i915_gem.c 106.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44 45 46
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
47
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 49 50
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
51 52
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
53 54
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
55
				struct drm_i915_gem_pwrite *args,
56 57
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
58

59
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60
				    struct shrink_control *sc);
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

77 78
static int
i915_gem_wait_for_error(struct drm_device *dev)
79 80 81 82 83 84 85 86 87 88 89 90 91
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

92 93 94 95 96 97 98 99 100 101 102
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
103 104
}

105
int i915_mutex_lock_interruptible(struct drm_device *dev)
106 107 108
{
	int ret;

109
	ret = i915_gem_wait_for_error(dev);
110 111 112 113 114 115 116
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

117
	WARN_ON(i915_verify_lists(dev));
118 119
	return 0;
}
120

121
static inline bool
122
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
123
{
124
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
125 126
}

127 128 129 130
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
131 132 133
{
	drm_i915_private_t *dev_priv = dev->dev_private;

134
	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
135

136 137 138
	dev_priv->mm.gtt_start = start;
	dev_priv->mm.gtt_mappable_end = mappable_end;
	dev_priv->mm.gtt_end = end;
139
	dev_priv->mm.gtt_total = end - start;
140
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
141 142 143

	/* Take over this portion of the GTT */
	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
J
Jesse Barnes 已提交
144
}
145

J
Jesse Barnes 已提交
146 147
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
148
		    struct drm_file *file)
J
Jesse Barnes 已提交
149 150
{
	struct drm_i915_gem_init *args = data;
151 152 153 154

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
155 156

	mutex_lock(&dev->struct_mutex);
157
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
158 159
	mutex_unlock(&dev->struct_mutex);

160
	return 0;
161 162
}

163 164
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165
			    struct drm_file *file)
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
168
	struct drm_i915_gem_get_aperture *args = data;
169 170
	struct drm_i915_gem_object *obj;
	size_t pinned;
171 172 173 174

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

175
	pinned = 0;
176
	mutex_lock(&dev->struct_mutex);
177 178
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
179
	mutex_unlock(&dev->struct_mutex);
180

181
	args->aper_size = dev_priv->mm.gtt_total;
182
	args->aper_available_size = args->aper_size - pinned;
183

184 185 186
	return 0;
}

187 188 189 190 191
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
192
{
193
	struct drm_i915_gem_object *obj;
194 195
	int ret;
	u32 handle;
196

197
	size = roundup(size, PAGE_SIZE);
198 199

	/* Allocate the new object */
200
	obj = i915_gem_alloc_object(dev, size);
201 202 203
	if (obj == NULL)
		return -ENOMEM;

204
	ret = drm_gem_handle_create(file, &obj->base, &handle);
205
	if (ret) {
206 207
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208
		kfree(obj);
209
		return ret;
210
	}
211

212
	/* drop reference from allocate - handle holds it now */
213
	drm_gem_object_unreference(&obj->base);
214 215
	trace_i915_gem_object_create(obj);

216
	*handle_p = handle;
217 218 219
	return 0;
}

220 221 222 223 224 225
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
226
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

251
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
252
{
253
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
254 255

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256
		obj->tiling_mode != I915_TILING_NONE;
257 258
}

259
static inline void
260 261 262 263 264 265 266 267
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

268 269
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
270 271 272

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

273 274
	kunmap(src_page);
	kunmap(dst_page);
275 276
}

277
static inline void
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

297 298
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

322 323
	kunmap(cpu_page);
	kunmap(gpu_page);
324 325
}

326 327 328 329 330 331
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
332 333
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
334
			  struct drm_i915_gem_pread *args,
335
			  struct drm_file *file)
336
{
337
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
338
	ssize_t remain;
339
	loff_t offset;
340 341 342 343 344 345 346 347 348
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
349 350 351 352
		struct page *page;
		char *vaddr;
		int ret;

353 354 355 356 357
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
358
		page_offset = offset_in_page(offset);
359 360 361 362
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

363
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
364 365 366 367 368 369 370 371 372 373 374 375
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
376
			return -EFAULT;
377 378 379 380 381 382

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

383
	return 0;
384 385 386 387 388 389 390 391 392
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
393 394
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
395
			  struct drm_i915_gem_pread *args,
396
			  struct drm_file *file)
397
{
398
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
399 400 401 402 403
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
404 405
	int shmem_page_offset;
	int data_page_index, data_page_offset;
406 407 408
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
409
	int do_bit17_swizzling;
410 411 412 413 414 415 416 417 418 419 420

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

421
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
422 423 424
	if (user_pages == NULL)
		return -ENOMEM;

425
	mutex_unlock(&dev->struct_mutex);
426 427
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
428
				      num_pages, 1, 0, user_pages, NULL);
429
	up_read(&mm->mmap_sem);
430
	mutex_lock(&dev->struct_mutex);
431 432
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
433
		goto out;
434 435
	}

436 437 438
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
439
	if (ret)
440
		goto out;
441

442
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
443 444 445 446

	offset = args->offset;

	while (remain > 0) {
447 448
		struct page *page;

449 450 451 452 453 454 455
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
456
		shmem_page_offset = offset_in_page(offset);
457
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
458
		data_page_offset = offset_in_page(data_ptr);
459 460 461 462 463 464 465

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

466
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
467 468 469 470
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}
471

472
		if (do_bit17_swizzling) {
473
			slow_shmem_bit17_copy(page,
474
					      shmem_page_offset,
475 476 477 478 479 480 481
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
482
					page,
483 484
					shmem_page_offset,
					page_length);
485
		}
486

487 488 489
		mark_page_accessed(page);
		page_cache_release(page);

490 491 492 493 494
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

495
out:
496 497
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
498
		mark_page_accessed(user_pages[i]);
499 500
		page_cache_release(user_pages[i]);
	}
501
	drm_free_large(user_pages);
502 503 504 505

	return ret;
}

506 507 508 509 510 511 512
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
513
		     struct drm_file *file)
514 515
{
	struct drm_i915_gem_pread *args = data;
516
	struct drm_i915_gem_object *obj;
517
	int ret = 0;
518

519 520 521 522 523 524 525 526 527 528 529 530 531
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

532
	ret = i915_mutex_lock_interruptible(dev);
533
	if (ret)
534
		return ret;
535

536
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
537
	if (&obj->base == NULL) {
538 539
		ret = -ENOENT;
		goto unlock;
540
	}
541

542
	/* Bounds check source.  */
543 544
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
545
		ret = -EINVAL;
546
		goto out;
C
Chris Wilson 已提交
547 548
	}

C
Chris Wilson 已提交
549 550
	trace_i915_gem_object_pread(obj, args->offset, args->size);

551 552 553 554
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
555
		goto out;
556 557 558

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
559
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
560
	if (ret == -EFAULT)
561
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
562

563
out:
564
	drm_gem_object_unreference(&obj->base);
565
unlock:
566
	mutex_unlock(&dev->struct_mutex);
567
	return ret;
568 569
}

570 571
/* This is the fast write path which cannot handle
 * page faults in the source data
572
 */
573 574 575 576 577 578

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
579 580
{
	char *vaddr_atomic;
581
	unsigned long unwritten;
582

P
Peter Zijlstra 已提交
583
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 585
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
586
	io_mapping_unmap_atomic(vaddr_atomic);
587
	return unwritten;
588 589 590 591 592 593
}

/* Here's the write path which can sleep for
 * page faults
 */

594
static inline void
595 596 597 598
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
599
{
600 601
	char __iomem *dst_vaddr;
	char *src_vaddr;
602

603 604 605 606 607 608 609 610 611
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
612 613
}

614 615 616 617
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
618
static int
619 620
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
621
			 struct drm_i915_gem_pwrite *args,
622
			 struct drm_file *file)
623
{
624
	drm_i915_private_t *dev_priv = dev->dev_private;
625
	ssize_t remain;
626
	loff_t offset, page_base;
627
	char __user *user_data;
628
	int page_offset, page_length;
629 630 631 632

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

633
	offset = obj->gtt_offset + args->offset;
634 635 636 637

	while (remain > 0) {
		/* Operation in this page
		 *
638 639 640
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
641
		 */
642 643
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
644 645 646 647 648
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
649 650
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
651
		 */
652 653 654
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))
			return -EFAULT;
655

656 657 658
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
659 660
	}

661
	return 0;
662 663
}

664 665 666 667 668 669 670
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
671
static int
672 673
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
674
			 struct drm_i915_gem_pwrite *args,
675
			 struct drm_file *file)
676
{
677 678 679 680 681 682 683 684
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
685
	int ret;
686 687 688 689 690 691 692 693 694 695 696 697
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

698
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
699 700 701
	if (user_pages == NULL)
		return -ENOMEM;

702
	mutex_unlock(&dev->struct_mutex);
703 704 705 706
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
707
	mutex_lock(&dev->struct_mutex);
708 709 710 711
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
712

713 714 715 716 717
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
718
	if (ret)
719
		goto out_unpin_pages;
720

721
	offset = obj->gtt_offset + args->offset;
722 723 724 725 726 727 728 729 730 731 732

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
733
		gtt_page_offset = offset_in_page(offset);
734
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
735
		data_page_offset = offset_in_page(data_ptr);
736 737 738 739 740 741 742

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

743 744 745 746 747
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
748 749 750 751 752 753 754 755 756

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
757
	drm_free_large(user_pages);
758 759 760 761

	return ret;
}

762 763 764 765
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
766
static int
767 768
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
769
			   struct drm_i915_gem_pwrite *args,
770
			   struct drm_file *file)
771
{
772
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
773
	ssize_t remain;
774
	loff_t offset;
775 776 777 778 779
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
780

781
	offset = args->offset;
782
	obj->dirty = 1;
783 784

	while (remain > 0) {
785 786 787 788
		struct page *page;
		char *vaddr;
		int ret;

789 790 791 792 793
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
794
		page_offset = offset_in_page(offset);
795 796 797 798
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

799
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
818
			return -EFAULT;
819 820 821 822 823 824

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

825
	return 0;
826 827 828 829 830 831 832 833 834 835
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
836 837
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
838
			   struct drm_i915_gem_pwrite *args,
839
			   struct drm_file *file)
840
{
841
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
842 843 844 845 846
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
847
	int shmem_page_offset;
848 849 850 851
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
852
	int do_bit17_swizzling;
853 854 855 856 857 858 859 860 861 862 863

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

864
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
865 866 867
	if (user_pages == NULL)
		return -ENOMEM;

868
	mutex_unlock(&dev->struct_mutex);
869 870 871 872
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
873
	mutex_lock(&dev->struct_mutex);
874 875
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
876
		goto out;
877 878
	}

879
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
880
	if (ret)
881
		goto out;
882

883
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884

885
	offset = args->offset;
886
	obj->dirty = 1;
887

888
	while (remain > 0) {
889 890
		struct page *page;

891 892 893 894 895 896 897
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
898
		shmem_page_offset = offset_in_page(offset);
899
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
900
		data_page_offset = offset_in_page(data_ptr);
901 902 903 904 905 906 907

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

908
		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
909 910 911 912 913
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

914
		if (do_bit17_swizzling) {
915
			slow_shmem_bit17_copy(page,
916 917 918
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
919 920 921
					      page_length,
					      0);
		} else {
922
			slow_shmem_copy(page,
923 924 925 926
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
927
		}
928

929 930 931 932
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

933 934 935
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
936 937
	}

938
out:
939 940
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
941
	drm_free_large(user_pages);
942

943
	return ret;
944 945 946 947 948 949 950 951 952
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
953
		      struct drm_file *file)
954 955
{
	struct drm_i915_gem_pwrite *args = data;
956
	struct drm_i915_gem_object *obj;
957 958 959 960 961 962 963 964 965 966 967 968 969 970
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
971

972
	ret = i915_mutex_lock_interruptible(dev);
973
	if (ret)
974
		return ret;
975

976
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
977
	if (&obj->base == NULL) {
978 979
		ret = -ENOENT;
		goto unlock;
980
	}
981

982
	/* Bounds check destination. */
983 984
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
985
		ret = -EINVAL;
986
		goto out;
C
Chris Wilson 已提交
987 988
	}

C
Chris Wilson 已提交
989 990
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

991 992 993 994 995 996
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
997
	if (obj->phys_obj)
998
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
999
	else if (obj->gtt_space &&
1000
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1001
		ret = i915_gem_object_pin(obj, 0, true);
1002 1003 1004
		if (ret)
			goto out;

1005 1006 1007 1008 1009
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
1010 1011 1012 1013 1014 1015 1016 1017 1018
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1019
	} else {
1020 1021
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1022
			goto out;
1023

1024 1025 1026 1027 1028 1029
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1030

1031
out:
1032
	drm_gem_object_unreference(&obj->base);
1033
unlock:
1034
	mutex_unlock(&dev->struct_mutex);
1035 1036 1037 1038
	return ret;
}

/**
1039 1040
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1041 1042 1043
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1044
			  struct drm_file *file)
1045 1046
{
	struct drm_i915_gem_set_domain *args = data;
1047
	struct drm_i915_gem_object *obj;
1048 1049
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1050 1051 1052 1053 1054
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1055
	/* Only handle setting domains to types used by the CPU. */
1056
	if (write_domain & I915_GEM_GPU_DOMAINS)
1057 1058
		return -EINVAL;

1059
	if (read_domains & I915_GEM_GPU_DOMAINS)
1060 1061 1062 1063 1064 1065 1066 1067
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1068
	ret = i915_mutex_lock_interruptible(dev);
1069
	if (ret)
1070
		return ret;
1071

1072
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1073
	if (&obj->base == NULL) {
1074 1075
		ret = -ENOENT;
		goto unlock;
1076
	}
1077

1078 1079
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1080 1081 1082 1083 1084 1085 1086

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1087
	} else {
1088
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1089 1090
	}

1091
	drm_gem_object_unreference(&obj->base);
1092
unlock:
1093 1094 1095 1096 1097 1098 1099 1100 1101
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1102
			 struct drm_file *file)
1103 1104
{
	struct drm_i915_gem_sw_finish *args = data;
1105
	struct drm_i915_gem_object *obj;
1106 1107 1108 1109 1110
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1111
	ret = i915_mutex_lock_interruptible(dev);
1112
	if (ret)
1113
		return ret;
1114

1115
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1116
	if (&obj->base == NULL) {
1117 1118
		ret = -ENOENT;
		goto unlock;
1119 1120 1121
	}

	/* Pinned buffers may be scanout, so flush the cache */
1122
	if (obj->pin_count)
1123 1124
		i915_gem_object_flush_cpu_write_domain(obj);

1125
	drm_gem_object_unreference(&obj->base);
1126
unlock:
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1140
		    struct drm_file *file)
1141
{
1142
	struct drm_i915_private *dev_priv = dev->dev_private;
1143 1144 1145 1146 1147 1148 1149
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1150
	obj = drm_gem_object_lookup(dev, file, args->handle);
1151
	if (obj == NULL)
1152
		return -ENOENT;
1153

1154 1155 1156 1157 1158
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1159 1160 1161 1162 1163
	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1164
	drm_gem_object_unreference_unlocked(obj);
1165 1166 1167 1168 1169 1170 1171 1172
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1191 1192
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1193
	drm_i915_private_t *dev_priv = dev->dev_private;
1194 1195 1196
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1197
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1198 1199 1200 1201 1202

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1203 1204 1205
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1206

C
Chris Wilson 已提交
1207 1208
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1209
	/* Now bind it into the GTT if needed */
1210 1211 1212 1213
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1214
	}
1215
	if (!obj->gtt_space) {
1216
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1217 1218
		if (ret)
			goto unlock;
1219

1220 1221 1222 1223
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1224

1225 1226 1227
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
1228
		ret = i915_gem_object_get_fence(obj, NULL);
1229 1230
	if (ret)
		goto unlock;
1231

1232 1233
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1234

1235 1236
	obj->fault_mappable = true;

1237
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1238 1239 1240 1241
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1242
unlock:
1243
	mutex_unlock(&dev->struct_mutex);
1244
out:
1245
	switch (ret) {
1246
	case -EIO:
1247
	case -EAGAIN:
1248 1249 1250 1251 1252 1253 1254
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1255
		set_need_resched();
1256 1257
	case 0:
	case -ERESTARTSYS:
1258
	case -EINTR:
1259
		return VM_FAULT_NOPAGE;
1260 1261 1262
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1263
		return VM_FAULT_SIGBUS;
1264 1265 1266
	}
}

1267 1268 1269 1270
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1271
 * Preserve the reservation of the mmapping with the DRM core code, but
1272 1273 1274 1275 1276 1277 1278 1279 1280
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1281
void
1282
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1283
{
1284 1285
	if (!obj->fault_mappable)
		return;
1286

1287 1288 1289 1290
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1291

1292
	obj->fault_mappable = false;
1293 1294
}

1295
static uint32_t
1296
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1297
{
1298
	uint32_t gtt_size;
1299 1300

	if (INTEL_INFO(dev)->gen >= 4 ||
1301 1302
	    tiling_mode == I915_TILING_NONE)
		return size;
1303 1304 1305

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1306
		gtt_size = 1024*1024;
1307
	else
1308
		gtt_size = 512*1024;
1309

1310 1311
	while (gtt_size < size)
		gtt_size <<= 1;
1312

1313
	return gtt_size;
1314 1315
}

1316 1317 1318 1319 1320
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1321
 * potential fence register mapping.
1322 1323
 */
static uint32_t
1324 1325 1326
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1327 1328 1329 1330 1331
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1332
	if (INTEL_INFO(dev)->gen >= 4 ||
1333
	    tiling_mode == I915_TILING_NONE)
1334 1335
		return 4096;

1336 1337 1338 1339
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1340
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1341 1342
}

1343 1344 1345
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1346 1347 1348
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1349 1350 1351 1352
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1353
uint32_t
1354 1355 1356
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1357 1358 1359 1360 1361
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1362
	    tiling_mode == I915_TILING_NONE)
1363 1364
		return 4096;

1365 1366 1367
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1368
	 */
1369
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1370 1371
}

1372
int
1373 1374 1375 1376
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1377
{
1378
	struct drm_i915_private *dev_priv = dev->dev_private;
1379
	struct drm_i915_gem_object *obj;
1380 1381 1382 1383 1384
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1385
	ret = i915_mutex_lock_interruptible(dev);
1386
	if (ret)
1387
		return ret;
1388

1389
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1390
	if (&obj->base == NULL) {
1391 1392 1393
		ret = -ENOENT;
		goto unlock;
	}
1394

1395
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1396 1397 1398 1399
		ret = -E2BIG;
		goto unlock;
	}

1400
	if (obj->madv != I915_MADV_WILLNEED) {
1401
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1402 1403
		ret = -EINVAL;
		goto out;
1404 1405
	}

1406
	if (!obj->base.map_list.map) {
1407
		ret = drm_gem_create_mmap_offset(&obj->base);
1408 1409
		if (ret)
			goto out;
1410 1411
	}

1412
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1413

1414
out:
1415
	drm_gem_object_unreference(&obj->base);
1416
unlock:
1417
	mutex_unlock(&dev->struct_mutex);
1418
	return ret;
1419 1420
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1449
static int
1450
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1461 1462 1463 1464
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1465 1466
		return -ENOMEM;

1467
	inode = obj->base.filp->f_path.dentry->d_inode;
1468
	mapping = inode->i_mapping;
1469 1470
	gfpmask |= mapping_gfp_mask(mapping);

1471
	for (i = 0; i < page_count; i++) {
1472
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1473 1474 1475
		if (IS_ERR(page))
			goto err_pages;

1476
		obj->pages[i] = page;
1477 1478
	}

1479
	if (obj->tiling_mode != I915_TILING_NONE)
1480 1481 1482 1483 1484 1485
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1486
		page_cache_release(obj->pages[i]);
1487

1488 1489
	drm_free_large(obj->pages);
	obj->pages = NULL;
1490 1491 1492
	return PTR_ERR(page);
}

1493
static void
1494
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1495
{
1496
	int page_count = obj->base.size / PAGE_SIZE;
1497 1498
	int i;

1499
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1500

1501
	if (obj->tiling_mode != I915_TILING_NONE)
1502 1503
		i915_gem_object_save_bit_17_swizzle(obj);

1504 1505
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1506 1507

	for (i = 0; i < page_count; i++) {
1508 1509
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1510

1511 1512
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1513

1514
		page_cache_release(obj->pages[i]);
1515
	}
1516
	obj->dirty = 0;
1517

1518 1519
	drm_free_large(obj->pages);
	obj->pages = NULL;
1520 1521
}

1522
void
1523
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1524 1525
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1526
{
1527
	struct drm_device *dev = obj->base.dev;
1528
	struct drm_i915_private *dev_priv = dev->dev_private;
1529

1530
	BUG_ON(ring == NULL);
1531
	obj->ring = ring;
1532 1533

	/* Add a reference if we're newly entering the active list. */
1534 1535 1536
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1537
	}
1538

1539
	/* Move from whatever list we were on to the tail of execution. */
1540 1541
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1542

1543
	obj->last_rendering_seqno = seqno;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1562 1563
}

1564
static void
1565
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1566
{
1567
	struct drm_device *dev = obj->base.dev;
1568 1569
	drm_i915_private_t *dev_priv = dev->dev_private;

1570 1571
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1595
	obj->pending_gpu_write = false;
1596 1597 1598
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1599
}
1600

1601 1602
/* Immediately discard the backing storage */
static void
1603
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1604
{
C
Chris Wilson 已提交
1605
	struct inode *inode;
1606

1607 1608 1609
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1610
	 * backing pages, *now*.
1611
	 */
1612
	inode = obj->base.filp->f_path.dentry->d_inode;
1613
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1614

1615
	obj->madv = __I915_MADV_PURGED;
1616 1617 1618
}

static inline int
1619
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1620
{
1621
	return obj->madv == I915_MADV_DONTNEED;
1622 1623
}

1624
static void
C
Chris Wilson 已提交
1625 1626
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1627
{
1628
	struct drm_i915_gem_object *obj, *next;
1629

1630
	list_for_each_entry_safe(obj, next,
1631
				 &ring->gpu_write_list,
1632
				 gpu_write_list) {
1633 1634
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1635

1636 1637
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1638
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1639
						       i915_gem_next_request_seqno(ring));
1640 1641

			trace_i915_gem_object_change_domain(obj,
1642
							    obj->base.read_domains,
1643 1644 1645 1646
							    old_write_domain);
		}
	}
}
1647

1648
int
C
Chris Wilson 已提交
1649
i915_add_request(struct intel_ring_buffer *ring,
1650
		 struct drm_file *file,
C
Chris Wilson 已提交
1651
		 struct drm_i915_gem_request *request)
1652
{
C
Chris Wilson 已提交
1653
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1654 1655
	uint32_t seqno;
	int was_empty;
1656 1657 1658
	int ret;

	BUG_ON(request == NULL);
1659

1660 1661 1662
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1663

C
Chris Wilson 已提交
1664
	trace_i915_gem_request_add(ring, seqno);
1665 1666

	request->seqno = seqno;
1667
	request->ring = ring;
1668
	request->emitted_jiffies = jiffies;
1669 1670 1671
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1672 1673 1674
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1675
		spin_lock(&file_priv->mm.lock);
1676
		request->file_priv = file_priv;
1677
		list_add_tail(&request->client_list,
1678
			      &file_priv->mm.request_list);
1679
		spin_unlock(&file_priv->mm.lock);
1680
	}
1681

C
Chris Wilson 已提交
1682 1683
	ring->outstanding_lazy_request = false;

B
Ben Gamari 已提交
1684
	if (!dev_priv->mm.suspended) {
1685 1686 1687 1688 1689
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1690
		if (was_empty)
1691 1692
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1693
	}
1694
	return 0;
1695 1696
}

1697 1698
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1699
{
1700
	struct drm_i915_file_private *file_priv = request->file_priv;
1701

1702 1703
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1704

1705
	spin_lock(&file_priv->mm.lock);
1706 1707 1708 1709
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1710
	spin_unlock(&file_priv->mm.lock);
1711 1712
}

1713 1714
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1715
{
1716 1717
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1718

1719 1720 1721
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1722

1723
		list_del(&request->list);
1724
		i915_gem_request_remove_from_client(request);
1725 1726
		kfree(request);
	}
1727

1728
	while (!list_empty(&ring->active_list)) {
1729
		struct drm_i915_gem_object *obj;
1730

1731 1732 1733
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1734

1735 1736 1737
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1738 1739 1740
	}
}

1741 1742 1743 1744 1745 1746 1747
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1748 1749 1750 1751 1752 1753 1754 1755
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1756 1757 1758 1759 1760
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1761 1762 1763
	}
}

1764
void i915_gem_reset(struct drm_device *dev)
1765
{
1766
	struct drm_i915_private *dev_priv = dev->dev_private;
1767
	struct drm_i915_gem_object *obj;
1768
	int i;
1769

1770 1771
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1772 1773 1774 1775 1776 1777

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1778
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1779 1780
				      struct drm_i915_gem_object,
				      mm_list);
1781

1782 1783 1784
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1785 1786 1787 1788 1789
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1790
	list_for_each_entry(obj,
1791
			    &dev_priv->mm.inactive_list,
1792
			    mm_list)
1793
	{
1794
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1795
	}
1796 1797

	/* The fence registers are invalidated so clear them out */
1798
	i915_gem_reset_fences(dev);
1799 1800 1801 1802 1803
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1804
static void
C
Chris Wilson 已提交
1805
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1806 1807
{
	uint32_t seqno;
1808
	int i;
1809

C
Chris Wilson 已提交
1810
	if (list_empty(&ring->request_list))
1811 1812
		return;

C
Chris Wilson 已提交
1813
	WARN_ON(i915_verify_lists(ring->dev));
1814

1815
	seqno = ring->get_seqno(ring);
1816

1817
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1818 1819 1820
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1821
	while (!list_empty(&ring->request_list)) {
1822 1823
		struct drm_i915_gem_request *request;

1824
		request = list_first_entry(&ring->request_list,
1825 1826 1827
					   struct drm_i915_gem_request,
					   list);

1828
		if (!i915_seqno_passed(seqno, request->seqno))
1829 1830
			break;

C
Chris Wilson 已提交
1831
		trace_i915_gem_request_retire(ring, request->seqno);
1832 1833

		list_del(&request->list);
1834
		i915_gem_request_remove_from_client(request);
1835 1836
		kfree(request);
	}
1837

1838 1839 1840 1841
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1842
		struct drm_i915_gem_object *obj;
1843

1844
		obj = list_first_entry(&ring->active_list,
1845 1846
				      struct drm_i915_gem_object,
				      ring_list);
1847

1848
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1849
			break;
1850

1851
		if (obj->base.write_domain != 0)
1852 1853 1854
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1855
	}
1856

C
Chris Wilson 已提交
1857 1858
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1859
		ring->irq_put(ring);
C
Chris Wilson 已提交
1860
		ring->trace_irq_seqno = 0;
1861
	}
1862

C
Chris Wilson 已提交
1863
	WARN_ON(i915_verify_lists(ring->dev));
1864 1865
}

1866 1867 1868 1869
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1870
	int i;
1871

1872
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1873
	    struct drm_i915_gem_object *obj, *next;
1874 1875 1876 1877 1878 1879

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1880
	    list_for_each_entry_safe(obj, next,
1881
				     &dev_priv->mm.deferred_free_list,
1882
				     mm_list)
1883
		    i915_gem_free_object_tail(obj);
1884 1885
	}

1886
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1887
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1888 1889
}

1890
static void
1891 1892 1893 1894
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1895 1896
	bool idle;
	int i;
1897 1898 1899 1900 1901

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1902 1903 1904 1905 1906 1907
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1908
	i915_gem_retire_requests(dev);
1909

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1921 1922
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1923 1924
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1925
			    i915_add_request(ring, NULL, request))
1926 1927 1928 1929 1930 1931 1932
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1933
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1934

1935 1936 1937
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
1938 1939 1940 1941
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1942
int
C
Chris Wilson 已提交
1943
i915_wait_request(struct intel_ring_buffer *ring,
1944
		  uint32_t seqno)
1945
{
C
Chris Wilson 已提交
1946
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1947
	u32 ier;
1948 1949 1950 1951
	int ret = 0;

	BUG_ON(seqno == 0);

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
1964

1965
	if (seqno == ring->outstanding_lazy_request) {
1966 1967 1968 1969
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1970
			return -ENOMEM;
1971

C
Chris Wilson 已提交
1972
		ret = i915_add_request(ring, NULL, request);
1973 1974 1975 1976 1977 1978
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1979
	}
1980

1981
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
1982
		if (HAS_PCH_SPLIT(ring->dev))
1983 1984 1985
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1986 1987 1988
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
1989 1990
			ring->dev->driver->irq_preinstall(ring->dev);
			ring->dev->driver->irq_postinstall(ring->dev);
1991 1992
		}

C
Chris Wilson 已提交
1993
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
1994

1995
		ring->waiting_seqno = seqno;
1996
		if (ring->irq_get(ring)) {
1997
			if (dev_priv->mm.interruptible)
1998 1999 2000 2001 2002 2003 2004 2005 2006
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
2007 2008 2009 2010
		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
						      seqno) ||
				    atomic_read(&dev_priv->mm.wedged), 3000))
			ret = -EBUSY;
2011
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2012

C
Chris Wilson 已提交
2013
		trace_i915_gem_request_wait_end(ring, seqno);
2014
	}
2015
	if (atomic_read(&dev_priv->mm.wedged))
2016
		ret = -EAGAIN;
2017 2018

	if (ret && ret != -ERESTARTSYS)
2019
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2020
			  __func__, ret, seqno, ring->get_seqno(ring),
2021
			  dev_priv->next_seqno);
2022 2023 2024 2025 2026 2027 2028

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
C
Chris Wilson 已提交
2029
		i915_gem_retire_requests_ring(ring);
2030 2031 2032 2033 2034 2035 2036 2037

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2038
int
2039
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2040 2041 2042
{
	int ret;

2043 2044
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2045
	 */
2046
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2047 2048 2049 2050

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2051
	if (obj->active) {
2052
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2053
		if (ret)
2054 2055 2056 2057 2058 2059
			return ret;
	}

	return 0;
}

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2070 2071 2072
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2084 2085 2086
/**
 * Unbinds an object from the GTT aperture.
 */
2087
int
2088
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2089 2090 2091
{
	int ret = 0;

2092
	if (obj->gtt_space == NULL)
2093 2094
		return 0;

2095
	if (obj->pin_count != 0) {
2096 2097 2098 2099
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2100 2101 2102 2103 2104 2105 2106 2107
	ret = i915_gem_object_finish_gpu(obj);
	if (ret == -ERESTARTSYS)
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2108
	i915_gem_object_finish_gtt(obj);
2109

2110 2111
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2112
	 * are flushed when we go to remap it.
2113
	 */
2114 2115
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2116
	if (ret == -ERESTARTSYS)
2117
		return ret;
2118
	if (ret) {
2119 2120 2121
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2122
		i915_gem_clflush_object(obj);
2123
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2124
	}
2125

2126
	/* release the fence reg _after_ flushing */
2127 2128 2129
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2130

C
Chris Wilson 已提交
2131 2132
	trace_i915_gem_object_unbind(obj);

2133
	i915_gem_gtt_unbind_object(obj);
2134
	i915_gem_object_put_pages_gtt(obj);
2135

2136
	list_del_init(&obj->gtt_list);
2137
	list_del_init(&obj->mm_list);
2138
	/* Avoid an unnecessary call to unbind on rebind. */
2139
	obj->map_and_fenceable = true;
2140

2141 2142 2143
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2144

2145
	if (i915_gem_object_is_purgeable(obj))
2146 2147
		i915_gem_object_truncate(obj);

2148
	return ret;
2149 2150
}

2151
int
C
Chris Wilson 已提交
2152
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2153 2154 2155
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2156 2157
	int ret;

2158 2159 2160
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2161 2162
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2163 2164 2165 2166
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2167 2168 2169
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2170
	return 0;
2171 2172
}

C
Chris Wilson 已提交
2173
static int i915_ring_idle(struct intel_ring_buffer *ring)
2174
{
2175 2176
	int ret;

2177
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2178 2179
		return 0;

2180
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2181
		ret = i915_gem_flush_ring(ring,
2182
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2183 2184 2185 2186
		if (ret)
			return ret;
	}

2187
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2188 2189
}

2190
int
2191 2192 2193 2194
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2195
	int ret, i;
2196

2197
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2198
		       list_empty(&dev_priv->mm.active_list));
2199 2200 2201 2202
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2203
	for (i = 0; i < I915_NUM_RINGS; i++) {
C
Chris Wilson 已提交
2204
		ret = i915_ring_idle(&dev_priv->ring[i]);
2205 2206 2207
		if (ret)
			return ret;
	}
2208

2209
	return 0;
2210 2211
}

2212 2213
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2214
{
2215
	struct drm_device *dev = obj->base.dev;
2216
	drm_i915_private_t *dev_priv = dev->dev_private;
2217 2218
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2219 2220
	uint64_t val;

2221
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2222
			 0xfffff000) << 32;
2223 2224
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2225 2226
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2227
	if (obj->tiling_mode == I915_TILING_Y)
2228 2229 2230
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2247 2248
}

2249 2250
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2251
{
2252
	struct drm_device *dev = obj->base.dev;
2253
	drm_i915_private_t *dev_priv = dev->dev_private;
2254 2255
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2256 2257
	uint64_t val;

2258
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2259
		    0xfffff000) << 32;
2260 2261 2262
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2263 2264 2265
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2282 2283
}

2284 2285
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2286
{
2287
	struct drm_device *dev = obj->base.dev;
2288
	drm_i915_private_t *dev_priv = dev->dev_private;
2289
	u32 size = obj->gtt_space->size;
2290
	u32 fence_reg, val, pitch_val;
2291
	int tile_width;
2292

2293 2294 2295 2296 2297 2298
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2299

2300
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2301
		tile_width = 128;
2302
	else
2303 2304 2305
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2306
	pitch_val = obj->stride / tile_width;
2307
	pitch_val = ffs(pitch_val) - 1;
2308

2309 2310
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2311
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2312
	val |= I915_FENCE_SIZE_BITS(size);
2313 2314 2315
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2316
	fence_reg = obj->fence_reg;
2317 2318
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2319
	else
2320
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2336 2337
}

2338 2339
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2340
{
2341
	struct drm_device *dev = obj->base.dev;
2342
	drm_i915_private_t *dev_priv = dev->dev_private;
2343 2344
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2345 2346 2347
	uint32_t val;
	uint32_t pitch_val;

2348 2349 2350 2351 2352 2353
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2354

2355
	pitch_val = obj->stride / 128;
2356 2357
	pitch_val = ffs(pitch_val) - 1;

2358 2359
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2360
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2361
	val |= I830_FENCE_SIZE_BITS(size);
2362 2363 2364
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2379 2380
}

2381 2382 2383 2384 2385 2386 2387
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2388
			    struct intel_ring_buffer *pipelined)
2389 2390 2391 2392
{
	int ret;

	if (obj->fenced_gpu_access) {
2393
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2394
			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2395 2396 2397 2398
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2399 2400 2401 2402 2403 2404 2405

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
C
Chris Wilson 已提交
2406
			ret = i915_wait_request(obj->last_fenced_ring,
2407
						obj->last_fenced_seqno);
2408 2409 2410 2411 2412 2413 2414 2415
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2416 2417 2418 2419 2420 2421
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

2433
	ret = i915_gem_object_flush_fence(obj, NULL);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2451 2452
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2453 2454
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2455 2456

	/* First try to find a free reg */
2457
	avail = NULL;
2458 2459 2460
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2461
			return reg;
2462

2463
		if (!reg->obj->pin_count)
2464
			avail = reg;
2465 2466
	}

2467 2468
	if (avail == NULL)
		return NULL;
2469 2470

	/* None available, try to steal one or wait for a user to finish */
2471 2472 2473
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
		if (reg->obj->pin_count)
2474 2475
			continue;

2476 2477 2478 2479 2480 2481 2482 2483 2484
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2485 2486
	}

2487 2488
	if (avail == NULL)
		avail = first;
2489

2490
	return avail;
2491 2492
}

2493
/**
2494
 * i915_gem_object_get_fence - set up a fence reg for an object
2495
 * @obj: object to map through a fence reg
2496 2497
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2508
int
2509
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2510
			  struct intel_ring_buffer *pipelined)
2511
{
2512
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2513
	struct drm_i915_private *dev_priv = dev->dev_private;
2514
	struct drm_i915_fence_reg *reg;
2515
	int ret;
2516

2517 2518 2519
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2520
	/* Just update our place in the LRU if our fence is getting reused. */
2521 2522
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2523
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2524

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
		if (obj->tiling_changed) {
			ret = i915_gem_object_flush_fence(obj, pipelined);
			if (ret)
				return ret;

			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
				pipelined = NULL;

			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}

			goto update;
		}
2542 2543 2544 2545 2546

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
C
Chris Wilson 已提交
2547
					ret = i915_wait_request(obj->last_fenced_ring,
2548
								reg->setup_seqno);
2549 2550 2551 2552 2553 2554 2555 2556
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
2557
			ret = i915_gem_object_flush_fence(obj, pipelined);
2558 2559 2560 2561
			if (ret)
				return ret;
		}

2562 2563 2564
		return 0;
	}

2565 2566 2567
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
		return -ENOSPC;
2568

2569
	ret = i915_gem_object_flush_fence(obj, pipelined);
2570
	if (ret)
2571
		return ret;
2572

2573 2574 2575 2576 2577 2578 2579 2580
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

2581
		ret = i915_gem_object_flush_fence(old, pipelined);
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
C
Chris Wilson 已提交
2593
			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2594 2595 2596 2597

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2598

2599
	reg->obj = obj;
2600 2601 2602
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2603

2604
	reg->setup_seqno =
C
Chris Wilson 已提交
2605
		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2606 2607 2608 2609
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2610
	switch (INTEL_INFO(dev)->gen) {
2611
	case 7:
2612
	case 6:
2613
		ret = sandybridge_write_fence_reg(obj, pipelined);
2614 2615 2616
		break;
	case 5:
	case 4:
2617
		ret = i965_write_fence_reg(obj, pipelined);
2618 2619
		break;
	case 3:
2620
		ret = i915_write_fence_reg(obj, pipelined);
2621 2622
		break;
	case 2:
2623
		ret = i830_write_fence_reg(obj, pipelined);
2624 2625
		break;
	}
2626

2627
	return ret;
2628 2629 2630 2631 2632 2633 2634
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2635
 * data structures in dev_priv and obj.
2636 2637
 */
static void
2638 2639
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2640
{
J
Jesse Barnes 已提交
2641
	drm_i915_private_t *dev_priv = dev->dev_private;
2642
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2643

2644
	switch (INTEL_INFO(dev)->gen) {
2645
	case 7:
2646
	case 6:
2647
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2648 2649 2650
		break;
	case 5:
	case 4:
2651
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2652 2653
		break;
	case 3:
2654 2655
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2656
		else
2657
	case 2:
2658
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2659 2660

		I915_WRITE(fence_reg, 0);
2661
		break;
2662
	}
2663

2664
	list_del_init(&reg->lru_list);
2665 2666
	reg->obj = NULL;
	reg->setup_seqno = 0;
2667 2668
}

2669 2670 2671 2672
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2673
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2674
			    unsigned alignment,
2675
			    bool map_and_fenceable)
2676
{
2677
	struct drm_device *dev = obj->base.dev;
2678 2679
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2680
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2681
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2682
	bool mappable, fenceable;
2683
	int ret;
2684

2685
	if (obj->madv != I915_MADV_WILLNEED) {
2686 2687 2688 2689
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2700

2701
	if (alignment == 0)
2702 2703
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2704
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2705 2706 2707 2708
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2709
	size = map_and_fenceable ? fence_size : obj->base.size;
2710

2711 2712 2713
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2714
	if (obj->base.size >
2715
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2716 2717 2718 2719
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2720
 search_free:
2721
	if (map_and_fenceable)
2722 2723
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2724
						    size, alignment, 0,
2725 2726 2727 2728
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2729
						size, alignment, 0);
2730 2731

	if (free_space != NULL) {
2732
		if (map_and_fenceable)
2733
			obj->gtt_space =
2734
				drm_mm_get_block_range_generic(free_space,
2735
							       size, alignment, 0,
2736 2737 2738
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2739
			obj->gtt_space =
2740
				drm_mm_get_block(free_space, size, alignment);
2741
	}
2742
	if (obj->gtt_space == NULL) {
2743 2744 2745
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2746 2747
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2748
		if (ret)
2749
			return ret;
2750

2751 2752 2753
		goto search_free;
	}

2754
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2755
	if (ret) {
2756 2757
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2758 2759

		if (ret == -ENOMEM) {
2760 2761
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2762 2763
			if (ret) {
				/* now try to shrink everyone else */
2764 2765 2766
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2767 2768
				}

2769
				return -ENOMEM;
2770 2771 2772 2773 2774
			}

			goto search_free;
		}

2775 2776 2777
		return ret;
	}

2778 2779
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2780
		i915_gem_object_put_pages_gtt(obj);
2781 2782
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2783

2784
		if (i915_gem_evict_everything(dev, false))
2785 2786 2787
			return ret;

		goto search_free;
2788 2789
	}

2790
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2791
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2792

2793 2794 2795 2796
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2797 2798
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2799

2800
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2801

2802
	fenceable =
2803
		obj->gtt_space->size == fence_size &&
2804
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2805

2806
	mappable =
2807
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2808

2809
	obj->map_and_fenceable = mappable && fenceable;
2810

C
Chris Wilson 已提交
2811
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2812 2813 2814 2815
	return 0;
}

void
2816
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2817 2818 2819 2820 2821
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2822
	if (obj->pages == NULL)
2823 2824
		return;

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2836
	trace_i915_gem_object_clflush(obj);
2837

2838
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2839 2840
}

2841
/** Flushes any GPU write domain for the object if it's dirty. */
2842
static int
2843
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2844
{
2845
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2846
		return 0;
2847 2848

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2849
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2850 2851 2852 2853
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2854
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2855
{
C
Chris Wilson 已提交
2856 2857
	uint32_t old_write_domain;

2858
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2859 2860
		return;

2861
	/* No actual flushing is required for the GTT write domain.  Writes
2862 2863
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2864 2865 2866 2867
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2868
	 */
2869 2870
	wmb();

2871 2872
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2873 2874

	trace_i915_gem_object_change_domain(obj,
2875
					    obj->base.read_domains,
C
Chris Wilson 已提交
2876
					    old_write_domain);
2877 2878 2879 2880
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2881
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2882
{
C
Chris Wilson 已提交
2883
	uint32_t old_write_domain;
2884

2885
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2886 2887 2888
		return;

	i915_gem_clflush_object(obj);
2889
	intel_gtt_chipset_flush();
2890 2891
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2892 2893

	trace_i915_gem_object_change_domain(obj,
2894
					    obj->base.read_domains,
C
Chris Wilson 已提交
2895
					    old_write_domain);
2896 2897
}

2898 2899 2900 2901 2902 2903
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2904
int
2905
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2906
{
C
Chris Wilson 已提交
2907
	uint32_t old_write_domain, old_read_domains;
2908
	int ret;
2909

2910
	/* Not valid to be called on unbound objects. */
2911
	if (obj->gtt_space == NULL)
2912 2913
		return -EINVAL;

2914 2915 2916
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2917 2918 2919 2920
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2921
	if (obj->pending_gpu_write || write) {
2922
		ret = i915_gem_object_wait_rendering(obj);
2923 2924 2925
		if (ret)
			return ret;
	}
2926

2927
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2928

2929 2930
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2931

2932 2933 2934
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2935 2936
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2937
	if (write) {
2938 2939 2940
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2941 2942
	}

C
Chris Wilson 已提交
2943 2944 2945 2946
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2947 2948 2949
	return 0;
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

		i915_gem_gtt_rebind_object(obj, cache_level);
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

3010
/*
3011 3012 3013 3014 3015 3016 3017 3018
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
 *
 * For the display plane, we want to be in the GTT but out of any write
 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
 * ability to pipeline the waits, pinning and any additional subtleties
 * that may differentiate the display plane from ordinary buffers.
3019 3020
 */
int
3021 3022
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3023
				     struct intel_ring_buffer *pipelined)
3024
{
3025
	u32 old_read_domains, old_write_domain;
3026 3027
	int ret;

3028 3029 3030 3031
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3032
	if (pipelined != obj->ring) {
3033
		ret = i915_gem_object_wait_rendering(obj);
3034
		if (ret == -ERESTARTSYS)
3035 3036 3037
			return ret;
	}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3051 3052 3053 3054 3055 3056 3057 3058
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

3059 3060
	i915_gem_object_flush_cpu_write_domain(obj);

3061
	old_write_domain = obj->base.write_domain;
3062
	old_read_domains = obj->base.read_domains;
3063 3064 3065 3066 3067

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3068
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3069 3070 3071

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3072
					    old_write_domain);
3073 3074 3075 3076

	return 0;
}

3077
int
3078
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3079
{
3080 3081
	int ret;

3082
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3083 3084
		return 0;

3085
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3086
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3087 3088 3089
		if (ret)
			return ret;
	}
3090

3091 3092 3093
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;

3094
	return i915_gem_object_wait_rendering(obj);
3095 3096
}

3097 3098 3099 3100 3101 3102 3103
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3104
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3105
{
C
Chris Wilson 已提交
3106
	uint32_t old_write_domain, old_read_domains;
3107 3108
	int ret;

3109 3110 3111
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3112 3113 3114 3115
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3116
	ret = i915_gem_object_wait_rendering(obj);
3117
	if (ret)
3118
		return ret;
3119

3120
	i915_gem_object_flush_gtt_write_domain(obj);
3121

3122 3123
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3124
	 */
3125
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3126

3127 3128
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3129

3130
	/* Flush the CPU cache if it's still invalid. */
3131
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3132 3133
		i915_gem_clflush_object(obj);

3134
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3135 3136 3137 3138 3139
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3140
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3141 3142 3143 3144 3145

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3146 3147
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3148
	}
3149

C
Chris Wilson 已提交
3150 3151 3152 3153
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3154 3155 3156
	return 0;
}

3157
/**
3158
 * Moves the object from a partially CPU read to a full one.
3159
 *
3160 3161
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3162
 */
3163
static void
3164
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3165
{
3166
	if (!obj->page_cpu_valid)
3167 3168 3169 3170
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3171
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3172 3173
		int i;

3174 3175
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3176
				continue;
3177
			drm_clflush_pages(obj->pages + i, 1);
3178 3179 3180 3181 3182 3183
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3184 3185
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3201
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3202 3203
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3204
	uint32_t old_read_domains;
3205
	int i, ret;
3206

3207
	if (offset == 0 && size == obj->base.size)
3208
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3209

3210 3211 3212 3213
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3214
	ret = i915_gem_object_wait_rendering(obj);
3215
	if (ret)
3216
		return ret;
3217

3218 3219 3220
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3221 3222
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3223
		return 0;
3224

3225 3226 3227
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3228 3229 3230 3231
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3232
			return -ENOMEM;
3233 3234
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3235 3236 3237 3238

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3239 3240
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3241
		if (obj->page_cpu_valid[i])
3242 3243
			continue;

3244
		drm_clflush_pages(obj->pages + i, 1);
3245

3246
		obj->page_cpu_valid[i] = 1;
3247 3248
	}

3249 3250 3251
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3252
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3253

3254 3255
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3256

C
Chris Wilson 已提交
3257 3258
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3259
					    obj->base.write_domain);
C
Chris Wilson 已提交
3260

3261 3262 3263 3264 3265 3266
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3267 3268 3269 3270
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3271 3272 3273
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3274
static int
3275
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3276
{
3277 3278
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3279
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3280 3281 3282 3283
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3284

3285 3286 3287
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3288
	spin_lock(&file_priv->mm.lock);
3289
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3290 3291
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3292

3293 3294
		ring = request->ring;
		seqno = request->seqno;
3295
	}
3296
	spin_unlock(&file_priv->mm.lock);
3297

3298 3299
	if (seqno == 0)
		return 0;
3300

3301
	ret = 0;
3302
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3303 3304 3305 3306 3307
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3308 3309 3310 3311 3312
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3313

3314 3315 3316
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
		}
3317 3318
	}

3319 3320
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3321 3322 3323 3324

	return ret;
}

3325
int
3326 3327
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3328
		    bool map_and_fenceable)
3329
{
3330
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3331
	struct drm_i915_private *dev_priv = dev->dev_private;
3332 3333
	int ret;

3334
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3335
	WARN_ON(i915_verify_lists(dev));
3336

3337 3338 3339 3340
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3341
			     "bo is already pinned with incorrect alignment:"
3342 3343
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3344
			     obj->gtt_offset, alignment,
3345
			     map_and_fenceable,
3346
			     obj->map_and_fenceable);
3347 3348 3349 3350 3351 3352
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3353
	if (obj->gtt_space == NULL) {
3354
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3355
						  map_and_fenceable);
3356
		if (ret)
3357
			return ret;
3358
	}
J
Jesse Barnes 已提交
3359

3360 3361 3362
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3363
				       &dev_priv->mm.pinned_list);
3364
	}
3365
	obj->pin_mappable |= map_and_fenceable;
3366

3367
	WARN_ON(i915_verify_lists(dev));
3368 3369 3370 3371
	return 0;
}

void
3372
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3373
{
3374
	struct drm_device *dev = obj->base.dev;
3375 3376
	drm_i915_private_t *dev_priv = dev->dev_private;

3377
	WARN_ON(i915_verify_lists(dev));
3378 3379
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3380

3381 3382 3383
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3384
				       &dev_priv->mm.inactive_list);
3385
		obj->pin_mappable = false;
3386
	}
3387
	WARN_ON(i915_verify_lists(dev));
3388 3389 3390 3391
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3392
		   struct drm_file *file)
3393 3394
{
	struct drm_i915_gem_pin *args = data;
3395
	struct drm_i915_gem_object *obj;
3396 3397
	int ret;

3398 3399 3400
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3401

3402
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3403
	if (&obj->base == NULL) {
3404 3405
		ret = -ENOENT;
		goto unlock;
3406 3407
	}

3408
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3409
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3410 3411
		ret = -EINVAL;
		goto out;
3412 3413
	}

3414
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3415 3416
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3417 3418
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3419 3420
	}

3421 3422 3423
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3424
		ret = i915_gem_object_pin(obj, args->alignment, true);
3425 3426
		if (ret)
			goto out;
3427 3428 3429 3430 3431
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3432
	i915_gem_object_flush_cpu_write_domain(obj);
3433
	args->offset = obj->gtt_offset;
3434
out:
3435
	drm_gem_object_unreference(&obj->base);
3436
unlock:
3437
	mutex_unlock(&dev->struct_mutex);
3438
	return ret;
3439 3440 3441 3442
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3443
		     struct drm_file *file)
3444 3445
{
	struct drm_i915_gem_pin *args = data;
3446
	struct drm_i915_gem_object *obj;
3447
	int ret;
3448

3449 3450 3451
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3452

3453
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3454
	if (&obj->base == NULL) {
3455 3456
		ret = -ENOENT;
		goto unlock;
3457
	}
3458

3459
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3460 3461
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3462 3463
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3464
	}
3465 3466 3467
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3468 3469
		i915_gem_object_unpin(obj);
	}
3470

3471
out:
3472
	drm_gem_object_unreference(&obj->base);
3473
unlock:
3474
	mutex_unlock(&dev->struct_mutex);
3475
	return ret;
3476 3477 3478 3479
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3480
		    struct drm_file *file)
3481 3482
{
	struct drm_i915_gem_busy *args = data;
3483
	struct drm_i915_gem_object *obj;
3484 3485
	int ret;

3486
	ret = i915_mutex_lock_interruptible(dev);
3487
	if (ret)
3488
		return ret;
3489

3490
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3491
	if (&obj->base == NULL) {
3492 3493
		ret = -ENOENT;
		goto unlock;
3494
	}
3495

3496 3497 3498 3499
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3500
	 */
3501
	args->busy = obj->active;
3502 3503 3504 3505 3506 3507
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3508
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3509
			ret = i915_gem_flush_ring(obj->ring,
3510
						  0, obj->base.write_domain);
3511 3512 3513 3514
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3515 3516 3517
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3518 3519
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (request)
3520
				ret = i915_add_request(obj->ring, NULL, request);
3521
			else
3522 3523
				ret = -ENOMEM;
		}
3524 3525 3526 3527 3528 3529

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3530
		i915_gem_retire_requests_ring(obj->ring);
3531

3532
		args->busy = obj->active;
3533
	}
3534

3535
	drm_gem_object_unreference(&obj->base);
3536
unlock:
3537
	mutex_unlock(&dev->struct_mutex);
3538
	return ret;
3539 3540 3541 3542 3543 3544
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3545
	return i915_gem_ring_throttle(dev, file_priv);
3546 3547
}

3548 3549 3550 3551 3552
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3553
	struct drm_i915_gem_object *obj;
3554
	int ret;
3555 3556 3557 3558 3559 3560 3561 3562 3563

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3564 3565 3566 3567
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3568
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3569
	if (&obj->base == NULL) {
3570 3571
		ret = -ENOENT;
		goto unlock;
3572 3573
	}

3574
	if (obj->pin_count) {
3575 3576
		ret = -EINVAL;
		goto out;
3577 3578
	}

3579 3580
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3581

3582
	/* if the object is no longer bound, discard its backing storage */
3583 3584
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3585 3586
		i915_gem_object_truncate(obj);

3587
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3588

3589
out:
3590
	drm_gem_object_unreference(&obj->base);
3591
unlock:
3592
	mutex_unlock(&dev->struct_mutex);
3593
	return ret;
3594 3595
}

3596 3597
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3598
{
3599
	struct drm_i915_private *dev_priv = dev->dev_private;
3600
	struct drm_i915_gem_object *obj;
3601
	struct address_space *mapping;
3602

3603 3604 3605
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3606

3607 3608 3609 3610
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3611

3612 3613 3614
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3615 3616
	i915_gem_info_add_obj(dev_priv, size);

3617 3618
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3619

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	if (IS_GEN6(dev)) {
		/* On Gen6, we can have the GPU use the LLC (the CPU
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3637
	obj->base.driver_private = NULL;
3638
	obj->fence_reg = I915_FENCE_REG_NONE;
3639
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3640
	INIT_LIST_HEAD(&obj->gtt_list);
3641
	INIT_LIST_HEAD(&obj->ring_list);
3642
	INIT_LIST_HEAD(&obj->exec_list);
3643 3644
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3645 3646
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3647

3648
	return obj;
3649 3650 3651 3652 3653
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3654

3655 3656 3657
	return 0;
}

3658
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3659
{
3660
	struct drm_device *dev = obj->base.dev;
3661 3662
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3663

3664 3665
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3666
		list_move(&obj->mm_list,
3667 3668 3669
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3670

3671 3672
	trace_i915_gem_object_destroy(obj);

3673
	if (obj->base.map_list.map)
3674
		drm_gem_free_mmap_offset(&obj->base);
3675

3676 3677
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3678

3679 3680 3681
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3682 3683
}

3684
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3685
{
3686 3687
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3688

3689
	while (obj->pin_count > 0)
3690 3691
		i915_gem_object_unpin(obj);

3692
	if (obj->phys_obj)
3693 3694 3695 3696 3697
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3698 3699 3700 3701 3702
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3703

3704
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3705

3706
	if (dev_priv->mm.suspended) {
3707 3708
		mutex_unlock(&dev->struct_mutex);
		return 0;
3709 3710
	}

3711
	ret = i915_gpu_idle(dev);
3712 3713
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3714
		return ret;
3715
	}
3716

3717 3718
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3719
		ret = i915_gem_evict_inactive(dev, false);
3720 3721 3722 3723 3724 3725
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3726 3727
	i915_gem_reset_fences(dev);

3728 3729 3730 3731 3732
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3733
	del_timer_sync(&dev_priv->hangcheck_timer);
3734 3735

	i915_kernel_lost_context(dev);
3736
	i915_gem_cleanup_ringbuffer(dev);
3737

3738 3739
	mutex_unlock(&dev->struct_mutex);

3740 3741 3742
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3743 3744 3745
	return 0;
}

3746 3747 3748 3749 3750
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3751

3752
	ret = intel_init_render_ring_buffer(dev);
3753
	if (ret)
3754
		return ret;
3755 3756

	if (HAS_BSD(dev)) {
3757
		ret = intel_init_bsd_ring_buffer(dev);
3758 3759
		if (ret)
			goto cleanup_render_ring;
3760
	}
3761

3762 3763 3764 3765 3766 3767
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3768 3769
	dev_priv->next_seqno = 1;

3770 3771
	return 0;

3772
cleanup_bsd_ring:
3773
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3774
cleanup_render_ring:
3775
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3776 3777 3778 3779 3780 3781 3782
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3783
	int i;
3784

3785 3786
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3787 3788
}

3789 3790 3791 3792 3793
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3794
	int ret, i;
3795

J
Jesse Barnes 已提交
3796 3797 3798
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3799
	if (atomic_read(&dev_priv->mm.wedged)) {
3800
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3801
		atomic_set(&dev_priv->mm.wedged, 0);
3802 3803 3804
	}

	mutex_lock(&dev->struct_mutex);
3805 3806 3807
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3808 3809
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3810
		return ret;
3811
	}
3812

3813
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3814 3815
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3816 3817 3818 3819
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3820
	mutex_unlock(&dev->struct_mutex);
3821

3822 3823 3824
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3825

3826
	return 0;
3827 3828 3829 3830 3831 3832 3833 3834

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3835 3836 3837 3838 3839 3840
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3841 3842 3843
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3844
	drm_irq_uninstall(dev);
3845
	return i915_gem_idle(dev);
3846 3847 3848 3849 3850 3851 3852
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3853 3854 3855
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3856 3857 3858
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3859 3860
}

3861 3862 3863 3864 3865 3866 3867 3868
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3869 3870 3871
void
i915_gem_load(struct drm_device *dev)
{
3872
	int i;
3873 3874
	drm_i915_private_t *dev_priv = dev->dev_private;

3875
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3876 3877
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3878
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3879
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3880
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3881
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3882 3883
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3884 3885
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3886 3887
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3888
	init_completion(&dev_priv->error_completion);
3889

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3900 3901
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3902
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3903 3904
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3905

3906
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3907 3908 3909 3910
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3911
	/* Initialize fence registers to zero */
3912 3913
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3914
	}
3915

3916
	i915_gem_detect_bit_6_swizzle(dev);
3917
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3918

3919 3920
	dev_priv->mm.interruptible = true;

3921 3922 3923
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3924
}
3925 3926 3927 3928 3929

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3930 3931
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3932 3933 3934 3935 3936 3937 3938 3939
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3940
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3941 3942 3943 3944 3945
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3946
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3959
	kfree(phys_obj);
3960 3961 3962
	return ret;
}

3963
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3988
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3989 3990 3991 3992
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3993
				 struct drm_i915_gem_object *obj)
3994
{
3995
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3996
	char *vaddr;
3997 3998 3999
	int i;
	int page_count;

4000
	if (!obj->phys_obj)
4001
		return;
4002
	vaddr = obj->phys_obj->handle->vaddr;
4003

4004
	page_count = obj->base.size / PAGE_SIZE;
4005
	for (i = 0; i < page_count; i++) {
4006
		struct page *page = shmem_read_mapping_page(mapping, i);
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4018
	}
4019
	intel_gtt_chipset_flush();
4020

4021 4022
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4023 4024 4025 4026
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4027
			    struct drm_i915_gem_object *obj,
4028 4029
			    int id,
			    int align)
4030
{
4031
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4032 4033 4034 4035 4036 4037 4038 4039
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4040 4041
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4042 4043 4044 4045 4046 4047 4048
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4049
						obj->base.size, align);
4050
		if (ret) {
4051 4052
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4053
			return ret;
4054 4055 4056 4057
		}
	}

	/* bind to the object */
4058 4059
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4060

4061
	page_count = obj->base.size / PAGE_SIZE;
4062 4063

	for (i = 0; i < page_count; i++) {
4064 4065 4066
		struct page *page;
		char *dst, *src;

4067
		page = shmem_read_mapping_page(mapping, i);
4068 4069
		if (IS_ERR(page))
			return PTR_ERR(page);
4070

4071
		src = kmap_atomic(page);
4072
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4073
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4074
		kunmap_atomic(src);
4075

4076 4077 4078
		mark_page_accessed(page);
		page_cache_release(page);
	}
4079

4080 4081 4082 4083
	return 0;
}

static int
4084 4085
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4086 4087 4088
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4089
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4090
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4091

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4105

4106
	intel_gtt_chipset_flush();
4107 4108
	return 0;
}
4109

4110
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4111
{
4112
	struct drm_i915_file_private *file_priv = file->driver_priv;
4113 4114 4115 4116 4117

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4118
	spin_lock(&file_priv->mm.lock);
4119 4120 4121 4122 4123 4124 4125 4126 4127
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4128
	spin_unlock(&file_priv->mm.lock);
4129
}
4130

4131 4132 4133 4134 4135 4136 4137
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4138
		      list_empty(&dev_priv->mm.active_list);
4139 4140 4141 4142

	return !lists_empty;
}

4143
static int
4144
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4145
{
4146 4147 4148 4149 4150 4151
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4152
	int nr_to_scan = sc->nr_to_scan;
4153 4154 4155
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4156
		return 0;
4157 4158 4159

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4160 4161 4162 4163 4164 4165 4166
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4167 4168
	}

4169
rescan:
4170
	/* first scan for clean buffers */
4171
	i915_gem_retire_requests(dev);
4172

4173 4174 4175 4176
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4177 4178
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4179
				break;
4180 4181 4182 4183
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4184 4185 4186 4187
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4188 4189
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4190
			nr_to_scan--;
4191
		else
4192 4193 4194 4195
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4196 4197 4198 4199 4200 4201
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4202
		if (i915_gpu_idle(dev) == 0)
4203 4204
			goto rescan;
	}
4205 4206
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4207
}