i915_gem.c 142.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49

50 51
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
52
	if (obj->cache_dirty)
53 54
		return false;

55
	if (!obj->cache_coherent)
56 57 58 59 60
		return true;

	return obj->pin_display;
}

61
static int
62
insert_mappable_node(struct i915_ggtt *ggtt,
63 64 65
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
66 67 68 69
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
70 71 72 73 74 75 76 77
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

78 79
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80
				  u64 size)
81
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89
				     u64 size)
90
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
	might_sleep();

104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
109
	ret = wait_event_interruptible_timeout(error->reset_queue,
110
					       !i915_reset_backoff(error),
111
					       I915_RESET_TIMEOUT);
112 113 114 115
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
116
		return ret;
117 118
	} else {
		return 0;
119
	}
120 121
}

122
int i915_mutex_lock_interruptible(struct drm_device *dev)
123
{
124
	struct drm_i915_private *dev_priv = to_i915(dev);
125 126
	int ret;

127
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 129 130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
137

138 139
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140
			    struct drm_file *file)
141
{
142
	struct drm_i915_private *dev_priv = to_i915(dev);
143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144
	struct drm_i915_gem_get_aperture *args = data;
145
	struct i915_vma *vma;
146
	u64 pinned;
147

148
	pinned = ggtt->base.reserved;
149
	mutex_lock(&dev->struct_mutex);
150
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151
		if (i915_vma_is_pinned(vma))
152
			pinned += vma->node.size;
153
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154
		if (i915_vma_is_pinned(vma))
155
			pinned += vma->node.size;
156
	mutex_unlock(&dev->struct_mutex);
157

158
	args->aper_size = ggtt->base.total;
159
	args->aper_available_size = args->aper_size - pinned;
160

161 162 163
	return 0;
}

164
static struct sg_table *
165
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173

174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175
		return ERR_PTR(-EINVAL);
176

177 178 179 180 181 182 183 184 185 186 187
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
188 189 190 191 192
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
193 194 195 196
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
197 198 199 200 201 202

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

203
		put_page(page);
204 205 206
		vaddr += PAGE_SIZE;
	}

207
	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 209

	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 211 212 213
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
214 215 216

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
217 218
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
219 220 221 222 223
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
224

225
	sg_dma_address(sg) = phys->busaddr;
226 227
	sg_dma_len(sg) = obj->base.size;

228 229 230 231 232
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
233
	return st;
234 235
}

236 237 238 239 240 241 242 243
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

244
static void
245
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 247
				struct sg_table *pages,
				bool needs_clflush)
248
{
C
Chris Wilson 已提交
249
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250

C
Chris Wilson 已提交
251 252
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
253

254 255
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256
	    !obj->cache_coherent)
257
		drm_clflush_sg(pages);
258

259
	__start_cpu_write(obj);
260 261 262 263 264 265
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
266
	__i915_gem_object_release_shmem(obj, pages, false);
267

C
Chris Wilson 已提交
268
	if (obj->mm.dirty) {
269
		struct address_space *mapping = obj->base.filp->f_mapping;
270
		char *vaddr = obj->phys_handle->vaddr;
271 272 273
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 275 276 277 278 279 280 281 282 283 284 285 286
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
287
			if (obj->mm.madv == I915_MADV_WILLNEED)
288
				mark_page_accessed(page);
289
			put_page(page);
290 291
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
292
		obj->mm.dirty = false;
293 294
	}

295 296
	sg_free_table(pages);
	kfree(pages);
297 298

	drm_pci_free(obj->base.dev, obj->phys_handle);
299 300 301 302 303
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
304
	i915_gem_object_unpin_pages(obj);
305 306 307 308 309 310 311 312
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

313 314
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

402
	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
427
	unsigned int seq = __read_seqcount_begin(&resv->seq);
428
	struct dma_fence *excl;
429
	bool prune_fences = false;
430 431 432 433

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
434 435
		int ret;

436 437
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
438 439 440
		if (ret)
			return ret;

441 442 443 444
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
445
			if (timeout < 0)
446
				break;
447

448 449 450 451 452 453
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
454 455

		prune_fences = count && timeout >= 0;
456 457
	} else {
		excl = reservation_object_get_excl_rcu(resv);
458 459
	}

460
	if (excl && timeout >= 0) {
461
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
462 463
		prune_fences = timeout >= 0;
	}
464 465 466

	dma_fence_put(excl);

467 468 469 470
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
471
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
472 473 474 475 476
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
477 478
	}

479
	return timeout;
480 481
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

546 547 548 549 550 551
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
552
 */
553 554 555 556 557
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
558
{
559 560 561 562 563 564 565
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
566

567 568 569
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
570
	return timeout < 0 ? timeout : 0;
571 572 573 574 575 576 577 578 579
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

580 581 582 583
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
584
	int ret;
585

586 587
	if (align > obj->base.size)
		return -EINVAL;
588

589
	if (obj->ops == &i915_gem_phys_ops)
590 591
		return 0;

C
Chris Wilson 已提交
592
	if (obj->mm.madv != I915_MADV_WILLNEED)
593 594 595 596 597
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
598 599 600 601
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

602
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
603 604
	if (obj->mm.pages)
		return -EBUSY;
605

606
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
607 608
	obj->ops = &i915_gem_phys_ops;

609 610 611 612 613 614 615 616 617
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
618 619 620 621 622
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
623
		     struct drm_file *file)
624 625
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
626
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
627 628 629 630

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
631
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
632 633
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
634

635
	drm_clflush_virt_range(vaddr, args->size);
636
	i915_gem_chipset_flush(to_i915(obj->base.dev));
637

638
	intel_fb_obj_flush(obj, ORIGIN_CPU);
639
	return 0;
640 641
}

642
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
643
{
644
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
645 646 647 648
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
649
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
650
	kmem_cache_free(dev_priv->objects, obj);
651 652
}

653 654
static int
i915_gem_create(struct drm_file *file,
655
		struct drm_i915_private *dev_priv,
656 657
		uint64_t size,
		uint32_t *handle_p)
658
{
659
	struct drm_i915_gem_object *obj;
660 661
	int ret;
	u32 handle;
662

663
	size = roundup(size, PAGE_SIZE);
664 665
	if (size == 0)
		return -EINVAL;
666 667

	/* Allocate the new object */
668
	obj = i915_gem_object_create(dev_priv, size);
669 670
	if (IS_ERR(obj))
		return PTR_ERR(obj);
671

672
	ret = drm_gem_handle_create(file, &obj->base, &handle);
673
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
674
	i915_gem_object_put(obj);
675 676
	if (ret)
		return ret;
677

678
	*handle_p = handle;
679 680 681
	return 0;
}

682 683 684 685 686 687
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
688
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
689
	args->size = args->pitch * args->height;
690
	return i915_gem_create(file, to_i915(dev),
691
			       args->size, &args->handle);
692 693
}

694 695 696 697 698 699
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

700 701
/**
 * Creates a new mm object and returns a handle to it.
702 703 704
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
705 706 707 708 709
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
710
	struct drm_i915_private *dev_priv = to_i915(dev);
711
	struct drm_i915_gem_create *args = data;
712

713
	i915_gem_flush_free_objects(dev_priv);
714

715
	return i915_gem_create(file, dev_priv,
716
			       args->size, &args->handle);
717 718
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
			if (intel_runtime_pm_get_if_in_use(dev_priv)) {
				spin_lock_irq(&dev_priv->uncore.lock);
				POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
				spin_unlock_irq(&dev_priv->uncore.lock);
				intel_runtime_pm_put(dev_priv);
			}
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
769 770 771 772 773

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
774 775 776 777 778
	}

	obj->base.write_domain = 0;
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

805
static inline int
806 807
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

831 832 833 834 835 836
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
837
				    unsigned int *needs_clflush)
838 839 840
{
	int ret;

841
	lockdep_assert_held(&obj->base.dev->struct_mutex);
842

843
	*needs_clflush = 0;
844 845
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
846

847 848 849 850 851
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
852 853 854
	if (ret)
		return ret;

C
Chris Wilson 已提交
855
	ret = i915_gem_object_pin_pages(obj);
856 857 858
	if (ret)
		return ret;

859
	if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
860 861 862 863 864 865 866
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

867
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
868

869 870 871 872 873
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
874 875
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
876
		*needs_clflush = CLFLUSH_BEFORE;
877

878
out:
879
	/* return with the pages pinned */
880
	return 0;
881 882 883 884

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
885 886 887 888 889 890 891
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

892 893
	lockdep_assert_held(&obj->base.dev->struct_mutex);

894 895 896 897
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

898 899 900 901 902 903
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
904 905 906
	if (ret)
		return ret;

C
Chris Wilson 已提交
907
	ret = i915_gem_object_pin_pages(obj);
908 909 910
	if (ret)
		return ret;

911
	if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
912 913 914 915 916 917 918
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

919
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
920

921 922 923 924 925
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
926
	if (!obj->cache_dirty) {
927
		*needs_clflush |= CLFLUSH_AFTER;
928

929 930 931 932 933 934 935
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
936

937
out:
938
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
939
	obj->mm.dirty = true;
940
	/* return with the pages pinned */
941
	return 0;
942 943 944 945

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
946 947
}

948 949 950 951
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
952
	if (unlikely(swizzled)) {
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

970 971 972
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
973
shmem_pread_slow(struct page *page, int offset, int length,
974 975 976 977 978 979 980 981
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
982
		shmem_clflush_swizzled_range(vaddr + offset, length,
983
					     page_do_bit17_swizzling);
984 985

	if (page_do_bit17_swizzling)
986
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
987
	else
988
		ret = __copy_to_user(user_data, vaddr + offset, length);
989 990
	kunmap(page);

991
	return ret ? - EFAULT : 0;
992 993
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1070 1071
{
	void *vaddr;
1072
	unsigned long unwritten;
1073 1074

	/* We can use the cpu mem copy function because this is X86. */
1075 1076 1077 1078 1079 1080 1081 1082 1083
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1084 1085 1086 1087
	return unwritten;
}

static int
1088 1089
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1090
{
1091 1092
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1093
	struct drm_mm_node node;
1094 1095 1096
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1097 1098
	int ret;

1099 1100 1101 1102 1103 1104 1105
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1106 1107 1108
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1109
		ret = i915_vma_put_fence(vma);
1110 1111 1112 1113 1114
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1115
	if (IS_ERR(vma)) {
1116
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1117
		if (ret)
1118 1119
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1120 1121 1122 1123 1124 1125
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1126
	mutex_unlock(&i915->drm.struct_mutex);
1127

1128 1129 1130
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1147
					       node.start, I915_CACHE_NONE, 0);
1148 1149 1150 1151
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1152 1153 1154

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1155 1156 1157 1158 1159 1160 1161 1162 1163
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1164
	mutex_lock(&i915->drm.struct_mutex);
1165 1166 1167 1168
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1169
				       node.start, node.size);
1170 1171
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1172
		i915_vma_unpin(vma);
1173
	}
1174 1175 1176
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1177

1178 1179 1180
	return ret;
}

1181 1182
/**
 * Reads data from the object referenced by handle.
1183 1184 1185
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1186 1187 1188 1189 1190
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1191
		     struct drm_file *file)
1192 1193
{
	struct drm_i915_gem_pread *args = data;
1194
	struct drm_i915_gem_object *obj;
1195
	int ret;
1196

1197 1198 1199 1200
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1201
		       u64_to_user_ptr(args->data_ptr),
1202 1203 1204
		       args->size))
		return -EFAULT;

1205
	obj = i915_gem_object_lookup(file, args->handle);
1206 1207
	if (!obj)
		return -ENOENT;
1208

1209
	/* Bounds check source.  */
1210
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1211
		ret = -EINVAL;
1212
		goto out;
C
Chris Wilson 已提交
1213 1214
	}

C
Chris Wilson 已提交
1215 1216
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1217 1218 1219 1220
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1221
	if (ret)
1222
		goto out;
1223

1224
	ret = i915_gem_object_pin_pages(obj);
1225
	if (ret)
1226
		goto out;
1227

1228
	ret = i915_gem_shmem_pread(obj, args);
1229
	if (ret == -EFAULT || ret == -ENODEV)
1230
		ret = i915_gem_gtt_pread(obj, args);
1231

1232 1233
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1234
	i915_gem_object_put(obj);
1235
	return ret;
1236 1237
}

1238 1239
/* This is the fast write path which cannot handle
 * page faults in the source data
1240
 */
1241

1242 1243 1244 1245
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1246
{
1247
	void *vaddr;
1248
	unsigned long unwritten;
1249

1250
	/* We can use the cpu mem copy function because this is X86. */
1251 1252
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1253
						      user_data, length);
1254 1255 1256 1257 1258 1259 1260
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1261 1262 1263 1264

	return unwritten;
}

1265 1266 1267
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1268
 * @obj: i915 GEM object
1269
 * @args: pwrite arguments structure
1270
 */
1271
static int
1272 1273
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1274
{
1275
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1276 1277
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1278 1279 1280
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1281
	int ret;
1282

1283 1284 1285
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1286

1287
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1288
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1289
				       PIN_MAPPABLE | PIN_NONBLOCK);
1290 1291 1292
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1293
		ret = i915_vma_put_fence(vma);
1294 1295 1296 1297 1298
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1299
	if (IS_ERR(vma)) {
1300
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1301
		if (ret)
1302 1303
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1304
	}
D
Daniel Vetter 已提交
1305 1306 1307 1308 1309

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1310 1311
	mutex_unlock(&i915->drm.struct_mutex);

1312
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1313

1314 1315 1316 1317
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1318 1319
		/* Operation in this page
		 *
1320 1321 1322
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1323
		 */
1324
		u32 page_base = node.start;
1325 1326
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1337
		/* If we get a fault while copying data, then (presumably) our
1338 1339
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1340 1341
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1342
		 */
1343 1344 1345 1346
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1347
		}
1348

1349 1350 1351
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1352
	}
1353
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1354 1355

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1356
out_unpin:
1357 1358 1359
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1360
				       node.start, node.size);
1361 1362
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1363
		i915_vma_unpin(vma);
1364
	}
1365
out_unlock:
1366
	intel_runtime_pm_put(i915);
1367
	mutex_unlock(&i915->drm.struct_mutex);
1368
	return ret;
1369 1370
}

1371
static int
1372
shmem_pwrite_slow(struct page *page, int offset, int length,
1373 1374 1375 1376
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1377
{
1378 1379
	char *vaddr;
	int ret;
1380

1381
	vaddr = kmap(page);
1382
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1383
		shmem_clflush_swizzled_range(vaddr + offset, length,
1384
					     page_do_bit17_swizzling);
1385
	if (page_do_bit17_swizzling)
1386 1387
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1388
	else
1389
		ret = __copy_from_user(vaddr + offset, user_data, length);
1390
	if (needs_clflush_after)
1391
		shmem_clflush_swizzled_range(vaddr + offset, length,
1392
					     page_do_bit17_swizzling);
1393
	kunmap(page);
1394

1395
	return ret ? -EFAULT : 0;
1396 1397
}

1398 1399 1400 1401 1402
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1403
static int
1404 1405 1406 1407
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1408
{
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1441
	unsigned int needs_clflush;
1442 1443
	unsigned int offset, idx;
	int ret;
1444

1445
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1446 1447 1448
	if (ret)
		return ret;

1449 1450 1451 1452
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1453

1454 1455 1456
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1457

1458 1459 1460 1461 1462 1463 1464
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1465

1466 1467 1468 1469 1470 1471
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1472

1473 1474 1475
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1476

1477 1478 1479 1480
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1481
		if (ret)
1482
			break;
1483

1484 1485 1486
		remain -= length;
		user_data += length;
		offset = 0;
1487
	}
1488

1489
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1490
	i915_gem_obj_finish_shmem_access(obj);
1491
	return ret;
1492 1493 1494 1495
}

/**
 * Writes data to the object referenced by handle.
1496 1497 1498
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1499 1500 1501 1502 1503
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1504
		      struct drm_file *file)
1505 1506
{
	struct drm_i915_gem_pwrite *args = data;
1507
	struct drm_i915_gem_object *obj;
1508 1509 1510 1511 1512 1513
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1514
		       u64_to_user_ptr(args->data_ptr),
1515 1516 1517
		       args->size))
		return -EFAULT;

1518
	obj = i915_gem_object_lookup(file, args->handle);
1519 1520
	if (!obj)
		return -ENOENT;
1521

1522
	/* Bounds check destination. */
1523
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1524
		ret = -EINVAL;
1525
		goto err;
C
Chris Wilson 已提交
1526 1527
	}

C
Chris Wilson 已提交
1528 1529
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1530 1531 1532 1533 1534 1535
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1536 1537 1538 1539 1540
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1541 1542 1543
	if (ret)
		goto err;

1544
	ret = i915_gem_object_pin_pages(obj);
1545
	if (ret)
1546
		goto err;
1547

D
Daniel Vetter 已提交
1548
	ret = -EFAULT;
1549 1550 1551 1552 1553 1554
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1555
	if (!i915_gem_object_has_struct_page(obj) ||
1556
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1557 1558
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1559 1560
		 * textures). Fallback to the shmem path in that case.
		 */
1561
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1562

1563
	if (ret == -EFAULT || ret == -ENOSPC) {
1564 1565
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1566
		else
1567
			ret = i915_gem_shmem_pwrite(obj, args);
1568
	}
1569

1570
	i915_gem_object_unpin_pages(obj);
1571
err:
C
Chris Wilson 已提交
1572
	i915_gem_object_put(obj);
1573
	return ret;
1574 1575
}

1576 1577 1578 1579 1580 1581 1582 1583
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1584
			break;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1597
	list_move_tail(&obj->global_link, list);
1598 1599
}

1600
/**
1601 1602
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1603 1604 1605
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1606 1607 1608
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1609
			  struct drm_file *file)
1610 1611
{
	struct drm_i915_gem_set_domain *args = data;
1612
	struct drm_i915_gem_object *obj;
1613 1614
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1615
	int err;
1616

1617
	/* Only handle setting domains to types used by the CPU. */
1618
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1619 1620 1621 1622 1623 1624 1625 1626
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1627
	obj = i915_gem_object_lookup(file, args->handle);
1628 1629
	if (!obj)
		return -ENOENT;
1630

1631 1632 1633 1634
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1635
	err = i915_gem_object_wait(obj,
1636 1637 1638 1639
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1640
	if (err)
C
Chris Wilson 已提交
1641
		goto out;
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1653
		goto out;
1654 1655 1656

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1657
		goto out_unpin;
1658

1659 1660 1661 1662
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1663
	else
1664
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1665

1666 1667
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1668

1669
	mutex_unlock(&dev->struct_mutex);
1670

1671
	if (write_domain != 0)
1672 1673
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1674

C
Chris Wilson 已提交
1675
out_unpin:
1676
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1677 1678
out:
	i915_gem_object_put(obj);
1679
	return err;
1680 1681 1682 1683
}

/**
 * Called when user space has done writes to this buffer
1684 1685 1686
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1687 1688 1689
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1690
			 struct drm_file *file)
1691 1692
{
	struct drm_i915_gem_sw_finish *args = data;
1693
	struct drm_i915_gem_object *obj;
1694

1695
	obj = i915_gem_object_lookup(file, args->handle);
1696 1697
	if (!obj)
		return -ENOENT;
1698 1699

	/* Pinned buffers may be scanout, so flush the cache */
1700
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1701
	i915_gem_object_put(obj);
1702 1703

	return 0;
1704 1705 1706
}

/**
1707 1708 1709 1710 1711
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1712 1713 1714
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1725 1726 1727
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1728
		    struct drm_file *file)
1729 1730
{
	struct drm_i915_gem_mmap *args = data;
1731
	struct drm_i915_gem_object *obj;
1732 1733
	unsigned long addr;

1734 1735 1736
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1737
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1738 1739
		return -ENODEV;

1740 1741
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1742
		return -ENOENT;
1743

1744 1745 1746
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1747
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1748
		i915_gem_object_put(obj);
1749 1750 1751
		return -EINVAL;
	}

1752
	addr = vm_mmap(obj->base.filp, 0, args->size,
1753 1754
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1755 1756 1757 1758
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1759
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1760
			i915_gem_object_put(obj);
1761 1762
			return -EINTR;
		}
1763 1764 1765 1766 1767 1768 1769
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1770 1771

		/* This may race, but that's ok, it only gets set */
1772
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1773
	}
C
Chris Wilson 已提交
1774
	i915_gem_object_put(obj);
1775 1776 1777 1778 1779 1780 1781 1782
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1783 1784
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1785
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1808 1809 1810
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1838
	return 2;
1839 1840
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1852 1853
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1854
		min_t(unsigned int, chunk,
1855
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1856 1857 1858 1859 1860 1861 1862 1863

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1864 1865
/**
 * i915_gem_fault - fault a page into the GTT
1866
 * @vmf: fault info
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1878 1879 1880
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1881
 */
1882
int i915_gem_fault(struct vm_fault *vmf)
1883
{
1884
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1885
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1886
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1887
	struct drm_device *dev = obj->base.dev;
1888 1889
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1890
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1891
	struct i915_vma *vma;
1892
	pgoff_t page_offset;
1893
	unsigned int flags;
1894
	int ret;
1895

1896
	/* We don't use vmf->pgoff since that has the fake offset */
1897
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1898

C
Chris Wilson 已提交
1899 1900
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1901
	/* Try to flush the object off the GPU first without holding the lock.
1902
	 * Upon acquiring the lock, we will perform our sanity checks and then
1903 1904 1905
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1906 1907 1908 1909
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1910
	if (ret)
1911 1912
		goto err;

1913 1914 1915 1916
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1917 1918 1919 1920 1921
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1922

1923
	/* Access to snoopable pages through the GTT is incoherent. */
1924
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1925
		ret = -EFAULT;
1926
		goto err_unlock;
1927 1928
	}

1929 1930 1931 1932 1933 1934 1935 1936
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1937
	/* Now pin it into the GTT as needed */
1938
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1939 1940
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1941
		struct i915_ggtt_view view =
1942
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1943

1944 1945 1946 1947 1948
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1949 1950
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1951 1952
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1953
		goto err_unlock;
C
Chris Wilson 已提交
1954
	}
1955

1956 1957
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1958
		goto err_unpin;
1959

1960
	ret = i915_vma_get_fence(vma);
1961
	if (ret)
1962
		goto err_unpin;
1963

1964
	/* Mark as being mmapped into userspace for later revocation */
1965
	assert_rpm_wakelock_held(dev_priv);
1966 1967 1968
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1969
	/* Finally, remap it using the new GTT offset */
1970
	ret = remap_io_mapping(area,
1971
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1972 1973 1974
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1975

1976
err_unpin:
C
Chris Wilson 已提交
1977
	__i915_vma_unpin(vma);
1978
err_unlock:
1979
	mutex_unlock(&dev->struct_mutex);
1980 1981
err_rpm:
	intel_runtime_pm_put(dev_priv);
1982
	i915_gem_object_unpin_pages(obj);
1983
err:
1984
	switch (ret) {
1985
	case -EIO:
1986 1987 1988 1989 1990 1991 1992
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1993 1994 1995
			ret = VM_FAULT_SIGBUS;
			break;
		}
1996
	case -EAGAIN:
D
Daniel Vetter 已提交
1997 1998 1999 2000
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2001
		 */
2002 2003
	case 0:
	case -ERESTARTSYS:
2004
	case -EINTR:
2005 2006 2007 2008 2009
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2010 2011
		ret = VM_FAULT_NOPAGE;
		break;
2012
	case -ENOMEM:
2013 2014
		ret = VM_FAULT_OOM;
		break;
2015
	case -ENOSPC:
2016
	case -EFAULT:
2017 2018
		ret = VM_FAULT_SIGBUS;
		break;
2019
	default:
2020
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2021 2022
		ret = VM_FAULT_SIGBUS;
		break;
2023
	}
2024
	return ret;
2025 2026
}

2027 2028 2029 2030
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2031
 * Preserve the reservation of the mmapping with the DRM core code, but
2032 2033 2034 2035 2036 2037 2038 2039 2040
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2041
void
2042
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2043
{
2044 2045
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2046 2047 2048
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2049 2050 2051 2052
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2053
	 */
2054
	lockdep_assert_held(&i915->drm.struct_mutex);
2055
	intel_runtime_pm_get(i915);
2056

2057
	if (list_empty(&obj->userfault_link))
2058
		goto out;
2059

2060
	list_del_init(&obj->userfault_link);
2061 2062
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2063 2064 2065 2066 2067 2068 2069 2070 2071

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2072 2073 2074

out:
	intel_runtime_pm_put(i915);
2075 2076
}

2077
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2078
{
2079
	struct drm_i915_gem_object *obj, *on;
2080
	int i;
2081

2082 2083 2084 2085 2086 2087
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2088

2089 2090 2091
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2092 2093 2094
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2095 2096 2097 2098 2099 2100 2101 2102

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2113 2114 2115 2116 2117 2118 2119

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2120 2121
}

2122 2123
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2124
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2125
	int err;
2126

2127
	err = drm_gem_create_mmap_offset(&obj->base);
2128
	if (likely(!err))
2129
		return 0;
2130

2131 2132 2133 2134 2135
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2136

2137
		i915_gem_drain_freed_objects(dev_priv);
2138
		err = drm_gem_create_mmap_offset(&obj->base);
2139 2140 2141 2142
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2143

2144
	return err;
2145 2146 2147 2148 2149 2150 2151
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2152
int
2153 2154
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2155
		  uint32_t handle,
2156
		  uint64_t *offset)
2157
{
2158
	struct drm_i915_gem_object *obj;
2159 2160
	int ret;

2161
	obj = i915_gem_object_lookup(file, handle);
2162 2163
	if (!obj)
		return -ENOENT;
2164

2165
	ret = i915_gem_object_create_mmap_offset(obj);
2166 2167
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2168

C
Chris Wilson 已提交
2169
	i915_gem_object_put(obj);
2170
	return ret;
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2194
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2195 2196
}

D
Daniel Vetter 已提交
2197 2198 2199
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2200
{
2201
	i915_gem_object_free_mmap_offset(obj);
2202

2203 2204
	if (obj->base.filp == NULL)
		return;
2205

D
Daniel Vetter 已提交
2206 2207 2208 2209 2210
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2211
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2212
	obj->mm.madv = __I915_MADV_PURGED;
2213
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2214
}
2215

2216
/* Try to discard unwanted pages */
2217
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2218
{
2219 2220
	struct address_space *mapping;

2221 2222 2223
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2224
	switch (obj->mm.madv) {
2225 2226 2227 2228 2229 2230 2231 2232 2233
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2234
	mapping = obj->base.filp->f_mapping,
2235
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2236 2237
}

2238
static void
2239 2240
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2241
{
2242 2243
	struct sgt_iter sgt_iter;
	struct page *page;
2244

2245
	__i915_gem_object_release_shmem(obj, pages, true);
2246

2247
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2248

2249
	if (i915_gem_object_needs_bit17_swizzle(obj))
2250
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2251

2252
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2253
		if (obj->mm.dirty)
2254
			set_page_dirty(page);
2255

C
Chris Wilson 已提交
2256
		if (obj->mm.madv == I915_MADV_WILLNEED)
2257
			mark_page_accessed(page);
2258

2259
		put_page(page);
2260
	}
C
Chris Wilson 已提交
2261
	obj->mm.dirty = false;
2262

2263 2264
	sg_free_table(pages);
	kfree(pages);
2265
}
C
Chris Wilson 已提交
2266

2267 2268 2269 2270 2271
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2272 2273
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2274 2275
}

2276 2277
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2278
{
2279
	struct sg_table *pages;
2280

C
Chris Wilson 已提交
2281
	if (i915_gem_object_has_pinned_pages(obj))
2282
		return;
2283

2284
	GEM_BUG_ON(obj->bind_count);
2285 2286 2287 2288
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2289
	mutex_lock_nested(&obj->mm.lock, subclass);
2290 2291
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2292

2293 2294 2295
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2296 2297
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2298

C
Chris Wilson 已提交
2299
	if (obj->mm.mapping) {
2300 2301
		void *ptr;

2302
		ptr = page_mask_bits(obj->mm.mapping);
2303 2304
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2305
		else
2306 2307
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2308
		obj->mm.mapping = NULL;
2309 2310
	}

2311 2312
	__i915_gem_object_reset_page_iter(obj);

2313 2314 2315
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2316 2317
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2318 2319
}

2320
static bool i915_sg_trim(struct sg_table *orig_st)
2321 2322 2323 2324 2325 2326
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2327
		return false;
2328

2329
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2330
		return false;
2331 2332 2333 2334 2335 2336 2337

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2338
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2339 2340 2341 2342

	sg_free_table(orig_st);

	*orig_st = new_st;
2343
	return true;
2344 2345
}

2346
static struct sg_table *
C
Chris Wilson 已提交
2347
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2348
{
2349
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2350 2351
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2352
	struct address_space *mapping;
2353 2354
	struct sg_table *st;
	struct scatterlist *sg;
2355
	struct sgt_iter sgt_iter;
2356
	struct page *page;
2357
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2358
	unsigned int max_segment;
2359
	gfp_t noreclaim;
I
Imre Deak 已提交
2360
	int ret;
2361

C
Chris Wilson 已提交
2362 2363 2364 2365
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2366 2367
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2368

2369
	max_segment = swiotlb_max_segment();
2370
	if (!max_segment)
2371
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2372

2373 2374
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2375
		return ERR_PTR(-ENOMEM);
2376

2377
rebuild_st:
2378 2379
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2380
		return ERR_PTR(-ENOMEM);
2381
	}
2382

2383 2384 2385 2386 2387
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2388
	mapping = obj->base.filp->f_mapping;
2389
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2390 2391
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2392 2393 2394
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
2395 2396 2397 2398 2399 2400 2401
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2402
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
			cond_resched();
2413

C
Chris Wilson 已提交
2414 2415 2416
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2417 2418 2419 2420
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2421
			 */
2422 2423 2424
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
				 * this we want the future __GFP_MAYFAIL.
				 */
I
Imre Deak 已提交
2439
			}
2440 2441
		} while (1);

2442 2443 2444
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2445 2446 2447 2448 2449 2450 2451 2452
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2453 2454 2455

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2456
	}
2457
	if (sg) /* loop terminated early; short sg table */
2458
		sg_mark_end(sg);
2459

2460 2461 2462
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2463
	ret = i915_gem_gtt_prepare_pages(obj, st);
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2483

2484
	if (i915_gem_object_needs_bit17_swizzle(obj))
2485
		i915_gem_object_do_bit_17_swizzle(obj, st);
2486

2487
	return st;
2488

2489
err_sg:
2490
	sg_mark_end(sg);
2491
err_pages:
2492 2493
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2494 2495
	sg_free_table(st);
	kfree(st);
2496 2497 2498 2499 2500 2501 2502 2503 2504

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2505 2506 2507
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2508 2509 2510 2511 2512 2513
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2514
	lockdep_assert_held(&obj->mm.lock);
2515 2516 2517 2518 2519

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2520 2521 2522 2523 2524 2525 2526

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2527 2528 2529 2530 2531 2532
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2533 2534
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2546 2547
}

2548
/* Ensure that the associated pages are gathered from the backing storage
2549
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2550
 * multiple times before they are released by a single call to
2551
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2552 2553 2554
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2555
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2556
{
2557
	int err;
2558

2559 2560 2561
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2562

2563
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2564 2565 2566
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2567

2568 2569 2570
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2571

2572 2573
unlock:
	mutex_unlock(&obj->mm.lock);
2574
	return err;
2575 2576
}

2577
/* The 'mapping' part of i915_gem_object_pin_map() below */
2578 2579
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2580 2581
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2582
	struct sg_table *sgt = obj->mm.pages;
2583 2584
	struct sgt_iter sgt_iter;
	struct page *page;
2585 2586
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2587
	unsigned long i = 0;
2588
	pgprot_t pgprot;
2589 2590 2591
	void *addr;

	/* A single page can always be kmapped */
2592
	if (n_pages == 1 && type == I915_MAP_WB)
2593 2594
		return kmap(sg_page(sgt->sgl));

2595 2596
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
M
Michal Hocko 已提交
2597
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2598 2599 2600
		if (!pages)
			return NULL;
	}
2601

2602 2603
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2604 2605 2606 2607

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2608 2609 2610 2611 2612 2613 2614 2615 2616
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2617

2618
	if (pages != stack_pages)
M
Michal Hocko 已提交
2619
		kvfree(pages);
2620 2621 2622 2623 2624

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2625 2626
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2627
{
2628 2629 2630
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2631 2632
	int ret;

2633
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2634

2635
	ret = mutex_lock_interruptible(&obj->mm.lock);
2636 2637 2638
	if (ret)
		return ERR_PTR(ret);

2639 2640
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2641
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2642 2643 2644
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2645

2646 2647 2648
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2649 2650 2651
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2652

2653
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2654 2655 2656
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2657
			goto err_unpin;
2658
		}
2659 2660 2661 2662 2663 2664

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2665
		ptr = obj->mm.mapping = NULL;
2666 2667
	}

2668 2669 2670 2671
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2672
			goto err_unpin;
2673 2674
		}

2675
		obj->mm.mapping = page_pack_bits(ptr, type);
2676 2677
	}

2678 2679
out_unlock:
	mutex_unlock(&obj->mm.lock);
2680 2681
	return ptr;

2682 2683 2684 2685 2686
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2687 2688
}

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2758
static bool ban_context(const struct i915_gem_context *ctx)
2759
{
2760 2761
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2762 2763
}

2764
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2765
{
2766
	ctx->guilty_count++;
2767 2768 2769
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2770 2771

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2772
			 ctx->name, ctx->ban_score,
2773
			 yesno(i915_gem_context_is_banned(ctx)));
2774

2775
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2776 2777
		return;

2778 2779 2780
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2781 2782 2783 2784
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2785
	ctx->active_count++;
2786 2787
}

2788
struct drm_i915_gem_request *
2789
i915_gem_find_active_request(struct intel_engine_cs *engine)
2790
{
2791 2792
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2793

2794 2795 2796 2797 2798 2799 2800 2801
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2802
	spin_lock_irqsave(&engine->timeline->lock, flags);
2803
	list_for_each_entry(request, &engine->timeline->requests, link) {
2804 2805
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2806
			continue;
2807

2808
		GEM_BUG_ON(request->engine != engine);
2809 2810
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2811 2812 2813

		active = request;
		break;
2814
	}
2815
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2816

2817
	return active;
2818 2819
}

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2834
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2835 2836 2837
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2838
	int err = 0;
2839 2840

	/* Ensure irq handler finishes, and not run again. */
2841 2842 2843
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2855 2856 2857 2858 2859 2860 2861 2862
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2863
		tasklet_kill(&engine->irq_tasklet);
2864
		tasklet_disable(&engine->irq_tasklet);
2865

2866 2867 2868
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2869 2870 2871 2872 2873 2874 2875
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2876
	i915_gem_revoke_fences(dev_priv);
2877 2878

	return err;
2879 2880
}

2881
static void skip_request(struct drm_i915_gem_request *request)
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2896 2897

	dma_fence_set_error(&request->fence, -EIO);
2898 2899
}

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2923 2924 2925 2926 2927 2928
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2961
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2962 2963 2964
{
	struct drm_i915_gem_request *request;

2965
	request = i915_gem_find_active_request(engine);
2966 2967 2968
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2969

2970 2971 2972 2973
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2974 2975 2976

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2977
}
2978

2979
void i915_gem_reset(struct drm_i915_private *dev_priv)
2980
{
2981
	struct intel_engine_cs *engine;
2982
	enum intel_engine_id id;
2983

2984 2985
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2986 2987
	i915_gem_retire_requests(dev_priv);

2988 2989 2990
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2991
		i915_gem_reset_engine(engine);
2992 2993 2994 2995
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2996

2997
	i915_gem_restore_fences(dev_priv);
2998 2999 3000 3001 3002 3003 3004

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
3005 3006
}

3007 3008
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3009 3010 3011
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3012
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3013

3014
	for_each_engine(engine, dev_priv, id) {
3015
		tasklet_enable(&engine->irq_tasklet);
3016 3017
		kthread_unpark(engine->breadcrumbs.signaler);
	}
3018 3019
}

3020 3021
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3022
	dma_fence_set_error(&request->fence, -EIO);
3023 3024
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3025 3026
}

3027
static void engine_set_wedged(struct intel_engine_cs *engine)
3028
{
3029 3030 3031
	struct drm_i915_gem_request *request;
	unsigned long flags;

3032 3033 3034 3035 3036 3037
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3038
	engine->submit_request = nop_submit_request;
3039

3040 3041 3042 3043 3044 3045
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

3046 3047 3048 3049
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
3050
	intel_engine_init_global_seqno(engine,
3051
				       intel_engine_last_submit(engine));
3052

3053 3054 3055 3056 3057 3058
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3059
	if (i915.enable_execlists) {
3060
		struct execlist_port *port = engine->execlist_port;
3061
		unsigned long flags;
3062
		unsigned int n;
3063 3064 3065

		spin_lock_irqsave(&engine->timeline->lock, flags);

3066 3067
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
3068
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3069 3070
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
3071 3072

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3073
	}
3074 3075
}

3076
static int __i915_gem_set_wedged_BKL(void *data)
3077
{
3078
	struct drm_i915_private *i915 = data;
3079
	struct intel_engine_cs *engine;
3080
	enum intel_engine_id id;
3081

3082
	for_each_engine(engine, i915, id)
3083
		engine_set_wedged(engine);
3084 3085 3086 3087 3088 3089

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
3090 3091
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3092

3093 3094 3095 3096 3097 3098
	/* Retire completed requests first so the list of inflight/incomplete
	 * requests is accurate and we don't try and mark successful requests
	 * as in error during __i915_gem_set_wedged_BKL().
	 */
	i915_gem_retire_requests(dev_priv);

3099
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3100

3101 3102 3103
	i915_gem_context_lost(dev_priv);

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3104 3105
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3165
static void
3166 3167
i915_gem_retire_work_handler(struct work_struct *work)
{
3168
	struct drm_i915_private *dev_priv =
3169
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3170
	struct drm_device *dev = &dev_priv->drm;
3171

3172
	/* Come back later if the device is busy... */
3173
	if (mutex_trylock(&dev->struct_mutex)) {
3174
		i915_gem_retire_requests(dev_priv);
3175
		mutex_unlock(&dev->struct_mutex);
3176
	}
3177 3178 3179 3180 3181

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3182 3183
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3184 3185
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3186
				   round_jiffies_up_relative(HZ));
3187
	}
3188
}
3189

3190 3191 3192 3193
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3194
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3195
	struct drm_device *dev = &dev_priv->drm;
3196 3197 3198 3199 3200
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3201 3202 3203 3204
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3205
	wait_for(intel_engines_are_idle(dev_priv), 10);
3206
	if (READ_ONCE(dev_priv->gt.active_requests))
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3220 3221 3222 3223 3224 3225 3226
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3227
	if (dev_priv->gt.active_requests)
3228
		goto out_unlock;
3229

3230
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3231 3232
		DRM_ERROR("Timeout waiting for engines to idle\n");

3233
	intel_engines_mark_idle(dev_priv);
3234
	i915_gem_timelines_mark_idle(dev_priv);
3235

3236 3237 3238
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3239

3240 3241 3242 3243 3244
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3245

3246 3247 3248 3249
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3250
	}
3251 3252
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3263 3264 3265 3266 3267 3268

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3269 3270 3271
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3283 3284
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3285 3286 3287
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3312 3313
	ktime_t start;
	long ret;
3314

3315 3316 3317
	if (args->flags != 0)
		return -EINVAL;

3318
	obj = i915_gem_object_lookup(file, args->bo_handle);
3319
	if (!obj)
3320 3321
		return -ENOENT;

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3343 3344
	}

C
Chris Wilson 已提交
3345
	i915_gem_object_put(obj);
3346
	return ret;
3347 3348
}

3349
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3350
{
3351
	int ret, i;
3352

3353 3354 3355 3356 3357
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3358

3359 3360 3361
	return 0;
}

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
{
	return wait_for(intel_engine_is_idle(engine), timeout_ms);
}

static int wait_for_engines(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
			i915_gem_set_wedged(i915);
			return -EIO;
		}

		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
			   intel_engine_last_submit(engine));
	}

	return 0;
}

3385 3386 3387 3388
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3389 3390 3391 3392
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3403 3404 3405

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3406 3407

		ret = wait_for_engines(i915);
3408 3409
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3410
	}
3411

3412
	return ret;
3413 3414
}

3415 3416
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3417 3418 3419 3420 3421 3422 3423
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3500 3501
/**
 * Moves a single object to the GTT read, and possibly write domain.
3502 3503
 * @obj: object to act on
 * @write: ask for write access or read only
3504 3505 3506 3507
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3508
int
3509
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3510
{
3511
	int ret;
3512

3513
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3514

3515 3516 3517 3518 3519 3520
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3521 3522 3523
	if (ret)
		return ret;

3524 3525 3526
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3527 3528 3529 3530 3531 3532 3533 3534
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3535
	ret = i915_gem_object_pin_pages(obj);
3536 3537 3538
	if (ret)
		return ret;

3539
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3540

3541 3542 3543 3544 3545 3546 3547
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3548 3549 3550
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3551
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3552
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3553
	if (write) {
3554 3555
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3556
		obj->mm.dirty = true;
3557 3558
	}

C
Chris Wilson 已提交
3559
	i915_gem_object_unpin_pages(obj);
3560 3561 3562
	return 0;
}

3563 3564
/**
 * Changes the cache-level of an object across all VMA.
3565 3566
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3578 3579 3580
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3581
	struct i915_vma *vma;
3582
	int ret;
3583

3584 3585
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3586
	if (obj->cache_level == cache_level)
3587
		return 0;
3588

3589 3590 3591 3592 3593
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3594 3595
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3596 3597 3598
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3599
		if (i915_vma_is_pinned(vma)) {
3600 3601 3602 3603
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3616 3617
	}

3618 3619 3620 3621 3622 3623 3624
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3625
	if (obj->bind_count) {
3626 3627 3628 3629
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3630 3631 3632 3633 3634 3635
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3636 3637 3638
		if (ret)
			return ret;

3639 3640
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3657 3658 3659 3660 3661
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3662 3663 3664 3665 3666 3667 3668 3669
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3670 3671
		}

3672
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3673 3674 3675 3676 3677 3678 3679
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3680 3681
	}

3682
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3683 3684
		vma->node.color = cache_level;
	obj->cache_level = cache_level;
3685
	obj->cache_coherent = i915_gem_object_is_coherent(obj);
3686
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3687

3688 3689 3690
	return 0;
}

B
Ben Widawsky 已提交
3691 3692
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3693
{
B
Ben Widawsky 已提交
3694
	struct drm_i915_gem_caching *args = data;
3695
	struct drm_i915_gem_object *obj;
3696
	int err = 0;
3697

3698 3699 3700 3701 3702 3703
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3704

3705 3706 3707 3708 3709 3710
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3711 3712 3713 3714
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3715 3716 3717 3718
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3719 3720 3721
out:
	rcu_read_unlock();
	return err;
3722 3723
}

B
Ben Widawsky 已提交
3724 3725
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3726
{
3727
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3728
	struct drm_i915_gem_caching *args = data;
3729 3730
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3731
	int ret = 0;
3732

B
Ben Widawsky 已提交
3733 3734
	switch (args->caching) {
	case I915_CACHING_NONE:
3735 3736
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3737
	case I915_CACHING_CACHED:
3738 3739 3740 3741 3742 3743
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3744
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3745 3746
			return -ENODEV;

3747 3748
		level = I915_CACHE_LLC;
		break;
3749
	case I915_CACHING_DISPLAY:
3750
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3751
		break;
3752 3753 3754 3755
	default:
		return -EINVAL;
	}

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3767
	if (ret)
3768
		goto out;
B
Ben Widawsky 已提交
3769

3770 3771 3772
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3773 3774 3775

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3776 3777 3778

out:
	i915_gem_object_put(obj);
3779 3780 3781
	return ret;
}

3782
/*
3783 3784 3785
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3786
 */
C
Chris Wilson 已提交
3787
struct i915_vma *
3788 3789
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3790
				     const struct i915_ggtt_view *view)
3791
{
C
Chris Wilson 已提交
3792
	struct i915_vma *vma;
3793 3794
	int ret;

3795 3796
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3797 3798 3799
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3800
	obj->pin_display++;
3801

3802 3803 3804 3805 3806 3807 3808 3809 3810
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3811
	ret = i915_gem_object_set_cache_level(obj,
3812 3813
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3814 3815
	if (ret) {
		vma = ERR_PTR(ret);
3816
		goto err_unpin_display;
C
Chris Wilson 已提交
3817
	}
3818

3819 3820
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3821 3822 3823 3824
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3825
	 */
3826
	vma = ERR_PTR(-ENOSPC);
3827
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3828 3829
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3846
	if (IS_ERR(vma))
3847
		goto err_unpin_display;
3848

3849 3850
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3851
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3852
	__i915_gem_object_flush_for_display(obj);
3853
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3854

3855 3856 3857
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3858
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3859

C
Chris Wilson 已提交
3860
	return vma;
3861 3862

err_unpin_display:
3863
	obj->pin_display--;
C
Chris Wilson 已提交
3864
	return vma;
3865 3866 3867
}

void
C
Chris Wilson 已提交
3868
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3869
{
3870
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3871

C
Chris Wilson 已提交
3872
	if (WARN_ON(vma->obj->pin_display == 0))
3873 3874
		return;

3875
	if (--vma->obj->pin_display == 0)
3876
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3877

3878
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3879
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3880

C
Chris Wilson 已提交
3881
	i915_vma_unpin(vma);
3882 3883
}

3884 3885
/**
 * Moves a single object to the CPU read, and possibly write domain.
3886 3887
 * @obj: object to act on
 * @write: requesting write or read-only access
3888 3889 3890 3891
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3892
int
3893
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3894 3895 3896
{
	int ret;

3897
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3898

3899 3900 3901 3902 3903 3904
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3905 3906 3907
	if (ret)
		return ret;

3908
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3909

3910
	/* Flush the CPU cache if it's still invalid. */
3911
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3912
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3913
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3914 3915 3916 3917 3918
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3919
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3920 3921 3922 3923

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3924 3925
	if (write)
		__start_cpu_write(obj);
3926 3927 3928 3929

	return 0;
}

3930 3931 3932
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3933 3934 3935 3936
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3937 3938 3939
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3940
static int
3941
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3942
{
3943
	struct drm_i915_private *dev_priv = to_i915(dev);
3944
	struct drm_i915_file_private *file_priv = file->driver_priv;
3945
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3946
	struct drm_i915_gem_request *request, *target = NULL;
3947
	long ret;
3948

3949 3950 3951
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3952

3953
	spin_lock(&file_priv->mm.lock);
3954
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3955 3956
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3957

3958 3959 3960 3961
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3962

3963
		target = request;
3964
	}
3965
	if (target)
3966
		i915_gem_request_get(target);
3967
	spin_unlock(&file_priv->mm.lock);
3968

3969
	if (target == NULL)
3970
		return 0;
3971

3972 3973 3974
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3975
	i915_gem_request_put(target);
3976

3977
	return ret < 0 ? ret : 0;
3978 3979
}

C
Chris Wilson 已提交
3980
struct i915_vma *
3981 3982
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3983
			 u64 size,
3984 3985
			 u64 alignment,
			 u64 flags)
3986
{
3987 3988
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3989 3990
	struct i915_vma *vma;
	int ret;
3991

3992 3993
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3994
	vma = i915_vma_instance(obj, vm, view);
3995
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3996
		return vma;
3997 3998 3999 4000

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4001
			return ERR_PTR(-ENOSPC);
4002

4003 4004 4005 4006 4007 4008 4009 4010
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
4011
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
4030
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4031 4032 4033
				return ERR_PTR(-ENOSPC);
		}

4034 4035
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4036 4037 4038
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4039
		     !!(flags & PIN_MAPPABLE),
4040
		     i915_vma_is_map_and_fenceable(vma));
4041 4042
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4043
			return ERR_PTR(ret);
4044 4045
	}

C
Chris Wilson 已提交
4046 4047 4048
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4049

C
Chris Wilson 已提交
4050
	return vma;
4051 4052
}

4053
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4068 4069 4070 4071 4072 4073 4074 4075 4076
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4077 4078
}

4079
static __always_inline unsigned int
4080
__busy_set_if_active(const struct dma_fence *fence,
4081 4082
		     unsigned int (*flag)(unsigned int id))
{
4083
	struct drm_i915_gem_request *rq;
4084

4085 4086 4087 4088
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4089
	 *
4090
	 * Note we only report on the status of native fences.
4091
	 */
4092 4093 4094 4095 4096 4097 4098 4099
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4100
	return flag(rq->engine->uabi_id);
4101 4102
}

4103
static __always_inline unsigned int
4104
busy_check_reader(const struct dma_fence *fence)
4105
{
4106
	return __busy_set_if_active(fence, __busy_read_flag);
4107 4108
}

4109
static __always_inline unsigned int
4110
busy_check_writer(const struct dma_fence *fence)
4111
{
4112 4113 4114 4115
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4116 4117
}

4118 4119
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4120
		    struct drm_file *file)
4121 4122
{
	struct drm_i915_gem_busy *args = data;
4123
	struct drm_i915_gem_object *obj;
4124 4125
	struct reservation_object_list *list;
	unsigned int seq;
4126
	int err;
4127

4128
	err = -ENOENT;
4129 4130
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4131
	if (!obj)
4132
		goto out;
4133

4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4152

4153 4154
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4155

4156 4157 4158 4159
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4160

4161 4162 4163 4164 4165 4166
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4167
	}
4168

4169 4170 4171 4172
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4173 4174 4175
out:
	rcu_read_unlock();
	return err;
4176 4177 4178 4179 4180 4181
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4182
	return i915_gem_ring_throttle(dev, file_priv);
4183 4184
}

4185 4186 4187 4188
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4189
	struct drm_i915_private *dev_priv = to_i915(dev);
4190
	struct drm_i915_gem_madvise *args = data;
4191
	struct drm_i915_gem_object *obj;
4192
	int err;
4193 4194 4195 4196 4197 4198 4199 4200 4201

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4202
	obj = i915_gem_object_lookup(file_priv, args->handle);
4203 4204 4205 4206 4207 4208
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4209

C
Chris Wilson 已提交
4210
	if (obj->mm.pages &&
4211
	    i915_gem_object_is_tiled(obj) &&
4212
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4213 4214
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4215
			__i915_gem_object_unpin_pages(obj);
4216 4217 4218
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4219
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4220
			__i915_gem_object_pin_pages(obj);
4221 4222
			obj->mm.quirked = true;
		}
4223 4224
	}

C
Chris Wilson 已提交
4225 4226
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4227

C
Chris Wilson 已提交
4228
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4229
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4230 4231
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4232
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4233
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4234

4235
out:
4236
	i915_gem_object_put(obj);
4237
	return err;
4238 4239
}

4240 4241 4242 4243 4244 4245 4246
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4247
	intel_fb_obj_flush(obj, ORIGIN_CS);
4248 4249
}

4250 4251
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4252
{
4253 4254
	mutex_init(&obj->mm.lock);

4255
	INIT_LIST_HEAD(&obj->global_link);
4256
	INIT_LIST_HEAD(&obj->userfault_link);
4257
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4258
	INIT_LIST_HEAD(&obj->vma_list);
4259
	INIT_LIST_HEAD(&obj->batch_pool_link);
4260

4261 4262
	obj->ops = ops;

4263 4264 4265
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4266
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4267
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4268 4269 4270 4271

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4272

4273
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4274 4275
}

4276
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4277 4278
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4279

4280 4281
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4282 4283

	.pwrite = i915_gem_object_pwrite_gtt,
4284 4285
};

4286
struct drm_i915_gem_object *
4287
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4288
{
4289
	struct drm_i915_gem_object *obj;
4290
	struct address_space *mapping;
D
Daniel Vetter 已提交
4291
	gfp_t mask;
4292
	int ret;
4293

4294 4295 4296 4297 4298
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4299
	if (size >> PAGE_SHIFT > INT_MAX)
4300 4301 4302 4303 4304
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4305
	obj = i915_gem_object_alloc(dev_priv);
4306
	if (obj == NULL)
4307
		return ERR_PTR(-ENOMEM);
4308

4309
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4310 4311
	if (ret)
		goto fail;
4312

4313
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4314
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4315 4316 4317 4318 4319
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4320
	mapping = obj->base.filp->f_mapping;
4321
	mapping_set_gfp_mask(mapping, mask);
4322
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4323

4324
	i915_gem_object_init(obj, &i915_gem_object_ops);
4325

4326 4327
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4328

4329
	if (HAS_LLC(dev_priv)) {
4330
		/* On some devices, we can have the GPU use the LLC (the CPU
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4346 4347
	obj->cache_coherent = i915_gem_object_is_coherent(obj);
	obj->cache_dirty = !obj->cache_coherent;
4348

4349 4350
	trace_i915_gem_object_create(obj);

4351
	return obj;
4352 4353 4354 4355

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4356 4357
}

4358 4359 4360 4361 4362 4363 4364 4365
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4366
	if (obj->mm.madv != I915_MADV_WILLNEED)
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4382 4383
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4384
{
4385
	struct drm_i915_gem_object *obj, *on;
4386

4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4402 4403
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4404

4405
		list_del(&obj->global_link);
4406 4407 4408 4409
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4410 4411
	cond_resched();

4412 4413 4414 4415 4416 4417
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4418

4419 4420
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4421
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4422 4423 4424 4425 4426
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4427
		reservation_object_fini(&obj->__builtin_resv);
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4450

4451 4452 4453 4454 4455 4456 4457
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4458

4459
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4460
		__i915_gem_free_objects(i915, freed);
4461 4462 4463
		if (need_resched())
			break;
	}
4464
}
4465

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4480

4481 4482 4483
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4484

4485 4486 4487
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4488
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4489
		obj->mm.madv = I915_MADV_DONTNEED;
4490

4491 4492 4493 4494 4495 4496
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4497 4498
}

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4510 4511 4512 4513 4514 4515
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4516 4517
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4518 4519
}

4520 4521 4522 4523 4524 4525 4526 4527
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4528
	 * of the reset, so this could be applied to even earlier gen.
4529
	 */
4530
	if (INTEL_GEN(i915) >= 5) {
4531 4532 4533 4534 4535
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4536
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4537
{
4538
	struct drm_device *dev = &dev_priv->drm;
4539
	int ret;
4540

4541
	intel_runtime_pm_get(dev_priv);
4542 4543
	intel_suspend_gt_powersave(dev_priv);

4544
	mutex_lock(&dev->struct_mutex);
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4556
		goto err_unlock;
4557

4558 4559 4560
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4561
	if (ret)
4562
		goto err_unlock;
4563

4564
	assert_kernel_context_is_current(dev_priv);
4565
	i915_gem_context_lost(dev_priv);
4566 4567
	mutex_unlock(&dev->struct_mutex);

4568 4569
	intel_guc_suspend(dev_priv);

4570
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4571
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4572 4573 4574 4575 4576 4577 4578 4579

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4580

4581 4582 4583
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4584
	WARN_ON(dev_priv->gt.awake);
4585
	WARN_ON(!intel_engines_are_idle(dev_priv));
4586

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4606
	i915_gem_sanitize(dev_priv);
4607
	goto out_rpm_put;
4608

4609
err_unlock:
4610
	mutex_unlock(&dev->struct_mutex);
4611 4612
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4613
	return ret;
4614 4615
}

4616
void i915_gem_resume(struct drm_i915_private *dev_priv)
4617
{
4618
	struct drm_device *dev = &dev_priv->drm;
4619

4620 4621
	WARN_ON(dev_priv->gt.awake);

4622
	mutex_lock(&dev->struct_mutex);
4623
	i915_gem_restore_gtt_mappings(dev_priv);
4624 4625 4626 4627 4628

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4629
	dev_priv->gt.resume(dev_priv);
4630 4631 4632 4633

	mutex_unlock(&dev->struct_mutex);
}

4634
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4635
{
4636
	if (INTEL_GEN(dev_priv) < 5 ||
4637 4638 4639 4640 4641 4642
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4643
	if (IS_GEN5(dev_priv))
4644 4645
		return;

4646
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4647
	if (IS_GEN6(dev_priv))
4648
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4649
	else if (IS_GEN7(dev_priv))
4650
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4651
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4652
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4653 4654
	else
		BUG();
4655
}
D
Daniel Vetter 已提交
4656

4657
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4658 4659 4660 4661 4662 4663 4664
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4665
static void init_unused_rings(struct drm_i915_private *dev_priv)
4666
{
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4679 4680 4681
	}
}

4682
static int __i915_gem_restart_engines(void *data)
4683
{
4684
	struct drm_i915_private *i915 = data;
4685
	struct intel_engine_cs *engine;
4686
	enum intel_engine_id id;
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4700
	int ret;
4701

4702 4703
	dev_priv->gt.last_init_time = ktime_get();

4704 4705 4706
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4707
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4708
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4709

4710
	if (IS_HASWELL(dev_priv))
4711
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4712
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4713

4714
	if (HAS_PCH_NOP(dev_priv)) {
4715
		if (IS_IVYBRIDGE(dev_priv)) {
4716 4717 4718
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4719
		} else if (INTEL_GEN(dev_priv) >= 7) {
4720 4721 4722 4723
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4724 4725
	}

4726
	i915_gem_init_swizzling(dev_priv);
4727

4728 4729 4730 4731 4732 4733
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4734
	init_unused_rings(dev_priv);
4735

4736
	BUG_ON(!dev_priv->kernel_context);
4737

4738
	ret = i915_ppgtt_init_hw(dev_priv);
4739 4740 4741 4742 4743 4744
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4745 4746 4747
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4748

4749
	intel_mocs_init_l3cc_table(dev_priv);
4750

4751 4752 4753 4754
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4755

4756 4757
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4758
	return ret;
4759 4760
}

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4774
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4775 4776 4777 4778 4779
		return false;

	return true;
}

4780
int i915_gem_init(struct drm_i915_private *dev_priv)
4781 4782 4783
{
	int ret;

4784
	mutex_lock(&dev_priv->drm.struct_mutex);
4785

4786
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4787

4788
	if (!i915.enable_execlists) {
4789
		dev_priv->gt.resume = intel_legacy_submission_resume;
4790
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4791
	} else {
4792
		dev_priv->gt.resume = intel_lr_context_resume;
4793
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4794 4795
	}

4796 4797 4798 4799 4800 4801 4802 4803
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4804
	i915_gem_init_userptr(dev_priv);
4805 4806 4807 4808

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4809

4810
	ret = i915_gem_context_init(dev_priv);
4811 4812
	if (ret)
		goto out_unlock;
4813

4814
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4815
	if (ret)
4816
		goto out_unlock;
4817

4818
	ret = i915_gem_init_hw(dev_priv);
4819
	if (ret == -EIO) {
4820
		/* Allow engine initialisation to fail by marking the GPU as
4821 4822 4823 4824
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4825
		i915_gem_set_wedged(dev_priv);
4826
		ret = 0;
4827
	}
4828 4829

out_unlock:
4830
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4831
	mutex_unlock(&dev_priv->drm.struct_mutex);
4832

4833
	return ret;
4834 4835
}

4836 4837 4838 4839 4840
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4841
void
4842
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4843
{
4844
	struct intel_engine_cs *engine;
4845
	enum intel_engine_id id;
4846

4847
	for_each_engine(engine, dev_priv, id)
4848
		dev_priv->gt.cleanup_engine(engine);
4849 4850
}

4851 4852 4853
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4854
	int i;
4855 4856 4857 4858

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4859 4860 4861
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4862 4863 4864 4865
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4866
	if (intel_vgpu_active(dev_priv))
4867 4868 4869 4870
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4871 4872 4873 4874 4875 4876 4877
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4878
	i915_gem_restore_fences(dev_priv);
4879

4880
	i915_gem_detect_bit_6_swizzle(dev_priv);
4881 4882
}

4883
int
4884
i915_gem_load_init(struct drm_i915_private *dev_priv)
4885
{
4886
	int err = -ENOMEM;
4887

4888 4889
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4890 4891
		goto err_out;

4892 4893
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4894 4895
		goto err_objects;

4896 4897 4898
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4899
					SLAB_TYPESAFE_BY_RCU);
4900
	if (!dev_priv->requests)
4901 4902
		goto err_vmas;

4903 4904 4905 4906 4907 4908
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4909 4910 4911 4912
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4913 4914
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4915
	err = i915_gem_timeline_init__global(dev_priv);
4916 4917
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4918
		goto err_priorities;
4919

4920
	INIT_LIST_HEAD(&dev_priv->context_list);
4921 4922
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4923 4924
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4925
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4926
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4927
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4928
			  i915_gem_retire_work_handler);
4929
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4930
			  i915_gem_idle_work_handler);
4931
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4932
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4933

4934
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4935

4936 4937
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4938
	spin_lock_init(&dev_priv->fb_tracking.lock);
4939 4940 4941

	return 0;

4942 4943
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
4944 4945
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4946 4947 4948 4949 4950 4951 4952 4953
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4954
}
4955

4956
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4957
{
4958
	i915_gem_drain_freed_objects(dev_priv);
4959
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4960
	WARN_ON(dev_priv->mm.object_count);
4961

4962 4963 4964 4965 4966
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4967
	kmem_cache_destroy(dev_priv->priorities);
4968
	kmem_cache_destroy(dev_priv->dependencies);
4969 4970 4971
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4972 4973 4974

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4975 4976
}

4977 4978
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4979 4980 4981
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
4982 4983 4984 4985 4986
	i915_gem_shrink_all(dev_priv);

	return 0;
}

4987 4988 4989
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4990 4991 4992 4993 4994
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5005 5006
	 *
	 * To try and reduce the hibernation image, we manually shrink
5007
	 * the objects as well, see i915_gem_freeze()
5008 5009
	 */

5010
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5011
	i915_gem_drain_freed_objects(dev_priv);
5012

5013
	mutex_lock(&dev_priv->drm.struct_mutex);
5014
	for (p = phases; *p; p++) {
5015 5016
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
5017
	}
5018
	mutex_unlock(&dev_priv->drm.struct_mutex);
5019 5020 5021 5022

	return 0;
}

5023
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5024
{
5025
	struct drm_i915_file_private *file_priv = file->driver_priv;
5026
	struct drm_i915_gem_request *request;
5027 5028 5029 5030 5031

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5032
	spin_lock(&file_priv->mm.lock);
5033
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5034
		request->file_priv = NULL;
5035
	spin_unlock(&file_priv->mm.lock);
5036

5037
	if (!list_empty(&file_priv->rps.link)) {
5038
		spin_lock(&to_i915(dev)->rps.client_lock);
5039
		list_del(&file_priv->rps.link);
5040
		spin_unlock(&to_i915(dev)->rps.client_lock);
5041
	}
5042 5043 5044 5045 5046
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5047
	int ret;
5048

5049
	DRM_DEBUG("\n");
5050 5051 5052 5053 5054 5055

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5056
	file_priv->dev_priv = to_i915(dev);
5057
	file_priv->file = file;
5058
	INIT_LIST_HEAD(&file_priv->rps.link);
5059 5060 5061 5062

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5063
	file_priv->bsd_engine = -1;
5064

5065 5066 5067
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5068

5069
	return ret;
5070 5071
}

5072 5073
/**
 * i915_gem_track_fb - update frontbuffer tracking
5074 5075 5076
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5077 5078 5079 5080
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5081 5082 5083 5084
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5085 5086 5087 5088 5089 5090 5091 5092 5093
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5094
	if (old) {
5095 5096
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5097 5098 5099
	}

	if (new) {
5100 5101
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5102 5103 5104
	}
}

5105 5106
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5107
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5108 5109 5110
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5111 5112 5113
	struct file *file;
	size_t offset;
	int err;
5114

5115
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5116
	if (IS_ERR(obj))
5117 5118
		return obj;

5119
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5120

5121 5122 5123 5124 5125 5126
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5127

5128 5129 5130 5131 5132
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5133

5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5148 5149 5150 5151

	return obj;

fail:
5152
	i915_gem_object_put(obj);
5153
	return ERR_PTR(err);
5154
}
5155 5156 5157 5158 5159 5160

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5161
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5162 5163 5164 5165 5166
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5167
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5292
	if (!obj->mm.dirty)
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5308 5309 5310

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5311
#include "selftests/mock_gem_device.c"
5312
#include "selftests/huge_gem_object.c"
5313
#include "selftests/i915_gem_object.c"
5314
#include "selftests/i915_gem_coherency.c"
5315
#endif