retire_requests(struct drm_device *dev)
{
2747
	struct drm_i915_private *dev_priv = dev->dev_private;
2748
	struct intel_engine_cs *ring;
2749
	bool idle = true;
2750
	int i;
2751

2752
	for_each_ring(ring, dev_priv, i) {
2753
		i915_gem_retire_requests_ring(ring);
2754
		idle &= list_empty(&ring->request_list);
2755 2756 2757 2758 2759 2760 2761 2762 2763
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2764 2765 2766 2767 2768 2769 2770 2771
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2772 2773
}

2774
static void
2775 2776
i915_gem_retire_work_handler(struct work_struct *work)
{
2777 2778 2779
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2780
	bool idle;
2781

2782
	/* Come back later if the device is busy... */
2783 2784 2785 2786
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2787
	}
2788
	if (!idle)
2789 2790
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2791
}
2792

2793 2794 2795 2796 2797 2798 2799
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2800 2801
}

2802 2803 2804 2805 2806 2807 2808 2809
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2810
	struct intel_engine_cs *ring;
2811 2812 2813
	int ret;

	if (obj->active) {
2814 2815
		ring = i915_gem_request_get_ring(obj->last_read_req);

2816
		ret = i915_gem_check_olr(obj->last_read_req);
2817 2818 2819
		if (ret)
			return ret;

2820
		i915_gem_retire_requests_ring(ring);
2821 2822 2823 2824 2825
	}

	return 0;
}

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2851
	struct drm_i915_private *dev_priv = dev->dev_private;
2852 2853
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2854
	struct drm_i915_gem_request *req;
2855
	unsigned reset_counter;
2856 2857
	int ret = 0;

2858 2859 2860
	if (args->flags != 0)
		return -EINVAL;

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2871 2872
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2873 2874 2875
	if (ret)
		goto out;

2876 2877
	if (!obj->active || !obj->last_read_req)
		goto out;
2878

2879
	req = obj->last_read_req;
2880 2881

	/* Do this after OLR check to make sure we make forward progress polling
2882
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2883
	 */
2884
	if (args->timeout_ns == 0) {
2885 2886 2887 2888 2889
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2890
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2891
	i915_gem_request_reference(req);
2892 2893
	mutex_unlock(&dev->struct_mutex);

2894 2895
	ret = __i915_wait_request(req, reset_counter, true,
				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2896
				  file->driver_priv);
2897
	i915_gem_request_unreference__unlocked(req);
2898
	return ret;
2899 2900 2901 2902 2903 2904 2905

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2918 2919
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2920
		     struct intel_engine_cs *to)
2921
{
2922
	struct intel_engine_cs *from;
2923 2924 2925
	u32 seqno;
	int ret, idx;

2926 2927
	from = i915_gem_request_get_ring(obj->last_read_req);

2928 2929 2930
	if (from == NULL || to == from)
		return 0;

2931
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2932
		return i915_gem_object_wait_rendering(obj, false);
2933 2934 2935

	idx = intel_ring_sync_index(from, to);

2936
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2937 2938
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2939
	if (seqno <= from->semaphore.sync_seqno[idx])
2940 2941
		return 0;

2942
	ret = i915_gem_check_olr(obj->last_read_req);
2943 2944
	if (ret)
		return ret;
2945

2946
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2947
	ret = to->semaphore.sync_to(to, from, seqno);
2948
	if (!ret)
2949
		/* We use last_read_req because sync_to()
2950 2951 2952
		 * might have just caused seqno wrap under
		 * the radar.
		 */
2953 2954
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
2955

2956
	return ret;
2957 2958
}

2959 2960 2961 2962 2963 2964 2965
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2966 2967 2968
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2969 2970 2971
	/* Wait for any direct GTT access to complete */
	mb();

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2983
int i915_vma_unbind(struct i915_vma *vma)
2984
{
2985
	struct drm_i915_gem_object *obj = vma->obj;
2986
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2987
	int ret;
2988

2989
	if (list_empty(&vma->vma_link))
2990 2991
		return 0;

2992 2993 2994 2995
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2996

B
Ben Widawsky 已提交
2997
	if (vma->pin_count)
2998
		return -EBUSY;
2999

3000 3001
	BUG_ON(obj->pages == NULL);

3002
	ret = i915_gem_object_finish_gpu(obj);
3003
	if (ret)
3004 3005 3006 3007 3008 3009
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3010 3011
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3012
		i915_gem_object_finish_gtt(obj);
3013

3014 3015 3016 3017 3018
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3019

3020
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3021

3022 3023
	vma->unbind_vma(vma);

3024
	list_del_init(&vma->mm_list);
3025 3026 3027 3028 3029 3030 3031 3032 3033
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3034

B
Ben Widawsky 已提交
3035 3036 3037 3038
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3039
	 * no more VMAs exist. */
3040
	if (list_empty(&obj->vma_list)) {
3041 3042 3043 3044
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3045
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3046
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3047
	}
3048

3049 3050 3051 3052 3053 3054
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3055
	return 0;
3056 3057
}

3058
int i915_gpu_idle(struct drm_device *dev)
3059
{
3060
	struct drm_i915_private *dev_priv = dev->dev_private;
3061
	struct intel_engine_cs *ring;
3062
	int ret, i;
3063 3064

	/* Flush everything onto the inactive list. */
3065
	for_each_ring(ring, dev_priv, i) {
3066 3067 3068 3069 3070
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3071

3072
		ret = intel_ring_idle(ring);
3073 3074 3075
		if (ret)
			return ret;
	}
3076

3077
	return 0;
3078 3079
}

3080 3081
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3082
{
3083
	struct drm_i915_private *dev_priv = dev->dev_private;
3084 3085
	int fence_reg;
	int fence_pitch_shift;
3086

3087 3088 3089 3090 3091 3092 3093 3094
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3109
	if (obj) {
3110
		u32 size = i915_gem_obj_ggtt_size(obj);
3111
		uint64_t val;
3112

3113 3114 3115 3116 3117 3118 3119
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3120
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3121
				 0xfffff000) << 32;
3122
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3123
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3124 3125 3126
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3127

3128 3129 3130 3131 3132 3133 3134 3135 3136
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3137 3138
}

3139 3140
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3141
{
3142
	struct drm_i915_private *dev_priv = dev->dev_private;
3143
	u32 val;
3144

3145
	if (obj) {
3146
		u32 size = i915_gem_obj_ggtt_size(obj);
3147 3148
		int pitch_val;
		int tile_width;
3149

3150
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3151
		     (size & -size) != size ||
3152 3153 3154
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3165
		val = i915_gem_obj_ggtt_offset(obj);
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3181 3182
}

3183 3184
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3185
{
3186
	struct drm_i915_private *dev_priv = dev->dev_private;
3187 3188
	uint32_t val;

3189
	if (obj) {
3190
		u32 size = i915_gem_obj_ggtt_size(obj);
3191
		uint32_t pitch_val;
3192

3193
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3194
		     (size & -size) != size ||
3195 3196 3197
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3198

3199 3200
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3201

3202
		val = i915_gem_obj_ggtt_offset(obj);
3203 3204 3205 3206 3207 3208 3209
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3210

3211 3212 3213 3214
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3215 3216 3217 3218 3219
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3220 3221 3222
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3223 3224 3225 3226 3227 3228 3229 3230
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3231 3232 3233 3234
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3235 3236 3237 3238 3239 3240
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3241 3242 3243 3244 3245 3246

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3247 3248
}

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3259
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3260 3261 3262
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3263 3264

	if (enable) {
3265
		obj->fence_reg = reg;
3266 3267 3268 3269 3270 3271 3272
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3273
	obj->fence_dirty = false;
3274 3275
}

3276
static int
3277
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3278
{
3279
	if (obj->last_fenced_req) {
3280
		int ret = i915_wait_request(obj->last_fenced_req);
3281 3282
		if (ret)
			return ret;
3283

3284
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3285 3286 3287 3288 3289 3290 3291 3292
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3293
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3294
	struct drm_i915_fence_reg *fence;
3295 3296
	int ret;

3297
	ret = i915_gem_object_wait_fence(obj);
3298 3299 3300
	if (ret)
		return ret;

3301 3302
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3303

3304 3305
	fence = &dev_priv->fence_regs[obj->fence_reg];

3306 3307 3308
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3309
	i915_gem_object_fence_lost(obj);
3310
	i915_gem_object_update_fence(obj, fence, false);
3311 3312 3313 3314 3315

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3316
i915_find_fence_reg(struct drm_device *dev)
3317 3318
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3319
	struct drm_i915_fence_reg *reg, *avail;
3320
	int i;
3321 3322

	/* First try to find a free reg */
3323
	avail = NULL;
3324 3325 3326
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3327
			return reg;
3328

3329
		if (!reg->pin_count)
3330
			avail = reg;
3331 3332
	}

3333
	if (avail == NULL)
3334
		goto deadlock;
3335 3336

	/* None available, try to steal one or wait for a user to finish */
3337
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3338
		if (reg->pin_count)
3339 3340
			continue;

C
Chris Wilson 已提交
3341
		return reg;
3342 3343
	}

3344 3345 3346 3347 3348 3349
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3350 3351
}

3352
/**
3353
 * i915_gem_object_get_fence - set up fencing for an object
3354 3355 3356 3357 3358 3359 3360 3361 3362
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3363 3364
 *
 * For an untiled surface, this removes any existing fence.
3365
 */
3366
int
3367
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3368
{
3369
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3370
	struct drm_i915_private *dev_priv = dev->dev_private;
3371
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3372
	struct drm_i915_fence_reg *reg;
3373
	int ret;
3374

3375 3376 3377
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3378
	if (obj->fence_dirty) {
3379
		ret = i915_gem_object_wait_fence(obj);
3380 3381 3382
		if (ret)
			return ret;
	}
3383

3384
	/* Just update our place in the LRU if our fence is getting reused. */
3385 3386
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3387
		if (!obj->fence_dirty) {
3388 3389 3390 3391 3392
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3393 3394 3395
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3396
		reg = i915_find_fence_reg(dev);
3397 3398
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3399

3400 3401 3402
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3403
			ret = i915_gem_object_wait_fence(old);
3404 3405 3406
			if (ret)
				return ret;

3407
			i915_gem_object_fence_lost(old);
3408
		}
3409
	} else
3410 3411
		return 0;

3412 3413
	i915_gem_object_update_fence(obj, reg, enable);

3414
	return 0;
3415 3416
}

3417
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3418 3419
				     unsigned long cache_level)
{
3420
	struct drm_mm_node *gtt_space = &vma->node;
3421 3422
	struct drm_mm_node *other;

3423 3424 3425 3426 3427 3428
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3429
	 */
3430
	if (vma->vm->mm.color_adjust == NULL)
3431 3432
		return true;

3433
	if (!drm_mm_node_allocated(gtt_space))
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3450 3451 3452
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3453
static struct i915_vma *
3454 3455
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3456
			   const struct i915_ggtt_view *ggtt_view,
3457
			   unsigned alignment,
3458
			   uint64_t flags)
3459
{
3460
	struct drm_device *dev = obj->base.dev;
3461
	struct drm_i915_private *dev_priv = dev->dev_private;
3462
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3463 3464 3465
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3466
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3467
	struct i915_vma *vma;
3468
	int ret;
3469

3470 3471 3472
	if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return ERR_PTR(-EINVAL);

3473 3474 3475 3476 3477
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3478
						     obj->tiling_mode, true);
3479
	unfenced_alignment =
3480
		i915_gem_get_gtt_alignment(dev,
3481 3482
					   obj->base.size,
					   obj->tiling_mode, false);
3483

3484
	if (alignment == 0)
3485
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3486
						unfenced_alignment;
3487
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3488
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3489
		return ERR_PTR(-EINVAL);
3490 3491
	}

3492
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3493

3494 3495 3496
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3497 3498
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3499
			  obj->base.size,
3500
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3501
			  end);
3502
		return ERR_PTR(-E2BIG);
3503 3504
	}

3505
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3506
	if (ret)
3507
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3508

3509 3510
	i915_gem_object_pin_pages(obj);

3511 3512 3513
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3514
	if (IS_ERR(vma))
3515
		goto err_unpin;
B
Ben Widawsky 已提交
3516

3517
search_free:
3518
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3519
						  size, alignment,
3520 3521
						  obj->cache_level,
						  start, end,
3522 3523
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3524
	if (ret) {
3525
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3526 3527 3528
					       obj->cache_level,
					       start, end,
					       flags);
3529 3530
		if (ret == 0)
			goto search_free;
3531

3532
		goto err_free_vma;
3533
	}
3534
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3535
		ret = -EINVAL;
3536
		goto err_remove_node;
3537 3538
	}

3539
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3540
	if (ret)
3541
		goto err_remove_node;
3542

3543 3544
	/*  allocate before insert / bind */
	if (vma->vm->allocate_va_range) {
3545 3546
		trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
				VM_TO_TRACE_NAME(vma->vm));
3547 3548 3549 3550 3551 3552 3553
		ret = vma->vm->allocate_va_range(vma->vm,
						vma->node.start,
						vma->node.size);
		if (ret)
			goto err_remove_node;
	}

3554 3555 3556 3557 3558 3559
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3560
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3561
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3562

3563
	return vma;
B
Ben Widawsky 已提交
3564

3565 3566
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3567
err_remove_node:
3568
	drm_mm_remove_node(&vma->node);
3569
err_free_vma:
B
Ben Widawsky 已提交
3570
	i915_gem_vma_destroy(vma);
3571
	vma = ERR_PTR(ret);
3572
err_unpin:
B
Ben Widawsky 已提交
3573
	i915_gem_object_unpin_pages(obj);
3574
	return vma;
3575 3576
}

3577
bool
3578 3579
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3580 3581 3582 3583 3584
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3585
	if (obj->pages == NULL)
3586
		return false;
3587

3588 3589 3590 3591
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3592
	if (obj->stolen || obj->phys_handle)
3593
		return false;
3594

3595 3596 3597 3598 3599 3600 3601 3602
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3603 3604
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3605
		return false;
3606
	}
3607

C
Chris Wilson 已提交
3608
	trace_i915_gem_object_clflush(obj);
3609
	drm_clflush_sg(obj->pages);
3610
	obj->cache_dirty = false;
3611 3612

	return true;
3613 3614 3615 3616
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3617
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3618
{
C
Chris Wilson 已提交
3619 3620
	uint32_t old_write_domain;

3621
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3622 3623
		return;

3624
	/* No actual flushing is required for the GTT write domain.  Writes
3625 3626
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3627 3628 3629 3630
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3631
	 */
3632 3633
	wmb();

3634 3635
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3636

3637 3638
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3639
	trace_i915_gem_object_change_domain(obj,
3640
					    obj->base.read_domains,
C
Chris Wilson 已提交
3641
					    old_write_domain);
3642 3643 3644 3645
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3646
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3647
{
C
Chris Wilson 已提交
3648
	uint32_t old_write_domain;
3649

3650
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3651 3652
		return;

3653
	if (i915_gem_clflush_object(obj, obj->pin_display))
3654 3655
		i915_gem_chipset_flush(obj->base.dev);

3656 3657
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3658

3659 3660
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3661
	trace_i915_gem_object_change_domain(obj,
3662
					    obj->base.read_domains,
C
Chris Wilson 已提交
3663
					    old_write_domain);
3664 3665
}

3666 3667 3668 3669 3670 3671
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3672
int
3673
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3674
{
C
Chris Wilson 已提交
3675
	uint32_t old_write_domain, old_read_domains;
3676
	struct i915_vma *vma;
3677
	int ret;
3678

3679 3680 3681
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3682
	ret = i915_gem_object_wait_rendering(obj, !write);
3683 3684 3685
	if (ret)
		return ret;

3686
	i915_gem_object_retire(obj);
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3700
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3701

3702 3703 3704 3705 3706 3707 3708
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3709 3710
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3711

3712 3713 3714
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3715 3716
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3717
	if (write) {
3718 3719 3720
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3721 3722
	}

3723
	if (write)
3724
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3725

C
Chris Wilson 已提交
3726 3727 3728 3729
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3730
	/* And bump the LRU for this access */
3731 3732
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3733
		list_move_tail(&vma->mm_list,
3734
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3735

3736 3737 3738
	return 0;
}

3739 3740 3741
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3742
	struct drm_device *dev = obj->base.dev;
3743
	struct i915_vma *vma, *next;
3744 3745 3746 3747 3748
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3749
	if (i915_gem_obj_is_pinned(obj)) {
3750 3751 3752 3753
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3754
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3755
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3756
			ret = i915_vma_unbind(vma);
3757 3758 3759
			if (ret)
				return ret;
		}
3760 3761
	}

3762
	if (i915_gem_obj_bound_any(obj)) {
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3773
		if (INTEL_INFO(dev)->gen < 6) {
3774 3775 3776 3777 3778
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3779
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3780 3781 3782 3783 3784 3785
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3786 3787
	}

3788 3789 3790 3791
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3792 3793 3794 3795 3796
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3797 3798 3799 3800 3801
	}

	return 0;
}

B
Ben Widawsky 已提交
3802 3803
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3804
{
B
Ben Widawsky 已提交
3805
	struct drm_i915_gem_caching *args = data;
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3819 3820 3821 3822 3823 3824
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3825 3826 3827 3828
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3829 3830 3831 3832
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3833 3834 3835 3836 3837 3838 3839

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3840 3841
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3842
{
B
Ben Widawsky 已提交
3843
	struct drm_i915_gem_caching *args = data;
3844 3845 3846 3847
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3848 3849
	switch (args->caching) {
	case I915_CACHING_NONE:
3850 3851
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3852
	case I915_CACHING_CACHED:
3853 3854
		level = I915_CACHE_LLC;
		break;
3855 3856 3857
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3858 3859 3860 3861
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3862 3863 3864 3865
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3880 3881
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3882 3883 3884 3885 3886 3887
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3888
	/* There are 2 sources that pin objects:
3889 3890 3891 3892
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3893
	 * are only called outside of the reservation path.
3894
	 */
D
Daniel Vetter 已提交
3895
	return vma->pin_count;
3896 3897
}

3898
/*
3899 3900 3901
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3902 3903
 */
int
3904 3905
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3906 3907
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
3908
{
3909
	u32 old_read_domains, old_write_domain;
3910
	bool was_pin_display;
3911 3912
	int ret;

3913
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3914 3915
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3916 3917 3918
			return ret;
	}

3919 3920 3921
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3922
	was_pin_display = obj->pin_display;
3923 3924
	obj->pin_display = true;

3925 3926 3927 3928 3929 3930 3931 3932 3933
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3934 3935
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3936
	if (ret)
3937
		goto err_unpin_display;
3938

3939 3940 3941 3942
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3943 3944 3945
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3946
	if (ret)
3947
		goto err_unpin_display;
3948

3949
	i915_gem_object_flush_cpu_write_domain(obj);
3950

3951
	old_write_domain = obj->base.write_domain;
3952
	old_read_domains = obj->base.read_domains;
3953 3954 3955 3956

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3957
	obj->base.write_domain = 0;
3958
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3959 3960 3961

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3962
					    old_write_domain);
3963 3964

	return 0;
3965 3966

err_unpin_display:
3967 3968
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3969 3970 3971 3972
	return ret;
}

void
3973 3974
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3975
{
3976 3977
	i915_gem_object_ggtt_unpin_view(obj, view);

3978
	obj->pin_display = is_pin_display(obj);
3979 3980
}

3981
int
3982
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3983
{
3984 3985
	int ret;

3986
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3987 3988
		return 0;

3989
	ret = i915_gem_object_wait_rendering(obj, false);
3990 3991 3992
	if (ret)
		return ret;

3993 3994
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3995
	return 0;
3996 3997
}

3998 3999 4000 4001 4002 4003
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4004
int
4005
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4006
{
C
Chris Wilson 已提交
4007
	uint32_t old_write_domain, old_read_domains;
4008 4009
	int ret;

4010 4011 4012
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4013
	ret = i915_gem_object_wait_rendering(obj, !write);
4014 4015 4016
	if (ret)
		return ret;

4017
	i915_gem_object_retire(obj);
4018
	i915_gem_object_flush_gtt_write_domain(obj);
4019

4020 4021
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4022

4023
	/* Flush the CPU cache if it's still invalid. */
4024
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4025
		i915_gem_clflush_object(obj, false);
4026

4027
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4028 4029 4030 4031 4032
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4033
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4034 4035 4036 4037 4038

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4039 4040
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4041
	}
4042

4043
	if (write)
4044
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4045

C
Chris Wilson 已提交
4046 4047 4048 4049
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4050 4051 4052
	return 0;
}

4053 4054 4055
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4056 4057 4058 4059
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4060 4061 4062
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4063
static int
4064
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4065
{
4066 4067
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4068
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4069
	struct drm_i915_gem_request *request, *target = NULL;
4070
	unsigned reset_counter;
4071
	int ret;
4072

4073 4074 4075 4076 4077 4078 4079
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4080

4081
	spin_lock(&file_priv->mm.lock);
4082
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4083 4084
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4085

4086
		target = request;
4087
	}
4088
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4089 4090
	if (target)
		i915_gem_request_reference(target);
4091
	spin_unlock(&file_priv->mm.lock);
4092

4093
	if (target == NULL)
4094
		return 0;
4095

4096
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4097 4098
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4099

4100
	i915_gem_request_unreference__unlocked(target);
4101

4102 4103 4104
	return ret;
}

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4124 4125 4126 4127 4128 4129
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4130
{
4131
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4132
	struct i915_vma *vma;
4133
	unsigned bound;
4134 4135
	int ret;

4136 4137 4138
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4139
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4140
		return -EINVAL;
4141

4142 4143 4144
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4145 4146 4147 4148 4149 4150 4151 4152 4153
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4154
	if (vma) {
B
Ben Widawsky 已提交
4155 4156 4157
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4158
		if (i915_vma_misplaced(vma, alignment, flags)) {
4159
			unsigned long offset;
4160
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4161
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4162
			WARN(vma->pin_count,
4163
			     "bo is already pinned in %s with incorrect alignment:"
4164
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4165
			     " obj->map_and_fenceable=%d\n",
4166 4167
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4168
			     alignment,
4169
			     !!(flags & PIN_MAPPABLE),
4170
			     obj->map_and_fenceable);
4171
			ret = i915_vma_unbind(vma);
4172 4173
			if (ret)
				return ret;
4174 4175

			vma = NULL;
4176 4177 4178
		}
	}

4179
	bound = vma ? vma->bound : 0;
4180
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4181 4182 4183 4184
		/* In true PPGTT, bind has possibly changed PDEs, which
		 * means we must do a context switch before the GPU can
		 * accurately read some of the VMAs.
		 */
4185 4186
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4187 4188
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4189
	}
J
Jesse Barnes 已提交
4190

4191 4192 4193 4194 4195
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4196

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4212
		mappable = (vma->node.start + fence_size <=
4213 4214 4215 4216 4217 4218 4219
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4220
	vma->pin_count++;
4221 4222
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4223 4224 4225 4226

	return 0;
}

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4248
				      alignment, flags | PIN_GLOBAL);
4249 4250
}

4251
void
4252 4253
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4254
{
4255
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4256

B
Ben Widawsky 已提交
4257
	BUG_ON(!vma);
4258
	WARN_ON(vma->pin_count == 0);
4259
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4260

4261
	if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4262
		obj->pin_mappable = false;
4263 4264
}

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4291 4292
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4293
		    struct drm_file *file)
4294 4295
{
	struct drm_i915_gem_busy *args = data;
4296
	struct drm_i915_gem_object *obj;
4297 4298
	int ret;

4299
	ret = i915_mutex_lock_interruptible(dev);
4300
	if (ret)
4301
		return ret;
4302

4303
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4304
	if (&obj->base == NULL) {
4305 4306
		ret = -ENOENT;
		goto unlock;
4307
	}
4308

4309 4310 4311 4312
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4313
	 */
4314
	ret = i915_gem_object_flush_active(obj);
4315

4316
	args->busy = obj->active;
4317 4318
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4319
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4320 4321
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4322
	}
4323

4324
	drm_gem_object_unreference(&obj->base);
4325
unlock:
4326
	mutex_unlock(&dev->struct_mutex);
4327
	return ret;
4328 4329 4330 4331 4332 4333
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4334
	return i915_gem_ring_throttle(dev, file_priv);
4335 4336
}

4337 4338 4339 4340
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4341
	struct drm_i915_private *dev_priv = dev->dev_private;
4342
	struct drm_i915_gem_madvise *args = data;
4343
	struct drm_i915_gem_object *obj;
4344
	int ret;
4345 4346 4347 4348 4349 4350 4351 4352 4353

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4354 4355 4356 4357
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4358
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4359
	if (&obj->base == NULL) {
4360 4361
		ret = -ENOENT;
		goto unlock;
4362 4363
	}

B
Ben Widawsky 已提交
4364
	if (i915_gem_obj_is_pinned(obj)) {
4365 4366
		ret = -EINVAL;
		goto out;
4367 4368
	}

4369 4370 4371 4372 4373 4374 4375 4376 4377
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4378 4379
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4380

C
Chris Wilson 已提交
4381
	/* if the object is no longer attached, discard its backing storage */
4382
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4383 4384
		i915_gem_object_truncate(obj);

4385
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4386

4387
out:
4388
	drm_gem_object_unreference(&obj->base);
4389
unlock:
4390
	mutex_unlock(&dev->struct_mutex);
4391
	return ret;
4392 4393
}

4394 4395
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4396
{
4397
	INIT_LIST_HEAD(&obj->global_list);
4398
	INIT_LIST_HEAD(&obj->ring_list);
4399
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4400
	INIT_LIST_HEAD(&obj->vma_list);
4401
	INIT_LIST_HEAD(&obj->batch_pool_list);
4402

4403 4404
	obj->ops = ops;

4405 4406 4407 4408 4409 4410
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4411 4412 4413 4414 4415
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4416 4417
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4418
{
4419
	struct drm_i915_gem_object *obj;
4420
	struct address_space *mapping;
D
Daniel Vetter 已提交
4421
	gfp_t mask;
4422

4423
	obj = i915_gem_object_alloc(dev);
4424 4425
	if (obj == NULL)
		return NULL;
4426

4427
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4428
		i915_gem_object_free(obj);
4429 4430
		return NULL;
	}
4431

4432 4433 4434 4435 4436 4437 4438
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4439
	mapping = file_inode(obj->base.filp)->i_mapping;
4440
	mapping_set_gfp_mask(mapping, mask);
4441

4442
	i915_gem_object_init(obj, &i915_gem_object_ops);
4443

4444 4445
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4446

4447 4448
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4464 4465
	trace_i915_gem_object_create(obj);

4466
	return obj;
4467 4468
}

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4493
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4494
{
4495
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4496
	struct drm_device *dev = obj->base.dev;
4497
	struct drm_i915_private *dev_priv = dev->dev_private;
4498
	struct i915_vma *vma, *next;
4499

4500 4501
	intel_runtime_pm_get(dev_priv);

4502 4503
	trace_i915_gem_object_destroy(obj);

4504
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4505 4506 4507 4508
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4509 4510
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4511

4512 4513
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4514

4515
			WARN_ON(i915_vma_unbind(vma));
4516

4517 4518
			dev_priv->mm.interruptible = was_interruptible;
		}
4519 4520
	}

B
Ben Widawsky 已提交
4521 4522 4523 4524 4525
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4526 4527
	WARN_ON(obj->frontbuffer_bits);

4528 4529 4530 4531 4532
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4533 4534
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4535
	if (discard_backing_storage(obj))
4536
		obj->madv = I915_MADV_DONTNEED;
4537
	i915_gem_object_put_pages(obj);
4538
	i915_gem_object_free_mmap_offset(obj);
4539

4540 4541
	BUG_ON(obj->pages);

4542 4543
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4544

4545 4546 4547
	if (obj->ops->release)
		obj->ops->release(obj);

4548 4549
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4550

4551
	kfree(obj->bit_17);
4552
	i915_gem_object_free(obj);
4553 4554

	intel_runtime_pm_put(dev_priv);
4555 4556
}

4557 4558
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4559 4560
{
	struct i915_vma *vma;
4561 4562 4563 4564 4565
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4566
			return vma;
4567 4568 4569 4570 4571 4572 4573 4574 4575
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4576

4577 4578 4579 4580
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4581 4582
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4583
			return vma;
4584 4585 4586
	return NULL;
}

B
Ben Widawsky 已提交
4587 4588
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4589
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4590
	WARN_ON(vma->node.allocated);
4591 4592 4593 4594 4595

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4596 4597
	vm = vma->vm;

4598 4599
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4600

4601
	list_del(&vma->vma_link);
4602

B
Ben Widawsky 已提交
4603 4604 4605
	kfree(vma);
}

4606 4607 4608 4609
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4610
	struct intel_engine_cs *ring;
4611 4612 4613
	int i;

	for_each_ring(ring, dev_priv, i)
4614
		dev_priv->gt.stop_ring(ring);
4615 4616
}

4617
int
4618
i915_gem_suspend(struct drm_device *dev)
4619
{
4620
	struct drm_i915_private *dev_priv = dev->dev_private;
4621
	int ret = 0;
4622

4623
	mutex_lock(&dev->struct_mutex);
4624
	ret = i915_gpu_idle(dev);
4625
	if (ret)
4626
		goto err;
4627

4628
	i915_gem_retire_requests(dev);
4629

4630
	i915_gem_stop_ringbuffers(dev);
4631 4632
	mutex_unlock(&dev->struct_mutex);

4633
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4634
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4635
	flush_delayed_work(&dev_priv->mm.idle_work);
4636

4637 4638 4639 4640 4641
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4642
	return 0;
4643 4644 4645 4646

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4647 4648
}

4649
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4650
{
4651
	struct drm_device *dev = ring->dev;
4652
	struct drm_i915_private *dev_priv = dev->dev_private;
4653 4654
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4655
	int i, ret;
B
Ben Widawsky 已提交
4656

4657
	if (!HAS_L3_DPF(dev) || !remap_info)
4658
		return 0;
B
Ben Widawsky 已提交
4659

4660 4661 4662
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4663

4664 4665 4666 4667 4668
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4669
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4670 4671 4672
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4673 4674
	}

4675
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4676

4677
	return ret;
B
Ben Widawsky 已提交
4678 4679
}

4680 4681
void i915_gem_init_swizzling(struct drm_device *dev)
{
4682
	struct drm_i915_private *dev_priv = dev->dev_private;
4683

4684
	if (INTEL_INFO(dev)->gen < 5 ||
4685 4686 4687 4688 4689 4690
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4691 4692 4693
	if (IS_GEN5(dev))
		return;

4694 4695
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4696
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4697
	else if (IS_GEN7(dev))
4698
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4699 4700
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4701 4702
	else
		BUG();
4703
}
D
Daniel Vetter 已提交
4704

4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4748
int i915_gem_init_rings(struct drm_device *dev)
4749
{
4750
	struct drm_i915_private *dev_priv = dev->dev_private;
4751
	int ret;
4752

4753
	ret = intel_init_render_ring_buffer(dev);
4754
	if (ret)
4755
		return ret;
4756 4757

	if (HAS_BSD(dev)) {
4758
		ret = intel_init_bsd_ring_buffer(dev);
4759 4760
		if (ret)
			goto cleanup_render_ring;
4761
	}
4762

4763
	if (intel_enable_blt(dev)) {
4764 4765 4766 4767 4768
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4769 4770 4771 4772 4773 4774
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4775 4776 4777 4778 4779
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4780

4781
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4782
	if (ret)
4783
		goto cleanup_bsd2_ring;
4784 4785 4786

	return 0;

4787 4788
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4789 4790
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4804
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4805
	struct intel_engine_cs *ring;
4806
	int ret, i;
4807 4808 4809 4810

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4811 4812 4813
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4814
	if (dev_priv->ellc_size)
4815
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4816

4817 4818 4819
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4820

4821
	if (HAS_PCH_NOP(dev)) {
4822 4823 4824 4825 4826 4827 4828 4829 4830
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4831 4832
	}

4833 4834
	i915_gem_init_swizzling(dev);

4835 4836 4837 4838 4839 4840 4841 4842
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4843 4844 4845
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4846
			goto out;
D
Daniel Vetter 已提交
4847
	}
4848

4849 4850 4851
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4852
	ret = i915_ppgtt_init_hw(dev);
4853
	if (ret && ret != -EIO) {
4854
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4855
		i915_gem_cleanup_ringbuffer(dev);
4856 4857
	}

4858
	ret = i915_gem_context_enable(dev_priv);
4859
	if (ret && ret != -EIO) {
4860
		DRM_ERROR("Context enable failed %d\n", ret);
4861
		i915_gem_cleanup_ringbuffer(dev);
4862

4863
		goto out;
4864
	}
D
Daniel Vetter 已提交
4865

4866 4867
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4868
	return ret;
4869 4870
}

4871 4872 4873 4874 4875
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4876 4877 4878
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4879
	mutex_lock(&dev->struct_mutex);
4880 4881 4882

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4883 4884 4885
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4886 4887 4888
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4889
	if (!i915.enable_execlists) {
4890
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4891 4892 4893
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4894
	} else {
4895
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4896 4897 4898
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4899 4900
	}

4901 4902 4903 4904 4905 4906 4907 4908
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4909
	ret = i915_gem_init_userptr(dev);
4910 4911
	if (ret)
		goto out_unlock;
4912

4913
	i915_gem_init_global_gtt(dev);
4914

4915
	ret = i915_gem_context_init(dev);
4916 4917
	if (ret)
		goto out_unlock;
4918

D
Daniel Vetter 已提交
4919 4920
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4921
		goto out_unlock;
4922

4923
	ret = i915_gem_init_hw(dev);
4924 4925 4926 4927 4928 4929 4930 4931
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4932
	}
4933 4934

out_unlock:
4935
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4936
	mutex_unlock(&dev->struct_mutex);
4937

4938
	return ret;
4939 4940
}

4941 4942 4943
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4944
	struct drm_i915_private *dev_priv = dev->dev_private;
4945
	struct intel_engine_cs *ring;
4946
	int i;
4947

4948
	for_each_ring(ring, dev_priv, i)
4949
		dev_priv->gt.cleanup_ring(ring);
4950 4951
}

4952
static void
4953
init_ring_lists(struct intel_engine_cs *ring)
4954 4955 4956 4957 4958
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4959 4960
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4961
{
4962 4963
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4964 4965 4966 4967
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4968
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4969 4970
}

4971 4972 4973
void
i915_gem_load(struct drm_device *dev)
{
4974
	struct drm_i915_private *dev_priv = dev->dev_private;
4975 4976 4977 4978 4979 4980 4981
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4982

B
Ben Widawsky 已提交
4983 4984 4985
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4986
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4987 4988
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4989
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4990 4991
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4992
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4993
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4994 4995
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4996 4997
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4998
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4999

5000 5001
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5002 5003 5004
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5005 5006 5007 5008
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5009 5010 5011 5012
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5013
	/* Initialize fence registers to zero */
5014 5015
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5016

5017
	i915_gem_detect_bit_6_swizzle(dev);
5018
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5019

5020 5021
	dev_priv->mm.interruptible = true;

5022
	i915_gem_shrinker_init(dev_priv);
5023 5024

	mutex_init(&dev_priv->fb_tracking.lock);
5025
}
5026

5027
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5028
{
5029
	struct drm_i915_file_private *file_priv = file->driver_priv;
5030 5031 5032 5033 5034

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5035
	spin_lock(&file_priv->mm.lock);
5036 5037 5038 5039 5040 5041 5042 5043 5044
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5045
	spin_unlock(&file_priv->mm.lock);
5046

5047 5048 5049 5050 5051
	if (!list_empty(&file_priv->rps_boost)) {
		mutex_lock(&to_i915(dev)->rps.hw_lock);
		list_del(&file_priv->rps_boost);
		mutex_unlock(&to_i915(dev)->rps.hw_lock);
	}
5052 5053 5054 5055 5056
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5057
	int ret;
5058 5059 5060 5061 5062 5063 5064 5065 5066

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5067
	file_priv->file = file;
5068
	INIT_LIST_HEAD(&file_priv->rps_boost);
5069 5070 5071 5072

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5073 5074 5075
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5076

5077
	return ret;
5078 5079
}

5080 5081 5082 5083 5084 5085 5086 5087 5088
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5106
/* All the new VM stuff */
5107 5108 5109
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5110 5111 5112 5113
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5114
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5115 5116

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5117 5118 5119 5120
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5121 5122
			return vma->node.start;
	}
5123

5124 5125
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5126 5127 5128
	return -1;
}

5129 5130
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5131
			      const struct i915_ggtt_view *view)
5132
{
5133
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5134 5135 5136
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5137 5138
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
			return vma->node.start;

	WARN(1, "global vma for this object not found.\n");
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5162
				  const struct i915_ggtt_view *view)
5163 5164 5165 5166 5167 5168
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5169
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5170
		    drm_mm_node_allocated(&vma->node))
5171 5172 5173 5174 5175 5176 5177
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5178
	struct i915_vma *vma;
5179

5180 5181
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5193
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5194 5195 5196

	BUG_ON(list_empty(&o->vma_list));

5197 5198 5199 5200
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5201 5202
		if (vma->vm == vm)
			return vma->node.size;
5203
	}
5204 5205 5206
	return 0;
}

5207
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5208 5209
{
	struct i915_vma *vma;
5210 5211 5212 5213 5214 5215 5216 5217
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->pin_count > 0)
			return true;
	}
	return false;
5218
}
5219