i915_gem.c 143.3 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
M
Matthew Auld 已提交
38
#include "i915_gemfs.h"
39
#include <linux/dma-fence-array.h>
40
#include <linux/kthread.h>
41
#include <linux/reservation.h>
42
#include <linux/shmem_fs.h>
43
#include <linux/slab.h>
44
#include <linux/stop_machine.h>
45
#include <linux/swap.h>
J
Jesse Barnes 已提交
46
#include <linux/pci.h>
47
#include <linux/dma-buf.h>
48

49
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50

51 52
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
53
	if (obj->cache_dirty)
54 55
		return false;

56
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 58 59 60 61
		return true;

	return obj->pin_display;
}

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67 68 69 70
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81
				  u64 size)
82
{
83
	spin_lock(&dev_priv->mm.object_stat_lock);
84 85
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
86
	spin_unlock(&dev_priv->mm.object_stat_lock);
87 88 89
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90
				     u64 size)
91
{
92
	spin_lock(&dev_priv->mm.object_stat_lock);
93 94
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
95
	spin_unlock(&dev_priv->mm.object_stat_lock);
96 97
}

98
static int
99
i915_gem_wait_for_error(struct i915_gpu_error *error)
100 101 102
{
	int ret;

103 104
	might_sleep();

105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
110
	ret = wait_event_interruptible_timeout(error->reset_queue,
111
					       !i915_reset_backoff(error),
112
					       I915_RESET_TIMEOUT);
113 114 115 116
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
117
		return ret;
118 119
	} else {
		return 0;
120
	}
121 122
}

123
int i915_mutex_lock_interruptible(struct drm_device *dev)
124
{
125
	struct drm_i915_private *dev_priv = to_i915(dev);
126 127
	int ret;

128
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 130 131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
138

139 140
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141
			    struct drm_file *file)
142
{
143
	struct drm_i915_private *dev_priv = to_i915(dev);
144
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
145
	struct drm_i915_gem_get_aperture *args = data;
146
	struct i915_vma *vma;
147
	u64 pinned;
148

149
	pinned = ggtt->base.reserved;
150
	mutex_lock(&dev->struct_mutex);
151
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152
		if (i915_vma_is_pinned(vma))
153
			pinned += vma->node.size;
154
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155
		if (i915_vma_is_pinned(vma))
156
			pinned += vma->node.size;
157
	mutex_unlock(&dev->struct_mutex);
158

159
	args->aper_size = ggtt->base.total;
160
	args->aper_available_size = args->aper_size - pinned;
161

162 163 164
	return 0;
}

165
static struct sg_table *
166
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
167
{
168
	struct address_space *mapping = obj->base.filp->f_mapping;
169
	drm_dma_handle_t *phys;
170 171
	struct sg_table *st;
	struct scatterlist *sg;
172
	char *vaddr;
173
	int i;
174

175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176
		return ERR_PTR(-EINVAL);
177

178 179 180 181 182
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
183
			     roundup_pow_of_two(obj->base.size),
184 185 186 187 188
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
189 190 191 192 193
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
194 195 196 197
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
198 199 200 201 202 203

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

204
		put_page(page);
205 206 207
		vaddr += PAGE_SIZE;
	}

208
	i915_gem_chipset_flush(to_i915(obj->base.dev));
209 210

	st = kmalloc(sizeof(*st), GFP_KERNEL);
211 212 213 214
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
215 216 217

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
218 219
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
220 221 222 223 224
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
225

226
	sg_dma_address(sg) = phys->busaddr;
227 228
	sg_dma_len(sg) = obj->base.size;

229 230 231 232 233
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
234
	return st;
235 236
}

237 238 239 240 241 242 243 244
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

245
static void
246
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 248
				struct sg_table *pages,
				bool needs_clflush)
249
{
C
Chris Wilson 已提交
250
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251

C
Chris Wilson 已提交
252 253
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
254

255 256
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
258
		drm_clflush_sg(pages);
259

260
	__start_cpu_write(obj);
261 262 263 264 265 266
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
267
	__i915_gem_object_release_shmem(obj, pages, false);
268

C
Chris Wilson 已提交
269
	if (obj->mm.dirty) {
270
		struct address_space *mapping = obj->base.filp->f_mapping;
271
		char *vaddr = obj->phys_handle->vaddr;
272 273 274
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
275 276 277 278 279 280 281 282 283 284 285 286 287
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
288
			if (obj->mm.madv == I915_MADV_WILLNEED)
289
				mark_page_accessed(page);
290
			put_page(page);
291 292
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
293
		obj->mm.dirty = false;
294 295
	}

296 297
	sg_free_table(pages);
	kfree(pages);
298 299

	drm_pci_free(obj->base.dev, obj->phys_handle);
300 301 302 303 304
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
305
	i915_gem_object_unpin_pages(obj);
306 307 308 309 310 311 312 313
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

314 315
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

316
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
317 318 319
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
320 321 322
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
323

324 325 326 327
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
328
	 */
329 330 331 332 333 334
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
335 336 337 338 339
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

340 341 342 343 344 345 346 347 348 349 350 351 352
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

353 354 355 356 357
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
358
{
359
	struct drm_i915_gem_request *rq;
360

361
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
392
			gen6_rps_boost(rq, rps);
393 394
		else
			rps = NULL;
395 396
	}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
412
	unsigned int seq = __read_seqcount_begin(&resv->seq);
413
	struct dma_fence *excl;
414
	bool prune_fences = false;
415 416 417 418

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
419 420
		int ret;

421 422
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
423 424 425
		if (ret)
			return ret;

426 427 428 429
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
430
			if (timeout < 0)
431
				break;
432

433 434 435 436 437 438
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
439 440

		prune_fences = count && timeout >= 0;
441 442
	} else {
		excl = reservation_object_get_excl_rcu(resv);
443 444
	}

445
	if (excl && timeout >= 0) {
446
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
447 448
		prune_fences = timeout >= 0;
	}
449 450 451

	dma_fence_put(excl);

452 453 454 455
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
456
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
457 458 459 460 461
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
462 463
	}

464
	return timeout;
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

531 532 533 534 535 536
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
537
 */
538 539 540 541 542
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
543
{
544 545 546 547 548 549 550
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
551

552 553 554
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
555
	return timeout < 0 ? timeout : 0;
556 557 558 559 560 561 562 563 564
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

565 566 567
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
568
		     struct drm_file *file)
569 570
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
571
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
572 573 574 575

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
576
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
577 578
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
579

580
	drm_clflush_virt_range(vaddr, args->size);
581
	i915_gem_chipset_flush(to_i915(obj->base.dev));
582

583
	intel_fb_obj_flush(obj, ORIGIN_CPU);
584
	return 0;
585 586
}

587
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
588
{
589
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
590 591 592 593
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
594
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
595
	kmem_cache_free(dev_priv->objects, obj);
596 597
}

598 599
static int
i915_gem_create(struct drm_file *file,
600
		struct drm_i915_private *dev_priv,
601 602
		uint64_t size,
		uint32_t *handle_p)
603
{
604
	struct drm_i915_gem_object *obj;
605 606
	int ret;
	u32 handle;
607

608
	size = roundup(size, PAGE_SIZE);
609 610
	if (size == 0)
		return -EINVAL;
611 612

	/* Allocate the new object */
613
	obj = i915_gem_object_create(dev_priv, size);
614 615
	if (IS_ERR(obj))
		return PTR_ERR(obj);
616

617
	ret = drm_gem_handle_create(file, &obj->base, &handle);
618
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
619
	i915_gem_object_put(obj);
620 621
	if (ret)
		return ret;
622

623
	*handle_p = handle;
624 625 626
	return 0;
}

627 628 629 630 631 632
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
633
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
634
	args->size = args->pitch * args->height;
635
	return i915_gem_create(file, to_i915(dev),
636
			       args->size, &args->handle);
637 638
}

639 640 641 642 643 644
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

645 646
/**
 * Creates a new mm object and returns a handle to it.
647 648 649
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
650 651 652 653 654
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
655
	struct drm_i915_private *dev_priv = to_i915(dev);
656
	struct drm_i915_gem_create *args = data;
657

658
	i915_gem_flush_free_objects(dev_priv);
659

660
	return i915_gem_create(file, dev_priv,
661
			       args->size, &args->handle);
662 663
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
698
		if (!HAS_LLC(dev_priv)) {
699 700
			intel_runtime_pm_get(dev_priv);
			spin_lock_irq(&dev_priv->uncore.lock);
701
			POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
702 703
			spin_unlock_irq(&dev_priv->uncore.lock);
			intel_runtime_pm_put(dev_priv);
704 705 706 707 708 709 710 711 712
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
713 714 715 716 717

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
718 719 720 721 722
	}

	obj->base.write_domain = 0;
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

749
static inline int
750 751
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

775 776 777 778 779 780
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
781
				    unsigned int *needs_clflush)
782 783 784
{
	int ret;

785
	lockdep_assert_held(&obj->base.dev->struct_mutex);
786

787
	*needs_clflush = 0;
788 789
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
790

791 792 793 794 795
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
796 797 798
	if (ret)
		return ret;

C
Chris Wilson 已提交
799
	ret = i915_gem_object_pin_pages(obj);
800 801 802
	if (ret)
		return ret;

803 804
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
805 806 807 808 809 810 811
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

812
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
813

814 815 816 817 818
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
819 820
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
821
		*needs_clflush = CLFLUSH_BEFORE;
822

823
out:
824
	/* return with the pages pinned */
825
	return 0;
826 827 828 829

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
830 831 832 833 834 835 836
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

837 838
	lockdep_assert_held(&obj->base.dev->struct_mutex);

839 840 841 842
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

843 844 845 846 847 848
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
849 850 851
	if (ret)
		return ret;

C
Chris Wilson 已提交
852
	ret = i915_gem_object_pin_pages(obj);
853 854 855
	if (ret)
		return ret;

856 857
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
858 859 860 861 862 863 864
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

865
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
866

867 868 869 870 871
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
872
	if (!obj->cache_dirty) {
873
		*needs_clflush |= CLFLUSH_AFTER;
874

875 876 877 878 879 880 881
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
882

883
out:
884
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
885
	obj->mm.dirty = true;
886
	/* return with the pages pinned */
887
	return 0;
888 889 890 891

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
892 893
}

894 895 896 897
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
898
	if (unlikely(swizzled)) {
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

916 917 918
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
919
shmem_pread_slow(struct page *page, int offset, int length,
920 921 922 923 924 925 926 927
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
928
		shmem_clflush_swizzled_range(vaddr + offset, length,
929
					     page_do_bit17_swizzling);
930 931

	if (page_do_bit17_swizzling)
932
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
933
	else
934
		ret = __copy_to_user(user_data, vaddr + offset, length);
935 936
	kunmap(page);

937
	return ret ? - EFAULT : 0;
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1016
{
1017
	void __iomem *vaddr;
1018
	unsigned long unwritten;
1019 1020

	/* We can use the cpu mem copy function because this is X86. */
1021 1022 1023 1024
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1025 1026
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1027 1028 1029 1030
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1031 1032
		io_mapping_unmap(vaddr);
	}
1033 1034 1035 1036
	return unwritten;
}

static int
1037 1038
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1039
{
1040 1041
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1042
	struct drm_mm_node node;
1043 1044 1045
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1046 1047
	int ret;

1048 1049 1050 1051 1052 1053 1054
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1055 1056 1057
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1058
		ret = i915_vma_put_fence(vma);
1059 1060 1061 1062 1063
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1064
	if (IS_ERR(vma)) {
1065
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1066
		if (ret)
1067 1068
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1069 1070 1071 1072 1073 1074
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1075
	mutex_unlock(&i915->drm.struct_mutex);
1076

1077 1078 1079
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1096
					       node.start, I915_CACHE_NONE, 0);
1097 1098 1099 1100
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1101 1102 1103

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1104 1105 1106 1107 1108 1109 1110 1111 1112
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1113
	mutex_lock(&i915->drm.struct_mutex);
1114 1115 1116 1117
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1118
				       node.start, node.size);
1119 1120
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1121
		i915_vma_unpin(vma);
1122
	}
1123 1124 1125
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1126

1127 1128 1129
	return ret;
}

1130 1131
/**
 * Reads data from the object referenced by handle.
1132 1133 1134
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1135 1136 1137 1138 1139
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1140
		     struct drm_file *file)
1141 1142
{
	struct drm_i915_gem_pread *args = data;
1143
	struct drm_i915_gem_object *obj;
1144
	int ret;
1145

1146 1147 1148 1149
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1150
		       u64_to_user_ptr(args->data_ptr),
1151 1152 1153
		       args->size))
		return -EFAULT;

1154
	obj = i915_gem_object_lookup(file, args->handle);
1155 1156
	if (!obj)
		return -ENOENT;
1157

1158
	/* Bounds check source.  */
1159
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1160
		ret = -EINVAL;
1161
		goto out;
C
Chris Wilson 已提交
1162 1163
	}

C
Chris Wilson 已提交
1164 1165
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1166 1167 1168 1169
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1170
	if (ret)
1171
		goto out;
1172

1173
	ret = i915_gem_object_pin_pages(obj);
1174
	if (ret)
1175
		goto out;
1176

1177
	ret = i915_gem_shmem_pread(obj, args);
1178
	if (ret == -EFAULT || ret == -ENODEV)
1179
		ret = i915_gem_gtt_pread(obj, args);
1180

1181 1182
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1183
	i915_gem_object_put(obj);
1184
	return ret;
1185 1186
}

1187 1188
/* This is the fast write path which cannot handle
 * page faults in the source data
1189
 */
1190

1191 1192 1193 1194
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1195
{
1196
	void __iomem *vaddr;
1197
	unsigned long unwritten;
1198

1199
	/* We can use the cpu mem copy function because this is X86. */
1200 1201
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1202
						      user_data, length);
1203 1204
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1205 1206 1207
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1208 1209
		io_mapping_unmap(vaddr);
	}
1210 1211 1212 1213

	return unwritten;
}

1214 1215 1216
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1217
 * @obj: i915 GEM object
1218
 * @args: pwrite arguments structure
1219
 */
1220
static int
1221 1222
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1223
{
1224
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1225 1226
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1227 1228 1229
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1230
	int ret;
1231

1232 1233 1234
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1235

1236
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1237
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1238
				       PIN_MAPPABLE | PIN_NONBLOCK);
1239 1240 1241
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1242
		ret = i915_vma_put_fence(vma);
1243 1244 1245 1246 1247
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1248
	if (IS_ERR(vma)) {
1249
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1250
		if (ret)
1251 1252
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1253
	}
D
Daniel Vetter 已提交
1254 1255 1256 1257 1258

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1259 1260
	mutex_unlock(&i915->drm.struct_mutex);

1261
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1262

1263 1264 1265 1266
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1267 1268
		/* Operation in this page
		 *
1269 1270 1271
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1272
		 */
1273
		u32 page_base = node.start;
1274 1275
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1286
		/* If we get a fault while copying data, then (presumably) our
1287 1288
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1289 1290
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1291
		 */
1292 1293 1294 1295
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1296
		}
1297

1298 1299 1300
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1301
	}
1302
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1303 1304

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1305
out_unpin:
1306 1307 1308
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1309
				       node.start, node.size);
1310 1311
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1312
		i915_vma_unpin(vma);
1313
	}
1314
out_unlock:
1315
	intel_runtime_pm_put(i915);
1316
	mutex_unlock(&i915->drm.struct_mutex);
1317
	return ret;
1318 1319
}

1320
static int
1321
shmem_pwrite_slow(struct page *page, int offset, int length,
1322 1323 1324 1325
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1326
{
1327 1328
	char *vaddr;
	int ret;
1329

1330
	vaddr = kmap(page);
1331
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1332
		shmem_clflush_swizzled_range(vaddr + offset, length,
1333
					     page_do_bit17_swizzling);
1334
	if (page_do_bit17_swizzling)
1335 1336
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1337
	else
1338
		ret = __copy_from_user(vaddr + offset, user_data, length);
1339
	if (needs_clflush_after)
1340
		shmem_clflush_swizzled_range(vaddr + offset, length,
1341
					     page_do_bit17_swizzling);
1342
	kunmap(page);
1343

1344
	return ret ? -EFAULT : 0;
1345 1346
}

1347 1348 1349 1350 1351
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1352
static int
1353 1354 1355 1356
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1357
{
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1390
	unsigned int needs_clflush;
1391 1392
	unsigned int offset, idx;
	int ret;
1393

1394
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1395 1396 1397
	if (ret)
		return ret;

1398 1399 1400 1401
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1402

1403 1404 1405
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1406

1407 1408 1409 1410 1411 1412 1413
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1414

1415 1416 1417 1418 1419 1420
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1421

1422 1423 1424
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1425

1426 1427 1428 1429
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1430
		if (ret)
1431
			break;
1432

1433 1434 1435
		remain -= length;
		user_data += length;
		offset = 0;
1436
	}
1437

1438
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1439
	i915_gem_obj_finish_shmem_access(obj);
1440
	return ret;
1441 1442 1443 1444
}

/**
 * Writes data to the object referenced by handle.
1445 1446 1447
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1448 1449 1450 1451 1452
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1453
		      struct drm_file *file)
1454 1455
{
	struct drm_i915_gem_pwrite *args = data;
1456
	struct drm_i915_gem_object *obj;
1457 1458 1459 1460 1461 1462
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1463
		       u64_to_user_ptr(args->data_ptr),
1464 1465 1466
		       args->size))
		return -EFAULT;

1467
	obj = i915_gem_object_lookup(file, args->handle);
1468 1469
	if (!obj)
		return -ENOENT;
1470

1471
	/* Bounds check destination. */
1472
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1473
		ret = -EINVAL;
1474
		goto err;
C
Chris Wilson 已提交
1475 1476
	}

C
Chris Wilson 已提交
1477 1478
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1479 1480 1481 1482 1483 1484
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1485 1486 1487 1488 1489
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1490 1491 1492
	if (ret)
		goto err;

1493
	ret = i915_gem_object_pin_pages(obj);
1494
	if (ret)
1495
		goto err;
1496

D
Daniel Vetter 已提交
1497
	ret = -EFAULT;
1498 1499 1500 1501 1502 1503
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1504
	if (!i915_gem_object_has_struct_page(obj) ||
1505
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1506 1507
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1508 1509
		 * textures). Fallback to the shmem path in that case.
		 */
1510
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1511

1512
	if (ret == -EFAULT || ret == -ENOSPC) {
1513 1514
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1515
		else
1516
			ret = i915_gem_shmem_pwrite(obj, args);
1517
	}
1518

1519
	i915_gem_object_unpin_pages(obj);
1520
err:
C
Chris Wilson 已提交
1521
	i915_gem_object_put(obj);
1522
	return ret;
1523 1524
}

1525 1526 1527 1528 1529 1530 1531 1532
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1533
			break;
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1546
	list_move_tail(&obj->global_link, list);
1547 1548
}

1549
/**
1550 1551
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1552 1553 1554
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1555 1556 1557
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1558
			  struct drm_file *file)
1559 1560
{
	struct drm_i915_gem_set_domain *args = data;
1561
	struct drm_i915_gem_object *obj;
1562 1563
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1564
	int err;
1565

1566
	/* Only handle setting domains to types used by the CPU. */
1567
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1568 1569 1570 1571 1572 1573 1574 1575
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1576
	obj = i915_gem_object_lookup(file, args->handle);
1577 1578
	if (!obj)
		return -ENOENT;
1579

1580 1581 1582 1583
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1584
	err = i915_gem_object_wait(obj,
1585 1586 1587 1588
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1589
	if (err)
C
Chris Wilson 已提交
1590
		goto out;
1591

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1602
		goto out;
1603 1604 1605

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1606
		goto out_unpin;
1607

1608 1609 1610 1611
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1612
	else
1613
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1614

1615 1616
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1617

1618
	mutex_unlock(&dev->struct_mutex);
1619

1620
	if (write_domain != 0)
1621 1622
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1623

C
Chris Wilson 已提交
1624
out_unpin:
1625
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1626 1627
out:
	i915_gem_object_put(obj);
1628
	return err;
1629 1630 1631 1632
}

/**
 * Called when user space has done writes to this buffer
1633 1634 1635
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1636 1637 1638
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1639
			 struct drm_file *file)
1640 1641
{
	struct drm_i915_gem_sw_finish *args = data;
1642
	struct drm_i915_gem_object *obj;
1643

1644
	obj = i915_gem_object_lookup(file, args->handle);
1645 1646
	if (!obj)
		return -ENOENT;
1647 1648

	/* Pinned buffers may be scanout, so flush the cache */
1649
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1650
	i915_gem_object_put(obj);
1651 1652

	return 0;
1653 1654 1655
}

/**
1656 1657 1658 1659 1660
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1661 1662 1663
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1674 1675 1676
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1677
		    struct drm_file *file)
1678 1679
{
	struct drm_i915_gem_mmap *args = data;
1680
	struct drm_i915_gem_object *obj;
1681 1682
	unsigned long addr;

1683 1684 1685
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1686
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1687 1688
		return -ENODEV;

1689 1690
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1691
		return -ENOENT;
1692

1693 1694 1695
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1696
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1697
		i915_gem_object_put(obj);
1698 1699 1700
		return -EINVAL;
	}

1701
	addr = vm_mmap(obj->base.filp, 0, args->size,
1702 1703
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1704 1705 1706 1707
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1708
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1709
			i915_gem_object_put(obj);
1710 1711
			return -EINTR;
		}
1712 1713 1714 1715 1716 1717 1718
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1719 1720

		/* This may race, but that's ok, it only gets set */
1721
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1722
	}
C
Chris Wilson 已提交
1723
	i915_gem_object_put(obj);
1724 1725 1726 1727 1728 1729 1730 1731
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1732 1733
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1734
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1735 1736
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1757 1758 1759
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1787
	return 2;
1788 1789
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1801 1802
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1803
		min_t(unsigned int, chunk,
1804
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1805 1806 1807 1808 1809 1810 1811 1812

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1813 1814
/**
 * i915_gem_fault - fault a page into the GTT
1815
 * @vmf: fault info
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1827 1828 1829
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1830
 */
1831
int i915_gem_fault(struct vm_fault *vmf)
1832
{
1833
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1834
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1835
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1836
	struct drm_device *dev = obj->base.dev;
1837 1838
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1839
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1840
	struct i915_vma *vma;
1841
	pgoff_t page_offset;
1842
	unsigned int flags;
1843
	int ret;
1844

1845
	/* We don't use vmf->pgoff since that has the fake offset */
1846
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1847

C
Chris Wilson 已提交
1848 1849
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1850
	/* Try to flush the object off the GPU first without holding the lock.
1851
	 * Upon acquiring the lock, we will perform our sanity checks and then
1852 1853 1854
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1855 1856 1857 1858
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1859
	if (ret)
1860 1861
		goto err;

1862 1863 1864 1865
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1866 1867 1868 1869 1870
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1871

1872
	/* Access to snoopable pages through the GTT is incoherent. */
1873
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1874
		ret = -EFAULT;
1875
		goto err_unlock;
1876 1877
	}

1878 1879 1880 1881 1882 1883 1884 1885
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1886
	/* Now pin it into the GTT as needed */
1887
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1888 1889
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1890
		struct i915_ggtt_view view =
1891
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1892

1893 1894 1895 1896 1897
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1898 1899
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1900 1901
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1902
		goto err_unlock;
C
Chris Wilson 已提交
1903
	}
1904

1905 1906
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1907
		goto err_unpin;
1908

1909
	ret = i915_vma_get_fence(vma);
1910
	if (ret)
1911
		goto err_unpin;
1912

1913
	/* Mark as being mmapped into userspace for later revocation */
1914
	assert_rpm_wakelock_held(dev_priv);
1915 1916 1917
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1918
	/* Finally, remap it using the new GTT offset */
1919
	ret = remap_io_mapping(area,
1920
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1921 1922 1923
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1924

1925
err_unpin:
C
Chris Wilson 已提交
1926
	__i915_vma_unpin(vma);
1927
err_unlock:
1928
	mutex_unlock(&dev->struct_mutex);
1929 1930
err_rpm:
	intel_runtime_pm_put(dev_priv);
1931
	i915_gem_object_unpin_pages(obj);
1932
err:
1933
	switch (ret) {
1934
	case -EIO:
1935 1936 1937 1938 1939 1940 1941
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1942 1943 1944
			ret = VM_FAULT_SIGBUS;
			break;
		}
1945
	case -EAGAIN:
D
Daniel Vetter 已提交
1946 1947 1948 1949
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1950
		 */
1951 1952
	case 0:
	case -ERESTARTSYS:
1953
	case -EINTR:
1954 1955 1956 1957 1958
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1959 1960
		ret = VM_FAULT_NOPAGE;
		break;
1961
	case -ENOMEM:
1962 1963
		ret = VM_FAULT_OOM;
		break;
1964
	case -ENOSPC:
1965
	case -EFAULT:
1966 1967
		ret = VM_FAULT_SIGBUS;
		break;
1968
	default:
1969
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1970 1971
		ret = VM_FAULT_SIGBUS;
		break;
1972
	}
1973
	return ret;
1974 1975
}

1976 1977 1978 1979
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1980
 * Preserve the reservation of the mmapping with the DRM core code, but
1981 1982 1983 1984 1985 1986 1987 1988 1989
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1990
void
1991
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1992
{
1993 1994
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1995 1996 1997
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1998 1999 2000 2001
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2002
	 */
2003
	lockdep_assert_held(&i915->drm.struct_mutex);
2004
	intel_runtime_pm_get(i915);
2005

2006
	if (list_empty(&obj->userfault_link))
2007
		goto out;
2008

2009
	list_del_init(&obj->userfault_link);
2010 2011
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2012 2013 2014 2015 2016 2017 2018 2019 2020

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2021 2022 2023

out:
	intel_runtime_pm_put(i915);
2024 2025
}

2026
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2027
{
2028
	struct drm_i915_gem_object *obj, *on;
2029
	int i;
2030

2031 2032 2033 2034 2035 2036
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2037

2038 2039 2040
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2041 2042 2043
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2044 2045 2046 2047 2048 2049 2050 2051

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2062 2063 2064 2065 2066 2067 2068

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2069 2070
}

2071 2072
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2073
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2074
	int err;
2075

2076
	err = drm_gem_create_mmap_offset(&obj->base);
2077
	if (likely(!err))
2078
		return 0;
2079

2080 2081 2082 2083 2084
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2085

2086
		i915_gem_drain_freed_objects(dev_priv);
2087
		err = drm_gem_create_mmap_offset(&obj->base);
2088 2089 2090 2091
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2092

2093
	return err;
2094 2095 2096 2097 2098 2099 2100
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2101
int
2102 2103
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2104
		  uint32_t handle,
2105
		  uint64_t *offset)
2106
{
2107
	struct drm_i915_gem_object *obj;
2108 2109
	int ret;

2110
	obj = i915_gem_object_lookup(file, handle);
2111 2112
	if (!obj)
		return -ENOENT;
2113

2114
	ret = i915_gem_object_create_mmap_offset(obj);
2115 2116
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2117

C
Chris Wilson 已提交
2118
	i915_gem_object_put(obj);
2119
	return ret;
2120 2121
}

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2143
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2144 2145
}

D
Daniel Vetter 已提交
2146 2147 2148
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2149
{
2150
	i915_gem_object_free_mmap_offset(obj);
2151

2152 2153
	if (obj->base.filp == NULL)
		return;
2154

D
Daniel Vetter 已提交
2155 2156 2157 2158 2159
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2160
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2161
	obj->mm.madv = __I915_MADV_PURGED;
2162
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2163
}
2164

2165
/* Try to discard unwanted pages */
2166
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2167
{
2168 2169
	struct address_space *mapping;

2170 2171 2172
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2173
	switch (obj->mm.madv) {
2174 2175 2176 2177 2178 2179 2180 2181 2182
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2183
	mapping = obj->base.filp->f_mapping,
2184
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2185 2186
}

2187
static void
2188 2189
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2190
{
2191 2192
	struct sgt_iter sgt_iter;
	struct page *page;
2193

2194
	__i915_gem_object_release_shmem(obj, pages, true);
2195

2196
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2197

2198
	if (i915_gem_object_needs_bit17_swizzle(obj))
2199
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2200

2201
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2202
		if (obj->mm.dirty)
2203
			set_page_dirty(page);
2204

C
Chris Wilson 已提交
2205
		if (obj->mm.madv == I915_MADV_WILLNEED)
2206
			mark_page_accessed(page);
2207

2208
		put_page(page);
2209
	}
C
Chris Wilson 已提交
2210
	obj->mm.dirty = false;
2211

2212 2213
	sg_free_table(pages);
	kfree(pages);
2214
}
C
Chris Wilson 已提交
2215

2216 2217 2218
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2219
	void __rcu **slot;
2220

C
Chris Wilson 已提交
2221 2222
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2223 2224
}

2225 2226
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2227
{
2228
	struct sg_table *pages;
2229

C
Chris Wilson 已提交
2230
	if (i915_gem_object_has_pinned_pages(obj))
2231
		return;
2232

2233
	GEM_BUG_ON(obj->bind_count);
2234 2235 2236 2237
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2238
	mutex_lock_nested(&obj->mm.lock, subclass);
2239 2240
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2241

2242 2243 2244
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2245 2246
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2247

C
Chris Wilson 已提交
2248
	if (obj->mm.mapping) {
2249 2250
		void *ptr;

2251
		ptr = page_mask_bits(obj->mm.mapping);
2252 2253
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2254
		else
2255 2256
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2257
		obj->mm.mapping = NULL;
2258 2259
	}

2260 2261
	__i915_gem_object_reset_page_iter(obj);

2262 2263 2264
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2265 2266
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2267 2268
}

2269
static bool i915_sg_trim(struct sg_table *orig_st)
2270 2271 2272 2273 2274 2275
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2276
		return false;
2277

2278
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2279
		return false;
2280 2281 2282 2283 2284 2285 2286

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2287
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2288 2289 2290 2291

	sg_free_table(orig_st);

	*orig_st = new_st;
2292
	return true;
2293 2294
}

2295
static struct sg_table *
C
Chris Wilson 已提交
2296
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2297
{
2298
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2299 2300
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2301
	struct address_space *mapping;
2302 2303
	struct sg_table *st;
	struct scatterlist *sg;
2304
	struct sgt_iter sgt_iter;
2305
	struct page *page;
2306
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2307
	unsigned int max_segment = i915_sg_segment_size();
2308
	gfp_t noreclaim;
I
Imre Deak 已提交
2309
	int ret;
2310

C
Chris Wilson 已提交
2311 2312 2313 2314
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2315 2316
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2317

2318 2319
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2320
		return ERR_PTR(-ENOMEM);
2321

2322
rebuild_st:
2323 2324
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2325
		return ERR_PTR(-ENOMEM);
2326
	}
2327

2328 2329 2330 2331 2332
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2333
	mapping = obj->base.filp->f_mapping;
2334
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2335 2336
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2337 2338 2339
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
2340 2341 2342 2343 2344 2345 2346
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2347
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2348 2349 2350 2351 2352 2353 2354 2355
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2356
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2357
			cond_resched();
2358

C
Chris Wilson 已提交
2359 2360 2361
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2362 2363 2364 2365
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2366
			 */
2367 2368 2369
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2382
				 * this we want __GFP_RETRY_MAYFAIL.
2383
				 */
M
Michal Hocko 已提交
2384
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2385
			}
2386 2387
		} while (1);

2388 2389 2390
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2391 2392 2393 2394 2395 2396 2397 2398
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2399 2400 2401

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2402
	}
2403
	if (sg) /* loop terminated early; short sg table */
2404
		sg_mark_end(sg);
2405

2406 2407 2408
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2409
	ret = i915_gem_gtt_prepare_pages(obj, st);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2429

2430
	if (i915_gem_object_needs_bit17_swizzle(obj))
2431
		i915_gem_object_do_bit_17_swizzle(obj, st);
2432

2433
	return st;
2434

2435
err_sg:
2436
	sg_mark_end(sg);
2437
err_pages:
2438 2439
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2440 2441
	sg_free_table(st);
	kfree(st);
2442 2443 2444 2445 2446 2447 2448 2449 2450

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2451 2452 2453
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2454 2455 2456 2457 2458 2459
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2460
	lockdep_assert_held(&obj->mm.lock);
2461 2462 2463 2464 2465

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2466 2467 2468 2469 2470 2471 2472

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2490 2491
}

2492
/* Ensure that the associated pages are gathered from the backing storage
2493
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2494
 * multiple times before they are released by a single call to
2495
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2496 2497 2498
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2499
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2500
{
2501
	int err;
2502

2503 2504 2505
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2506

2507
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2508 2509
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2510 2511 2512
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2513

2514 2515 2516
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2517

2518 2519
unlock:
	mutex_unlock(&obj->mm.lock);
2520
	return err;
2521 2522
}

2523
/* The 'mapping' part of i915_gem_object_pin_map() below */
2524 2525
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2526 2527
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2528
	struct sg_table *sgt = obj->mm.pages;
2529 2530
	struct sgt_iter sgt_iter;
	struct page *page;
2531 2532
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2533
	unsigned long i = 0;
2534
	pgprot_t pgprot;
2535 2536 2537
	void *addr;

	/* A single page can always be kmapped */
2538
	if (n_pages == 1 && type == I915_MAP_WB)
2539 2540
		return kmap(sg_page(sgt->sgl));

2541 2542
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2543
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2544 2545 2546
		if (!pages)
			return NULL;
	}
2547

2548 2549
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2550 2551 2552 2553

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2554
	switch (type) {
2555 2556 2557
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2558 2559 2560 2561 2562 2563 2564 2565
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2566

2567
	if (pages != stack_pages)
M
Michal Hocko 已提交
2568
		kvfree(pages);
2569 2570 2571 2572 2573

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2574 2575
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2576
{
2577 2578 2579
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2580 2581
	int ret;

2582
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2583

2584
	ret = mutex_lock_interruptible(&obj->mm.lock);
2585 2586 2587
	if (ret)
		return ERR_PTR(ret);

2588 2589 2590
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2591
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2592
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2593 2594
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2595 2596 2597
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2598

2599 2600 2601
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2602 2603 2604
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2605

2606
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2607 2608 2609
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2610
			goto err_unpin;
2611
		}
2612 2613 2614 2615 2616 2617

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2618
		ptr = obj->mm.mapping = NULL;
2619 2620
	}

2621 2622 2623 2624
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2625
			goto err_unpin;
2626 2627
		}

2628
		obj->mm.mapping = page_pack_bits(ptr, type);
2629 2630
	}

2631 2632
out_unlock:
	mutex_unlock(&obj->mm.lock);
2633 2634
	return ptr;

2635 2636 2637 2638 2639
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2640 2641
}

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2711 2712
static bool ban_context(const struct i915_gem_context *ctx,
			unsigned int score)
2713
{
2714
	return (i915_gem_context_is_bannable(ctx) &&
2715
		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2716 2717
}

2718
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2719
{
2720 2721
	unsigned int score;
	bool banned;
2722

2723
	atomic_inc(&ctx->guilty_count);
2724

2725 2726 2727 2728 2729
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = ban_context(ctx, score);
	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
			 ctx->name, score, yesno(banned));
	if (!banned)
2730 2731
		return;

2732 2733 2734 2735 2736 2737
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2738 2739 2740 2741
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2742
	atomic_inc(&ctx->active_count);
2743 2744
}

2745
struct drm_i915_gem_request *
2746
i915_gem_find_active_request(struct intel_engine_cs *engine)
2747
{
2748 2749
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2750

2751 2752 2753 2754 2755 2756 2757 2758
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2759
	spin_lock_irqsave(&engine->timeline->lock, flags);
2760
	list_for_each_entry(request, &engine->timeline->requests, link) {
2761 2762
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2763
			continue;
2764

2765
		GEM_BUG_ON(request->engine != engine);
2766 2767
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2768 2769 2770

		active = request;
		break;
2771
	}
2772
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2773

2774
	return active;
2775 2776
}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

	/* Prevent the signaler thread from updating the request
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

	/* Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its engine->irq_tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the engine->irq_tasklet until the reset is over
	 * prevents the race.
	 */
2819 2820
	tasklet_kill(&engine->execlists.irq_tasklet);
	tasklet_disable(&engine->execlists.irq_tasklet);
2821 2822 2823 2824

	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2825 2826 2827
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2828 2829 2830 2831

	return request;
}

2832
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2833 2834
{
	struct intel_engine_cs *engine;
2835
	struct drm_i915_gem_request *request;
2836
	enum intel_engine_id id;
2837
	int err = 0;
2838

2839
	for_each_engine(engine, dev_priv, id) {
2840 2841 2842 2843
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2844
		}
2845 2846

		engine->hangcheck.active_request = request;
2847 2848
	}

2849
	i915_gem_revoke_fences(dev_priv);
2850 2851

	return err;
2852 2853
}

2854
static void skip_request(struct drm_i915_gem_request *request)
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2869 2870

	dma_fence_set_error(&request->fence, -EIO);
2871 2872
}

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2896 2897 2898 2899
/* Returns the request if it was guilty of the hang */
static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs *engine,
		       struct drm_i915_gem_request *request)
2900
{
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2922
	if (engine_stalled(engine)) {
2923 2924
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
2925 2926 2927 2928

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
2929
	} else {
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
2947 2948
	}

2949
	return request;
2950 2951
}

2952 2953
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
2954
{
2955 2956
	engine->irq_posted = 0;

2957 2958 2959 2960
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
2961 2962 2963
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
2964 2965 2966

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2967
}
2968

2969
void i915_gem_reset(struct drm_i915_private *dev_priv)
2970
{
2971
	struct intel_engine_cs *engine;
2972
	enum intel_engine_id id;
2973

2974 2975
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2976 2977
	i915_gem_retire_requests(dev_priv);

2978 2979 2980
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2981
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2982 2983 2984 2985
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2986

2987
	i915_gem_restore_fences(dev_priv);
2988 2989 2990 2991 2992 2993 2994

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2995 2996
}

2997 2998
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
2999
	tasklet_enable(&engine->execlists.irq_tasklet);
3000 3001 3002
	kthread_unpark(engine->breadcrumbs.signaler);
}

3003 3004
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3005 3006 3007
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3008
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3009

3010
	for_each_engine(engine, dev_priv, id) {
3011
		engine->hangcheck.active_request = NULL;
3012
		i915_gem_reset_finish_engine(engine);
3013
	}
3014 3015
}

3016 3017
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3018 3019
	unsigned long flags;

3020
	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3021
	dma_fence_set_error(&request->fence, -EIO);
3022 3023 3024

	spin_lock_irqsave(&request->engine->timeline->lock, flags);
	__i915_gem_request_submit(request);
3025
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3026
	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3027 3028
}

3029
static void engine_set_wedged(struct intel_engine_cs *engine)
3030
{
3031 3032 3033 3034 3035 3036
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3037
	engine->submit_request = nop_submit_request;
3038

3039
	/* Mark all executing requests as skipped */
3040
	engine->cancel_requests(engine);
3041 3042 3043 3044 3045 3046 3047

	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_engine_init_global_seqno(engine,
				       intel_engine_last_submit(engine));
3048 3049
}

3050
static int __i915_gem_set_wedged_BKL(void *data)
3051
{
3052
	struct drm_i915_private *i915 = data;
3053
	struct intel_engine_cs *engine;
3054
	enum intel_engine_id id;
3055

3056
	for_each_engine(engine, i915, id)
3057
		engine_set_wedged(engine);
3058

3059 3060 3061
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);

3062 3063 3064 3065 3066 3067
	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3068 3069
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3122
	i915_gem_contexts_lost(i915);
3123 3124 3125 3126 3127 3128 3129

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3130
static void
3131 3132
i915_gem_retire_work_handler(struct work_struct *work)
{
3133
	struct drm_i915_private *dev_priv =
3134
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3135
	struct drm_device *dev = &dev_priv->drm;
3136

3137
	/* Come back later if the device is busy... */
3138
	if (mutex_trylock(&dev->struct_mutex)) {
3139
		i915_gem_retire_requests(dev_priv);
3140
		mutex_unlock(&dev->struct_mutex);
3141
	}
3142 3143 3144 3145 3146

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3147 3148
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3149 3150
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3151
				   round_jiffies_up_relative(HZ));
3152
	}
3153
}
3154

3155 3156 3157 3158
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3159
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3160
	struct drm_device *dev = &dev_priv->drm;
3161 3162 3163 3164 3165
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3166 3167 3168 3169
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3170
	wait_for(intel_engines_are_idle(dev_priv), 10);
3171
	if (READ_ONCE(dev_priv->gt.active_requests))
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3185 3186 3187 3188 3189 3190 3191
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3192
	if (dev_priv->gt.active_requests)
3193
		goto out_unlock;
3194

3195
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3196 3197
		DRM_ERROR("Timeout waiting for engines to idle\n");

3198
	intel_engines_mark_idle(dev_priv);
3199
	i915_gem_timelines_mark_idle(dev_priv);
3200

3201 3202 3203
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3204

3205 3206 3207 3208 3209
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3210

3211 3212 3213 3214
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3215
	}
3216 3217
}

3218 3219
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3220
	struct drm_i915_private *i915 = to_i915(gem->dev);
3221 3222
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3223
	struct i915_lut_handle *lut, *ln;
3224

3225 3226 3227 3228 3229 3230
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3231
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3232 3233 3234 3235
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3236 3237 3238 3239 3240 3241 3242
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3243
			i915_vma_close(vma);
3244

3245 3246
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3247

3248 3249
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3250
	}
3251 3252

	mutex_unlock(&i915->drm.struct_mutex);
3253 3254
}

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3266 3267
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3268 3269 3270
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3271 3272 3273 3274 3275 3276 3277
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3278
 *  -EAGAIN: incomplete, restart syscall
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3295 3296
	ktime_t start;
	long ret;
3297

3298 3299 3300
	if (args->flags != 0)
		return -EINVAL;

3301
	obj = i915_gem_object_lookup(file, args->bo_handle);
3302
	if (!obj)
3303 3304
		return -ENOENT;

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3326 3327 3328 3329

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3330 3331
	}

C
Chris Wilson 已提交
3332
	i915_gem_object_put(obj);
3333
	return ret;
3334 3335
}

3336
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3337
{
3338
	int ret, i;
3339

3340 3341 3342 3343 3344
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3345

3346 3347 3348
	return 0;
}

3349 3350
static int wait_for_engines(struct drm_i915_private *i915)
{
3351 3352 3353 3354
	if (wait_for(intel_engines_are_idle(i915), 50)) {
		DRM_ERROR("Failed to idle engines, declaring wedged!\n");
		i915_gem_set_wedged(i915);
		return -EIO;
3355 3356 3357 3358 3359
	}

	return 0;
}

3360 3361 3362 3363
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3364 3365 3366 3367
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3378 3379 3380

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3381 3382

		ret = wait_for_engines(i915);
3383 3384
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3385
	}
3386

3387
	return ret;
3388 3389
}

3390 3391
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3392 3393 3394 3395 3396 3397 3398
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3475 3476
/**
 * Moves a single object to the GTT read, and possibly write domain.
3477 3478
 * @obj: object to act on
 * @write: ask for write access or read only
3479 3480 3481 3482
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3483
int
3484
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3485
{
3486
	int ret;
3487

3488
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3489

3490 3491 3492 3493 3494 3495
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3496 3497 3498
	if (ret)
		return ret;

3499 3500 3501
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3502 3503 3504 3505 3506 3507 3508 3509
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3510
	ret = i915_gem_object_pin_pages(obj);
3511 3512 3513
	if (ret)
		return ret;

3514
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3515

3516 3517 3518 3519 3520 3521 3522
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3523 3524 3525
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3526
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3527
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3528
	if (write) {
3529 3530
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3531
		obj->mm.dirty = true;
3532 3533
	}

C
Chris Wilson 已提交
3534
	i915_gem_object_unpin_pages(obj);
3535 3536 3537
	return 0;
}

3538 3539
/**
 * Changes the cache-level of an object across all VMA.
3540 3541
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3553 3554 3555
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3556
	struct i915_vma *vma;
3557
	int ret;
3558

3559 3560
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3561
	if (obj->cache_level == cache_level)
3562
		return 0;
3563

3564 3565 3566 3567 3568
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3569 3570
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3571 3572 3573
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3574
		if (i915_vma_is_pinned(vma)) {
3575 3576 3577 3578
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3591 3592
	}

3593 3594 3595 3596 3597 3598 3599
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3600
	if (obj->bind_count) {
3601 3602 3603 3604
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3605 3606 3607 3608 3609 3610
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3611 3612 3613
		if (ret)
			return ret;

3614 3615
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3632 3633 3634 3635 3636
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3637 3638 3639 3640 3641 3642 3643 3644
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3645 3646
		}

3647
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3648 3649 3650 3651 3652 3653 3654
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3655 3656
	}

3657
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3658
		vma->node.color = cache_level;
3659
	i915_gem_object_set_cache_coherency(obj, cache_level);
3660
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3661

3662 3663 3664
	return 0;
}

B
Ben Widawsky 已提交
3665 3666
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3667
{
B
Ben Widawsky 已提交
3668
	struct drm_i915_gem_caching *args = data;
3669
	struct drm_i915_gem_object *obj;
3670
	int err = 0;
3671

3672 3673 3674 3675 3676 3677
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3678

3679 3680 3681 3682 3683 3684
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3685 3686 3687 3688
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3689 3690 3691 3692
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3693 3694 3695
out:
	rcu_read_unlock();
	return err;
3696 3697
}

B
Ben Widawsky 已提交
3698 3699
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3700
{
3701
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3702
	struct drm_i915_gem_caching *args = data;
3703 3704
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3705
	int ret = 0;
3706

B
Ben Widawsky 已提交
3707 3708
	switch (args->caching) {
	case I915_CACHING_NONE:
3709 3710
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3711
	case I915_CACHING_CACHED:
3712 3713 3714 3715 3716 3717
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3718
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3719 3720
			return -ENODEV;

3721 3722
		level = I915_CACHE_LLC;
		break;
3723
	case I915_CACHING_DISPLAY:
3724
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3725
		break;
3726 3727 3728 3729
	default:
		return -EINVAL;
	}

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3741
	if (ret)
3742
		goto out;
B
Ben Widawsky 已提交
3743

3744 3745 3746
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3747 3748 3749

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3750 3751 3752

out:
	i915_gem_object_put(obj);
3753 3754 3755
	return ret;
}

3756
/*
3757 3758 3759
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3760
 */
C
Chris Wilson 已提交
3761
struct i915_vma *
3762 3763
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3764
				     const struct i915_ggtt_view *view)
3765
{
C
Chris Wilson 已提交
3766
	struct i915_vma *vma;
3767 3768
	int ret;

3769 3770
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3771 3772 3773
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3774
	obj->pin_display++;
3775

3776 3777 3778 3779 3780 3781 3782 3783 3784
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3785
	ret = i915_gem_object_set_cache_level(obj,
3786 3787
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3788 3789
	if (ret) {
		vma = ERR_PTR(ret);
3790
		goto err_unpin_display;
C
Chris Wilson 已提交
3791
	}
3792

3793 3794
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3795 3796 3797 3798
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3799
	 */
3800
	vma = ERR_PTR(-ENOSPC);
3801
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3802 3803
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3820
	if (IS_ERR(vma))
3821
		goto err_unpin_display;
3822

3823 3824
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3825
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3826
	__i915_gem_object_flush_for_display(obj);
3827
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3828

3829 3830 3831
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3832
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3833

C
Chris Wilson 已提交
3834
	return vma;
3835 3836

err_unpin_display:
3837
	obj->pin_display--;
C
Chris Wilson 已提交
3838
	return vma;
3839 3840 3841
}

void
C
Chris Wilson 已提交
3842
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3843
{
3844
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3845

C
Chris Wilson 已提交
3846
	if (WARN_ON(vma->obj->pin_display == 0))
3847 3848
		return;

3849
	if (--vma->obj->pin_display == 0)
3850
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3851

3852
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3853
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3854

C
Chris Wilson 已提交
3855
	i915_vma_unpin(vma);
3856 3857
}

3858 3859
/**
 * Moves a single object to the CPU read, and possibly write domain.
3860 3861
 * @obj: object to act on
 * @write: requesting write or read-only access
3862 3863 3864 3865
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3866
int
3867
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3868 3869 3870
{
	int ret;

3871
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3872

3873 3874 3875 3876 3877 3878
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3879 3880 3881
	if (ret)
		return ret;

3882
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3883

3884
	/* Flush the CPU cache if it's still invalid. */
3885
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3886
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3887
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3888 3889 3890 3891 3892
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3893
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3894 3895 3896 3897

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3898 3899
	if (write)
		__start_cpu_write(obj);
3900 3901 3902 3903

	return 0;
}

3904 3905 3906
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3907 3908 3909 3910
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3911 3912 3913
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3914
static int
3915
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3916
{
3917
	struct drm_i915_private *dev_priv = to_i915(dev);
3918
	struct drm_i915_file_private *file_priv = file->driver_priv;
3919
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3920
	struct drm_i915_gem_request *request, *target = NULL;
3921
	long ret;
3922

3923 3924 3925
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3926

3927
	spin_lock(&file_priv->mm.lock);
3928
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3929 3930
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3931

3932 3933 3934 3935
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3936

3937
		target = request;
3938
	}
3939
	if (target)
3940
		i915_gem_request_get(target);
3941
	spin_unlock(&file_priv->mm.lock);
3942

3943
	if (target == NULL)
3944
		return 0;
3945

3946 3947 3948
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3949
	i915_gem_request_put(target);
3950

3951
	return ret < 0 ? ret : 0;
3952 3953
}

C
Chris Wilson 已提交
3954
struct i915_vma *
3955 3956
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3957
			 u64 size,
3958 3959
			 u64 alignment,
			 u64 flags)
3960
{
3961 3962
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3963 3964
	struct i915_vma *vma;
	int ret;
3965

3966 3967
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3968
	vma = i915_vma_instance(obj, vm, view);
3969
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3970
		return vma;
3971 3972 3973 3974

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3975
			return ERR_PTR(-ENOSPC);
3976

3977 3978 3979 3980 3981 3982 3983 3984
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3985
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
4004
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4005 4006 4007
				return ERR_PTR(-ENOSPC);
		}

4008 4009
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4010 4011 4012
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4013
		     !!(flags & PIN_MAPPABLE),
4014
		     i915_vma_is_map_and_fenceable(vma));
4015 4016
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4017
			return ERR_PTR(ret);
4018 4019
	}

C
Chris Wilson 已提交
4020 4021 4022
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4023

C
Chris Wilson 已提交
4024
	return vma;
4025 4026
}

4027
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4042 4043 4044 4045 4046 4047 4048 4049 4050
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4051 4052
}

4053
static __always_inline unsigned int
4054
__busy_set_if_active(const struct dma_fence *fence,
4055 4056
		     unsigned int (*flag)(unsigned int id))
{
4057
	struct drm_i915_gem_request *rq;
4058

4059 4060 4061 4062
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4063
	 *
4064
	 * Note we only report on the status of native fences.
4065
	 */
4066 4067 4068 4069 4070 4071 4072 4073
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4074
	return flag(rq->engine->uabi_id);
4075 4076
}

4077
static __always_inline unsigned int
4078
busy_check_reader(const struct dma_fence *fence)
4079
{
4080
	return __busy_set_if_active(fence, __busy_read_flag);
4081 4082
}

4083
static __always_inline unsigned int
4084
busy_check_writer(const struct dma_fence *fence)
4085
{
4086 4087 4088 4089
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4090 4091
}

4092 4093
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4094
		    struct drm_file *file)
4095 4096
{
	struct drm_i915_gem_busy *args = data;
4097
	struct drm_i915_gem_object *obj;
4098 4099
	struct reservation_object_list *list;
	unsigned int seq;
4100
	int err;
4101

4102
	err = -ENOENT;
4103 4104
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4105
	if (!obj)
4106
		goto out;
4107

4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4126

4127 4128
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4129

4130 4131 4132 4133
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4134

4135 4136 4137 4138 4139 4140
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4141
	}
4142

4143 4144 4145 4146
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4147 4148 4149
out:
	rcu_read_unlock();
	return err;
4150 4151 4152 4153 4154 4155
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4156
	return i915_gem_ring_throttle(dev, file_priv);
4157 4158
}

4159 4160 4161 4162
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4163
	struct drm_i915_private *dev_priv = to_i915(dev);
4164
	struct drm_i915_gem_madvise *args = data;
4165
	struct drm_i915_gem_object *obj;
4166
	int err;
4167 4168 4169 4170 4171 4172 4173 4174 4175

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4176
	obj = i915_gem_object_lookup(file_priv, args->handle);
4177 4178 4179 4180 4181 4182
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4183

C
Chris Wilson 已提交
4184
	if (obj->mm.pages &&
4185
	    i915_gem_object_is_tiled(obj) &&
4186
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4187 4188
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4189
			__i915_gem_object_unpin_pages(obj);
4190 4191 4192
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4193
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4194
			__i915_gem_object_pin_pages(obj);
4195 4196
			obj->mm.quirked = true;
		}
4197 4198
	}

C
Chris Wilson 已提交
4199 4200
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4201

C
Chris Wilson 已提交
4202
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4203
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4204 4205
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4206
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4207
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4208

4209
out:
4210
	i915_gem_object_put(obj);
4211
	return err;
4212 4213
}

4214 4215 4216 4217 4218 4219 4220
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4221
	intel_fb_obj_flush(obj, ORIGIN_CS);
4222 4223
}

4224 4225
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4226
{
4227 4228
	mutex_init(&obj->mm.lock);

4229
	INIT_LIST_HEAD(&obj->global_link);
4230
	INIT_LIST_HEAD(&obj->userfault_link);
B
Ben Widawsky 已提交
4231
	INIT_LIST_HEAD(&obj->vma_list);
4232
	INIT_LIST_HEAD(&obj->lut_list);
4233
	INIT_LIST_HEAD(&obj->batch_pool_link);
4234

4235 4236
	obj->ops = ops;

4237 4238 4239
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4240
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4241
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4242 4243 4244 4245

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4246

4247
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4248 4249
}

4250
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4251 4252
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4253

4254 4255
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4256 4257

	.pwrite = i915_gem_object_pwrite_gtt,
4258 4259
};

M
Matthew Auld 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4284
struct drm_i915_gem_object *
4285
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4286
{
4287
	struct drm_i915_gem_object *obj;
4288
	struct address_space *mapping;
4289
	unsigned int cache_level;
D
Daniel Vetter 已提交
4290
	gfp_t mask;
4291
	int ret;
4292

4293 4294 4295 4296 4297
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4298
	if (size >> PAGE_SHIFT > INT_MAX)
4299 4300 4301 4302 4303
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4304
	obj = i915_gem_object_alloc(dev_priv);
4305
	if (obj == NULL)
4306
		return ERR_PTR(-ENOMEM);
4307

M
Matthew Auld 已提交
4308
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4309 4310
	if (ret)
		goto fail;
4311

4312
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4313
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4314 4315 4316 4317 4318
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4319
	mapping = obj->base.filp->f_mapping;
4320
	mapping_set_gfp_mask(mapping, mask);
4321
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4322

4323
	i915_gem_object_init(obj, &i915_gem_object_ops);
4324

4325 4326
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4327

4328
	if (HAS_LLC(dev_priv))
4329
		/* On some devices, we can have the GPU use the LLC (the CPU
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4341 4342 4343
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4344

4345
	i915_gem_object_set_cache_coherency(obj, cache_level);
4346

4347 4348
	trace_i915_gem_object_create(obj);

4349
	return obj;
4350 4351 4352 4353

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4354 4355
}

4356 4357 4358 4359 4360 4361 4362 4363
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4364
	if (obj->mm.madv != I915_MADV_WILLNEED)
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4380 4381
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4382
{
4383
	struct drm_i915_gem_object *obj, *on;
4384

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4399 4400
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4401

4402
		list_del(&obj->global_link);
4403 4404 4405 4406
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4407 4408
	cond_resched();

4409 4410 4411
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4412
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4413 4414 4415

		if (obj->ops->release)
			obj->ops->release(obj);
4416

4417 4418
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4419
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4420 4421 4422 4423 4424
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4425
		reservation_object_fini(&obj->__builtin_resv);
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4448

4449 4450 4451 4452 4453 4454 4455
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4456

4457
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4458
		__i915_gem_free_objects(i915, freed);
4459 4460 4461
		if (need_resched())
			break;
	}
4462
}
4463

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4478

4479 4480 4481
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4482

4483 4484 4485
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4486
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4487
		obj->mm.madv = I915_MADV_DONTNEED;
4488

4489 4490 4491 4492 4493 4494
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4495 4496
}

4497 4498 4499 4500
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4501 4502
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4503 4504 4505 4506 4507
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4508 4509 4510 4511 4512 4513
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4514 4515
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4516 4517
}

4518 4519
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4520 4521 4522 4523 4524 4525
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4526 4527 4528 4529 4530 4531
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4532
	 * of the reset, so this could be applied to even earlier gen.
4533
	 */
4534
	if (INTEL_GEN(i915) >= 5) {
4535 4536 4537 4538 4539
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4540
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4541
{
4542
	struct drm_device *dev = &dev_priv->drm;
4543
	int ret;
4544

4545
	intel_runtime_pm_get(dev_priv);
4546 4547
	intel_suspend_gt_powersave(dev_priv);

4548
	mutex_lock(&dev->struct_mutex);
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4560
		goto err_unlock;
4561

4562 4563 4564
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4565
	if (ret && ret != -EIO)
4566
		goto err_unlock;
4567

4568
	assert_kernel_context_is_current(dev_priv);
4569
	i915_gem_contexts_lost(dev_priv);
4570 4571
	mutex_unlock(&dev->struct_mutex);

4572 4573
	intel_guc_suspend(dev_priv);

4574
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4575
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4576 4577 4578 4579

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
4580
	drain_delayed_work(&dev_priv->gt.idle_work);
4581

4582 4583 4584
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4585
	WARN_ON(dev_priv->gt.awake);
4586 4587
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4588

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4608
	i915_gem_sanitize(dev_priv);
4609 4610 4611

	intel_runtime_pm_put(dev_priv);
	return 0;
4612

4613
err_unlock:
4614
	mutex_unlock(&dev->struct_mutex);
4615
	intel_runtime_pm_put(dev_priv);
4616
	return ret;
4617 4618
}

4619
void i915_gem_resume(struct drm_i915_private *dev_priv)
4620
{
4621
	struct drm_device *dev = &dev_priv->drm;
4622

4623 4624
	WARN_ON(dev_priv->gt.awake);

4625
	mutex_lock(&dev->struct_mutex);
4626
	i915_gem_restore_gtt_mappings(dev_priv);
4627
	i915_gem_restore_fences(dev_priv);
4628 4629 4630 4631 4632

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4633
	dev_priv->gt.resume(dev_priv);
4634 4635 4636 4637

	mutex_unlock(&dev->struct_mutex);
}

4638
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4639
{
4640
	if (INTEL_GEN(dev_priv) < 5 ||
4641 4642 4643 4644 4645 4646
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4647
	if (IS_GEN5(dev_priv))
4648 4649
		return;

4650
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4651
	if (IS_GEN6(dev_priv))
4652
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4653
	else if (IS_GEN7(dev_priv))
4654
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4655
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4656
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4657 4658
	else
		BUG();
4659
}
D
Daniel Vetter 已提交
4660

4661
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4662 4663 4664 4665 4666 4667 4668
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4669
static void init_unused_rings(struct drm_i915_private *dev_priv)
4670
{
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4683 4684 4685
	}
}

4686
static int __i915_gem_restart_engines(void *data)
4687
{
4688
	struct drm_i915_private *i915 = data;
4689
	struct intel_engine_cs *engine;
4690
	enum intel_engine_id id;
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4704
	int ret;
4705

4706 4707
	dev_priv->gt.last_init_time = ktime_get();

4708 4709 4710
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4711
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4712
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4713

4714
	if (IS_HASWELL(dev_priv))
4715
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4716
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4717

4718
	if (HAS_PCH_NOP(dev_priv)) {
4719
		if (IS_IVYBRIDGE(dev_priv)) {
4720 4721 4722
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4723
		} else if (INTEL_GEN(dev_priv) >= 7) {
4724 4725 4726 4727
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4728 4729
	}

4730
	i915_gem_init_swizzling(dev_priv);
4731

4732 4733 4734 4735 4736 4737
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4738
	init_unused_rings(dev_priv);
4739

4740
	BUG_ON(!dev_priv->kernel_context);
4741

4742
	ret = i915_ppgtt_init_hw(dev_priv);
4743 4744 4745 4746 4747 4748
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4749 4750 4751
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4752

4753
	intel_mocs_init_l3cc_table(dev_priv);
4754

4755 4756 4757 4758
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4759

4760 4761
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4762
	return ret;
4763 4764
}

4765 4766 4767 4768 4769 4770
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
4771
	if (i915_modparams.enable_execlists)
4772 4773 4774 4775 4776 4777
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4778
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4779 4780 4781 4782 4783
		return false;

	return true;
}

4784
int i915_gem_init(struct drm_i915_private *dev_priv)
4785 4786 4787
{
	int ret;

4788
	mutex_lock(&dev_priv->drm.struct_mutex);
4789

4790
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4791

4792
	if (!i915_modparams.enable_execlists) {
4793
		dev_priv->gt.resume = intel_legacy_submission_resume;
4794
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4795
	} else {
4796
		dev_priv->gt.resume = intel_lr_context_resume;
4797
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4798 4799
	}

4800 4801 4802 4803 4804 4805 4806 4807
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4808 4809 4810
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
4811 4812 4813 4814

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4815

4816
	ret = i915_gem_contexts_init(dev_priv);
4817 4818
	if (ret)
		goto out_unlock;
4819

4820
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4821
	if (ret)
4822
		goto out_unlock;
4823

4824
	ret = i915_gem_init_hw(dev_priv);
4825
	if (ret == -EIO) {
4826
		/* Allow engine initialisation to fail by marking the GPU as
4827 4828 4829 4830
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4831
		i915_gem_set_wedged(dev_priv);
4832
		ret = 0;
4833
	}
4834 4835

out_unlock:
4836
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837
	mutex_unlock(&dev_priv->drm.struct_mutex);
4838

4839
	return ret;
4840 4841
}

4842 4843 4844 4845 4846
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4847
void
4848
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4849
{
4850
	struct intel_engine_cs *engine;
4851
	enum intel_engine_id id;
4852

4853
	for_each_engine(engine, dev_priv, id)
4854
		dev_priv->gt.cleanup_engine(engine);
4855 4856
}

4857 4858 4859
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4860
	int i;
4861 4862 4863 4864

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4865 4866 4867
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4868 4869 4870 4871
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4872
	if (intel_vgpu_active(dev_priv))
4873 4874 4875 4876
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4877 4878 4879 4880 4881 4882 4883
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4884
	i915_gem_restore_fences(dev_priv);
4885

4886
	i915_gem_detect_bit_6_swizzle(dev_priv);
4887 4888
}

4889
int
4890
i915_gem_load_init(struct drm_i915_private *dev_priv)
4891
{
4892
	int err = -ENOMEM;
4893

4894 4895
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4896 4897
		goto err_out;

4898 4899
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4900 4901
		goto err_objects;

4902 4903 4904 4905
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

4906 4907 4908
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4909
					SLAB_TYPESAFE_BY_RCU);
4910
	if (!dev_priv->requests)
4911
		goto err_luts;
4912

4913 4914 4915 4916 4917 4918
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4919 4920 4921 4922
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4923 4924
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4925
	err = i915_gem_timeline_init__global(dev_priv);
4926 4927
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4928
		goto err_priorities;
4929

4930 4931
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4932 4933
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4934
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4935
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4936
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4937
			  i915_gem_retire_work_handler);
4938
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4939
			  i915_gem_idle_work_handler);
4940
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4941
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4942

4943 4944
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4945
	spin_lock_init(&dev_priv->fb_tracking.lock);
4946

M
Matthew Auld 已提交
4947 4948 4949 4950
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

4951 4952
	return 0;

4953 4954
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
4955 4956
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4957 4958
err_requests:
	kmem_cache_destroy(dev_priv->requests);
4959 4960
err_luts:
	kmem_cache_destroy(dev_priv->luts);
4961 4962 4963 4964 4965 4966
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4967
}
4968

4969
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4970
{
4971
	i915_gem_drain_freed_objects(dev_priv);
4972
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4973
	WARN_ON(dev_priv->mm.object_count);
4974

4975 4976 4977 4978 4979
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4980
	kmem_cache_destroy(dev_priv->priorities);
4981
	kmem_cache_destroy(dev_priv->dependencies);
4982
	kmem_cache_destroy(dev_priv->requests);
4983
	kmem_cache_destroy(dev_priv->luts);
4984 4985
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4986 4987 4988

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
4989 4990

	i915_gemfs_fini(dev_priv);
4991 4992
}

4993 4994
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4995 4996 4997
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
4998 4999 5000 5001 5002
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5003 5004 5005
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5006 5007 5008 5009 5010
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5021 5022
	 *
	 * To try and reduce the hibernation image, we manually shrink
5023
	 * the objects as well, see i915_gem_freeze()
5024 5025
	 */

5026
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5027
	i915_gem_drain_freed_objects(dev_priv);
5028

5029
	mutex_lock(&dev_priv->drm.struct_mutex);
5030
	for (p = phases; *p; p++) {
5031 5032
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
5033
	}
5034
	mutex_unlock(&dev_priv->drm.struct_mutex);
5035 5036 5037 5038

	return 0;
}

5039
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5040
{
5041
	struct drm_i915_file_private *file_priv = file->driver_priv;
5042
	struct drm_i915_gem_request *request;
5043 5044 5045 5046 5047

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5048
	spin_lock(&file_priv->mm.lock);
5049
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5050
		request->file_priv = NULL;
5051
	spin_unlock(&file_priv->mm.lock);
5052 5053
}

5054
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5055 5056
{
	struct drm_i915_file_private *file_priv;
5057
	int ret;
5058

5059
	DRM_DEBUG("\n");
5060 5061 5062 5063 5064 5065

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5066
	file_priv->dev_priv = i915;
5067
	file_priv->file = file;
5068 5069 5070 5071

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5072
	file_priv->bsd_engine = -1;
5073

5074
	ret = i915_gem_context_open(i915, file);
5075 5076
	if (ret)
		kfree(file_priv);
5077

5078
	return ret;
5079 5080
}

5081 5082
/**
 * i915_gem_track_fb - update frontbuffer tracking
5083 5084 5085
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5086 5087 5088 5089
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5090 5091 5092 5093
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5094 5095 5096 5097 5098 5099 5100 5101 5102
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5103
	if (old) {
5104 5105
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5106 5107 5108
	}

	if (new) {
5109 5110
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5111 5112 5113
	}
}

5114 5115
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5116
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5117 5118 5119
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5120 5121 5122
	struct file *file;
	size_t offset;
	int err;
5123

5124
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5125
	if (IS_ERR(obj))
5126 5127
		return obj;

5128
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5129

5130 5131 5132 5133 5134 5135
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5136

5137 5138 5139 5140 5141
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5142

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5157 5158 5159 5160

	return obj;

fail:
5161
	i915_gem_object_put(obj);
5162
	return ERR_PTR(err);
5163
}
5164 5165 5166 5167 5168 5169

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5170
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5171 5172 5173 5174 5175
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5176
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5301
	if (!obj->mm.dirty)
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5317

5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

	pages = obj->mm.pages;
	obj->ops = &i915_gem_phys_ops;

5356
	err = ____i915_gem_object_get_pages(obj);
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5376 5377
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5378
#include "selftests/mock_gem_device.c"
5379
#include "selftests/huge_gem_object.c"
5380
#include "selftests/i915_gem_object.c"
5381
#include "selftests/i915_gem_coherency.c"
5382
#endif