i915_gem.c 135.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54 55 56
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

57
	if (!i915_gem_object_is_coherent(obj))
58 59 60 61 62
		return true;

	return obj->pin_display;
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68 69 70 71
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106
	if (!i915_reset_in_progress(error))
107 108
		return 0;

109 110 111 112 113
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
114
	ret = wait_event_interruptible_timeout(error->reset_queue,
115
					       !i915_reset_in_progress(error),
116
					       I915_RESET_TIMEOUT);
117 118 119 120
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
121
		return ret;
122 123
	} else {
		return 0;
124
	}
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130 131
	int ret;

132
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
133 134 135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
142

143 144
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145
			    struct drm_file *file)
146
{
147
	struct drm_i915_private *dev_priv = to_i915(dev);
148
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
149
	struct drm_i915_gem_get_aperture *args = data;
150
	struct i915_vma *vma;
151
	size_t pinned;
152

153
	pinned = 0;
154
	mutex_lock(&dev->struct_mutex);
155
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156
		if (i915_vma_is_pinned(vma))
157
			pinned += vma->node.size;
158
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	mutex_unlock(&dev->struct_mutex);
162

163
	args->aper_size = ggtt->base.total;
164
	args->aper_available_size = args->aper_size - pinned;
165

166 167 168
	return 0;
}

169
static struct sg_table *
170
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171
{
172
	struct address_space *mapping = obj->base.filp->f_mapping;
173
	drm_dma_handle_t *phys;
174 175
	struct sg_table *st;
	struct scatterlist *sg;
176
	char *vaddr;
177
	int i;
178

179
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180
		return ERR_PTR(-EINVAL);
181

182 183 184 185 186 187 188 189 190 191 192
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
193 194 195 196 197
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
198 199 200 201
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
202 203 204 205 206 207

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

208
		put_page(page);
209 210 211
		vaddr += PAGE_SIZE;
	}

212
	i915_gem_chipset_flush(to_i915(obj->base.dev));
213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
215 216 217 218
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
219 220 221

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
222 223
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
224 225 226 227 228
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
229

230
	sg_dma_address(sg) = phys->busaddr;
231 232
	sg_dma_len(sg) = obj->base.size;

233 234 235 236 237
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
238
	return st;
239 240 241
}

static void
242
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
243 244
				struct sg_table *pages,
				bool needs_clflush)
245
{
C
Chris Wilson 已提交
246
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
247

C
Chris Wilson 已提交
248 249
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
250

251 252
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
253
	    !i915_gem_object_is_coherent(obj))
254
		drm_clflush_sg(pages);
255 256 257 258 259 260 261 262 263

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
264
	__i915_gem_object_release_shmem(obj, pages, false);
265

C
Chris Wilson 已提交
266
	if (obj->mm.dirty) {
267
		struct address_space *mapping = obj->base.filp->f_mapping;
268
		char *vaddr = obj->phys_handle->vaddr;
269 270 271
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
272 273 274 275 276 277 278 279 280 281 282 283 284
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
285
			if (obj->mm.madv == I915_MADV_WILLNEED)
286
				mark_page_accessed(page);
287
			put_page(page);
288 289
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
290
		obj->mm.dirty = false;
291 292
	}

293 294
	sg_free_table(pages);
	kfree(pages);
295 296

	drm_pci_free(obj->base.dev, obj->phys_handle);
297 298 299 300 301
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
302
	i915_gem_object_unpin_pages(obj);
303 304 305 306 307 308 309 310
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

311 312
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

313
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
314 315 316
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
317 318 319
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
320

321 322 323 324
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
325
	 */
326 327 328 329 330 331
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
332 333 334 335 336
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

337 338 339 340 341 342 343 344 345 346 347 348 349
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

350 351 352 353 354
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
355
{
356
	struct drm_i915_gem_request *rq;
357

358
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
392 393
	}

394 395 396 397 398 399
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

400
	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
425
	unsigned int seq = __read_seqcount_begin(&resv->seq);
426
	struct dma_fence *excl;
427
	bool prune_fences = false;
428 429 430 431

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
432 433
		int ret;

434 435
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
436 437 438
		if (ret)
			return ret;

439 440 441 442
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
443
			if (timeout < 0)
444
				break;
445

446 447 448 449 450 451
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
452 453

		prune_fences = count && timeout >= 0;
454 455
	} else {
		excl = reservation_object_get_excl_rcu(resv);
456 457
	}

458
	if (excl && timeout >= 0) {
459
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
460 461
		prune_fences = timeout >= 0;
	}
462 463 464

	dma_fence_put(excl);

465 466 467 468
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
469
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
470 471 472 473 474
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
475 476
	}

477
	return timeout;
478 479
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

544 545 546 547 548 549
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
550
 */
551 552 553 554 555
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
556
{
557 558 559 560 561 562 563
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
564

565 566 567
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
568
	return timeout < 0 ? timeout : 0;
569 570 571 572 573 574 575 576 577
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

578 579 580 581
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
582
	int ret;
583

584 585
	if (align > obj->base.size)
		return -EINVAL;
586

587
	if (obj->ops == &i915_gem_phys_ops)
588 589
		return 0;

C
Chris Wilson 已提交
590
	if (obj->mm.madv != I915_MADV_WILLNEED)
591 592 593 594 595
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
596 597 598 599
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

600
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
601 602
	if (obj->mm.pages)
		return -EBUSY;
603

604
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
605 606
	obj->ops = &i915_gem_phys_ops;

607 608 609 610 611 612 613 614 615
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
616 617 618 619 620
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
621
		     struct drm_file *file)
622 623
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
624
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
625 626 627 628

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
629
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
630 631
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
632

633
	drm_clflush_virt_range(vaddr, args->size);
634
	i915_gem_chipset_flush(to_i915(obj->base.dev));
635

636
	intel_fb_obj_flush(obj, ORIGIN_CPU);
637
	return 0;
638 639
}

640
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
641
{
642
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
643 644 645 646
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
647
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
648
	kmem_cache_free(dev_priv->objects, obj);
649 650
}

651 652
static int
i915_gem_create(struct drm_file *file,
653
		struct drm_i915_private *dev_priv,
654 655
		uint64_t size,
		uint32_t *handle_p)
656
{
657
	struct drm_i915_gem_object *obj;
658 659
	int ret;
	u32 handle;
660

661
	size = roundup(size, PAGE_SIZE);
662 663
	if (size == 0)
		return -EINVAL;
664 665

	/* Allocate the new object */
666
	obj = i915_gem_object_create(dev_priv, size);
667 668
	if (IS_ERR(obj))
		return PTR_ERR(obj);
669

670
	ret = drm_gem_handle_create(file, &obj->base, &handle);
671
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
672
	i915_gem_object_put(obj);
673 674
	if (ret)
		return ret;
675

676
	*handle_p = handle;
677 678 679
	return 0;
}

680 681 682 683 684 685
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
686
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
687
	args->size = args->pitch * args->height;
688
	return i915_gem_create(file, to_i915(dev),
689
			       args->size, &args->handle);
690 691 692 693
}

/**
 * Creates a new mm object and returns a handle to it.
694 695 696
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
697 698 699 700 701
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
702
	struct drm_i915_private *dev_priv = to_i915(dev);
703
	struct drm_i915_gem_create *args = data;
704

705
	i915_gem_flush_free_objects(dev_priv);
706

707
	return i915_gem_create(file, dev_priv,
708
			       args->size, &args->handle);
709 710
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

737
static inline int
738 739
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

763 764 765 766 767 768
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
769
				    unsigned int *needs_clflush)
770 771 772
{
	int ret;

773
	lockdep_assert_held(&obj->base.dev->struct_mutex);
774

775
	*needs_clflush = 0;
776 777
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
778

779 780 781 782 783
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
784 785 786
	if (ret)
		return ret;

C
Chris Wilson 已提交
787
	ret = i915_gem_object_pin_pages(obj);
788 789 790
	if (ret)
		return ret;

791 792
	i915_gem_object_flush_gtt_write_domain(obj);

793 794 795 796 797 798
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
799
		*needs_clflush = !i915_gem_object_is_coherent(obj);
800 801 802

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
803 804 805
		if (ret)
			goto err_unpin;

806
		*needs_clflush = 0;
807 808
	}

809
	/* return with the pages pinned */
810
	return 0;
811 812 813 814

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
815 816 817 818 819 820 821
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

822 823
	lockdep_assert_held(&obj->base.dev->struct_mutex);

824 825 826 827
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

828 829 830 831 832 833
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
834 835 836
	if (ret)
		return ret;

C
Chris Wilson 已提交
837
	ret = i915_gem_object_pin_pages(obj);
838 839 840
	if (ret)
		return ret;

841 842
	i915_gem_object_flush_gtt_write_domain(obj);

843 844 845 846 847 848 849 850 851 852 853 854
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
855
		*needs_clflush |= !i915_gem_object_is_coherent(obj);
856 857 858

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
859 860 861
		if (ret)
			goto err_unpin;

862 863 864 865 866 867 868
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
869
	obj->mm.dirty = true;
870
	/* return with the pages pinned */
871
	return 0;
872 873 874 875

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
876 877
}

878 879 880 881
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
882
	if (unlikely(swizzled)) {
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

900 901 902
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
903
shmem_pread_slow(struct page *page, int offset, int length,
904 905 906 907 908 909 910 911
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
912
		shmem_clflush_swizzled_range(vaddr + offset, length,
913
					     page_do_bit17_swizzling);
914 915

	if (page_do_bit17_swizzling)
916
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
917
	else
918
		ret = __copy_to_user(user_data, vaddr + offset, length);
919 920
	kunmap(page);

921
	return ret ? - EFAULT : 0;
922 923
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1000 1001
{
	void *vaddr;
1002
	unsigned long unwritten;
1003 1004

	/* We can use the cpu mem copy function because this is X86. */
1005 1006 1007 1008 1009 1010 1011 1012 1013
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1014 1015 1016 1017
	return unwritten;
}

static int
1018 1019
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1020
{
1021 1022
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1023
	struct drm_mm_node node;
1024 1025 1026
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1027 1028
	int ret;

1029 1030 1031 1032 1033 1034 1035
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1036 1037 1038
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1039
		ret = i915_vma_put_fence(vma);
1040 1041 1042 1043 1044
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1045
	if (IS_ERR(vma)) {
1046
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1047
		if (ret)
1048 1049
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1050 1051 1052 1053 1054 1055
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1056
	mutex_unlock(&i915->drm.struct_mutex);
1057

1058 1059 1060
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1077
					       node.start, I915_CACHE_NONE, 0);
1078 1079 1080 1081
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1082 1083 1084

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1085 1086 1087 1088 1089 1090 1091 1092 1093
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1094
	mutex_lock(&i915->drm.struct_mutex);
1095 1096 1097 1098
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1099
				       node.start, node.size);
1100 1101
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1102
		i915_vma_unpin(vma);
1103
	}
1104 1105 1106
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1107

1108 1109 1110
	return ret;
}

1111 1112
/**
 * Reads data from the object referenced by handle.
1113 1114 1115
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1116 1117 1118 1119 1120
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1121
		     struct drm_file *file)
1122 1123
{
	struct drm_i915_gem_pread *args = data;
1124
	struct drm_i915_gem_object *obj;
1125
	int ret;
1126

1127 1128 1129 1130
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1131
		       u64_to_user_ptr(args->data_ptr),
1132 1133 1134
		       args->size))
		return -EFAULT;

1135
	obj = i915_gem_object_lookup(file, args->handle);
1136 1137
	if (!obj)
		return -ENOENT;
1138

1139
	/* Bounds check source.  */
1140
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1141
		ret = -EINVAL;
1142
		goto out;
C
Chris Wilson 已提交
1143 1144
	}

C
Chris Wilson 已提交
1145 1146
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1147 1148 1149 1150
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1151
	if (ret)
1152
		goto out;
1153

1154
	ret = i915_gem_object_pin_pages(obj);
1155
	if (ret)
1156
		goto out;
1157

1158
	ret = i915_gem_shmem_pread(obj, args);
1159
	if (ret == -EFAULT || ret == -ENODEV)
1160
		ret = i915_gem_gtt_pread(obj, args);
1161

1162 1163
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1164
	i915_gem_object_put(obj);
1165
	return ret;
1166 1167
}

1168 1169
/* This is the fast write path which cannot handle
 * page faults in the source data
1170
 */
1171

1172 1173 1174 1175
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1176
{
1177
	void *vaddr;
1178
	unsigned long unwritten;
1179

1180
	/* We can use the cpu mem copy function because this is X86. */
1181 1182
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1183
						      user_data, length);
1184 1185 1186 1187 1188 1189 1190
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1191 1192 1193 1194

	return unwritten;
}

1195 1196 1197
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1198
 * @obj: i915 GEM object
1199
 * @args: pwrite arguments structure
1200
 */
1201
static int
1202 1203
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1204
{
1205
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1206 1207
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1208 1209 1210
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1211
	int ret;
1212

1213 1214 1215
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1216

1217
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1218
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1219
				       PIN_MAPPABLE | PIN_NONBLOCK);
1220 1221 1222
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1223
		ret = i915_vma_put_fence(vma);
1224 1225 1226 1227 1228
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1229
	if (IS_ERR(vma)) {
1230
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1231
		if (ret)
1232 1233
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1234
	}
D
Daniel Vetter 已提交
1235 1236 1237 1238 1239

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1240 1241
	mutex_unlock(&i915->drm.struct_mutex);

1242
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1243

1244 1245 1246 1247
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1248 1249
		/* Operation in this page
		 *
1250 1251 1252
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1253
		 */
1254
		u32 page_base = node.start;
1255 1256
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1267
		/* If we get a fault while copying data, then (presumably) our
1268 1269
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1270 1271
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1272
		 */
1273 1274 1275 1276
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1277
		}
1278

1279 1280 1281
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1282
	}
1283
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1284 1285

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1286
out_unpin:
1287 1288 1289
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1290
				       node.start, node.size);
1291 1292
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1293
		i915_vma_unpin(vma);
1294
	}
1295
out_unlock:
1296
	intel_runtime_pm_put(i915);
1297
	mutex_unlock(&i915->drm.struct_mutex);
1298
	return ret;
1299 1300
}

1301
static int
1302
shmem_pwrite_slow(struct page *page, int offset, int length,
1303 1304 1305 1306
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1307
{
1308 1309
	char *vaddr;
	int ret;
1310

1311
	vaddr = kmap(page);
1312
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1313
		shmem_clflush_swizzled_range(vaddr + offset, length,
1314
					     page_do_bit17_swizzling);
1315
	if (page_do_bit17_swizzling)
1316 1317
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1318
	else
1319
		ret = __copy_from_user(vaddr + offset, user_data, length);
1320
	if (needs_clflush_after)
1321
		shmem_clflush_swizzled_range(vaddr + offset, length,
1322
					     page_do_bit17_swizzling);
1323
	kunmap(page);
1324

1325
	return ret ? -EFAULT : 0;
1326 1327
}

1328 1329 1330 1331 1332
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1333
static int
1334 1335 1336 1337
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1338
{
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1371
	unsigned int needs_clflush;
1372 1373
	unsigned int offset, idx;
	int ret;
1374

1375
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1376 1377 1378
	if (ret)
		return ret;

1379 1380 1381 1382
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1383

1384 1385 1386
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1387

1388 1389 1390 1391 1392 1393 1394
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1395

1396 1397 1398 1399 1400 1401
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1402

1403 1404 1405
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1406

1407 1408 1409 1410
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1411
		if (ret)
1412
			break;
1413

1414 1415 1416
		remain -= length;
		user_data += length;
		offset = 0;
1417
	}
1418

1419
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1420
	i915_gem_obj_finish_shmem_access(obj);
1421
	return ret;
1422 1423 1424 1425
}

/**
 * Writes data to the object referenced by handle.
1426 1427 1428
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1429 1430 1431 1432 1433
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1434
		      struct drm_file *file)
1435 1436
{
	struct drm_i915_gem_pwrite *args = data;
1437
	struct drm_i915_gem_object *obj;
1438 1439 1440 1441 1442 1443
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1444
		       u64_to_user_ptr(args->data_ptr),
1445 1446 1447
		       args->size))
		return -EFAULT;

1448
	obj = i915_gem_object_lookup(file, args->handle);
1449 1450
	if (!obj)
		return -ENOENT;
1451

1452
	/* Bounds check destination. */
1453
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1454
		ret = -EINVAL;
1455
		goto err;
C
Chris Wilson 已提交
1456 1457
	}

C
Chris Wilson 已提交
1458 1459
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1460 1461 1462 1463 1464 1465
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1466 1467 1468 1469 1470
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1471 1472 1473
	if (ret)
		goto err;

1474
	ret = i915_gem_object_pin_pages(obj);
1475
	if (ret)
1476
		goto err;
1477

D
Daniel Vetter 已提交
1478
	ret = -EFAULT;
1479 1480 1481 1482 1483 1484
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1485
	if (!i915_gem_object_has_struct_page(obj) ||
1486
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1487 1488
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1489 1490
		 * textures). Fallback to the shmem path in that case.
		 */
1491
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1492

1493
	if (ret == -EFAULT || ret == -ENOSPC) {
1494 1495
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1496
		else
1497
			ret = i915_gem_shmem_pwrite(obj, args);
1498
	}
1499

1500
	i915_gem_object_unpin_pages(obj);
1501
err:
C
Chris Wilson 已提交
1502
	i915_gem_object_put(obj);
1503
	return ret;
1504 1505
}

1506
static inline enum fb_op_origin
1507 1508
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1509 1510
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1511 1512
}

1513 1514 1515 1516 1517 1518 1519 1520
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1521
			break;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1534
	list_move_tail(&obj->global_link, list);
1535 1536
}

1537
/**
1538 1539
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1540 1541 1542
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1543 1544 1545
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1546
			  struct drm_file *file)
1547 1548
{
	struct drm_i915_gem_set_domain *args = data;
1549
	struct drm_i915_gem_object *obj;
1550 1551
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1552
	int err;
1553

1554
	/* Only handle setting domains to types used by the CPU. */
1555
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1556 1557 1558 1559 1560 1561 1562 1563
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1564
	obj = i915_gem_object_lookup(file, args->handle);
1565 1566
	if (!obj)
		return -ENOENT;
1567

1568 1569 1570 1571
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1572
	err = i915_gem_object_wait(obj,
1573 1574 1575 1576
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1577
	if (err)
C
Chris Wilson 已提交
1578
		goto out;
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1590
		goto out;
1591 1592 1593

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1594
		goto out_unpin;
1595

1596
	if (read_domains & I915_GEM_DOMAIN_GTT)
1597
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1598
	else
1599
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1600

1601 1602
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1603

1604
	mutex_unlock(&dev->struct_mutex);
1605

1606 1607 1608
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1609
out_unpin:
1610
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1611 1612
out:
	i915_gem_object_put(obj);
1613
	return err;
1614 1615 1616 1617
}

/**
 * Called when user space has done writes to this buffer
1618 1619 1620
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1621 1622 1623
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1624
			 struct drm_file *file)
1625 1626
{
	struct drm_i915_gem_sw_finish *args = data;
1627
	struct drm_i915_gem_object *obj;
1628

1629
	obj = i915_gem_object_lookup(file, args->handle);
1630 1631
	if (!obj)
		return -ENOENT;
1632 1633

	/* Pinned buffers may be scanout, so flush the cache */
1634
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1635
	i915_gem_object_put(obj);
1636 1637

	return 0;
1638 1639 1640
}

/**
1641 1642 1643 1644 1645
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1646 1647 1648
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1659 1660 1661
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1662
		    struct drm_file *file)
1663 1664
{
	struct drm_i915_gem_mmap *args = data;
1665
	struct drm_i915_gem_object *obj;
1666 1667
	unsigned long addr;

1668 1669 1670
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1671
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1672 1673
		return -ENODEV;

1674 1675
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1676
		return -ENOENT;
1677

1678 1679 1680
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1681
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1682
		i915_gem_object_put(obj);
1683 1684 1685
		return -EINVAL;
	}

1686
	addr = vm_mmap(obj->base.filp, 0, args->size,
1687 1688
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1689 1690 1691 1692
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1693
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1694
			i915_gem_object_put(obj);
1695 1696
			return -EINTR;
		}
1697 1698 1699 1700 1701 1702 1703
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1704 1705

		/* This may race, but that's ok, it only gets set */
1706
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1707
	}
C
Chris Wilson 已提交
1708
	i915_gem_object_put(obj);
1709 1710 1711 1712 1713 1714 1715 1716
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1717 1718
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1719
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1720 1721
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1783 1784
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1785
		min_t(unsigned int, chunk,
1786
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1787 1788 1789 1790 1791 1792 1793 1794

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1795 1796
/**
 * i915_gem_fault - fault a page into the GTT
1797
 * @vmf: fault info
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1809 1810 1811
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1812
 */
1813
int i915_gem_fault(struct vm_fault *vmf)
1814
{
1815
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1816
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1817
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1818
	struct drm_device *dev = obj->base.dev;
1819 1820
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1821
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1822
	struct i915_vma *vma;
1823
	pgoff_t page_offset;
1824
	unsigned int flags;
1825
	int ret;
1826

1827
	/* We don't use vmf->pgoff since that has the fake offset */
1828
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1829

C
Chris Wilson 已提交
1830 1831
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1832
	/* Try to flush the object off the GPU first without holding the lock.
1833
	 * Upon acquiring the lock, we will perform our sanity checks and then
1834 1835 1836
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1837 1838 1839 1840
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1841
	if (ret)
1842 1843
		goto err;

1844 1845 1846 1847
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1848 1849 1850 1851 1852
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1853

1854
	/* Access to snoopable pages through the GTT is incoherent. */
1855
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1856
		ret = -EFAULT;
1857
		goto err_unlock;
1858 1859
	}

1860 1861 1862 1863 1864 1865 1866 1867
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1868
	/* Now pin it into the GTT as needed */
1869
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1870 1871
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1872
		struct i915_ggtt_view view =
1873
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1874

1875 1876 1877 1878 1879
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1880 1881
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1882 1883
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1884
		goto err_unlock;
C
Chris Wilson 已提交
1885
	}
1886

1887 1888
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1889
		goto err_unpin;
1890

1891
	ret = i915_vma_get_fence(vma);
1892
	if (ret)
1893
		goto err_unpin;
1894

1895
	/* Mark as being mmapped into userspace for later revocation */
1896
	assert_rpm_wakelock_held(dev_priv);
1897 1898 1899
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1900
	/* Finally, remap it using the new GTT offset */
1901
	ret = remap_io_mapping(area,
1902
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1903 1904 1905
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1906

1907
err_unpin:
C
Chris Wilson 已提交
1908
	__i915_vma_unpin(vma);
1909
err_unlock:
1910
	mutex_unlock(&dev->struct_mutex);
1911 1912
err_rpm:
	intel_runtime_pm_put(dev_priv);
1913
	i915_gem_object_unpin_pages(obj);
1914
err:
1915
	switch (ret) {
1916
	case -EIO:
1917 1918 1919 1920 1921 1922 1923
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1924 1925 1926
			ret = VM_FAULT_SIGBUS;
			break;
		}
1927
	case -EAGAIN:
D
Daniel Vetter 已提交
1928 1929 1930 1931
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1932
		 */
1933 1934
	case 0:
	case -ERESTARTSYS:
1935
	case -EINTR:
1936 1937 1938 1939 1940
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1941 1942
		ret = VM_FAULT_NOPAGE;
		break;
1943
	case -ENOMEM:
1944 1945
		ret = VM_FAULT_OOM;
		break;
1946
	case -ENOSPC:
1947
	case -EFAULT:
1948 1949
		ret = VM_FAULT_SIGBUS;
		break;
1950
	default:
1951
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1952 1953
		ret = VM_FAULT_SIGBUS;
		break;
1954
	}
1955
	return ret;
1956 1957
}

1958 1959 1960 1961
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1962
 * Preserve the reservation of the mmapping with the DRM core code, but
1963 1964 1965 1966 1967 1968 1969 1970 1971
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1972
void
1973
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1974
{
1975 1976
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1977 1978 1979
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1980 1981 1982 1983
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1984
	 */
1985
	lockdep_assert_held(&i915->drm.struct_mutex);
1986
	intel_runtime_pm_get(i915);
1987

1988
	if (list_empty(&obj->userfault_link))
1989
		goto out;
1990

1991
	list_del_init(&obj->userfault_link);
1992 1993
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1994 1995 1996 1997 1998 1999 2000 2001 2002

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2003 2004 2005

out:
	intel_runtime_pm_put(i915);
2006 2007
}

2008
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2009
{
2010
	struct drm_i915_gem_object *obj, *on;
2011
	int i;
2012

2013 2014 2015 2016 2017 2018
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2019

2020 2021 2022
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2023 2024 2025
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2026 2027 2028 2029 2030 2031 2032 2033

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2044 2045 2046 2047 2048 2049 2050

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2051 2052
}

2053 2054
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2055
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2056
	int err;
2057

2058
	err = drm_gem_create_mmap_offset(&obj->base);
2059
	if (likely(!err))
2060
		return 0;
2061

2062 2063 2064 2065 2066
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2067

2068
		i915_gem_drain_freed_objects(dev_priv);
2069
		err = drm_gem_create_mmap_offset(&obj->base);
2070 2071 2072 2073
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2074

2075
	return err;
2076 2077 2078 2079 2080 2081 2082
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2083
int
2084 2085
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2086
		  uint32_t handle,
2087
		  uint64_t *offset)
2088
{
2089
	struct drm_i915_gem_object *obj;
2090 2091
	int ret;

2092
	obj = i915_gem_object_lookup(file, handle);
2093 2094
	if (!obj)
		return -ENOENT;
2095

2096
	ret = i915_gem_object_create_mmap_offset(obj);
2097 2098
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2099

C
Chris Wilson 已提交
2100
	i915_gem_object_put(obj);
2101
	return ret;
2102 2103
}

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2125
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2126 2127
}

D
Daniel Vetter 已提交
2128 2129 2130
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2131
{
2132
	i915_gem_object_free_mmap_offset(obj);
2133

2134 2135
	if (obj->base.filp == NULL)
		return;
2136

D
Daniel Vetter 已提交
2137 2138 2139 2140 2141
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2142
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2143
	obj->mm.madv = __I915_MADV_PURGED;
2144
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2145
}
2146

2147
/* Try to discard unwanted pages */
2148
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2149
{
2150 2151
	struct address_space *mapping;

2152 2153 2154
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2155
	switch (obj->mm.madv) {
2156 2157 2158 2159 2160 2161 2162 2163 2164
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2165
	mapping = obj->base.filp->f_mapping,
2166
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2167 2168
}

2169
static void
2170 2171
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2172
{
2173 2174
	struct sgt_iter sgt_iter;
	struct page *page;
2175

2176
	__i915_gem_object_release_shmem(obj, pages, true);
2177

2178
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2179

2180
	if (i915_gem_object_needs_bit17_swizzle(obj))
2181
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2182

2183
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2184
		if (obj->mm.dirty)
2185
			set_page_dirty(page);
2186

C
Chris Wilson 已提交
2187
		if (obj->mm.madv == I915_MADV_WILLNEED)
2188
			mark_page_accessed(page);
2189

2190
		put_page(page);
2191
	}
C
Chris Wilson 已提交
2192
	obj->mm.dirty = false;
2193

2194 2195
	sg_free_table(pages);
	kfree(pages);
2196
}
C
Chris Wilson 已提交
2197

2198 2199 2200 2201 2202
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2203 2204
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2205 2206
}

2207 2208
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2209
{
2210
	struct sg_table *pages;
2211

C
Chris Wilson 已提交
2212
	if (i915_gem_object_has_pinned_pages(obj))
2213
		return;
2214

2215
	GEM_BUG_ON(obj->bind_count);
2216 2217 2218 2219
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2220
	mutex_lock_nested(&obj->mm.lock, subclass);
2221 2222
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2223

2224 2225 2226
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2227 2228
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2229

C
Chris Wilson 已提交
2230
	if (obj->mm.mapping) {
2231 2232
		void *ptr;

C
Chris Wilson 已提交
2233
		ptr = ptr_mask_bits(obj->mm.mapping);
2234 2235
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2236
		else
2237 2238
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2239
		obj->mm.mapping = NULL;
2240 2241
	}

2242 2243
	__i915_gem_object_reset_page_iter(obj);

2244 2245 2246
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2247 2248
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2249 2250
}

2251
static bool i915_sg_trim(struct sg_table *orig_st)
2252 2253 2254 2255 2256 2257
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2258
		return false;
2259

2260
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2261
		return false;
2262 2263 2264 2265 2266 2267 2268

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2269
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2270 2271 2272 2273

	sg_free_table(orig_st);

	*orig_st = new_st;
2274
	return true;
2275 2276
}

2277
static struct sg_table *
C
Chris Wilson 已提交
2278
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2279
{
2280
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2281 2282
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2283
	struct address_space *mapping;
2284 2285
	struct sg_table *st;
	struct scatterlist *sg;
2286
	struct sgt_iter sgt_iter;
2287
	struct page *page;
2288
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2289
	unsigned int max_segment;
I
Imre Deak 已提交
2290
	int ret;
C
Chris Wilson 已提交
2291
	gfp_t gfp;
2292

C
Chris Wilson 已提交
2293 2294 2295 2296
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2297 2298
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2299

2300
	max_segment = swiotlb_max_segment();
2301
	if (!max_segment)
2302
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2303

2304 2305
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2306
		return ERR_PTR(-ENOMEM);
2307

2308
rebuild_st:
2309 2310
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2311
		return ERR_PTR(-ENOMEM);
2312
	}
2313

2314 2315 2316 2317 2318
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2319
	mapping = obj->base.filp->f_mapping;
2320
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2321
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2322 2323 2324
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2325 2326
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2327 2328 2329 2330 2331
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2332 2333 2334 2335 2336 2337 2338
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2339
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2340 2341
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2342
				goto err_sg;
I
Imre Deak 已提交
2343
			}
C
Chris Wilson 已提交
2344
		}
2345 2346 2347
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2348 2349 2350 2351 2352 2353 2354 2355
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2356 2357 2358

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2359
	}
2360
	if (sg) /* loop terminated early; short sg table */
2361
		sg_mark_end(sg);
2362

2363 2364 2365
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2366
	ret = i915_gem_gtt_prepare_pages(obj, st);
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2386

2387
	if (i915_gem_object_needs_bit17_swizzle(obj))
2388
		i915_gem_object_do_bit_17_swizzle(obj, st);
2389

2390
	return st;
2391

2392
err_sg:
2393
	sg_mark_end(sg);
2394
err_pages:
2395 2396
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2397 2398
	sg_free_table(st);
	kfree(st);
2399 2400 2401 2402 2403 2404 2405 2406 2407

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2408 2409 2410
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2411 2412 2413 2414 2415 2416
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2417
	lockdep_assert_held(&obj->mm.lock);
2418 2419 2420 2421 2422

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2423 2424 2425 2426 2427 2428 2429

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2430 2431 2432 2433 2434 2435
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2436 2437
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2449 2450
}

2451
/* Ensure that the associated pages are gathered from the backing storage
2452
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2453
 * multiple times before they are released by a single call to
2454
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2455 2456 2457
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2458
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2459
{
2460
	int err;
2461

2462 2463 2464
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2465

2466
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2467 2468 2469
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2470

2471 2472 2473
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2474

2475 2476
unlock:
	mutex_unlock(&obj->mm.lock);
2477
	return err;
2478 2479
}

2480
/* The 'mapping' part of i915_gem_object_pin_map() below */
2481 2482
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2483 2484
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2485
	struct sg_table *sgt = obj->mm.pages;
2486 2487
	struct sgt_iter sgt_iter;
	struct page *page;
2488 2489
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2490
	unsigned long i = 0;
2491
	pgprot_t pgprot;
2492 2493 2494
	void *addr;

	/* A single page can always be kmapped */
2495
	if (n_pages == 1 && type == I915_MAP_WB)
2496 2497
		return kmap(sg_page(sgt->sgl));

2498 2499 2500 2501 2502 2503
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2504

2505 2506
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2507 2508 2509 2510

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2511 2512 2513 2514 2515 2516 2517 2518 2519
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2520

2521 2522
	if (pages != stack_pages)
		drm_free_large(pages);
2523 2524 2525 2526 2527

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2528 2529
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2530
{
2531 2532 2533
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2534 2535
	int ret;

2536
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2537

2538
	ret = mutex_lock_interruptible(&obj->mm.lock);
2539 2540 2541
	if (ret)
		return ERR_PTR(ret);

2542 2543
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2544
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2545 2546 2547
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2548

2549 2550 2551
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2552 2553 2554
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2555

C
Chris Wilson 已提交
2556
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2557 2558 2559
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2560
			goto err_unpin;
2561
		}
2562 2563 2564 2565 2566 2567

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2568
		ptr = obj->mm.mapping = NULL;
2569 2570
	}

2571 2572 2573 2574
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2575
			goto err_unpin;
2576 2577
		}

C
Chris Wilson 已提交
2578
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2579 2580
	}

2581 2582
out_unlock:
	mutex_unlock(&obj->mm.lock);
2583 2584
	return ptr;

2585 2586 2587 2588 2589
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2590 2591
}

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2661
static bool ban_context(const struct i915_gem_context *ctx)
2662
{
2663 2664
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2665 2666
}

2667
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2668
{
2669
	ctx->guilty_count++;
2670 2671 2672
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2673 2674

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2675
			 ctx->name, ctx->ban_score,
2676
			 yesno(i915_gem_context_is_banned(ctx)));
2677

2678
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2679 2680
		return;

2681 2682 2683
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2684 2685 2686 2687
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2688
	ctx->active_count++;
2689 2690
}

2691
struct drm_i915_gem_request *
2692
i915_gem_find_active_request(struct intel_engine_cs *engine)
2693
{
2694 2695
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2696

2697 2698 2699 2700 2701 2702 2703 2704
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2705
	spin_lock_irqsave(&engine->timeline->lock, flags);
2706
	list_for_each_entry(request, &engine->timeline->requests, link) {
2707 2708
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2709
			continue;
2710

2711
		GEM_BUG_ON(request->engine != engine);
2712 2713
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2714 2715 2716

		active = request;
		break;
2717
	}
2718
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2719

2720
	return active;
2721 2722
}

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2737
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2738 2739 2740
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2741
	int err = 0;
2742 2743

	/* Ensure irq handler finishes, and not run again. */
2744 2745 2746
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2758 2759 2760 2761 2762 2763 2764 2765
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2766
		tasklet_kill(&engine->irq_tasklet);
2767
		tasklet_disable(&engine->irq_tasklet);
2768

2769 2770 2771
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2772 2773 2774 2775 2776 2777 2778
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2779
	i915_gem_revoke_fences(dev_priv);
2780 2781

	return err;
2782 2783
}

2784
static void skip_request(struct drm_i915_gem_request *request)
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2799 2800

	dma_fence_set_error(&request->fence, -EIO);
2801 2802
}

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2826 2827 2828 2829 2830 2831
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2864
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2865 2866 2867
{
	struct drm_i915_gem_request *request;

2868
	request = i915_gem_find_active_request(engine);
2869 2870 2871
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2872

2873 2874 2875 2876
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2877 2878 2879

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2880
}
2881

2882
void i915_gem_reset(struct drm_i915_private *dev_priv)
2883
{
2884
	struct intel_engine_cs *engine;
2885
	enum intel_engine_id id;
2886

2887 2888
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2889 2890
	i915_gem_retire_requests(dev_priv);

2891 2892 2893
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2894
		i915_gem_reset_engine(engine);
2895 2896 2897 2898
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2899

2900
	i915_gem_restore_fences(dev_priv);
2901 2902 2903 2904 2905 2906 2907

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2908 2909
}

2910 2911
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2912 2913 2914
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2915
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2916

2917
	for_each_engine(engine, dev_priv, id) {
2918
		tasklet_enable(&engine->irq_tasklet);
2919 2920
		kthread_unpark(engine->breadcrumbs.signaler);
	}
2921 2922
}

2923 2924
static void nop_submit_request(struct drm_i915_gem_request *request)
{
2925
	dma_fence_set_error(&request->fence, -EIO);
2926 2927
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2928 2929
}

2930
static void engine_set_wedged(struct intel_engine_cs *engine)
2931
{
2932 2933 2934
	struct drm_i915_gem_request *request;
	unsigned long flags;

2935 2936 2937 2938 2939 2940
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2941
	engine->submit_request = nop_submit_request;
2942

2943 2944 2945 2946 2947 2948
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2949 2950 2951 2952
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2953
	intel_engine_init_global_seqno(engine,
2954
				       intel_engine_last_submit(engine));
2955

2956 2957 2958 2959 2960 2961
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2962
	if (i915.enable_execlists) {
2963 2964 2965 2966
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2967 2968 2969
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2970 2971
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2972 2973

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2974
	}
2975 2976
}

2977
static int __i915_gem_set_wedged_BKL(void *data)
2978
{
2979
	struct drm_i915_private *i915 = data;
2980
	struct intel_engine_cs *engine;
2981
	enum intel_engine_id id;
2982

2983
	for_each_engine(engine, i915, id)
2984
		engine_set_wedged(engine);
2985 2986 2987 2988 2989 2990

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2991 2992
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2993

2994
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2995

2996
	i915_gem_context_lost(dev_priv);
2997
	i915_gem_retire_requests(dev_priv);
2998 2999

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3000 3001
}

3002
static void
3003 3004
i915_gem_retire_work_handler(struct work_struct *work)
{
3005
	struct drm_i915_private *dev_priv =
3006
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3007
	struct drm_device *dev = &dev_priv->drm;
3008

3009
	/* Come back later if the device is busy... */
3010
	if (mutex_trylock(&dev->struct_mutex)) {
3011
		i915_gem_retire_requests(dev_priv);
3012
		mutex_unlock(&dev->struct_mutex);
3013
	}
3014 3015 3016 3017 3018

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3019 3020
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3021 3022
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3023
				   round_jiffies_up_relative(HZ));
3024
	}
3025
}
3026

3027 3028 3029 3030
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3031
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3032
	struct drm_device *dev = &dev_priv->drm;
3033
	struct intel_engine_cs *engine;
3034
	enum intel_engine_id id;
3035 3036 3037 3038 3039
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3040 3041 3042 3043 3044
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
3045 3046
		 intel_engines_are_idle(dev_priv),
		 10);
3047
	if (READ_ONCE(dev_priv->gt.active_requests))
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3061 3062 3063 3064 3065 3066 3067
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3068
	if (dev_priv->gt.active_requests)
3069
		goto out_unlock;
3070

3071
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3072 3073
		DRM_ERROR("Timeout waiting for engines to idle\n");

3074 3075
	for_each_engine(engine, dev_priv, id) {
		intel_engine_disarm_breadcrumbs(engine);
3076
		i915_gem_batch_pool_fini(&engine->batch_pool);
3077
	}
3078

3079 3080 3081
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3082

3083 3084 3085 3086 3087
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3088

3089 3090 3091 3092
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3093
	}
3094 3095
}

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3106 3107 3108 3109 3110 3111

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3112 3113 3114
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3126 3127
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3128 3129 3130
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3155 3156
	ktime_t start;
	long ret;
3157

3158 3159 3160
	if (args->flags != 0)
		return -EINVAL;

3161
	obj = i915_gem_object_lookup(file, args->bo_handle);
3162
	if (!obj)
3163 3164
		return -ENOENT;

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3186 3187
	}

C
Chris Wilson 已提交
3188
	i915_gem_object_put(obj);
3189
	return ret;
3190 3191
}

3192
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3193
{
3194
	int ret, i;
3195

3196 3197 3198 3199 3200
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3201

3202 3203 3204 3205 3206 3207 3208
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3221 3222 3223
		if (ret)
			return ret;
	}
3224

3225
	return 0;
3226 3227
}

3228 3229
/** Flushes the GTT write domain for the object if it's dirty. */
static void
3230
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3231
{
3232
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3233

3234
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3235 3236
		return;

3237
	/* No actual flushing is required for the GTT write domain.  Writes
3238
	 * to it "immediately" go to main memory as far as we know, so there's
3239
	 * no chipset flush.  It also doesn't land in render cache.
3240 3241 3242 3243
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3244 3245 3246 3247 3248 3249 3250
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3251
	 */
3252
	wmb();
3253
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3254
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3255

3256
	intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3257

3258
	obj->base.write_domain = 0;
3259 3260 3261 3262
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3263
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3264
{
3265
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3266 3267
		return;

3268
	i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3269
	obj->base.write_domain = 0;
3270 3271
}

3272 3273 3274 3275 3276
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
		return;

3277
	i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3291 3292
/**
 * Moves a single object to the GTT read, and possibly write domain.
3293 3294
 * @obj: object to act on
 * @write: ask for write access or read only
3295 3296 3297 3298
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3299
int
3300
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3301
{
3302
	int ret;
3303

3304
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3305

3306 3307 3308 3309 3310 3311
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3312 3313 3314
	if (ret)
		return ret;

3315 3316 3317
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3318 3319 3320 3321 3322 3323 3324 3325
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3326
	ret = i915_gem_object_pin_pages(obj);
3327 3328 3329
	if (ret)
		return ret;

3330
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3331

3332 3333 3334 3335 3336 3337 3338
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3339 3340 3341
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3342
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3343
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3344
	if (write) {
3345 3346
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3347
		obj->mm.dirty = true;
3348 3349
	}

C
Chris Wilson 已提交
3350
	i915_gem_object_unpin_pages(obj);
3351 3352 3353
	return 0;
}

3354 3355
/**
 * Changes the cache-level of an object across all VMA.
3356 3357
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3369 3370 3371
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3372
	struct i915_vma *vma;
3373
	int ret;
3374

3375 3376
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3377
	if (obj->cache_level == cache_level)
3378
		return 0;
3379

3380 3381 3382 3383 3384
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3385 3386
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3387 3388 3389
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3390
		if (i915_vma_is_pinned(vma)) {
3391 3392 3393 3394
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3407 3408
	}

3409 3410 3411 3412 3413 3414 3415
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3416
	if (obj->bind_count) {
3417 3418 3419 3420
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3421 3422 3423 3424 3425 3426
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3427 3428 3429
		if (ret)
			return ret;

3430 3431
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3448 3449 3450 3451 3452
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3453 3454 3455 3456 3457 3458 3459 3460
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3461 3462
		}

3463
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3464 3465 3466 3467 3468 3469 3470
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3471 3472
	}

3473
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3474
	    i915_gem_object_is_coherent(obj))
3475 3476
		obj->cache_dirty = true;

3477
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3478 3479 3480
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3481 3482 3483
	return 0;
}

B
Ben Widawsky 已提交
3484 3485
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3486
{
B
Ben Widawsky 已提交
3487
	struct drm_i915_gem_caching *args = data;
3488
	struct drm_i915_gem_object *obj;
3489
	int err = 0;
3490

3491 3492 3493 3494 3495 3496
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3497

3498 3499 3500 3501 3502 3503
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3504 3505 3506 3507
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3508 3509 3510 3511
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3512 3513 3514
out:
	rcu_read_unlock();
	return err;
3515 3516
}

B
Ben Widawsky 已提交
3517 3518
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3519
{
3520
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3521
	struct drm_i915_gem_caching *args = data;
3522 3523
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3524
	int ret = 0;
3525

B
Ben Widawsky 已提交
3526 3527
	switch (args->caching) {
	case I915_CACHING_NONE:
3528 3529
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3530
	case I915_CACHING_CACHED:
3531 3532 3533 3534 3535 3536
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3537
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3538 3539
			return -ENODEV;

3540 3541
		level = I915_CACHE_LLC;
		break;
3542
	case I915_CACHING_DISPLAY:
3543
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3544
		break;
3545 3546 3547 3548
	default:
		return -EINVAL;
	}

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3560
	if (ret)
3561
		goto out;
B
Ben Widawsky 已提交
3562

3563 3564 3565
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3566 3567 3568

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3569 3570 3571

out:
	i915_gem_object_put(obj);
3572 3573 3574
	return ret;
}

3575
/*
3576 3577 3578
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3579
 */
C
Chris Wilson 已提交
3580
struct i915_vma *
3581 3582
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3583
				     const struct i915_ggtt_view *view)
3584
{
C
Chris Wilson 已提交
3585
	struct i915_vma *vma;
3586 3587
	int ret;

3588 3589
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3590 3591 3592
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3593
	obj->pin_display++;
3594

3595 3596 3597 3598 3599 3600 3601 3602 3603
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3604
	ret = i915_gem_object_set_cache_level(obj,
3605 3606
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3607 3608
	if (ret) {
		vma = ERR_PTR(ret);
3609
		goto err_unpin_display;
C
Chris Wilson 已提交
3610
	}
3611

3612 3613
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3614 3615 3616 3617
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3618
	 */
3619
	vma = ERR_PTR(-ENOSPC);
3620
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3621 3622
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3639
	if (IS_ERR(vma))
3640
		goto err_unpin_display;
3641

3642 3643
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3644
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3645
	__i915_gem_object_flush_for_display(obj);
3646
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3647

3648 3649 3650
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3651
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3652

C
Chris Wilson 已提交
3653
	return vma;
3654 3655

err_unpin_display:
3656
	obj->pin_display--;
C
Chris Wilson 已提交
3657
	return vma;
3658 3659 3660
}

void
C
Chris Wilson 已提交
3661
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3662
{
3663
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3664

C
Chris Wilson 已提交
3665
	if (WARN_ON(vma->obj->pin_display == 0))
3666 3667
		return;

3668
	if (--vma->obj->pin_display == 0)
3669
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3670

3671
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3672
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3673

C
Chris Wilson 已提交
3674
	i915_vma_unpin(vma);
3675 3676
}

3677 3678
/**
 * Moves a single object to the CPU read, and possibly write domain.
3679 3680
 * @obj: object to act on
 * @write: requesting write or read-only access
3681 3682 3683 3684
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3685
int
3686
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3687 3688 3689
{
	int ret;

3690
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3691

3692 3693 3694 3695 3696 3697
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3698 3699 3700
	if (ret)
		return ret;

3701 3702 3703
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3704
	i915_gem_object_flush_gtt_write_domain(obj);
3705

3706
	/* Flush the CPU cache if it's still invalid. */
3707
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3708
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3709
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3710 3711 3712 3713 3714
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3715
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3716 3717 3718 3719 3720

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3721 3722
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3723
	}
3724 3725 3726 3727

	return 0;
}

3728 3729 3730
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3731 3732 3733 3734
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3735 3736 3737
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3738
static int
3739
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3740
{
3741
	struct drm_i915_private *dev_priv = to_i915(dev);
3742
	struct drm_i915_file_private *file_priv = file->driver_priv;
3743
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3744
	struct drm_i915_gem_request *request, *target = NULL;
3745
	long ret;
3746

3747 3748 3749
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3750

3751
	spin_lock(&file_priv->mm.lock);
3752
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3753 3754
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3755

3756 3757 3758 3759
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3760

3761
		target = request;
3762
	}
3763
	if (target)
3764
		i915_gem_request_get(target);
3765
	spin_unlock(&file_priv->mm.lock);
3766

3767
	if (target == NULL)
3768
		return 0;
3769

3770 3771 3772
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3773
	i915_gem_request_put(target);
3774

3775
	return ret < 0 ? ret : 0;
3776 3777
}

C
Chris Wilson 已提交
3778
struct i915_vma *
3779 3780
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3781
			 u64 size,
3782 3783
			 u64 alignment,
			 u64 flags)
3784
{
3785 3786
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3787 3788
	struct i915_vma *vma;
	int ret;
3789

3790 3791
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3792
	vma = i915_vma_instance(obj, vm, view);
3793
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3794
		return vma;
3795 3796 3797 3798

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3799
			return ERR_PTR(-ENOSPC);
3800

3801 3802 3803 3804 3805 3806 3807 3808
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3809
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3828
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3829 3830 3831
				return ERR_PTR(-ENOSPC);
		}

3832 3833
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3834 3835 3836
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3837
		     !!(flags & PIN_MAPPABLE),
3838
		     i915_vma_is_map_and_fenceable(vma));
3839 3840
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3841
			return ERR_PTR(ret);
3842 3843
	}

C
Chris Wilson 已提交
3844 3845 3846
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3847

C
Chris Wilson 已提交
3848
	return vma;
3849 3850
}

3851
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3866 3867 3868 3869 3870 3871 3872 3873 3874
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3875 3876
}

3877
static __always_inline unsigned int
3878
__busy_set_if_active(const struct dma_fence *fence,
3879 3880
		     unsigned int (*flag)(unsigned int id))
{
3881
	struct drm_i915_gem_request *rq;
3882

3883 3884 3885 3886
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3887
	 *
3888
	 * Note we only report on the status of native fences.
3889
	 */
3890 3891 3892 3893 3894 3895 3896 3897 3898
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3899 3900
}

3901
static __always_inline unsigned int
3902
busy_check_reader(const struct dma_fence *fence)
3903
{
3904
	return __busy_set_if_active(fence, __busy_read_flag);
3905 3906
}

3907
static __always_inline unsigned int
3908
busy_check_writer(const struct dma_fence *fence)
3909
{
3910 3911 3912 3913
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3914 3915
}

3916 3917
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3918
		    struct drm_file *file)
3919 3920
{
	struct drm_i915_gem_busy *args = data;
3921
	struct drm_i915_gem_object *obj;
3922 3923
	struct reservation_object_list *list;
	unsigned int seq;
3924
	int err;
3925

3926
	err = -ENOENT;
3927 3928
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3929
	if (!obj)
3930
		goto out;
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3950

3951 3952
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3953

3954 3955 3956 3957
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3958

3959 3960 3961 3962 3963 3964
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3965
	}
3966

3967 3968 3969 3970
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3971 3972 3973
out:
	rcu_read_unlock();
	return err;
3974 3975 3976 3977 3978 3979
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3980
	return i915_gem_ring_throttle(dev, file_priv);
3981 3982
}

3983 3984 3985 3986
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3987
	struct drm_i915_private *dev_priv = to_i915(dev);
3988
	struct drm_i915_gem_madvise *args = data;
3989
	struct drm_i915_gem_object *obj;
3990
	int err;
3991 3992 3993 3994 3995 3996 3997 3998 3999

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4000
	obj = i915_gem_object_lookup(file_priv, args->handle);
4001 4002 4003 4004 4005 4006
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4007

C
Chris Wilson 已提交
4008
	if (obj->mm.pages &&
4009
	    i915_gem_object_is_tiled(obj) &&
4010
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4011 4012
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4013
			__i915_gem_object_unpin_pages(obj);
4014 4015 4016
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4017
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4018
			__i915_gem_object_pin_pages(obj);
4019 4020
			obj->mm.quirked = true;
		}
4021 4022
	}

C
Chris Wilson 已提交
4023 4024
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4025

C
Chris Wilson 已提交
4026
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4027
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4028 4029
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4030
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4031
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4032

4033
out:
4034
	i915_gem_object_put(obj);
4035
	return err;
4036 4037
}

4038 4039 4040 4041 4042 4043 4044
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4045
	intel_fb_obj_flush(obj, ORIGIN_CS);
4046 4047
}

4048 4049
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4050
{
4051 4052
	mutex_init(&obj->mm.lock);

4053
	INIT_LIST_HEAD(&obj->global_link);
4054
	INIT_LIST_HEAD(&obj->userfault_link);
4055
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4056
	INIT_LIST_HEAD(&obj->vma_list);
4057
	INIT_LIST_HEAD(&obj->batch_pool_link);
4058

4059 4060
	obj->ops = ops;

4061 4062 4063
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4064
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4065
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4066 4067 4068 4069

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4070

4071
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4072 4073
}

4074
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4075 4076
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4077

4078 4079
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4080 4081

	.pwrite = i915_gem_object_pwrite_gtt,
4082 4083
};

4084
struct drm_i915_gem_object *
4085
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4086
{
4087
	struct drm_i915_gem_object *obj;
4088
	struct address_space *mapping;
D
Daniel Vetter 已提交
4089
	gfp_t mask;
4090
	int ret;
4091

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4103
	obj = i915_gem_object_alloc(dev_priv);
4104
	if (obj == NULL)
4105
		return ERR_PTR(-ENOMEM);
4106

4107
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4108 4109
	if (ret)
		goto fail;
4110

4111
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4112
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4113 4114 4115 4116 4117
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4118
	mapping = obj->base.filp->f_mapping;
4119
	mapping_set_gfp_mask(mapping, mask);
4120

4121
	i915_gem_object_init(obj, &i915_gem_object_ops);
4122

4123 4124
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4125

4126
	if (HAS_LLC(dev_priv)) {
4127
		/* On some devices, we can have the GPU use the LLC (the CPU
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4143 4144
	trace_i915_gem_object_create(obj);

4145
	return obj;
4146 4147 4148 4149

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4150 4151
}

4152 4153 4154 4155 4156 4157 4158 4159
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4160
	if (obj->mm.madv != I915_MADV_WILLNEED)
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4176 4177
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4178
{
4179
	struct drm_i915_gem_object *obj, *on;
4180

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4196 4197
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4198

4199
		list_del(&obj->global_link);
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4210

4211 4212
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4213
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4214 4215 4216 4217 4218
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4219
		reservation_object_fini(&obj->__builtin_resv);
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4242

4243 4244 4245 4246 4247 4248 4249
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4250

4251 4252 4253
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4254

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4269

4270 4271 4272
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4273

4274 4275 4276
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4277
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4278
		obj->mm.madv = I915_MADV_DONTNEED;
4279

4280 4281 4282 4283 4284 4285
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4286 4287
}

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4299 4300 4301 4302 4303 4304
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4305 4306
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4307 4308
}

4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
	 * of the reset, so we only reset recent machines with logical
	 * context support (that must be reset to remove any stray contexts).
	 */
	if (HAS_HW_CONTEXTS(i915)) {
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4326
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4327
{
4328
	struct drm_device *dev = &dev_priv->drm;
4329
	int ret;
4330

4331
	intel_runtime_pm_get(dev_priv);
4332 4333
	intel_suspend_gt_powersave(dev_priv);

4334
	mutex_lock(&dev->struct_mutex);
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4346
		goto err_unlock;
4347

4348 4349 4350
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4351
	if (ret)
4352
		goto err_unlock;
4353

4354
	i915_gem_retire_requests(dev_priv);
4355
	GEM_BUG_ON(dev_priv->gt.active_requests);
4356

4357
	assert_kernel_context_is_current(dev_priv);
4358
	i915_gem_context_lost(dev_priv);
4359 4360
	mutex_unlock(&dev->struct_mutex);

4361
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4362
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4363 4364 4365 4366 4367 4368 4369 4370

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4371

4372 4373 4374
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4375
	WARN_ON(dev_priv->gt.awake);
4376
	WARN_ON(!intel_engines_are_idle(dev_priv));
4377

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4397
	i915_gem_sanitize(dev_priv);
4398
	goto out_rpm_put;
4399

4400
err_unlock:
4401
	mutex_unlock(&dev->struct_mutex);
4402 4403
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4404
	return ret;
4405 4406
}

4407
void i915_gem_resume(struct drm_i915_private *dev_priv)
4408
{
4409
	struct drm_device *dev = &dev_priv->drm;
4410

4411 4412
	WARN_ON(dev_priv->gt.awake);

4413
	mutex_lock(&dev->struct_mutex);
4414
	i915_gem_restore_gtt_mappings(dev_priv);
4415 4416 4417 4418 4419

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4420
	dev_priv->gt.resume(dev_priv);
4421 4422 4423 4424

	mutex_unlock(&dev->struct_mutex);
}

4425
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4426
{
4427
	if (INTEL_GEN(dev_priv) < 5 ||
4428 4429 4430 4431 4432 4433
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4434
	if (IS_GEN5(dev_priv))
4435 4436
		return;

4437
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4438
	if (IS_GEN6(dev_priv))
4439
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4440
	else if (IS_GEN7(dev_priv))
4441
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4442
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4443
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4444 4445
	else
		BUG();
4446
}
D
Daniel Vetter 已提交
4447

4448
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4449 4450 4451 4452 4453 4454 4455
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4456
static void init_unused_rings(struct drm_i915_private *dev_priv)
4457
{
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4470 4471 4472
	}
}

4473
static int __i915_gem_restart_engines(void *data)
4474
{
4475
	struct drm_i915_private *i915 = data;
4476
	struct intel_engine_cs *engine;
4477
	enum intel_engine_id id;
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4491
	int ret;
4492

4493 4494
	dev_priv->gt.last_init_time = ktime_get();

4495 4496 4497
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4498
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4499
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4500

4501
	if (IS_HASWELL(dev_priv))
4502
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4503
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4504

4505
	if (HAS_PCH_NOP(dev_priv)) {
4506
		if (IS_IVYBRIDGE(dev_priv)) {
4507 4508 4509
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4510
		} else if (INTEL_GEN(dev_priv) >= 7) {
4511 4512 4513 4514
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4515 4516
	}

4517
	i915_gem_init_swizzling(dev_priv);
4518

4519 4520 4521 4522 4523 4524
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4525
	init_unused_rings(dev_priv);
4526

4527
	BUG_ON(!dev_priv->kernel_context);
4528

4529
	ret = i915_ppgtt_init_hw(dev_priv);
4530 4531 4532 4533 4534 4535
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4536 4537 4538
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4539

4540
	intel_mocs_init_l3cc_table(dev_priv);
4541

4542
	/* We can't enable contexts until all firmware is loaded */
4543
	ret = intel_guc_setup(dev_priv);
4544 4545
	if (ret)
		goto out;
4546

4547 4548
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4549
	return ret;
4550 4551
}

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4573
int i915_gem_init(struct drm_i915_private *dev_priv)
4574 4575 4576
{
	int ret;

4577
	mutex_lock(&dev_priv->drm.struct_mutex);
4578

4579 4580
	i915_gem_clflush_init(dev_priv);

4581
	if (!i915.enable_execlists) {
4582
		dev_priv->gt.resume = intel_legacy_submission_resume;
4583
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4584
	} else {
4585
		dev_priv->gt.resume = intel_lr_context_resume;
4586
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4587 4588
	}

4589 4590 4591 4592 4593 4594 4595 4596
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4597
	i915_gem_init_userptr(dev_priv);
4598 4599 4600 4601

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4602

4603
	ret = i915_gem_context_init(dev_priv);
4604 4605
	if (ret)
		goto out_unlock;
4606

4607
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4608
	if (ret)
4609
		goto out_unlock;
4610

4611
	ret = i915_gem_init_hw(dev_priv);
4612
	if (ret == -EIO) {
4613
		/* Allow engine initialisation to fail by marking the GPU as
4614 4615 4616 4617
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4618
		i915_gem_set_wedged(dev_priv);
4619
		ret = 0;
4620
	}
4621 4622

out_unlock:
4623
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4624
	mutex_unlock(&dev_priv->drm.struct_mutex);
4625

4626
	return ret;
4627 4628
}

4629 4630 4631 4632 4633
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4634
void
4635
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4636
{
4637
	struct intel_engine_cs *engine;
4638
	enum intel_engine_id id;
4639

4640
	for_each_engine(engine, dev_priv, id)
4641
		dev_priv->gt.cleanup_engine(engine);
4642 4643
}

4644 4645 4646
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4647
	int i;
4648 4649 4650 4651

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4652 4653 4654
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4655 4656 4657 4658
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4659
	if (intel_vgpu_active(dev_priv))
4660 4661 4662 4663
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4664 4665 4666 4667 4668 4669 4670
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4671
	i915_gem_restore_fences(dev_priv);
4672

4673
	i915_gem_detect_bit_6_swizzle(dev_priv);
4674 4675
}

4676
int
4677
i915_gem_load_init(struct drm_i915_private *dev_priv)
4678
{
4679
	int err = -ENOMEM;
4680

4681 4682
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4683 4684
		goto err_out;

4685 4686
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4687 4688
		goto err_objects;

4689 4690 4691 4692 4693
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4694 4695
		goto err_vmas;

4696 4697 4698 4699 4700 4701
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4702 4703
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4704
	err = i915_gem_timeline_init__global(dev_priv);
4705 4706
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4707
		goto err_dependencies;
4708

4709
	INIT_LIST_HEAD(&dev_priv->context_list);
4710 4711
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4712 4713
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4714
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4715
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4716
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4717
			  i915_gem_retire_work_handler);
4718
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4719
			  i915_gem_idle_work_handler);
4720
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4721
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4722

4723
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4724

4725 4726
	dev_priv->mm.interruptible = true;

4727 4728
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4729
	spin_lock_init(&dev_priv->fb_tracking.lock);
4730 4731 4732

	return 0;

4733 4734
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4735 4736 4737 4738 4739 4740 4741 4742
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4743
}
4744

4745
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4746
{
4747
	i915_gem_drain_freed_objects(dev_priv);
4748
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4749
	WARN_ON(dev_priv->mm.object_count);
4750

4751 4752 4753 4754 4755
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4756
	kmem_cache_destroy(dev_priv->dependencies);
4757 4758 4759
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4760 4761 4762

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4763 4764
}

4765 4766 4767 4768 4769 4770 4771 4772 4773
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;
}

4774 4775 4776
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4777 4778 4779 4780 4781
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4792 4793 4794
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4795 4796
	 */

4797 4798
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4799

4800
	for (p = phases; *p; p++) {
4801
		list_for_each_entry(obj, *p, global_link) {
4802 4803 4804
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4805
	}
4806
	mutex_unlock(&dev_priv->drm.struct_mutex);
4807 4808 4809 4810

	return 0;
}

4811
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4812
{
4813
	struct drm_i915_file_private *file_priv = file->driver_priv;
4814
	struct drm_i915_gem_request *request;
4815 4816 4817 4818 4819

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4820
	spin_lock(&file_priv->mm.lock);
4821
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4822
		request->file_priv = NULL;
4823
	spin_unlock(&file_priv->mm.lock);
4824

4825
	if (!list_empty(&file_priv->rps.link)) {
4826
		spin_lock(&to_i915(dev)->rps.client_lock);
4827
		list_del(&file_priv->rps.link);
4828
		spin_unlock(&to_i915(dev)->rps.client_lock);
4829
	}
4830 4831 4832 4833 4834
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4835
	int ret;
4836

4837
	DRM_DEBUG("\n");
4838 4839 4840 4841 4842 4843

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4844
	file_priv->dev_priv = to_i915(dev);
4845
	file_priv->file = file;
4846
	INIT_LIST_HEAD(&file_priv->rps.link);
4847 4848 4849 4850

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4851
	file_priv->bsd_engine = -1;
4852

4853 4854 4855
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4856

4857
	return ret;
4858 4859
}

4860 4861
/**
 * i915_gem_track_fb - update frontbuffer tracking
4862 4863 4864
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4865 4866 4867 4868
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4869 4870 4871 4872
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4873 4874 4875 4876 4877 4878 4879 4880 4881
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4882
	if (old) {
4883 4884
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4885 4886 4887
	}

	if (new) {
4888 4889
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4890 4891 4892
	}
}

4893 4894
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4895
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4896 4897 4898 4899 4900 4901 4902
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4903
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4904
	if (IS_ERR(obj))
4905 4906 4907 4908 4909 4910
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4911
	ret = i915_gem_object_pin_pages(obj);
4912 4913 4914
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4915
	sg = obj->mm.pages;
4916
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4917
	obj->mm.dirty = true; /* Backing store is now out of date */
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4929
	i915_gem_object_put(obj);
4930 4931
	return ERR_PTR(ret);
}
4932 4933 4934 4935 4936 4937

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4938
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4939 4940 4941 4942 4943
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4944
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5069
	if (!obj->mm.dirty)
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5085 5086 5087

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5088
#include "selftests/mock_gem_device.c"
5089
#include "selftests/huge_gem_object.c"
5090
#include "selftests/i915_gem_object.c"
5091
#include "selftests/i915_gem_coherency.c"
5092
#endif