i915_gem.c 142.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108
	if (!i915_reset_in_progress(error))
109 110
		return 0;

111 112 113 114 115
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
116
	ret = wait_event_interruptible_timeout(error->reset_queue,
117
					       !i915_reset_in_progress(error),
118
					       10*HZ);
119 120 121 122
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
123
		return ret;
124 125
	} else {
		return 0;
126
	}
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 163
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175 176 177 178 179
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
291
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 293 294 295 296 297 298
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
343
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(to_i915(dev));
372 373

out:
374
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_object_create(dev, size);
406 407
	if (IS_ERR(obj))
		return PTR_ERR(obj);
408

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432
}

/**
 * Creates a new mm object and returns a handle to it.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440 441
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

511
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

535 536 537
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
538
static int
539 540 541 542 543 544 545
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

546
	if (unlikely(page_do_bit17_swizzling))
547 548 549 550 551 552 553 554 555 556 557
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

558
	return ret ? -EFAULT : 0;
559 560
}

561 562 563 564
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
565
	if (unlikely(swizzled)) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

583 584 585 586 587 588 589 590 591 592 593 594
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
595 596 597
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
598 599 600 601 602 603 604 605 606 607 608

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

609
	return ret ? - EFAULT : 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

748
static int
749 750 751 752
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
753
{
754
	char __user *user_data;
755
	ssize_t remain;
756
	loff_t offset;
757
	int shmem_page_offset, page_length, ret = 0;
758
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759
	int prefaulted = 0;
760
	int needs_clflush = 0;
761
	struct sg_page_iter sg_iter;
762

763
	if (!i915_gem_object_has_struct_page(obj))
764 765
		return -ENODEV;

766
	user_data = u64_to_user_ptr(args->data_ptr);
767 768
	remain = args->size;

769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770

771
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 773 774
	if (ret)
		return ret;

775
	offset = args->offset;
776

777 778
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
779
		struct page *page = sg_page_iter_page(&sg_iter);
780 781 782 783

		if (remain <= 0)
			break;

784 785 786 787 788
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
789
		shmem_page_offset = offset_in_page(offset);
790 791 792 793
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

797 798 799 800 801
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
802 803 804

		mutex_unlock(&dev->struct_mutex);

805
		if (likely(!i915.prefault_disable) && !prefaulted) {
806
			ret = fault_in_multipages_writeable(user_data, remain);
807 808 809 810 811 812 813
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
814

815 816 817
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
818

819
		mutex_lock(&dev->struct_mutex);
820 821

		if (ret)
822 823
			goto out;

824
next_page:
825
		remain -= page_length;
826
		user_data += page_length;
827 828 829
		offset += page_length;
	}

830
out:
831 832
	i915_gem_object_unpin_pages(obj);

833 834 835
	return ret;
}

836 837
/**
 * Reads data from the object referenced by handle.
838 839 840
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
841 842 843 844 845
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846
		     struct drm_file *file)
847 848
{
	struct drm_i915_gem_pread *args = data;
849
	struct drm_i915_gem_object *obj;
850
	int ret = 0;
851

852 853 854 855
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
856
		       u64_to_user_ptr(args->data_ptr),
857 858 859
		       args->size))
		return -EFAULT;

860
	ret = i915_mutex_lock_interruptible(dev);
861
	if (ret)
862
		return ret;
863

864
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865
	if (&obj->base == NULL) {
866 867
		ret = -ENOENT;
		goto unlock;
868
	}
869

870
	/* Bounds check source.  */
871 872
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
873
		ret = -EINVAL;
874
		goto out;
C
Chris Wilson 已提交
875 876
	}

C
Chris Wilson 已提交
877 878
	trace_i915_gem_object_pread(obj, args->offset, args->size);

879
	ret = i915_gem_shmem_pread(dev, obj, args, file);
880

881 882 883 884 885
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

886
out:
887
	drm_gem_object_unreference(&obj->base);
888
unlock:
889
	mutex_unlock(&dev->struct_mutex);
890
	return ret;
891 892
}

893 894
/* This is the fast write path which cannot handle
 * page faults in the source data
895
 */
896 897 898 899 900 901

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
902
{
903 904
	void __iomem *vaddr_atomic;
	void *vaddr;
905
	unsigned long unwritten;
906

P
Peter Zijlstra 已提交
907
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 909 910
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
911
						      user_data, length);
P
Peter Zijlstra 已提交
912
	io_mapping_unmap_atomic(vaddr_atomic);
913
	return unwritten;
914 915
}

916 917 918
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
919 920 921 922
 * @dev: drm device pointer
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
923
 */
924
static int
925
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926
			 struct drm_i915_gem_object *obj,
927
			 struct drm_i915_gem_pwrite *args,
928
			 struct drm_file *file)
929
{
930
	struct i915_ggtt *ggtt = &i915->ggtt;
931
	struct drm_device *dev = obj->base.dev;
932 933
	struct drm_mm_node node;
	uint64_t remain, offset;
934
	char __user *user_data;
935
	int ret;
936 937 938 939
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
940

941
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
957 958 959
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
960
	}
D
Daniel Vetter 已提交
961 962 963 964 965

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

966
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967
	obj->dirty = true;
968

969 970 971 972
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
973 974
		/* Operation in this page
		 *
975 976 977
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
978
		 */
979 980 981 982 983 984 985 986 987 988 989 990 991
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
992
		/* If we get a fault while copying data, then (presumably) our
993 994
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
995 996
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
997
		 */
998
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
999
				    page_offset, user_data, page_length)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1012
		}
1013

1014 1015 1016
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1017 1018
	}

1019
out_flush:
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1033
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1034
out_unpin:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1045
out:
1046
	return ret;
1047 1048
}

1049 1050 1051 1052
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1053
static int
1054 1055 1056 1057 1058
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1059
{
1060
	char *vaddr;
1061
	int ret;
1062

1063
	if (unlikely(page_do_bit17_swizzling))
1064
		return -EINVAL;
1065

1066 1067 1068 1069
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1070 1071
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1072 1073 1074 1075
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1076

1077
	return ret ? -EFAULT : 0;
1078 1079
}

1080 1081
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1082
static int
1083 1084 1085 1086 1087
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1088
{
1089 1090
	char *vaddr;
	int ret;
1091

1092
	vaddr = kmap(page);
1093
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 1095 1096
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1097 1098
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 1100
						user_data,
						page_length);
1101 1102 1103 1104 1105
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1106 1107 1108
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1109
	kunmap(page);
1110

1111
	return ret ? -EFAULT : 0;
1112 1113 1114
}

static int
1115 1116 1117 1118
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1119 1120
{
	ssize_t remain;
1121 1122
	loff_t offset;
	char __user *user_data;
1123
	int shmem_page_offset, page_length, ret = 0;
1124
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125
	int hit_slowpath = 0;
1126 1127
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1128
	struct sg_page_iter sg_iter;
1129

1130
	user_data = u64_to_user_ptr(args->data_ptr);
1131 1132
	remain = args->size;

1133
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134

1135 1136 1137 1138 1139
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1140
		needs_clflush_after = cpu_write_needs_clflush(obj);
1141 1142 1143
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
1144
	}
1145 1146 1147 1148 1149
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1150

1151 1152 1153 1154
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1155
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156

1157 1158
	i915_gem_object_pin_pages(obj);

1159
	offset = args->offset;
1160
	obj->dirty = 1;
1161

1162 1163
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1164
		struct page *page = sg_page_iter_page(&sg_iter);
1165
		int partial_cacheline_write;
1166

1167 1168 1169
		if (remain <= 0)
			break;

1170 1171 1172 1173 1174
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1175
		shmem_page_offset = offset_in_page(offset);
1176 1177 1178 1179 1180

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1181 1182 1183 1184 1185 1186 1187
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1188 1189 1190
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1191 1192 1193 1194 1195 1196
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1197 1198 1199

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1200 1201 1202 1203
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1204

1205
		mutex_lock(&dev->struct_mutex);
1206 1207

		if (ret)
1208 1209
			goto out;

1210
next_page:
1211
		remain -= page_length;
1212
		user_data += page_length;
1213
		offset += page_length;
1214 1215
	}

1216
out:
1217 1218
	i915_gem_object_unpin_pages(obj);

1219
	if (hit_slowpath) {
1220 1221 1222 1223 1224 1225 1226
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227
			if (i915_gem_clflush_object(obj, obj->pin_display))
1228
				needs_clflush_after = true;
1229
		}
1230
	}
1231

1232
	if (needs_clflush_after)
1233
		i915_gem_chipset_flush(to_i915(dev));
1234 1235
	else
		obj->cache_dirty = true;
1236

1237
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238
	return ret;
1239 1240 1241 1242
}

/**
 * Writes data to the object referenced by handle.
1243 1244 1245
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1246 1247 1248 1249 1250
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251
		      struct drm_file *file)
1252
{
1253
	struct drm_i915_private *dev_priv = dev->dev_private;
1254
	struct drm_i915_gem_pwrite *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257 1258 1259 1260 1261
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1262
		       u64_to_user_ptr(args->data_ptr),
1263 1264 1265
		       args->size))
		return -EFAULT;

1266
	if (likely(!i915.prefault_disable)) {
1267
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 1269 1270 1271
						   args->size);
		if (ret)
			return -EFAULT;
	}
1272

1273 1274
	intel_runtime_pm_get(dev_priv);

1275
	ret = i915_mutex_lock_interruptible(dev);
1276
	if (ret)
1277
		goto put_rpm;
1278

1279
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280
	if (&obj->base == NULL) {
1281 1282
		ret = -ENOENT;
		goto unlock;
1283
	}
1284

1285
	/* Bounds check destination. */
1286 1287
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1288
		ret = -EINVAL;
1289
		goto out;
C
Chris Wilson 已提交
1290 1291
	}

C
Chris Wilson 已提交
1292 1293
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1294
	ret = -EFAULT;
1295 1296 1297 1298 1299 1300
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1301 1302
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1303
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1304 1305 1306
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1307
	}
1308

1309
	if (ret == -EFAULT) {
1310 1311
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1312
		else if (i915_gem_object_has_struct_page(obj))
1313
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 1315
		else
			ret = -ENODEV;
1316
	}
1317

1318
out:
1319
	drm_gem_object_unreference(&obj->base);
1320
unlock:
1321
	mutex_unlock(&dev->struct_mutex);
1322 1323 1324
put_rpm:
	intel_runtime_pm_put(dev_priv);

1325 1326 1327
	return ret;
}

1328 1329
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330
{
1331 1332
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1333

1334
	if (__i915_reset_in_progress(reset_counter)) {
1335 1336 1337 1338 1339
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1340
		return -EAGAIN;
1341 1342 1343 1344 1345
	}

	return 0;
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1378 1379
bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
1380
{
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1392

1393
	timeout_us += local_clock_us(&cpu);
1394
	do {
1395
		if (i915_gem_request_completed(req))
1396
			return true;
1397

1398 1399 1400
		if (signal_pending_state(state, current))
			break;

1401
		if (busywait_stop(timeout_us, cpu))
1402
			break;
1403

1404
		cpu_relax_lowlatency();
1405
	} while (!need_resched());
1406

1407
	return false;
1408 1409
}

1410
/**
1411 1412
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1413 1414
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1415
 * @rps: RPS client
1416
 *
1417 1418 1419 1420 1421 1422 1423
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1424
 * Returns 0 if the request was found within the alloted time. Else returns the
1425 1426
 * errno with remaining time filled in timeout argument.
 */
1427
int __i915_wait_request(struct drm_i915_gem_request *req,
1428
			bool interruptible,
1429
			s64 *timeout,
1430
			struct intel_rps_client *rps)
1431
{
1432
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1433
	DEFINE_WAIT(reset);
1434 1435
	struct intel_wait wait;
	unsigned long timeout_remain;
1436
	s64 before = 0; /* Only to silence a compiler warning. */
1437
	int ret = 0;
1438

1439
	might_sleep();
1440

1441 1442 1443
	if (list_empty(&req->list))
		return 0;

1444
	if (i915_gem_request_completed(req))
1445 1446
		return 0;

1447
	timeout_remain = MAX_SCHEDULE_TIMEOUT;
1448 1449 1450 1451 1452 1453 1454
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

1455
		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1456 1457 1458 1459 1460

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1461
	}
1462

1463
	trace_i915_gem_request_wait_begin(req);
1464

1465 1466
	if (INTEL_INFO(req->i915)->gen >= 6)
		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1467

1468
	/* Optimistic spin for the next ~jiffie before touching IRQs */
1469
	if (i915_spin_request(req, state, 5))
1470
		goto complete;
1471

1472 1473
	set_current_state(state);
	add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1474

1475 1476 1477 1478 1479
	intel_wait_init(&wait, req->seqno);
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
1480
		 */
1481
		goto wakeup;
1482

1483
	for (;;) {
1484
		if (signal_pending_state(state, current)) {
1485 1486 1487 1488
			ret = -ERESTARTSYS;
			break;
		}

1489 1490 1491 1492 1493 1494 1495
		/* Ensure that even if the GPU hangs, we get woken up.
		 *
		 * However, note that if no one is waiting, we never notice
		 * a gpu hang. Eventually, we will have to wait for a resource
		 * held by the GPU and so trigger a hangcheck. In the most
		 * pathological case, this will be upon memory starvation!
		 */
1496
		i915_queue_hangcheck(req->i915);
1497

1498 1499 1500 1501
		timeout_remain = io_schedule_timeout(timeout_remain);
		if (timeout_remain == 0) {
			ret = -ETIME;
			break;
1502 1503
		}

1504 1505
		if (intel_wait_complete(&wait))
			break;
1506

1507
		set_current_state(state);
1508

1509 1510 1511 1512 1513 1514 1515 1516
wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;
1517 1518 1519 1520

		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
1521 1522
	}
	remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1523

1524 1525 1526
	intel_engine_remove_wait(req->engine, &wait);
	__set_current_state(TASK_RUNNING);
complete:
1527 1528
	trace_i915_gem_request_wait_end(req);

1529
	if (timeout) {
1530
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1531 1532

		*timeout = tres < 0 ? 0 : tres;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1543 1544
	}

1545
	return ret;
1546 1547
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1585 1586 1587

	put_pid(request->pid);
	request->pid = NULL;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1607
	if (request->previous_context) {
1608
		if (i915.enable_execlists)
1609 1610
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1611 1612
	}

1613
	i915_gem_context_unreference(request->ctx);
1614 1615 1616 1617 1618 1619
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1620
	struct intel_engine_cs *engine = req->engine;
1621 1622
	struct drm_i915_gem_request *tmp;

1623
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1638
/**
1639
 * Waits for a request to be signaled, and cleans up the
1640
 * request and object lists appropriately for that event.
1641
 * @req: request to wait on
1642 1643
 */
int
1644
i915_wait_request(struct drm_i915_gem_request *req)
1645
{
1646
	struct drm_i915_private *dev_priv = req->i915;
1647
	bool interruptible;
1648 1649
	int ret;

1650 1651
	interruptible = dev_priv->mm.interruptible;

1652
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1653

1654
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1655 1656
	if (ret)
		return ret;
1657

1658
	/* If the GPU hung, we want to keep the requests to find the guilty. */
1659
	if (!i915_reset_in_progress(&dev_priv->gpu_error))
1660 1661
		__i915_gem_request_retire__upto(req);

1662 1663 1664
	return 0;
}

1665 1666 1667
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1668 1669
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1670
 */
1671
int
1672 1673 1674
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1675
	int ret, i;
1676

1677
	if (!obj->active)
1678 1679
		return 0;

1680 1681 1682 1683 1684
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1685

1686
			i = obj->last_write_req->engine->id;
1687 1688 1689 1690 1691 1692
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1693
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1694 1695 1696 1697 1698 1699 1700 1701 1702
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1703
		GEM_BUG_ON(obj->active);
1704 1705 1706 1707 1708 1709 1710 1711 1712
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1713
	int ring = req->engine->id;
1714 1715 1716 1717 1718 1719

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1720
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1721
		__i915_gem_request_retire__upto(req);
1722 1723
}

1724 1725 1726 1727 1728
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1729
					    struct intel_rps_client *rps,
1730 1731 1732 1733
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1734
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1735
	int ret, i, n = 0;
1736 1737 1738 1739

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1740
	if (!obj->active)
1741 1742
		return 0;

1743 1744 1745 1746 1747 1748 1749 1750 1751
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1752
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1763
	mutex_unlock(&dev->struct_mutex);
1764
	ret = 0;
1765
	for (i = 0; ret == 0 && i < n; i++)
1766
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1767 1768
	mutex_lock(&dev->struct_mutex);

1769 1770 1771 1772 1773 1774 1775
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1776 1777
}

1778 1779 1780 1781 1782 1783
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1784 1785 1786 1787 1788 1789 1790
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1791
/**
1792 1793
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1794 1795 1796
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1797 1798 1799
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1800
			  struct drm_file *file)
1801 1802
{
	struct drm_i915_gem_set_domain *args = data;
1803
	struct drm_i915_gem_object *obj;
1804 1805
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1806 1807
	int ret;

1808
	/* Only handle setting domains to types used by the CPU. */
1809
	if (write_domain & I915_GEM_GPU_DOMAINS)
1810 1811
		return -EINVAL;

1812
	if (read_domains & I915_GEM_GPU_DOMAINS)
1813 1814 1815 1816 1817 1818 1819 1820
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1821
	ret = i915_mutex_lock_interruptible(dev);
1822
	if (ret)
1823
		return ret;
1824

1825
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1826
	if (&obj->base == NULL) {
1827 1828
		ret = -ENOENT;
		goto unlock;
1829
	}
1830

1831 1832 1833 1834
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1835
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1836
							  to_rps_client(file),
1837
							  !write_domain);
1838 1839 1840
	if (ret)
		goto unref;

1841
	if (read_domains & I915_GEM_DOMAIN_GTT)
1842
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1843
	else
1844
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1845

1846
	if (write_domain != 0)
1847
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1848

1849
unref:
1850
	drm_gem_object_unreference(&obj->base);
1851
unlock:
1852 1853 1854 1855 1856 1857
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1858 1859 1860
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1861 1862 1863
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1864
			 struct drm_file *file)
1865 1866
{
	struct drm_i915_gem_sw_finish *args = data;
1867
	struct drm_i915_gem_object *obj;
1868 1869
	int ret = 0;

1870
	ret = i915_mutex_lock_interruptible(dev);
1871
	if (ret)
1872
		return ret;
1873

1874
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1875
	if (&obj->base == NULL) {
1876 1877
		ret = -ENOENT;
		goto unlock;
1878 1879 1880
	}

	/* Pinned buffers may be scanout, so flush the cache */
1881
	if (obj->pin_display)
1882
		i915_gem_object_flush_cpu_write_domain(obj);
1883

1884
	drm_gem_object_unreference(&obj->base);
1885
unlock:
1886 1887 1888 1889 1890
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1891 1892 1893 1894 1895
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1896 1897 1898
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1909 1910 1911
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1912
		    struct drm_file *file)
1913 1914 1915 1916 1917
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1918 1919 1920
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1921
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1922 1923
		return -ENODEV;

1924
	obj = drm_gem_object_lookup(file, args->handle);
1925
	if (obj == NULL)
1926
		return -ENOENT;
1927

1928 1929 1930 1931 1932 1933 1934 1935
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1936
	addr = vm_mmap(obj->filp, 0, args->size,
1937 1938
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1939 1940 1941 1942
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1943 1944 1945 1946
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1947 1948 1949 1950 1951 1952 1953
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1954 1955 1956

		/* This may race, but that's ok, it only gets set */
		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1957
	}
1958
	drm_gem_object_unreference_unlocked(obj);
1959 1960 1961 1962 1963 1964 1965 1966
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1967 1968
/**
 * i915_gem_fault - fault a page into the GTT
1969 1970
 * @vma: VMA in question
 * @vmf: fault info
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1985 1986
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1987 1988
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1989
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1990 1991 1992
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1993
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1994

1995 1996
	intel_runtime_pm_get(dev_priv);

1997 1998 1999 2000
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

2001 2002 2003
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
2004

C
Chris Wilson 已提交
2005 2006
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2007 2008 2009 2010 2011 2012 2013 2014 2015
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

2016 2017
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2018
		ret = -EFAULT;
2019 2020 2021
		goto unlock;
	}

2022
	/* Use a partial view if the object is bigger than the aperture. */
2023
	if (obj->base.size >= ggtt->mappable_end &&
2024
	    obj->tiling_mode == I915_TILING_NONE) {
2025
		static const unsigned int chunk_size = 256; // 1 MiB
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2039 2040
	if (ret)
		goto unlock;
2041

2042 2043 2044
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
2045

2046
	ret = i915_gem_object_get_fence(obj);
2047
	if (ret)
2048
		goto unpin;
2049

2050
	/* Finally, remap it using the new GTT offset */
2051
	pfn = ggtt->mappable_base +
2052
		i915_gem_obj_ggtt_offset_view(obj, &view);
2053
	pfn >>= PAGE_SHIFT;
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
2064

2065 2066
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2067 2068 2069 2070 2071
			if (ret)
				break;
		}

		obj->fault_mappable = true;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
2093
unpin:
2094
	i915_gem_object_ggtt_unpin_view(obj, &view);
2095
unlock:
2096
	mutex_unlock(&dev->struct_mutex);
2097
out:
2098
	switch (ret) {
2099
	case -EIO:
2100 2101 2102 2103 2104 2105 2106
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2107 2108 2109
			ret = VM_FAULT_SIGBUS;
			break;
		}
2110
	case -EAGAIN:
D
Daniel Vetter 已提交
2111 2112 2113 2114
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2115
		 */
2116 2117
	case 0:
	case -ERESTARTSYS:
2118
	case -EINTR:
2119 2120 2121 2122 2123
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2124 2125
		ret = VM_FAULT_NOPAGE;
		break;
2126
	case -ENOMEM:
2127 2128
		ret = VM_FAULT_OOM;
		break;
2129
	case -ENOSPC:
2130
	case -EFAULT:
2131 2132
		ret = VM_FAULT_SIGBUS;
		break;
2133
	default:
2134
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2135 2136
		ret = VM_FAULT_SIGBUS;
		break;
2137
	}
2138 2139 2140

	intel_runtime_pm_put(dev_priv);
	return ret;
2141 2142
}

2143 2144 2145 2146
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2147
 * Preserve the reservation of the mmapping with the DRM core code, but
2148 2149 2150 2151 2152 2153 2154 2155 2156
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2157
void
2158
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2159
{
2160 2161 2162 2163 2164 2165
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2166 2167
	if (!obj->fault_mappable)
		return;
2168

2169 2170
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

2181
	obj->fault_mappable = false;
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

2193
uint32_t
2194
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2195
{
2196
	uint32_t gtt_size;
2197 2198

	if (INTEL_INFO(dev)->gen >= 4 ||
2199 2200
	    tiling_mode == I915_TILING_NONE)
		return size;
2201 2202

	/* Previous chips need a power-of-two fence region when tiling */
2203
	if (IS_GEN3(dev))
2204
		gtt_size = 1024*1024;
2205
	else
2206
		gtt_size = 512*1024;
2207

2208 2209
	while (gtt_size < size)
		gtt_size <<= 1;
2210

2211
	return gtt_size;
2212 2213
}

2214 2215
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2216 2217 2218 2219
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
2220 2221
 *
 * Return the required GTT alignment for an object, taking into account
2222
 * potential fence register mapping.
2223
 */
2224 2225 2226
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2227 2228 2229 2230 2231
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2232
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2233
	    tiling_mode == I915_TILING_NONE)
2234 2235
		return 4096;

2236 2237 2238 2239
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2240
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2241 2242
}

2243 2244 2245 2246 2247
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2248 2249
	dev_priv->mm.shrinker_no_lock_stealing = true;

2250 2251
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2252
		goto out;
2253 2254 2255 2256 2257 2258 2259 2260

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2261 2262 2263 2264 2265
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2266 2267
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2268
		goto out;
2269 2270

	i915_gem_shrink_all(dev_priv);
2271 2272 2273 2274 2275
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2276 2277 2278 2279 2280 2281 2282
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2283
int
2284 2285
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2286
		  uint32_t handle,
2287
		  uint64_t *offset)
2288
{
2289
	struct drm_i915_gem_object *obj;
2290 2291
	int ret;

2292
	ret = i915_mutex_lock_interruptible(dev);
2293
	if (ret)
2294
		return ret;
2295

2296
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2297
	if (&obj->base == NULL) {
2298 2299 2300
		ret = -ENOENT;
		goto unlock;
	}
2301

2302
	if (obj->madv != I915_MADV_WILLNEED) {
2303
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2304
		ret = -EFAULT;
2305
		goto out;
2306 2307
	}

2308 2309 2310
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2311

2312
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2313

2314
out:
2315
	drm_gem_object_unreference(&obj->base);
2316
unlock:
2317
	mutex_unlock(&dev->struct_mutex);
2318
	return ret;
2319 2320
}

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2342
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2343 2344
}

D
Daniel Vetter 已提交
2345 2346 2347
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2348
{
2349
	i915_gem_object_free_mmap_offset(obj);
2350

2351 2352
	if (obj->base.filp == NULL)
		return;
2353

D
Daniel Vetter 已提交
2354 2355 2356 2357 2358
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2359
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2360 2361
	obj->madv = __I915_MADV_PURGED;
}
2362

2363 2364 2365
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2366
{
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2381 2382
}

2383
static void
2384
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2385
{
2386 2387
	struct sgt_iter sgt_iter;
	struct page *page;
2388
	int ret;
2389

2390
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2391

C
Chris Wilson 已提交
2392
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2393
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2394 2395 2396
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2397
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2398 2399 2400
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2401 2402
	i915_gem_gtt_finish_object(obj);

2403
	if (i915_gem_object_needs_bit17_swizzle(obj))
2404 2405
		i915_gem_object_save_bit_17_swizzle(obj);

2406 2407
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2408

2409
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2410
		if (obj->dirty)
2411
			set_page_dirty(page);
2412

2413
		if (obj->madv == I915_MADV_WILLNEED)
2414
			mark_page_accessed(page);
2415

2416
		put_page(page);
2417
	}
2418
	obj->dirty = 0;
2419

2420 2421
	sg_free_table(obj->pages);
	kfree(obj->pages);
2422
}
C
Chris Wilson 已提交
2423

2424
int
2425 2426 2427 2428
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2429
	if (obj->pages == NULL)
2430 2431
		return 0;

2432 2433 2434
	if (obj->pages_pin_count)
		return -EBUSY;

2435
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2436

2437 2438 2439
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2440
	list_del(&obj->global_list);
2441

2442
	if (obj->mapping) {
2443 2444 2445 2446
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2447 2448 2449
		obj->mapping = NULL;
	}

2450
	ops->put_pages(obj);
2451
	obj->pages = NULL;
2452

2453
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2454 2455 2456 2457

	return 0;
}

2458
static int
C
Chris Wilson 已提交
2459
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2460
{
C
Chris Wilson 已提交
2461
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2462 2463
	int page_count, i;
	struct address_space *mapping;
2464 2465
	struct sg_table *st;
	struct scatterlist *sg;
2466
	struct sgt_iter sgt_iter;
2467
	struct page *page;
2468
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2469
	int ret;
C
Chris Wilson 已提交
2470
	gfp_t gfp;
2471

C
Chris Wilson 已提交
2472 2473 2474 2475 2476 2477 2478
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2479 2480 2481 2482
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2483
	page_count = obj->base.size / PAGE_SIZE;
2484 2485
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2486
		return -ENOMEM;
2487
	}
2488

2489 2490 2491 2492 2493
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2494
	mapping = file_inode(obj->base.filp)->i_mapping;
2495
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2496
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2497 2498 2499
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2500 2501
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2502 2503 2504 2505 2506
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2507 2508 2509 2510 2511 2512 2513 2514
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2515
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2516 2517
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2518
				goto err_pages;
I
Imre Deak 已提交
2519
			}
C
Chris Wilson 已提交
2520
		}
2521 2522 2523 2524 2525 2526 2527 2528
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2529 2530 2531 2532 2533 2534 2535 2536 2537
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2538 2539 2540

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2541
	}
2542 2543 2544 2545
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2546 2547
	obj->pages = st;

I
Imre Deak 已提交
2548 2549 2550 2551
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2552
	if (i915_gem_object_needs_bit17_swizzle(obj))
2553 2554
		i915_gem_object_do_bit_17_swizzle(obj);

2555 2556 2557 2558
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2559 2560 2561
	return 0;

err_pages:
2562
	sg_mark_end(sg);
2563 2564
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2565 2566
	sg_free_table(st);
	kfree(st);
2567 2568 2569 2570 2571 2572 2573 2574 2575

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2576 2577 2578 2579
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2580 2581
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2596
	if (obj->pages)
2597 2598
		return 0;

2599
	if (obj->madv != I915_MADV_WILLNEED) {
2600
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2601
		return -EFAULT;
2602 2603
	}

2604 2605
	BUG_ON(obj->pages_pin_count);

2606 2607 2608 2609
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2610
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2611 2612 2613 2614

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2615
	return 0;
2616 2617
}

2618 2619 2620 2621 2622
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2623 2624
	struct sgt_iter sgt_iter;
	struct page *page;
2625 2626
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2627 2628 2629 2630 2631 2632 2633
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2634 2635 2636 2637 2638 2639
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2640

2641 2642
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2643 2644 2645 2646 2647 2648

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2649 2650
	if (pages != stack_pages)
		drm_free_large(pages);
2651 2652 2653 2654 2655

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2668 2669 2670
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2671 2672 2673 2674 2675 2676 2677 2678
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2679
void i915_vma_move_to_active(struct i915_vma *vma,
2680
			     struct drm_i915_gem_request *req)
2681
{
2682
	struct drm_i915_gem_object *obj = vma->obj;
2683
	struct intel_engine_cs *engine;
2684

2685
	engine = i915_gem_request_get_engine(req);
2686 2687

	/* Add a reference if we're newly entering the active list. */
2688
	if (obj->active == 0)
2689
		drm_gem_object_reference(&obj->base);
2690
	obj->active |= intel_engine_flag(engine);
2691

2692
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2693
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2694

2695
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2696 2697
}

2698 2699
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2700
{
2701 2702
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2703 2704

	i915_gem_request_assign(&obj->last_write_req, NULL);
2705
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2706 2707
}

2708
static void
2709
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2710
{
2711
	struct i915_vma *vma;
2712

2713 2714
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2715

2716
	list_del_init(&obj->engine_list[ring]);
2717 2718
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2719
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2720 2721 2722 2723 2724
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2725

2726 2727 2728 2729 2730 2731 2732
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2733 2734 2735
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2736
	}
2737

2738
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2739
	drm_gem_object_unreference(&obj->base);
2740 2741
}

2742
static int
2743
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2744
{
2745
	struct intel_engine_cs *engine;
2746
	int ret;
2747

2748
	/* Carefully retire all requests without writing to the rings */
2749
	for_each_engine(engine, dev_priv) {
2750
		ret = intel_engine_idle(engine);
2751 2752
		if (ret)
			return ret;
2753
	}
2754
	i915_gem_retire_requests(dev_priv);
2755

2756 2757
	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2758 2759
		while (intel_kick_waiters(dev_priv) ||
		       intel_kick_signalers(dev_priv))
2760 2761 2762
			yield();
	}

2763
	/* Finally reset hw state */
2764
	for_each_engine(engine, dev_priv)
2765
		intel_ring_init_seqno(engine, seqno);
2766

2767
	return 0;
2768 2769
}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2781
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2796
int
2797
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2798
{
2799 2800
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2801
		int ret = i915_gem_init_seqno(dev_priv, 0);
2802 2803
		if (ret)
			return ret;
2804

2805 2806
		dev_priv->next_seqno = 1;
	}
2807

2808
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2809
	return 0;
2810 2811
}

2812 2813 2814 2815 2816
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2817
void __i915_add_request(struct drm_i915_gem_request *request,
2818 2819
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2820
{
2821
	struct intel_engine_cs *engine;
2822
	struct drm_i915_private *dev_priv;
2823
	struct intel_ringbuffer *ringbuf;
2824
	u32 request_start;
2825
	u32 reserved_tail;
2826 2827
	int ret;

2828
	if (WARN_ON(request == NULL))
2829
		return;
2830

2831
	engine = request->engine;
2832
	dev_priv = request->i915;
2833 2834
	ringbuf = request->ringbuf;

2835 2836 2837 2838 2839
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2840
	request_start = intel_ring_get_tail(ringbuf);
2841 2842 2843
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2844 2845 2846 2847 2848 2849 2850
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2851 2852
	if (flush_caches) {
		if (i915.enable_execlists)
2853
			ret = logical_ring_flush_all_caches(request);
2854
		else
2855
			ret = intel_ring_flush_all_caches(request);
2856 2857 2858
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2859

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2882 2883 2884 2885 2886
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2887
	request->postfix = intel_ring_get_tail(ringbuf);
2888

2889
	if (i915.enable_execlists)
2890
		ret = engine->emit_request(request);
2891
	else {
2892
		ret = engine->add_request(request);
2893 2894

		request->tail = intel_ring_get_tail(ringbuf);
2895
	}
2896 2897
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2898

2899 2900 2901
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
2902
	intel_mark_busy(dev_priv);
2903

2904
	/* Sanity check that the reserved size was large enough. */
2905 2906 2907 2908 2909 2910 2911
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2912 2913
}

2914
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2915
				   const struct i915_gem_context *ctx)
2916
{
2917
	unsigned long elapsed;
2918

2919 2920 2921
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2922 2923
		return true;

2924 2925
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2926
		if (!i915_gem_context_is_default(ctx)) {
2927
			DRM_DEBUG("context hanging too fast, banning!\n");
2928
			return true;
2929 2930 2931
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2932
			return true;
2933
		}
2934 2935 2936 2937 2938
	}

	return false;
}

2939
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2940
				  struct i915_gem_context *ctx,
2941
				  const bool guilty)
2942
{
2943 2944 2945 2946
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2947

2948 2949 2950
	hs = &ctx->hang_stats;

	if (guilty) {
2951
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2952 2953 2954 2955
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2956 2957 2958
	}
}

2959 2960 2961 2962
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2963
	kmem_cache_free(req->i915->requests, req);
2964 2965
}

2966
static inline int
2967
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2968
			 struct i915_gem_context *ctx,
2969
			 struct drm_i915_gem_request **req_out)
2970
{
2971
	struct drm_i915_private *dev_priv = engine->i915;
2972
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2973
	struct drm_i915_gem_request *req;
2974 2975
	int ret;

2976 2977 2978
	if (!req_out)
		return -EINVAL;

2979
	*req_out = NULL;
2980

2981 2982 2983 2984 2985
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2986 2987 2988
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2989 2990
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2991 2992
		return -ENOMEM;

2993
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2994 2995
	if (ret)
		goto err;
2996

2997 2998
	kref_init(&req->ref);
	req->i915 = dev_priv;
2999
	req->engine = engine;
3000 3001
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
3002

3003 3004 3005 3006 3007 3008 3009
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
3010
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3011 3012 3013 3014 3015 3016 3017

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
3018

3019
	*req_out = req;
3020
	return 0;
3021

3022 3023
err_ctx:
	i915_gem_context_unreference(ctx);
3024 3025 3026
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
3027 3028
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
3043
		       struct i915_gem_context *ctx)
3044 3045 3046 3047 3048
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
3049
		ctx = engine->i915->kernel_context;
3050 3051 3052 3053
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

3054
struct drm_i915_gem_request *
3055
i915_gem_find_active_request(struct intel_engine_cs *engine)
3056
{
3057 3058
	struct drm_i915_gem_request *request;

3059 3060 3061 3062 3063 3064 3065 3066
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
3067
	list_for_each_entry(request, &engine->request_list, list) {
3068
		if (i915_gem_request_completed(request))
3069
			continue;
3070

3071
		return request;
3072
	}
3073 3074 3075 3076

	return NULL;
}

3077
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
3078
				       struct intel_engine_cs *engine)
3079 3080 3081 3082
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

3083
	request = i915_gem_find_active_request(engine);
3084 3085 3086 3087

	if (request == NULL)
		return;

3088
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3089

3090
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3091

3092
	list_for_each_entry_continue(request, &engine->request_list, list)
3093
		i915_set_reset_status(dev_priv, request->ctx, false);
3094
}
3095

3096
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
3097
					struct intel_engine_cs *engine)
3098
{
3099 3100
	struct intel_ringbuffer *buffer;

3101
	while (!list_empty(&engine->active_list)) {
3102
		struct drm_i915_gem_object *obj;
3103

3104
		obj = list_first_entry(&engine->active_list,
3105
				       struct drm_i915_gem_object,
3106
				       engine_list[engine->id]);
3107

3108
		i915_gem_object_retire__read(obj, engine->id);
3109
	}
3110

3111 3112 3113 3114 3115 3116
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3117
	if (i915.enable_execlists) {
3118 3119
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
3120

3121
		intel_execlists_cancel_requests(engine);
3122 3123
	}

3124 3125 3126 3127 3128 3129 3130
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
3131
	while (!list_empty(&engine->request_list)) {
3132 3133
		struct drm_i915_gem_request *request;

3134
		request = list_first_entry(&engine->request_list,
3135 3136 3137
					   struct drm_i915_gem_request,
					   list);

3138
		i915_gem_request_retire(request);
3139
	}
3140 3141 3142 3143 3144 3145 3146 3147

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
3148
	list_for_each_entry(buffer, &engine->buffers, link) {
3149 3150 3151
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
3152 3153

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3154 3155
}

3156
void i915_gem_reset(struct drm_device *dev)
3157
{
3158
	struct drm_i915_private *dev_priv = dev->dev_private;
3159
	struct intel_engine_cs *engine;
3160

3161 3162 3163 3164 3165
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
3166
	for_each_engine(engine, dev_priv)
3167
		i915_gem_reset_engine_status(dev_priv, engine);
3168

3169
	for_each_engine(engine, dev_priv)
3170
		i915_gem_reset_engine_cleanup(dev_priv, engine);
3171

3172 3173
	i915_gem_context_reset(dev);

3174
	i915_gem_restore_fences(dev);
3175 3176

	WARN_ON(i915_verify_lists(dev));
3177 3178 3179 3180
}

/**
 * This function clears the request list as sequence numbers are passed.
3181
 * @engine: engine to retire requests on
3182
 */
3183
void
3184
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3185
{
3186
	WARN_ON(i915_verify_lists(engine->dev));
3187

3188 3189 3190 3191
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
3192
	 */
3193
	while (!list_empty(&engine->request_list)) {
3194 3195
		struct drm_i915_gem_request *request;

3196
		request = list_first_entry(&engine->request_list,
3197 3198 3199
					   struct drm_i915_gem_request,
					   list);

3200
		if (!i915_gem_request_completed(request))
3201 3202
			break;

3203
		i915_gem_request_retire(request);
3204
	}
3205

3206 3207 3208 3209
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
3210
	while (!list_empty(&engine->active_list)) {
3211 3212
		struct drm_i915_gem_object *obj;

3213 3214
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
3215
				       engine_list[engine->id]);
3216

3217
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3218 3219
			break;

3220
		i915_gem_object_retire__read(obj, engine->id);
3221 3222
	}

3223
	WARN_ON(i915_verify_lists(engine->dev));
3224 3225
}

3226
bool
3227
i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3228
{
3229
	struct intel_engine_cs *engine;
3230
	bool idle = true;
3231

3232
	for_each_engine(engine, dev_priv) {
3233 3234
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3235
		if (i915.enable_execlists) {
3236
			spin_lock_bh(&engine->execlist_lock);
3237
			idle &= list_empty(&engine->execlist_queue);
3238
			spin_unlock_bh(&engine->execlist_lock);
3239
		}
3240 3241 3242 3243
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
3244 3245
				 &dev_priv->mm.idle_work,
				 msecs_to_jiffies(100));
3246 3247

	return idle;
3248 3249
}

3250
static void
3251 3252
i915_gem_retire_work_handler(struct work_struct *work)
{
3253 3254 3255
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3256
	bool idle;
3257

3258
	/* Come back later if the device is busy... */
3259 3260
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
3261
		idle = i915_gem_retire_requests(dev_priv);
3262
		mutex_unlock(&dev->struct_mutex);
3263
	}
3264
	if (!idle)
3265 3266
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3267
}
3268

3269 3270 3271 3272 3273
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3274
	struct drm_device *dev = dev_priv->dev;
3275
	struct intel_engine_cs *engine;
3276

3277 3278
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3279
			return;
3280

3281
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3282
	 * Also locking seems to be fubar here, engine->request_list is protected
3283 3284
	 * by dev->struct_mutex. */

3285
	intel_mark_idle(dev_priv);
3286 3287

	if (mutex_trylock(&dev->struct_mutex)) {
3288
		for_each_engine(engine, dev_priv)
3289
			i915_gem_batch_pool_fini(&engine->batch_pool);
3290

3291 3292
		mutex_unlock(&dev->struct_mutex);
	}
3293 3294
}

3295 3296 3297 3298
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
3299
 * @obj: object to flush
3300 3301 3302 3303
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3304
	int i;
3305 3306 3307

	if (!obj->active)
		return 0;
3308

3309
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3310
		struct drm_i915_gem_request *req;
3311

3312 3313 3314 3315
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3316
		if (i915_gem_request_completed(req))
3317
			i915_gem_object_retire__read(obj, i);
3318 3319 3320 3321 3322
	}

	return 0;
}

3323 3324
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3325 3326 3327
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3352
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3353 3354
	int i, n = 0;
	int ret;
3355

3356 3357 3358
	if (args->flags != 0)
		return -EINVAL;

3359 3360 3361 3362
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3363
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3364 3365 3366 3367 3368
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3369 3370
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3371 3372 3373
	if (ret)
		goto out;

3374
	if (!obj->active)
3375
		goto out;
3376 3377

	/* Do this after OLR check to make sure we make forward progress polling
3378
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3379
	 */
3380
	if (args->timeout_ns == 0) {
3381 3382 3383 3384 3385
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3386

3387
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3388 3389 3390 3391 3392 3393
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3394 3395
	mutex_unlock(&dev->struct_mutex);

3396 3397
	for (i = 0; i < n; i++) {
		if (ret == 0)
3398
			ret = __i915_wait_request(req[i], true,
3399
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3400
						  to_rps_client(file));
3401
		i915_gem_request_unreference(req[i]);
3402
	}
3403
	return ret;
3404 3405 3406 3407 3408 3409 3410

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3411 3412 3413
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3414 3415
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3416 3417 3418 3419
{
	struct intel_engine_cs *from;
	int ret;

3420
	from = i915_gem_request_get_engine(from_req);
3421 3422 3423
	if (to == from)
		return 0;

3424
	if (i915_gem_request_completed(from_req))
3425 3426
		return 0;

3427
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3428
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3429
		ret = __i915_wait_request(from_req,
3430 3431 3432
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3433 3434 3435
		if (ret)
			return ret;

3436
		i915_gem_object_retire_request(obj, from_req);
3437 3438
	} else {
		int idx = intel_ring_sync_index(from, to);
3439 3440 3441
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3442 3443 3444 3445

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3446
		if (*to_req == NULL) {
3447 3448 3449 3450 3451 3452 3453
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3454 3455
		}

3456 3457
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3472 3473 3474 3475 3476
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3477 3478 3479
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3480 3481 3482
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3483
 * rather than a particular GPU ring. Conceptually we serialise writes
3484
 * between engines inside the GPU. We only allow one engine to write
3485 3486 3487 3488 3489 3490 3491 3492 3493
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3494
 *
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3505 3506
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3507 3508
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3509 3510
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3511
{
3512
	const bool readonly = obj->base.pending_write_domain == 0;
3513
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3514
	int ret, i, n;
3515

3516
	if (!obj->active)
3517 3518
		return 0;

3519 3520
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3521

3522 3523 3524 3525 3526
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3527
		for (i = 0; i < I915_NUM_ENGINES; i++)
3528 3529 3530 3531
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3532
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3533 3534 3535
		if (ret)
			return ret;
	}
3536

3537
	return 0;
3538 3539
}

3540 3541 3542 3543 3544 3545 3546
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3547 3548 3549
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3572
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3573
{
3574
	struct drm_i915_gem_object *obj = vma->obj;
3575
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3576
	int ret;
3577

3578
	if (list_empty(&vma->obj_link))
3579 3580
		return 0;

3581 3582 3583 3584
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3585

B
Ben Widawsky 已提交
3586
	if (vma->pin_count)
3587
		return -EBUSY;
3588

3589 3590
	BUG_ON(obj->pages == NULL);

3591 3592 3593 3594 3595
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3596

3597
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3598
		i915_gem_object_finish_gtt(obj);
3599

3600 3601 3602 3603
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3604 3605

		__i915_vma_iounmap(vma);
3606
	}
3607

3608
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3609

3610
	vma->vm->unbind_vma(vma);
3611
	vma->bound = 0;
3612

3613
	list_del_init(&vma->vm_link);
3614
	if (vma->is_ggtt) {
3615 3616 3617 3618 3619 3620
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3621
		vma->ggtt_view.pages = NULL;
3622
	}
3623

B
Ben Widawsky 已提交
3624 3625 3626 3627
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3628
	 * no more VMAs exist. */
I
Imre Deak 已提交
3629
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3630
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3631

3632 3633 3634 3635 3636 3637
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3638
	return 0;
3639 3640
}

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3651
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3652
{
3653
	struct intel_engine_cs *engine;
3654
	int ret;
3655

3656 3657
	lockdep_assert_held(&dev_priv->dev->struct_mutex);

3658
	for_each_engine(engine, dev_priv) {
3659 3660 3661
		if (engine->last_context == NULL)
			continue;

3662
		ret = intel_engine_idle(engine);
3663 3664 3665
		if (ret)
			return ret;
	}
3666

3667
	WARN_ON(i915_verify_lists(dev));
3668
	return 0;
3669 3670
}

3671
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3672 3673
				     unsigned long cache_level)
{
3674
	struct drm_mm_node *gtt_space = &vma->node;
3675 3676
	struct drm_mm_node *other;

3677 3678 3679 3680 3681 3682
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3683
	 */
3684
	if (vma->vm->mm.color_adjust == NULL)
3685 3686
		return true;

3687
	if (!drm_mm_node_allocated(gtt_space))
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3704
/**
3705 3706
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3707 3708 3709 3710 3711
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3712
 */
3713
static struct i915_vma *
3714 3715
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3716
			   const struct i915_ggtt_view *ggtt_view,
3717
			   unsigned alignment,
3718
			   uint64_t flags)
3719
{
3720
	struct drm_device *dev = obj->base.dev;
3721 3722
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3723
	u32 fence_alignment, unfenced_alignment;
3724 3725
	u32 search_flag, alloc_flag;
	u64 start, end;
3726
	u64 size, fence_size;
B
Ben Widawsky 已提交
3727
	struct i915_vma *vma;
3728
	int ret;
3729

3730 3731 3732 3733 3734
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3735

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3765

3766 3767 3768
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3769
		end = min_t(u64, end, ggtt->mappable_end);
3770
	if (flags & PIN_ZONE_4G)
3771
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3772

3773
	if (alignment == 0)
3774
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3775
						unfenced_alignment;
3776
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3777 3778 3779
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3780
		return ERR_PTR(-EINVAL);
3781 3782
	}

3783 3784 3785
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3786
	 */
3787
	if (size > end) {
3788
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3789 3790
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3791
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3792
			  end);
3793
		return ERR_PTR(-E2BIG);
3794 3795
	}

3796
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3797
	if (ret)
3798
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3799

3800 3801
	i915_gem_object_pin_pages(obj);

3802 3803 3804
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3805
	if (IS_ERR(vma))
3806
		goto err_unpin;
B
Ben Widawsky 已提交
3807

3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3826
	} else {
3827 3828 3829 3830 3831 3832 3833
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3834

3835
search_free:
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3849

3850 3851
			goto err_free_vma;
		}
3852
	}
3853
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3854
		ret = -EINVAL;
3855
		goto err_remove_node;
3856 3857
	}

3858
	trace_i915_vma_bind(vma, flags);
3859
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3860
	if (ret)
I
Imre Deak 已提交
3861
		goto err_remove_node;
3862

3863
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3864
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3865

3866
	return vma;
B
Ben Widawsky 已提交
3867

3868
err_remove_node:
3869
	drm_mm_remove_node(&vma->node);
3870
err_free_vma:
B
Ben Widawsky 已提交
3871
	i915_gem_vma_destroy(vma);
3872
	vma = ERR_PTR(ret);
3873
err_unpin:
B
Ben Widawsky 已提交
3874
	i915_gem_object_unpin_pages(obj);
3875
	return vma;
3876 3877
}

3878
bool
3879 3880
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3881 3882 3883 3884 3885
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3886
	if (obj->pages == NULL)
3887
		return false;
3888

3889 3890 3891 3892
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3893
	if (obj->stolen || obj->phys_handle)
3894
		return false;
3895

3896 3897 3898 3899 3900 3901 3902 3903
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3904 3905
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3906
		return false;
3907
	}
3908

C
Chris Wilson 已提交
3909
	trace_i915_gem_object_clflush(obj);
3910
	drm_clflush_sg(obj->pages);
3911
	obj->cache_dirty = false;
3912 3913

	return true;
3914 3915 3916 3917
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3918
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3919
{
C
Chris Wilson 已提交
3920 3921
	uint32_t old_write_domain;

3922
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3923 3924
		return;

3925
	/* No actual flushing is required for the GTT write domain.  Writes
3926 3927
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3928 3929 3930 3931
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3932
	 */
3933 3934
	wmb();

3935 3936
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3937

3938
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3939

C
Chris Wilson 已提交
3940
	trace_i915_gem_object_change_domain(obj,
3941
					    obj->base.read_domains,
C
Chris Wilson 已提交
3942
					    old_write_domain);
3943 3944 3945 3946
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3947
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3948
{
C
Chris Wilson 已提交
3949
	uint32_t old_write_domain;
3950

3951
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3952 3953
		return;

3954
	if (i915_gem_clflush_object(obj, obj->pin_display))
3955
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3956

3957 3958
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3959

3960
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3961

C
Chris Wilson 已提交
3962
	trace_i915_gem_object_change_domain(obj,
3963
					    obj->base.read_domains,
C
Chris Wilson 已提交
3964
					    old_write_domain);
3965 3966
}

3967 3968
/**
 * Moves a single object to the GTT read, and possibly write domain.
3969 3970
 * @obj: object to act on
 * @write: ask for write access or read only
3971 3972 3973 3974
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3975
int
3976
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3977
{
3978 3979 3980
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3981
	uint32_t old_write_domain, old_read_domains;
3982
	struct i915_vma *vma;
3983
	int ret;
3984

3985 3986 3987
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3988
	ret = i915_gem_object_wait_rendering(obj, !write);
3989 3990 3991
	if (ret)
		return ret;

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

4004
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
4005

4006 4007 4008 4009 4010 4011 4012
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

4013 4014
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4015

4016 4017 4018
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4019 4020
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4021
	if (write) {
4022 4023 4024
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
4025 4026
	}

C
Chris Wilson 已提交
4027 4028 4029 4030
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4031
	/* And bump the LRU for this access */
4032 4033
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4034
		list_move_tail(&vma->vm_link,
4035
			       &ggtt->base.inactive_list);
4036

4037 4038 4039
	return 0;
}

4040 4041
/**
 * Changes the cache-level of an object across all VMA.
4042 4043
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4055 4056 4057
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4058
	struct drm_device *dev = obj->base.dev;
4059
	struct i915_vma *vma, *next;
4060
	bool bound = false;
4061
	int ret = 0;
4062 4063

	if (obj->cache_level == cache_level)
4064
		goto out;
4065

4066 4067 4068 4069 4070
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4071
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4072 4073 4074 4075 4076 4077 4078 4079
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4080
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4081
			ret = i915_vma_unbind(vma);
4082 4083
			if (ret)
				return ret;
4084 4085
		} else
			bound = true;
4086 4087
	}

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4100
		ret = i915_gem_object_wait_rendering(obj, false);
4101 4102 4103
		if (ret)
			return ret;

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4121 4122 4123
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
4124 4125 4126 4127 4128 4129 4130 4131
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4132 4133
		}

4134
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4135 4136 4137 4138 4139 4140 4141
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4142 4143
	}

4144
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4145 4146 4147
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4148
out:
4149 4150 4151 4152
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
4153
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4154
		if (i915_gem_clflush_object(obj, true))
4155
			i915_gem_chipset_flush(to_i915(obj->base.dev));
4156 4157 4158 4159 4160
	}

	return 0;
}

B
Ben Widawsky 已提交
4161 4162
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4163
{
B
Ben Widawsky 已提交
4164
	struct drm_i915_gem_caching *args = data;
4165 4166
	struct drm_i915_gem_object *obj;

4167
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4168 4169
	if (&obj->base == NULL)
		return -ENOENT;
4170

4171 4172 4173 4174 4175 4176
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4177 4178 4179 4180
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4181 4182 4183 4184
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4185

4186 4187
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4188 4189
}

B
Ben Widawsky 已提交
4190 4191
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4192
{
4193
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
4194
	struct drm_i915_gem_caching *args = data;
4195 4196 4197 4198
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4199 4200
	switch (args->caching) {
	case I915_CACHING_NONE:
4201 4202
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4203
	case I915_CACHING_CACHED:
4204 4205 4206 4207 4208 4209
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4210
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4211 4212
			return -ENODEV;

4213 4214
		level = I915_CACHE_LLC;
		break;
4215 4216 4217
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4218 4219 4220 4221
	default:
		return -EINVAL;
	}

4222 4223
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4224 4225
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4226
		goto rpm_put;
B
Ben Widawsky 已提交
4227

4228
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4239 4240 4241
rpm_put:
	intel_runtime_pm_put(dev_priv);

4242 4243 4244
	return ret;
}

4245
/*
4246 4247 4248
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4249 4250
 */
int
4251 4252
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4253
				     const struct i915_ggtt_view *view)
4254
{
4255
	u32 old_read_domains, old_write_domain;
4256 4257
	int ret;

4258 4259 4260
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4261
	obj->pin_display++;
4262

4263 4264 4265 4266 4267 4268 4269 4270 4271
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4272 4273
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4274
	if (ret)
4275
		goto err_unpin_display;
4276

4277 4278 4279 4280
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4281 4282 4283
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4284
	if (ret)
4285
		goto err_unpin_display;
4286

4287
	i915_gem_object_flush_cpu_write_domain(obj);
4288

4289
	old_write_domain = obj->base.write_domain;
4290
	old_read_domains = obj->base.read_domains;
4291 4292 4293 4294

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4295
	obj->base.write_domain = 0;
4296
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4297 4298 4299

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4300
					    old_write_domain);
4301 4302

	return 0;
4303 4304

err_unpin_display:
4305
	obj->pin_display--;
4306 4307 4308 4309
	return ret;
}

void
4310 4311
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4312
{
4313 4314 4315
	if (WARN_ON(obj->pin_display == 0))
		return;

4316 4317
	i915_gem_object_ggtt_unpin_view(obj, view);

4318
	obj->pin_display--;
4319 4320
}

4321 4322
/**
 * Moves a single object to the CPU read, and possibly write domain.
4323 4324
 * @obj: object to act on
 * @write: requesting write or read-only access
4325 4326 4327 4328
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4329
int
4330
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4331
{
C
Chris Wilson 已提交
4332
	uint32_t old_write_domain, old_read_domains;
4333 4334
	int ret;

4335 4336 4337
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4338
	ret = i915_gem_object_wait_rendering(obj, !write);
4339 4340 4341
	if (ret)
		return ret;

4342
	i915_gem_object_flush_gtt_write_domain(obj);
4343

4344 4345
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4346

4347
	/* Flush the CPU cache if it's still invalid. */
4348
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4349
		i915_gem_clflush_object(obj, false);
4350

4351
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4352 4353 4354 4355 4356
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4357
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4358 4359 4360 4361 4362

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4363 4364
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4365
	}
4366

C
Chris Wilson 已提交
4367 4368 4369 4370
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4371 4372 4373
	return 0;
}

4374 4375 4376
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4377 4378 4379 4380
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4381 4382 4383
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4384
static int
4385
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4386
{
4387 4388
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4389
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4390
	struct drm_i915_gem_request *request, *target = NULL;
4391
	int ret;
4392

4393 4394 4395 4396
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4397 4398 4399
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4400

4401
	spin_lock(&file_priv->mm.lock);
4402
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4403 4404
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4405

4406 4407 4408 4409 4410 4411 4412
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4413
		target = request;
4414
	}
4415 4416
	if (target)
		i915_gem_request_reference(target);
4417
	spin_unlock(&file_priv->mm.lock);
4418

4419
	if (target == NULL)
4420
		return 0;
4421

4422
	ret = __i915_wait_request(target, true, NULL, NULL);
4423 4424
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4425

4426
	i915_gem_request_unreference(target);
4427

4428 4429 4430
	return ret;
}

4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4447 4448 4449 4450
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4451 4452 4453
	return false;
}

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4472
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4473 4474 4475 4476

	obj->map_and_fenceable = mappable && fenceable;
}

4477 4478 4479 4480 4481 4482
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4483
{
4484
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4485
	struct i915_vma *vma;
4486
	unsigned bound;
4487 4488
	int ret;

4489 4490 4491
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4492
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4493
		return -EINVAL;
4494

4495 4496 4497
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4498 4499 4500 4501 4502 4503
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4504
	if (vma) {
B
Ben Widawsky 已提交
4505 4506 4507
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4508
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4509
			WARN(vma->pin_count,
4510
			     "bo is already pinned in %s with incorrect alignment:"
4511
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4512
			     " obj->map_and_fenceable=%d\n",
4513
			     ggtt_view ? "ggtt" : "ppgtt",
4514 4515
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4516
			     alignment,
4517
			     !!(flags & PIN_MAPPABLE),
4518
			     obj->map_and_fenceable);
4519
			ret = i915_vma_unbind(vma);
4520 4521
			if (ret)
				return ret;
4522 4523

			vma = NULL;
4524 4525 4526
		}
	}

4527
	bound = vma ? vma->bound : 0;
4528
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4529 4530
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4531 4532
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4533 4534
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4535 4536 4537
		if (ret)
			return ret;
	}
4538

4539 4540
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4541
		__i915_vma_set_map_and_fenceable(vma);
4542 4543
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4544

4545
	vma->pin_count++;
4546 4547 4548
	return 0;
}

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4566 4567 4568 4569
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4570
	BUG_ON(!view);
4571

4572
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4573
				      alignment, flags | PIN_GLOBAL);
4574 4575
}

4576
void
4577 4578
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4579
{
4580
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4581

4582
	WARN_ON(vma->pin_count == 0);
4583
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4584

4585
	--vma->pin_count;
4586 4587 4588 4589
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4590
		    struct drm_file *file)
4591 4592
{
	struct drm_i915_gem_busy *args = data;
4593
	struct drm_i915_gem_object *obj;
4594 4595
	int ret;

4596
	ret = i915_mutex_lock_interruptible(dev);
4597
	if (ret)
4598
		return ret;
4599

4600
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4601
	if (&obj->base == NULL) {
4602 4603
		ret = -ENOENT;
		goto unlock;
4604
	}
4605

4606 4607 4608 4609
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4610
	 */
4611
	ret = i915_gem_object_flush_active(obj);
4612 4613
	if (ret)
		goto unref;
4614

4615 4616 4617 4618
	args->busy = 0;
	if (obj->active) {
		int i;

4619
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4620 4621 4622 4623
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4624
				args->busy |= 1 << (16 + req->engine->exec_id);
4625 4626
		}
		if (obj->last_write_req)
4627
			args->busy |= obj->last_write_req->engine->exec_id;
4628
	}
4629

4630
unref:
4631
	drm_gem_object_unreference(&obj->base);
4632
unlock:
4633
	mutex_unlock(&dev->struct_mutex);
4634
	return ret;
4635 4636 4637 4638 4639 4640
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4641
	return i915_gem_ring_throttle(dev, file_priv);
4642 4643
}

4644 4645 4646 4647
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4648
	struct drm_i915_private *dev_priv = dev->dev_private;
4649
	struct drm_i915_gem_madvise *args = data;
4650
	struct drm_i915_gem_object *obj;
4651
	int ret;
4652 4653 4654 4655 4656 4657 4658 4659 4660

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4661 4662 4663 4664
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4665
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4666
	if (&obj->base == NULL) {
4667 4668
		ret = -ENOENT;
		goto unlock;
4669 4670
	}

B
Ben Widawsky 已提交
4671
	if (i915_gem_obj_is_pinned(obj)) {
4672 4673
		ret = -EINVAL;
		goto out;
4674 4675
	}

4676 4677 4678 4679 4680 4681 4682 4683 4684
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4685 4686
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4687

C
Chris Wilson 已提交
4688
	/* if the object is no longer attached, discard its backing storage */
4689
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4690 4691
		i915_gem_object_truncate(obj);

4692
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4693

4694
out:
4695
	drm_gem_object_unreference(&obj->base);
4696
unlock:
4697
	mutex_unlock(&dev->struct_mutex);
4698
	return ret;
4699 4700
}

4701 4702
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4703
{
4704 4705
	int i;

4706
	INIT_LIST_HEAD(&obj->global_list);
4707
	for (i = 0; i < I915_NUM_ENGINES; i++)
4708
		INIT_LIST_HEAD(&obj->engine_list[i]);
4709
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4710
	INIT_LIST_HEAD(&obj->vma_list);
4711
	INIT_LIST_HEAD(&obj->batch_pool_link);
4712

4713 4714
	obj->ops = ops;

4715 4716 4717 4718 4719 4720
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4721
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4722
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4723 4724 4725 4726
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4727
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4728
						  size_t size)
4729
{
4730
	struct drm_i915_gem_object *obj;
4731
	struct address_space *mapping;
D
Daniel Vetter 已提交
4732
	gfp_t mask;
4733
	int ret;
4734

4735
	obj = i915_gem_object_alloc(dev);
4736
	if (obj == NULL)
4737
		return ERR_PTR(-ENOMEM);
4738

4739 4740 4741
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4742

4743 4744 4745 4746 4747 4748 4749
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4750
	mapping = file_inode(obj->base.filp)->i_mapping;
4751
	mapping_set_gfp_mask(mapping, mask);
4752

4753
	i915_gem_object_init(obj, &i915_gem_object_ops);
4754

4755 4756
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4757

4758 4759
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4775 4776
	trace_i915_gem_object_create(obj);

4777
	return obj;
4778 4779 4780 4781 4782

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4783 4784
}

4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4809
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4810
{
4811
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4812
	struct drm_device *dev = obj->base.dev;
4813
	struct drm_i915_private *dev_priv = dev->dev_private;
4814
	struct i915_vma *vma, *next;
4815

4816 4817
	intel_runtime_pm_get(dev_priv);

4818 4819
	trace_i915_gem_object_destroy(obj);

4820
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4821 4822 4823 4824
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4825 4826
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4827

4828 4829
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4830

4831
			WARN_ON(i915_vma_unbind(vma));
4832

4833 4834
			dev_priv->mm.interruptible = was_interruptible;
		}
4835 4836
	}

B
Ben Widawsky 已提交
4837 4838 4839 4840 4841
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4842 4843
	WARN_ON(obj->frontbuffer_bits);

4844 4845 4846 4847 4848
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4849 4850
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4851
	if (discard_backing_storage(obj))
4852
		obj->madv = I915_MADV_DONTNEED;
4853
	i915_gem_object_put_pages(obj);
4854
	i915_gem_object_free_mmap_offset(obj);
4855

4856 4857
	BUG_ON(obj->pages);

4858 4859
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4860

4861 4862 4863
	if (obj->ops->release)
		obj->ops->release(obj);

4864 4865
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4866

4867
	kfree(obj->bit_17);
4868
	i915_gem_object_free(obj);
4869 4870

	intel_runtime_pm_put(dev_priv);
4871 4872
}

4873 4874
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4875 4876
{
	struct i915_vma *vma;
4877
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4878 4879
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4880
			return vma;
4881 4882 4883 4884 4885 4886 4887 4888
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4889

4890
	GEM_BUG_ON(!view);
4891

4892
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4893
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4894
			return vma;
4895 4896 4897
	return NULL;
}

B
Ben Widawsky 已提交
4898 4899 4900
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4901 4902 4903 4904 4905

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4906 4907
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4908

4909
	list_del(&vma->obj_link);
4910

4911
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4912 4913
}

4914
static void
4915
i915_gem_stop_engines(struct drm_device *dev)
4916 4917
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4918
	struct intel_engine_cs *engine;
4919

4920
	for_each_engine(engine, dev_priv)
4921
		dev_priv->gt.stop_engine(engine);
4922 4923
}

4924
int
4925
i915_gem_suspend(struct drm_device *dev)
4926
{
4927
	struct drm_i915_private *dev_priv = dev->dev_private;
4928
	int ret = 0;
4929

4930
	mutex_lock(&dev->struct_mutex);
4931
	ret = i915_gem_wait_for_idle(dev_priv);
4932
	if (ret)
4933
		goto err;
4934

4935
	i915_gem_retire_requests(dev_priv);
4936

4937
	i915_gem_stop_engines(dev);
4938
	i915_gem_context_lost(dev_priv);
4939 4940
	mutex_unlock(&dev->struct_mutex);

4941
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4942
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4943
	flush_delayed_work(&dev_priv->mm.idle_work);
4944

4945 4946 4947 4948 4949
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4950
	return 0;
4951 4952 4953 4954

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4955 4956
}

4957 4958
void i915_gem_init_swizzling(struct drm_device *dev)
{
4959
	struct drm_i915_private *dev_priv = dev->dev_private;
4960

4961
	if (INTEL_INFO(dev)->gen < 5 ||
4962 4963 4964 4965 4966 4967
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4968 4969 4970
	if (IS_GEN5(dev))
		return;

4971 4972
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4973
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4974
	else if (IS_GEN7(dev))
4975
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4976 4977
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4978 4979
	else
		BUG();
4980
}
D
Daniel Vetter 已提交
4981

4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

5009
int i915_gem_init_engines(struct drm_device *dev)
5010
{
5011
	struct drm_i915_private *dev_priv = dev->dev_private;
5012
	int ret;
5013

5014
	ret = intel_init_render_ring_buffer(dev);
5015
	if (ret)
5016
		return ret;
5017 5018

	if (HAS_BSD(dev)) {
5019
		ret = intel_init_bsd_ring_buffer(dev);
5020 5021
		if (ret)
			goto cleanup_render_ring;
5022
	}
5023

5024
	if (HAS_BLT(dev)) {
5025 5026 5027 5028 5029
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
5030 5031 5032 5033 5034 5035
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

5036 5037 5038 5039 5040
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
5041

5042 5043
	return 0;

B
Ben Widawsky 已提交
5044
cleanup_vebox_ring:
5045
	intel_cleanup_engine(&dev_priv->engine[VECS]);
5046
cleanup_blt_ring:
5047
	intel_cleanup_engine(&dev_priv->engine[BCS]);
5048
cleanup_bsd_ring:
5049
	intel_cleanup_engine(&dev_priv->engine[VCS]);
5050
cleanup_render_ring:
5051
	intel_cleanup_engine(&dev_priv->engine[RCS]);
5052 5053 5054 5055 5056 5057 5058

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5059
	struct drm_i915_private *dev_priv = dev->dev_private;
5060
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
5061
	int ret;
5062

5063 5064 5065
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5066
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5067
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5068

5069 5070 5071
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5072

5073
	if (HAS_PCH_NOP(dev)) {
5074 5075 5076 5077 5078 5079 5080 5081 5082
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5083 5084
	}

5085 5086
	i915_gem_init_swizzling(dev);

5087 5088 5089 5090 5091 5092 5093 5094
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5095
	BUG_ON(!dev_priv->kernel_context);
5096

5097 5098 5099 5100 5101 5102 5103
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
5104
	for_each_engine(engine, dev_priv) {
5105
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
5106
		if (ret)
5107
			goto out;
D
Daniel Vetter 已提交
5108
	}
5109

5110 5111
	intel_mocs_init_l3cc_table(dev);

5112
	/* We can't enable contexts until all firmware is loaded */
5113 5114 5115
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
5116

5117 5118
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5119
	return ret;
5120 5121
}

5122 5123 5124 5125 5126 5127
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
5128

5129
	if (!i915.enable_execlists) {
5130
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5131 5132 5133
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5134
	} else {
5135
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5136 5137 5138
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5139 5140
	}

5141 5142 5143 5144 5145 5146 5147 5148
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5149
	i915_gem_init_userptr(dev_priv);
5150
	i915_gem_init_ggtt(dev);
5151

5152
	ret = i915_gem_context_init(dev);
5153 5154
	if (ret)
		goto out_unlock;
5155

5156
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5157
	if (ret)
5158
		goto out_unlock;
5159

5160
	ret = i915_gem_init_hw(dev);
5161 5162 5163 5164 5165 5166
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5167
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5168
		ret = 0;
5169
	}
5170 5171

out_unlock:
5172
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5173
	mutex_unlock(&dev->struct_mutex);
5174

5175
	return ret;
5176 5177
}

5178
void
5179
i915_gem_cleanup_engines(struct drm_device *dev)
5180
{
5181
	struct drm_i915_private *dev_priv = dev->dev_private;
5182
	struct intel_engine_cs *engine;
5183

5184
	for_each_engine(engine, dev_priv)
5185
		dev_priv->gt.cleanup_engine(engine);
5186 5187
}

5188
static void
5189
init_engine_lists(struct intel_engine_cs *engine)
5190
{
5191 5192
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5193 5194
}

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5209
	if (intel_vgpu_active(dev_priv))
5210 5211 5212 5213 5214 5215 5216 5217 5218
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5219
void
5220
i915_gem_load_init(struct drm_device *dev)
5221
{
5222
	struct drm_i915_private *dev_priv = dev->dev_private;
5223 5224
	int i;

5225
	dev_priv->objects =
5226 5227 5228 5229
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5230 5231 5232 5233 5234
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5235 5236 5237 5238 5239
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5240

B
Ben Widawsky 已提交
5241
	INIT_LIST_HEAD(&dev_priv->vm_list);
5242
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5243 5244
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5245
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5246 5247
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5248
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5249
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5250 5251
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5252 5253
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5254
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5255
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5256

5257 5258
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5259
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5260

5261
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5262

5263 5264
	dev_priv->mm.interruptible = true;

5265
	mutex_init(&dev_priv->fb_tracking.lock);
5266
}
5267

5268 5269 5270 5271 5272 5273 5274 5275 5276
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5305
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5306
{
5307
	struct drm_i915_file_private *file_priv = file->driver_priv;
5308 5309 5310 5311 5312

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5313
	spin_lock(&file_priv->mm.lock);
5314 5315 5316 5317 5318 5319 5320 5321 5322
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5323
	spin_unlock(&file_priv->mm.lock);
5324

5325
	if (!list_empty(&file_priv->rps.link)) {
5326
		spin_lock(&to_i915(dev)->rps.client_lock);
5327
		list_del(&file_priv->rps.link);
5328
		spin_unlock(&to_i915(dev)->rps.client_lock);
5329
	}
5330 5331 5332 5333 5334
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5335
	int ret;
5336 5337 5338 5339 5340 5341 5342 5343 5344

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5345
	file_priv->file = file;
5346
	INIT_LIST_HEAD(&file_priv->rps.link);
5347 5348 5349 5350

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5351 5352
	file_priv->bsd_ring = -1;

5353 5354 5355
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5356

5357
	return ret;
5358 5359
}

5360 5361
/**
 * i915_gem_track_fb - update frontbuffer tracking
5362 5363 5364
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5365 5366 5367 5368
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5386
/* All the new VM stuff */
5387 5388
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5389 5390 5391 5392
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5393
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5394

5395
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5396
		if (vma->is_ggtt &&
5397 5398 5399
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5400 5401
			return vma->node.start;
	}
5402

5403 5404
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5405 5406 5407
	return -1;
}

5408 5409
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5410 5411 5412
{
	struct i915_vma *vma;

5413
	list_for_each_entry(vma, &o->vma_list, obj_link)
5414
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5415 5416
			return vma->node.start;

5417
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5418 5419 5420 5421 5422 5423 5424 5425
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5426
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5427
		if (vma->is_ggtt &&
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5438
				  const struct i915_ggtt_view *view)
5439 5440 5441
{
	struct i915_vma *vma;

5442
	list_for_each_entry(vma, &o->vma_list, obj_link)
5443
		if (vma->is_ggtt &&
5444
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5445
		    drm_mm_node_allocated(&vma->node))
5446 5447 5448 5449 5450 5451 5452
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5453
	struct i915_vma *vma;
5454

5455
	list_for_each_entry(vma, &o->vma_list, obj_link)
5456
		if (drm_mm_node_allocated(&vma->node))
5457 5458 5459 5460 5461
			return true;

	return false;
}

5462
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5463 5464 5465
{
	struct i915_vma *vma;

5466
	GEM_BUG_ON(list_empty(&o->vma_list));
5467

5468
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5469
		if (vma->is_ggtt &&
5470
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5471
			return vma->node.size;
5472
	}
5473

5474 5475 5476
	return 0;
}

5477
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5478 5479
{
	struct i915_vma *vma;
5480
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5481 5482
		if (vma->pin_count > 0)
			return true;
5483

5484
	return false;
5485
}
5486

5487 5488 5489 5490 5491 5492 5493
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5494
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5495 5496 5497 5498 5499 5500 5501
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5512
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5513
	if (IS_ERR(obj))
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5527
	obj->dirty = 1;		/* Backing store is now out of date */
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}