i915_gem.c 107.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 40
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 42 43 44 45
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
46
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 48 49
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
50 51
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
52 53
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
54
				struct drm_i915_gem_pwrite *args,
55 56
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57

58
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59
				    struct shrink_control *sc);
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

76 77
static int
i915_gem_wait_for_error(struct drm_device *dev)
78 79 80 81 82 83 84 85 86 87 88 89 90
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

91 92 93 94 95 96 97 98 99 100 101
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
102 103
}

104
int i915_mutex_lock_interruptible(struct drm_device *dev)
105 106 107
{
	int ret;

108
	ret = i915_gem_wait_for_error(dev);
109 110 111 112 113 114 115
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

116
	WARN_ON(i915_verify_lists(dev));
117 118
	return 0;
}
119

120
static inline bool
121
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
122
{
123
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
124 125
}

126 127 128 129
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
130 131 132
{
	drm_i915_private_t *dev_priv = dev->dev_private;

133
	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
134

135 136 137
	dev_priv->mm.gtt_start = start;
	dev_priv->mm.gtt_mappable_end = mappable_end;
	dev_priv->mm.gtt_end = end;
138
	dev_priv->mm.gtt_total = end - start;
139
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
140 141 142

	/* Take over this portion of the GTT */
	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
J
Jesse Barnes 已提交
143
}
144

J
Jesse Barnes 已提交
145 146
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
147
		    struct drm_file *file)
J
Jesse Barnes 已提交
148 149
{
	struct drm_i915_gem_init *args = data;
150 151 152 153

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
154 155

	mutex_lock(&dev->struct_mutex);
156
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
157 158
	mutex_unlock(&dev->struct_mutex);

159
	return 0;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170 171 172 173

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

174
	pinned = 0;
175
	mutex_lock(&dev->struct_mutex);
176 177
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
178
	mutex_unlock(&dev->struct_mutex);
179

180 181 182
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size -pinned;

183 184 185
	return 0;
}

186 187 188 189 190
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
191
{
192
	struct drm_i915_gem_object *obj;
193 194
	int ret;
	u32 handle;
195

196
	size = roundup(size, PAGE_SIZE);
197 198

	/* Allocate the new object */
199
	obj = i915_gem_alloc_object(dev, size);
200 201 202
	if (obj == NULL)
		return -ENOMEM;

203
	ret = drm_gem_handle_create(file, &obj->base, &handle);
204
	if (ret) {
205 206
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
207
		kfree(obj);
208
		return ret;
209
	}
210

211
	/* drop reference from allocate - handle holds it now */
212
	drm_gem_object_unreference(&obj->base);
213 214
	trace_i915_gem_object_create(obj);

215
	*handle_p = handle;
216 217 218
	return 0;
}

219 220 221 222 223 224
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
225
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

250
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
251
{
252
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
253 254

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
255
		obj->tiling_mode != I915_TILING_NONE;
256 257
}

258
static inline void
259 260 261 262 263 264 265 266
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

267 268
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
269 270 271

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

272 273
	kunmap(src_page);
	kunmap(dst_page);
274 275
}

276
static inline void
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

296 297
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

321 322
	kunmap(cpu_page);
	kunmap(gpu_page);
323 324
}

325 326 327 328 329 330
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
331 332
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
333
			  struct drm_i915_gem_pread *args,
334
			  struct drm_file *file)
335
{
336
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
337
	ssize_t remain;
338
	loff_t offset;
339 340 341 342 343 344 345 346 347
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
348 349 350 351
		struct page *page;
		char *vaddr;
		int ret;

352 353 354 355 356
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
357
		page_offset = offset_in_page(offset);
358 359 360 361
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

362 363 364 365 366 367 368 369 370 371 372 373 374 375
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
376
			return -EFAULT;
377 378 379 380 381 382

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

383
	return 0;
384 385 386 387 388 389 390 391 392
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
393 394
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
395
			  struct drm_i915_gem_pread *args,
396
			  struct drm_file *file)
397
{
398
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
399 400 401 402 403
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
404 405
	int shmem_page_offset;
	int data_page_index, data_page_offset;
406 407 408
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
409
	int do_bit17_swizzling;
410 411 412 413 414 415 416 417 418 419 420

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

421
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
422 423 424
	if (user_pages == NULL)
		return -ENOMEM;

425
	mutex_unlock(&dev->struct_mutex);
426 427
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
428
				      num_pages, 1, 0, user_pages, NULL);
429
	up_read(&mm->mmap_sem);
430
	mutex_lock(&dev->struct_mutex);
431 432
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
433
		goto out;
434 435
	}

436 437 438
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
439
	if (ret)
440
		goto out;
441

442
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
443 444 445 446

	offset = args->offset;

	while (remain > 0) {
447 448
		struct page *page;

449 450 451 452 453 454 455
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
456
		shmem_page_offset = offset_in_page(offset);
457
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
458
		data_page_offset = offset_in_page(data_ptr);
459 460 461 462 463 464 465

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

466 467 468 469 470
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

471
		if (do_bit17_swizzling) {
472
			slow_shmem_bit17_copy(page,
473
					      shmem_page_offset,
474 475 476 477 478 479 480
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
481
					page,
482 483
					shmem_page_offset,
					page_length);
484
		}
485

486 487 488
		mark_page_accessed(page);
		page_cache_release(page);

489 490 491 492 493
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

494
out:
495 496
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
497
		mark_page_accessed(user_pages[i]);
498 499
		page_cache_release(user_pages[i]);
	}
500
	drm_free_large(user_pages);
501 502 503 504

	return ret;
}

505 506 507 508 509 510 511
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
512
		     struct drm_file *file)
513 514
{
	struct drm_i915_gem_pread *args = data;
515
	struct drm_i915_gem_object *obj;
516
	int ret = 0;
517

518 519 520 521 522 523 524 525 526 527 528 529 530
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

531
	ret = i915_mutex_lock_interruptible(dev);
532
	if (ret)
533
		return ret;
534

535
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
536
	if (&obj->base == NULL) {
537 538
		ret = -ENOENT;
		goto unlock;
539
	}
540

541
	/* Bounds check source.  */
542 543
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
544
		ret = -EINVAL;
545
		goto out;
C
Chris Wilson 已提交
546 547
	}

C
Chris Wilson 已提交
548 549
	trace_i915_gem_object_pread(obj, args->offset, args->size);

550 551 552 553
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
554
		goto out;
555 556 557

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
558
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
559
	if (ret == -EFAULT)
560
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
561

562
out:
563
	drm_gem_object_unreference(&obj->base);
564
unlock:
565
	mutex_unlock(&dev->struct_mutex);
566
	return ret;
567 568
}

569 570
/* This is the fast write path which cannot handle
 * page faults in the source data
571
 */
572 573 574 575 576 577

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
578 579
{
	char *vaddr_atomic;
580
	unsigned long unwritten;
581

P
Peter Zijlstra 已提交
582
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
583 584
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
585
	io_mapping_unmap_atomic(vaddr_atomic);
586
	return unwritten;
587 588 589 590 591 592
}

/* Here's the write path which can sleep for
 * page faults
 */

593
static inline void
594 595 596 597
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
598
{
599 600
	char __iomem *dst_vaddr;
	char *src_vaddr;
601

602 603 604 605 606 607 608 609 610
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
611 612
}

613 614 615 616
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
617
static int
618 619
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
620
			 struct drm_i915_gem_pwrite *args,
621
			 struct drm_file *file)
622
{
623
	drm_i915_private_t *dev_priv = dev->dev_private;
624
	ssize_t remain;
625
	loff_t offset, page_base;
626
	char __user *user_data;
627
	int page_offset, page_length;
628 629 630 631

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

632
	offset = obj->gtt_offset + args->offset;
633 634 635 636

	while (remain > 0) {
		/* Operation in this page
		 *
637 638 639
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
640
		 */
641 642
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
643 644 645 646 647
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
648 649
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
650
		 */
651 652 653
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))
			return -EFAULT;
654

655 656 657
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
658 659
	}

660
	return 0;
661 662
}

663 664 665 666 667 668 669
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
670
static int
671 672
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
673
			 struct drm_i915_gem_pwrite *args,
674
			 struct drm_file *file)
675
{
676 677 678 679 680 681 682 683
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
684
	int ret;
685 686 687 688 689 690 691 692 693 694 695 696
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

697
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
698 699 700
	if (user_pages == NULL)
		return -ENOMEM;

701
	mutex_unlock(&dev->struct_mutex);
702 703 704 705
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
706
	mutex_lock(&dev->struct_mutex);
707 708 709 710
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
711

712 713 714 715 716
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
717
	if (ret)
718
		goto out_unpin_pages;
719

720
	offset = obj->gtt_offset + args->offset;
721 722 723 724 725 726 727 728 729 730 731

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
732
		gtt_page_offset = offset_in_page(offset);
733
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734
		data_page_offset = offset_in_page(data_ptr);
735 736 737 738 739 740 741

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

742 743 744 745 746
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
747 748 749 750 751 752 753 754 755

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
756
	drm_free_large(user_pages);
757 758 759 760

	return ret;
}

761 762 763 764
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
765
static int
766 767
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
768
			   struct drm_i915_gem_pwrite *args,
769
			   struct drm_file *file)
770
{
771
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
772
	ssize_t remain;
773
	loff_t offset;
774 775 776 777 778
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
779

780
	offset = args->offset;
781
	obj->dirty = 1;
782 783

	while (remain > 0) {
784 785 786 787
		struct page *page;
		char *vaddr;
		int ret;

788 789 790 791 792
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
793
		page_offset = offset_in_page(offset);
794 795 796 797
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
818
			return -EFAULT;
819 820 821 822 823 824

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

825
	return 0;
826 827 828 829 830 831 832 833 834 835
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
836 837
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
838
			   struct drm_i915_gem_pwrite *args,
839
			   struct drm_file *file)
840
{
841
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
842 843 844 845 846
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
847
	int shmem_page_offset;
848 849 850 851
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
852
	int do_bit17_swizzling;
853 854 855 856 857 858 859 860 861 862 863

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

864
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
865 866 867
	if (user_pages == NULL)
		return -ENOMEM;

868
	mutex_unlock(&dev->struct_mutex);
869 870 871 872
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
873
	mutex_lock(&dev->struct_mutex);
874 875
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
876
		goto out;
877 878
	}

879
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
880
	if (ret)
881
		goto out;
882

883
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884

885
	offset = args->offset;
886
	obj->dirty = 1;
887

888
	while (remain > 0) {
889 890
		struct page *page;

891 892 893 894 895 896 897
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
898
		shmem_page_offset = offset_in_page(offset);
899
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
900
		data_page_offset = offset_in_page(data_ptr);
901 902 903 904 905 906 907

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

908 909 910 911 912 913 914
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

915
		if (do_bit17_swizzling) {
916
			slow_shmem_bit17_copy(page,
917 918 919
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
920 921 922
					      page_length,
					      0);
		} else {
923
			slow_shmem_copy(page,
924 925 926 927
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
928
		}
929

930 931 932 933
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

934 935 936
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
937 938
	}

939
out:
940 941
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
942
	drm_free_large(user_pages);
943

944
	return ret;
945 946 947 948 949 950 951 952 953
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
954
		      struct drm_file *file)
955 956
{
	struct drm_i915_gem_pwrite *args = data;
957
	struct drm_i915_gem_object *obj;
958 959 960 961 962 963 964 965 966 967 968 969 970 971
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
972

973
	ret = i915_mutex_lock_interruptible(dev);
974
	if (ret)
975
		return ret;
976

977
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
978
	if (&obj->base == NULL) {
979 980
		ret = -ENOENT;
		goto unlock;
981
	}
982

983
	/* Bounds check destination. */
984 985
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
986
		ret = -EINVAL;
987
		goto out;
C
Chris Wilson 已提交
988 989
	}

C
Chris Wilson 已提交
990 991
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

992 993 994 995 996 997
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
998
	if (obj->phys_obj)
999
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1000
	else if (obj->gtt_space &&
1001
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1002
		ret = i915_gem_object_pin(obj, 0, true);
1003 1004 1005
		if (ret)
			goto out;

1006 1007 1008 1009 1010
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
1011 1012 1013 1014 1015 1016 1017 1018 1019
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1020
	} else {
1021 1022
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1023
			goto out;
1024

1025 1026 1027 1028 1029 1030
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1031

1032
out:
1033
	drm_gem_object_unreference(&obj->base);
1034
unlock:
1035
	mutex_unlock(&dev->struct_mutex);
1036 1037 1038 1039
	return ret;
}

/**
1040 1041
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1042 1043 1044
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1045
			  struct drm_file *file)
1046 1047
{
	struct drm_i915_gem_set_domain *args = data;
1048
	struct drm_i915_gem_object *obj;
1049 1050
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1051 1052 1053 1054 1055
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1056
	/* Only handle setting domains to types used by the CPU. */
1057
	if (write_domain & I915_GEM_GPU_DOMAINS)
1058 1059
		return -EINVAL;

1060
	if (read_domains & I915_GEM_GPU_DOMAINS)
1061 1062 1063 1064 1065 1066 1067 1068
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1069
	ret = i915_mutex_lock_interruptible(dev);
1070
	if (ret)
1071
		return ret;
1072

1073
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1074
	if (&obj->base == NULL) {
1075 1076
		ret = -ENOENT;
		goto unlock;
1077
	}
1078

1079 1080
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1081 1082 1083 1084 1085 1086 1087

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1088
	} else {
1089
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1090 1091
	}

1092
	drm_gem_object_unreference(&obj->base);
1093
unlock:
1094 1095 1096 1097 1098 1099 1100 1101 1102
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1103
			 struct drm_file *file)
1104 1105
{
	struct drm_i915_gem_sw_finish *args = data;
1106
	struct drm_i915_gem_object *obj;
1107 1108 1109 1110 1111
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1112
	ret = i915_mutex_lock_interruptible(dev);
1113
	if (ret)
1114
		return ret;
1115

1116
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1117
	if (&obj->base == NULL) {
1118 1119
		ret = -ENOENT;
		goto unlock;
1120 1121 1122
	}

	/* Pinned buffers may be scanout, so flush the cache */
1123
	if (obj->pin_count)
1124 1125
		i915_gem_object_flush_cpu_write_domain(obj);

1126
	drm_gem_object_unreference(&obj->base);
1127
unlock:
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1141
		    struct drm_file *file)
1142
{
1143
	struct drm_i915_private *dev_priv = dev->dev_private;
1144 1145 1146 1147 1148 1149 1150
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1151
	obj = drm_gem_object_lookup(dev, file, args->handle);
1152
	if (obj == NULL)
1153
		return -ENOENT;
1154

1155 1156 1157 1158 1159
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1160 1161 1162 1163 1164
	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1165
	drm_gem_object_unreference_unlocked(obj);
1166 1167 1168 1169 1170 1171 1172 1173
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1192 1193
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1194
	drm_i915_private_t *dev_priv = dev->dev_private;
1195 1196 1197
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1198
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1199 1200 1201 1202 1203

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1204 1205 1206
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1207

C
Chris Wilson 已提交
1208 1209
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1210
	/* Now bind it into the GTT if needed */
1211 1212 1213 1214
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1215
	}
1216
	if (!obj->gtt_space) {
1217
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1218 1219
		if (ret)
			goto unlock;
1220 1221
	}

1222 1223 1224 1225
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1226 1227 1228
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
1229
		ret = i915_gem_object_get_fence(obj, NULL);
1230 1231
	if (ret)
		goto unlock;
1232

1233 1234
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1235

1236 1237
	obj->fault_mappable = true;

1238
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1239 1240 1241 1242
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1243
unlock:
1244
	mutex_unlock(&dev->struct_mutex);
1245
out:
1246
	switch (ret) {
1247
	case -EIO:
1248
	case -EAGAIN:
1249 1250 1251 1252 1253 1254 1255
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1256
		set_need_resched();
1257 1258
	case 0:
	case -ERESTARTSYS:
1259
	case -EINTR:
1260
		return VM_FAULT_NOPAGE;
1261 1262 1263
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1264
		return VM_FAULT_SIGBUS;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
1280
i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1281
{
1282
	struct drm_device *dev = obj->base.dev;
1283 1284
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1285
	struct drm_local_map *map;
1286 1287 1288
	int ret = 0;

	/* Set the object up for mmap'ing */
1289
	list = &obj->base.map_list;
1290
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1291 1292 1293 1294 1295
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
1296
	map->size = obj->base.size;
1297 1298 1299 1300
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1301 1302
						    obj->base.size / PAGE_SIZE,
						    0, 0);
1303
	if (!list->file_offset_node) {
1304 1305
		DRM_ERROR("failed to allocate offset for bo %d\n",
			  obj->base.name);
1306
		ret = -ENOSPC;
1307 1308 1309 1310
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1311 1312
						  obj->base.size / PAGE_SIZE,
						  0);
1313 1314 1315 1316 1317 1318
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1319 1320
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1321 1322 1323 1324 1325 1326 1327 1328 1329
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1330
	kfree(list->map);
C
Chris Wilson 已提交
1331
	list->map = NULL;
1332 1333 1334 1335

	return ret;
}

1336 1337 1338 1339
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1340
 * Preserve the reservation of the mmapping with the DRM core code, but
1341 1342 1343 1344 1345 1346 1347 1348 1349
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1350
void
1351
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1352
{
1353 1354
	if (!obj->fault_mappable)
		return;
1355

1356 1357 1358 1359
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1360

1361
	obj->fault_mappable = false;
1362 1363
}

1364
static void
1365
i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1366
{
1367
	struct drm_device *dev = obj->base.dev;
1368
	struct drm_gem_mm *mm = dev->mm_private;
1369
	struct drm_map_list *list = &obj->base.map_list;
1370 1371

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1372 1373 1374
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	uint32_t size;

	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj->tiling_mode == I915_TILING_NONE)
		return obj->base.size;

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
		size = 1024*1024;
	else
		size = 512*1024;

	while (size < obj->base.size)
		size <<= 1;

	return size;
}

1399 1400 1401 1402 1403
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1404
 * potential fence register mapping.
1405 1406
 */
static uint32_t
1407
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1408
{
1409
	struct drm_device *dev = obj->base.dev;
1410 1411 1412 1413 1414

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1415
	if (INTEL_INFO(dev)->gen >= 4 ||
1416
	    obj->tiling_mode == I915_TILING_NONE)
1417 1418
		return 4096;

1419 1420 1421 1422
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1423
	return i915_gem_get_gtt_size(obj);
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1434
uint32_t
1435
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1436
{
1437
	struct drm_device *dev = obj->base.dev;
1438 1439 1440 1441 1442 1443
	int tile_height;

	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1444
	    obj->tiling_mode == I915_TILING_NONE)
1445 1446 1447 1448 1449 1450 1451
		return 4096;

	/*
	 * Older chips need unfenced tiled buffers to be aligned to the left
	 * edge of an even tile row (where tile rows are counted as if the bo is
	 * placed in a fenced gtt region).
	 */
1452 1453 1454
	if (IS_GEN2(dev))
		tile_height = 16;
	else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
1455 1456 1457 1458
		tile_height = 32;
	else
		tile_height = 8;

1459
	return tile_height * obj->stride * 2;
1460 1461
}

1462
int
1463 1464 1465 1466
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1467
{
1468
	struct drm_i915_private *dev_priv = dev->dev_private;
1469
	struct drm_i915_gem_object *obj;
1470 1471 1472 1473 1474
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1475
	ret = i915_mutex_lock_interruptible(dev);
1476
	if (ret)
1477
		return ret;
1478

1479
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1480
	if (&obj->base == NULL) {
1481 1482 1483
		ret = -ENOENT;
		goto unlock;
	}
1484

1485
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1486 1487 1488 1489
		ret = -E2BIG;
		goto unlock;
	}

1490
	if (obj->madv != I915_MADV_WILLNEED) {
1491
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1492 1493
		ret = -EINVAL;
		goto out;
1494 1495
	}

1496
	if (!obj->base.map_list.map) {
1497
		ret = i915_gem_create_mmap_offset(obj);
1498 1499
		if (ret)
			goto out;
1500 1501
	}

1502
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1503

1504
out:
1505
	drm_gem_object_unreference(&obj->base);
1506
unlock:
1507
	mutex_unlock(&dev->struct_mutex);
1508
	return ret;
1509 1510
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1539
static int
1540
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1551 1552 1553 1554
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1555 1556
		return -ENOMEM;

1557
	inode = obj->base.filp->f_path.dentry->d_inode;
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

1568
		obj->pages[i] = page;
1569 1570
	}

1571
	if (obj->tiling_mode != I915_TILING_NONE)
1572 1573 1574 1575 1576 1577
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1578
		page_cache_release(obj->pages[i]);
1579

1580 1581
	drm_free_large(obj->pages);
	obj->pages = NULL;
1582 1583 1584
	return PTR_ERR(page);
}

1585
static void
1586
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1587
{
1588
	int page_count = obj->base.size / PAGE_SIZE;
1589 1590
	int i;

1591
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1592

1593
	if (obj->tiling_mode != I915_TILING_NONE)
1594 1595
		i915_gem_object_save_bit_17_swizzle(obj);

1596 1597
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1598 1599

	for (i = 0; i < page_count; i++) {
1600 1601
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1602

1603 1604
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1605

1606
		page_cache_release(obj->pages[i]);
1607
	}
1608
	obj->dirty = 0;
1609

1610 1611
	drm_free_large(obj->pages);
	obj->pages = NULL;
1612 1613
}

1614
void
1615
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1616 1617
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1618
{
1619
	struct drm_device *dev = obj->base.dev;
1620
	struct drm_i915_private *dev_priv = dev->dev_private;
1621

1622
	BUG_ON(ring == NULL);
1623
	obj->ring = ring;
1624 1625

	/* Add a reference if we're newly entering the active list. */
1626 1627 1628
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1629
	}
1630

1631
	/* Move from whatever list we were on to the tail of execution. */
1632 1633
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1634

1635
	obj->last_rendering_seqno = seqno;
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1654 1655
}

1656
static void
1657
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1658
{
1659
	struct drm_device *dev = obj->base.dev;
1660 1661
	drm_i915_private_t *dev_priv = dev->dev_private;

1662 1663
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1687
	obj->pending_gpu_write = false;
1688 1689 1690
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1691
}
1692

1693 1694
/* Immediately discard the backing storage */
static void
1695
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1696
{
C
Chris Wilson 已提交
1697
	struct inode *inode;
1698

1699 1700 1701 1702 1703 1704
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
1705
	inode = obj->base.filp->f_path.dentry->d_inode;
1706 1707 1708
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1709

1710
	obj->madv = __I915_MADV_PURGED;
1711 1712 1713
}

static inline int
1714
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1715
{
1716
	return obj->madv == I915_MADV_DONTNEED;
1717 1718
}

1719
static void
C
Chris Wilson 已提交
1720 1721
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1722
{
1723
	struct drm_i915_gem_object *obj, *next;
1724

1725
	list_for_each_entry_safe(obj, next,
1726
				 &ring->gpu_write_list,
1727
				 gpu_write_list) {
1728 1729
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1730

1731 1732
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1733
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1734
						       i915_gem_next_request_seqno(ring));
1735 1736

			trace_i915_gem_object_change_domain(obj,
1737
							    obj->base.read_domains,
1738 1739 1740 1741
							    old_write_domain);
		}
	}
}
1742

1743
int
C
Chris Wilson 已提交
1744
i915_add_request(struct intel_ring_buffer *ring,
1745
		 struct drm_file *file,
C
Chris Wilson 已提交
1746
		 struct drm_i915_gem_request *request)
1747
{
C
Chris Wilson 已提交
1748
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1749 1750
	uint32_t seqno;
	int was_empty;
1751 1752 1753
	int ret;

	BUG_ON(request == NULL);
1754

1755 1756 1757
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1758

C
Chris Wilson 已提交
1759
	trace_i915_gem_request_add(ring, seqno);
1760 1761

	request->seqno = seqno;
1762
	request->ring = ring;
1763
	request->emitted_jiffies = jiffies;
1764 1765 1766
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1767 1768 1769
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1770
		spin_lock(&file_priv->mm.lock);
1771
		request->file_priv = file_priv;
1772
		list_add_tail(&request->client_list,
1773
			      &file_priv->mm.request_list);
1774
		spin_unlock(&file_priv->mm.lock);
1775
	}
1776

C
Chris Wilson 已提交
1777 1778
	ring->outstanding_lazy_request = false;

B
Ben Gamari 已提交
1779
	if (!dev_priv->mm.suspended) {
1780 1781
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1782
		if (was_empty)
1783 1784
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1785
	}
1786
	return 0;
1787 1788
}

1789 1790
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1791
{
1792
	struct drm_i915_file_private *file_priv = request->file_priv;
1793

1794 1795
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1796

1797
	spin_lock(&file_priv->mm.lock);
1798 1799 1800 1801
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1802
	spin_unlock(&file_priv->mm.lock);
1803 1804
}

1805 1806
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1807
{
1808 1809
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1810

1811 1812 1813
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1814

1815
		list_del(&request->list);
1816
		i915_gem_request_remove_from_client(request);
1817 1818
		kfree(request);
	}
1819

1820
	while (!list_empty(&ring->active_list)) {
1821
		struct drm_i915_gem_object *obj;
1822

1823 1824 1825
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1826

1827 1828 1829
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1830 1831 1832
	}
}

1833 1834 1835 1836 1837 1838 1839
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1840 1841 1842 1843 1844 1845 1846 1847
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1848 1849 1850 1851 1852
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1853 1854 1855
	}
}

1856
void i915_gem_reset(struct drm_device *dev)
1857
{
1858
	struct drm_i915_private *dev_priv = dev->dev_private;
1859
	struct drm_i915_gem_object *obj;
1860
	int i;
1861

1862 1863
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1864 1865 1866 1867 1868 1869

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1870 1871 1872
		obj= list_first_entry(&dev_priv->mm.flushing_list,
				      struct drm_i915_gem_object,
				      mm_list);
1873

1874 1875 1876
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1877 1878 1879 1880 1881
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1882
	list_for_each_entry(obj,
1883
			    &dev_priv->mm.inactive_list,
1884
			    mm_list)
1885
	{
1886
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1887
	}
1888 1889

	/* The fence registers are invalidated so clear them out */
1890
	i915_gem_reset_fences(dev);
1891 1892 1893 1894 1895
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1896
static void
C
Chris Wilson 已提交
1897
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1898 1899
{
	uint32_t seqno;
1900
	int i;
1901

C
Chris Wilson 已提交
1902
	if (list_empty(&ring->request_list))
1903 1904
		return;

C
Chris Wilson 已提交
1905
	WARN_ON(i915_verify_lists(ring->dev));
1906

1907
	seqno = ring->get_seqno(ring);
1908

1909
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1910 1911 1912
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1913
	while (!list_empty(&ring->request_list)) {
1914 1915
		struct drm_i915_gem_request *request;

1916
		request = list_first_entry(&ring->request_list,
1917 1918 1919
					   struct drm_i915_gem_request,
					   list);

1920
		if (!i915_seqno_passed(seqno, request->seqno))
1921 1922
			break;

C
Chris Wilson 已提交
1923
		trace_i915_gem_request_retire(ring, request->seqno);
1924 1925

		list_del(&request->list);
1926
		i915_gem_request_remove_from_client(request);
1927 1928
		kfree(request);
	}
1929

1930 1931 1932 1933
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1934
		struct drm_i915_gem_object *obj;
1935

1936 1937 1938
		obj= list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);
1939

1940
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1941
			break;
1942

1943
		if (obj->base.write_domain != 0)
1944 1945 1946
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1947
	}
1948

C
Chris Wilson 已提交
1949 1950
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1951
		ring->irq_put(ring);
C
Chris Wilson 已提交
1952
		ring->trace_irq_seqno = 0;
1953
	}
1954

C
Chris Wilson 已提交
1955
	WARN_ON(i915_verify_lists(ring->dev));
1956 1957
}

1958 1959 1960 1961
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1962
	int i;
1963

1964
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1965
	    struct drm_i915_gem_object *obj, *next;
1966 1967 1968 1969 1970 1971

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1972
	    list_for_each_entry_safe(obj, next,
1973
				     &dev_priv->mm.deferred_free_list,
1974
				     mm_list)
1975
		    i915_gem_free_object_tail(obj);
1976 1977
	}

1978
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1979
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1980 1981
}

1982
static void
1983 1984 1985 1986
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1987 1988
	bool idle;
	int i;
1989 1990 1991 1992 1993

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1994 1995 1996 1997 1998 1999
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2000
	i915_gem_retire_requests(dev);
2001

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
2013 2014
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
2015 2016
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
2017
			    i915_add_request(ring, NULL, request))
2018 2019 2020 2021 2022 2023 2024
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
2025
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2026

2027 2028 2029
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
2030 2031 2032 2033
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
2034
int
C
Chris Wilson 已提交
2035
i915_wait_request(struct intel_ring_buffer *ring,
2036
		  uint32_t seqno)
2037
{
C
Chris Wilson 已提交
2038
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2039
	u32 ier;
2040 2041 2042 2043
	int ret = 0;

	BUG_ON(seqno == 0);

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
2056

2057
	if (seqno == ring->outstanding_lazy_request) {
2058 2059 2060 2061
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
2062
			return -ENOMEM;
2063

C
Chris Wilson 已提交
2064
		ret = i915_add_request(ring, NULL, request);
2065 2066 2067 2068 2069 2070
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2071
	}
2072

2073
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
2074
		if (HAS_PCH_SPLIT(ring->dev))
2075 2076 2077
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2078 2079 2080
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
C
Chris Wilson 已提交
2081 2082
			i915_driver_irq_preinstall(ring->dev);
			i915_driver_irq_postinstall(ring->dev);
2083 2084
		}

C
Chris Wilson 已提交
2085
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
2086

2087
		ring->waiting_seqno = seqno;
2088
		if (ring->irq_get(ring)) {
2089
			if (dev_priv->mm.interruptible)
2090 2091 2092 2093 2094 2095 2096 2097 2098
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
2099 2100 2101 2102
		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
						      seqno) ||
				    atomic_read(&dev_priv->mm.wedged), 3000))
			ret = -EBUSY;
2103
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2104

C
Chris Wilson 已提交
2105
		trace_i915_gem_request_wait_end(ring, seqno);
2106
	}
2107
	if (atomic_read(&dev_priv->mm.wedged))
2108
		ret = -EAGAIN;
2109 2110

	if (ret && ret != -ERESTARTSYS)
2111
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2112
			  __func__, ret, seqno, ring->get_seqno(ring),
2113
			  dev_priv->next_seqno);
2114 2115 2116 2117 2118 2119 2120

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
C
Chris Wilson 已提交
2121
		i915_gem_retire_requests_ring(ring);
2122 2123 2124 2125 2126 2127 2128 2129

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2130
int
2131
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2132 2133 2134
{
	int ret;

2135 2136
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2137
	 */
2138
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2139 2140 2141 2142

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2143
	if (obj->active) {
2144
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2145
		if (ret)
2146 2147 2148 2149 2150 2151
			return ret;
	}

	return 0;
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2176 2177 2178
/**
 * Unbinds an object from the GTT aperture.
 */
2179
int
2180
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2181 2182 2183
{
	int ret = 0;

2184
	if (obj->gtt_space == NULL)
2185 2186
		return 0;

2187
	if (obj->pin_count != 0) {
2188 2189 2190 2191
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2192 2193 2194 2195 2196 2197 2198 2199
	ret = i915_gem_object_finish_gpu(obj);
	if (ret == -ERESTARTSYS)
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2200
	i915_gem_object_finish_gtt(obj);
2201

2202 2203
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2204
	 * are flushed when we go to remap it.
2205
	 */
2206 2207
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2208
	if (ret == -ERESTARTSYS)
2209
		return ret;
2210
	if (ret) {
2211 2212 2213
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2214
		i915_gem_clflush_object(obj);
2215
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2216
	}
2217

2218
	/* release the fence reg _after_ flushing */
2219 2220 2221
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2222

C
Chris Wilson 已提交
2223 2224
	trace_i915_gem_object_unbind(obj);

2225
	i915_gem_gtt_unbind_object(obj);
2226
	i915_gem_object_put_pages_gtt(obj);
2227

2228
	list_del_init(&obj->gtt_list);
2229
	list_del_init(&obj->mm_list);
2230
	/* Avoid an unnecessary call to unbind on rebind. */
2231
	obj->map_and_fenceable = true;
2232

2233 2234 2235
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2236

2237
	if (i915_gem_object_is_purgeable(obj))
2238 2239
		i915_gem_object_truncate(obj);

2240
	return ret;
2241 2242
}

2243
int
C
Chris Wilson 已提交
2244
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2245 2246 2247
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2248 2249
	int ret;

2250 2251 2252
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2253 2254
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2255 2256 2257 2258
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2259 2260 2261
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2262
	return 0;
2263 2264
}

C
Chris Wilson 已提交
2265
static int i915_ring_idle(struct intel_ring_buffer *ring)
2266
{
2267 2268
	int ret;

2269
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2270 2271
		return 0;

2272
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2273
		ret = i915_gem_flush_ring(ring,
2274
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2275 2276 2277 2278
		if (ret)
			return ret;
	}

2279
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2280 2281
}

2282
int
2283 2284 2285 2286
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2287
	int ret, i;
2288

2289
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2290
		       list_empty(&dev_priv->mm.active_list));
2291 2292 2293 2294
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2295
	for (i = 0; i < I915_NUM_RINGS; i++) {
C
Chris Wilson 已提交
2296
		ret = i915_ring_idle(&dev_priv->ring[i]);
2297 2298 2299
		if (ret)
			return ret;
	}
2300

2301
	return 0;
2302 2303
}

2304 2305
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2306
{
2307
	struct drm_device *dev = obj->base.dev;
2308
	drm_i915_private_t *dev_priv = dev->dev_private;
2309 2310
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2311 2312
	uint64_t val;

2313
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2314
			 0xfffff000) << 32;
2315 2316
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2317 2318
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2319
	if (obj->tiling_mode == I915_TILING_Y)
2320 2321 2322
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2339 2340
}

2341 2342
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2343
{
2344
	struct drm_device *dev = obj->base.dev;
2345
	drm_i915_private_t *dev_priv = dev->dev_private;
2346 2347
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2348 2349
	uint64_t val;

2350
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2351
		    0xfffff000) << 32;
2352 2353 2354
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2355 2356 2357
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2374 2375
}

2376 2377
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2378
{
2379
	struct drm_device *dev = obj->base.dev;
2380
	drm_i915_private_t *dev_priv = dev->dev_private;
2381
	u32 size = obj->gtt_space->size;
2382
	u32 fence_reg, val, pitch_val;
2383
	int tile_width;
2384

2385 2386 2387 2388 2389 2390
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2391

2392
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2393
		tile_width = 128;
2394
	else
2395 2396 2397
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2398
	pitch_val = obj->stride / tile_width;
2399
	pitch_val = ffs(pitch_val) - 1;
2400

2401 2402
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2403
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2404
	val |= I915_FENCE_SIZE_BITS(size);
2405 2406 2407
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2408
	fence_reg = obj->fence_reg;
2409 2410
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2411
	else
2412
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2428 2429
}

2430 2431
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2432
{
2433
	struct drm_device *dev = obj->base.dev;
2434
	drm_i915_private_t *dev_priv = dev->dev_private;
2435 2436
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2437 2438 2439
	uint32_t val;
	uint32_t pitch_val;

2440 2441 2442 2443 2444 2445
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2446

2447
	pitch_val = obj->stride / 128;
2448 2449
	pitch_val = ffs(pitch_val) - 1;

2450 2451
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2452
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2453
	val |= I830_FENCE_SIZE_BITS(size);
2454 2455 2456
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2471 2472
}

2473 2474 2475 2476 2477 2478 2479
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2480
			    struct intel_ring_buffer *pipelined)
2481 2482 2483 2484
{
	int ret;

	if (obj->fenced_gpu_access) {
2485
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2486
			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2487 2488 2489 2490
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2491 2492 2493 2494 2495 2496 2497

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
C
Chris Wilson 已提交
2498
			ret = i915_wait_request(obj->last_fenced_ring,
2499
						obj->last_fenced_seqno);
2500 2501 2502 2503 2504 2505 2506 2507
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2508 2509 2510 2511 2512 2513
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

2525
	ret = i915_gem_object_flush_fence(obj, NULL);
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2543 2544
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2545 2546
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2547 2548

	/* First try to find a free reg */
2549
	avail = NULL;
2550 2551 2552
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2553
			return reg;
2554

2555
		if (!reg->obj->pin_count)
2556
			avail = reg;
2557 2558
	}

2559 2560
	if (avail == NULL)
		return NULL;
2561 2562

	/* None available, try to steal one or wait for a user to finish */
2563 2564 2565
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
		if (reg->obj->pin_count)
2566 2567
			continue;

2568 2569 2570 2571 2572 2573 2574 2575 2576
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2577 2578
	}

2579 2580
	if (avail == NULL)
		avail = first;
2581

2582
	return avail;
2583 2584
}

2585
/**
2586
 * i915_gem_object_get_fence - set up a fence reg for an object
2587
 * @obj: object to map through a fence reg
2588 2589
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2600
int
2601
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2602
			  struct intel_ring_buffer *pipelined)
2603
{
2604
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2605
	struct drm_i915_private *dev_priv = dev->dev_private;
2606
	struct drm_i915_fence_reg *reg;
2607
	int ret;
2608

2609 2610 2611
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2612
	/* Just update our place in the LRU if our fence is getting reused. */
2613 2614
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2615
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2616

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
		if (obj->tiling_changed) {
			ret = i915_gem_object_flush_fence(obj, pipelined);
			if (ret)
				return ret;

			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
				pipelined = NULL;

			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}

			goto update;
		}
2634 2635 2636 2637 2638

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
C
Chris Wilson 已提交
2639
					ret = i915_wait_request(obj->last_fenced_ring,
2640
								reg->setup_seqno);
2641 2642 2643 2644 2645 2646 2647 2648
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
2649
			ret = i915_gem_object_flush_fence(obj, pipelined);
2650 2651 2652 2653
			if (ret)
				return ret;
		}

2654 2655 2656
		return 0;
	}

2657 2658 2659
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
		return -ENOSPC;
2660

2661
	ret = i915_gem_object_flush_fence(obj, pipelined);
2662
	if (ret)
2663
		return ret;
2664

2665 2666 2667 2668 2669 2670 2671 2672
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

2673
		ret = i915_gem_object_flush_fence(old, pipelined);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
C
Chris Wilson 已提交
2685
			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2686 2687 2688 2689

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2690

2691
	reg->obj = obj;
2692 2693 2694
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2695

2696
	reg->setup_seqno =
C
Chris Wilson 已提交
2697
		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2698 2699 2700 2701
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2702
	switch (INTEL_INFO(dev)->gen) {
2703
	case 7:
2704
	case 6:
2705
		ret = sandybridge_write_fence_reg(obj, pipelined);
2706 2707 2708
		break;
	case 5:
	case 4:
2709
		ret = i965_write_fence_reg(obj, pipelined);
2710 2711
		break;
	case 3:
2712
		ret = i915_write_fence_reg(obj, pipelined);
2713 2714
		break;
	case 2:
2715
		ret = i830_write_fence_reg(obj, pipelined);
2716 2717
		break;
	}
2718

2719
	return ret;
2720 2721 2722 2723 2724 2725 2726
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2727
 * data structures in dev_priv and obj.
2728 2729
 */
static void
2730 2731
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2732
{
J
Jesse Barnes 已提交
2733
	drm_i915_private_t *dev_priv = dev->dev_private;
2734
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2735

2736
	switch (INTEL_INFO(dev)->gen) {
2737
	case 7:
2738
	case 6:
2739
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2740 2741 2742
		break;
	case 5:
	case 4:
2743
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2744 2745
		break;
	case 3:
2746 2747
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2748
		else
2749
	case 2:
2750
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2751 2752

		I915_WRITE(fence_reg, 0);
2753
		break;
2754
	}
2755

2756
	list_del_init(&reg->lru_list);
2757 2758
	reg->obj = NULL;
	reg->setup_seqno = 0;
2759 2760
}

2761 2762 2763 2764
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2765
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2766
			    unsigned alignment,
2767
			    bool map_and_fenceable)
2768
{
2769
	struct drm_device *dev = obj->base.dev;
2770 2771
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2772
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2773
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2774
	bool mappable, fenceable;
2775
	int ret;
2776

2777
	if (obj->madv != I915_MADV_WILLNEED) {
2778 2779 2780 2781
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2782 2783 2784
	fence_size = i915_gem_get_gtt_size(obj);
	fence_alignment = i915_gem_get_gtt_alignment(obj);
	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2785

2786
	if (alignment == 0)
2787 2788
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2789
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2790 2791 2792 2793
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2794
	size = map_and_fenceable ? fence_size : obj->base.size;
2795

2796 2797 2798
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2799
	if (obj->base.size >
2800
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2801 2802 2803 2804
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2805
 search_free:
2806
	if (map_and_fenceable)
2807 2808
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2809
						    size, alignment, 0,
2810 2811 2812 2813
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2814
						size, alignment, 0);
2815 2816

	if (free_space != NULL) {
2817
		if (map_and_fenceable)
2818
			obj->gtt_space =
2819
				drm_mm_get_block_range_generic(free_space,
2820
							       size, alignment, 0,
2821 2822 2823
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2824
			obj->gtt_space =
2825
				drm_mm_get_block(free_space, size, alignment);
2826
	}
2827
	if (obj->gtt_space == NULL) {
2828 2829 2830
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2831 2832
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2833
		if (ret)
2834
			return ret;
2835

2836 2837 2838
		goto search_free;
	}

2839
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2840
	if (ret) {
2841 2842
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2843 2844

		if (ret == -ENOMEM) {
2845 2846
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2847 2848
			if (ret) {
				/* now try to shrink everyone else */
2849 2850 2851
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2852 2853
				}

2854
				return -ENOMEM;
2855 2856 2857 2858 2859
			}

			goto search_free;
		}

2860 2861 2862
		return ret;
	}

2863 2864
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2865
		i915_gem_object_put_pages_gtt(obj);
2866 2867
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2868

2869
		if (i915_gem_evict_everything(dev, false))
2870 2871 2872
			return ret;

		goto search_free;
2873 2874
	}

2875
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2876
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2877

2878 2879 2880 2881
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2882 2883
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2884

2885
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2886

2887
	fenceable =
2888 2889
		obj->gtt_space->size == fence_size &&
		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2890

2891
	mappable =
2892
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2893

2894
	obj->map_and_fenceable = mappable && fenceable;
2895

C
Chris Wilson 已提交
2896
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2897 2898 2899 2900
	return 0;
}

void
2901
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2902 2903 2904 2905 2906
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2907
	if (obj->pages == NULL)
2908 2909
		return;

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2921
	trace_i915_gem_object_clflush(obj);
2922

2923
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2924 2925
}

2926
/** Flushes any GPU write domain for the object if it's dirty. */
2927
static int
2928
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2929
{
2930
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2931
		return 0;
2932 2933

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2934
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2935 2936 2937 2938
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2939
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2940
{
C
Chris Wilson 已提交
2941 2942
	uint32_t old_write_domain;

2943
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2944 2945
		return;

2946
	/* No actual flushing is required for the GTT write domain.  Writes
2947 2948
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2949 2950 2951 2952
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2953
	 */
2954 2955
	wmb();

2956 2957
	i915_gem_release_mmap(obj);

2958 2959
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2960 2961

	trace_i915_gem_object_change_domain(obj,
2962
					    obj->base.read_domains,
C
Chris Wilson 已提交
2963
					    old_write_domain);
2964 2965 2966 2967
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2968
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2969
{
C
Chris Wilson 已提交
2970
	uint32_t old_write_domain;
2971

2972
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2973 2974 2975
		return;

	i915_gem_clflush_object(obj);
2976
	intel_gtt_chipset_flush();
2977 2978
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2979 2980

	trace_i915_gem_object_change_domain(obj,
2981
					    obj->base.read_domains,
C
Chris Wilson 已提交
2982
					    old_write_domain);
2983 2984
}

2985 2986 2987 2988 2989 2990
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2991
int
2992
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2993
{
C
Chris Wilson 已提交
2994
	uint32_t old_write_domain, old_read_domains;
2995
	int ret;
2996

2997
	/* Not valid to be called on unbound objects. */
2998
	if (obj->gtt_space == NULL)
2999 3000
		return -EINVAL;

3001 3002 3003
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3004 3005 3006 3007
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3008
	if (obj->pending_gpu_write || write) {
3009
		ret = i915_gem_object_wait_rendering(obj);
3010 3011 3012
		if (ret)
			return ret;
	}
3013

3014
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3015

3016 3017
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3018

3019 3020 3021
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3022 3023
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3024
	if (write) {
3025 3026 3027
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3028 3029
	}

C
Chris Wilson 已提交
3030 3031 3032 3033
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3034 3035 3036
	return 0;
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

		i915_gem_gtt_rebind_object(obj, cache_level);
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

3097
/*
3098 3099 3100 3101 3102 3103 3104 3105
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
 *
 * For the display plane, we want to be in the GTT but out of any write
 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
 * ability to pipeline the waits, pinning and any additional subtleties
 * that may differentiate the display plane from ordinary buffers.
3106 3107
 */
int
3108 3109
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3110
				     struct intel_ring_buffer *pipelined)
3111
{
3112
	u32 old_read_domains, old_write_domain;
3113 3114
	int ret;

3115 3116 3117 3118
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3119
	if (pipelined != obj->ring) {
3120
		ret = i915_gem_object_wait_rendering(obj);
3121
		if (ret)
3122 3123 3124
			return ret;
	}

3125 3126 3127 3128 3129 3130 3131 3132
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

3133 3134
	i915_gem_object_flush_cpu_write_domain(obj);

3135
	old_write_domain = obj->base.write_domain;
3136
	old_read_domains = obj->base.read_domains;
3137 3138 3139 3140 3141

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3142
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3143 3144 3145

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3146
					    old_write_domain);
3147 3148 3149 3150

	return 0;
}

3151
int
3152
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3153
{
3154 3155
	int ret;

3156
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3157 3158
		return 0;

3159
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3160
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3161 3162 3163
		if (ret)
			return ret;
	}
3164

3165 3166 3167
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;

3168
	return i915_gem_object_wait_rendering(obj);
3169 3170
}

3171 3172 3173 3174 3175 3176 3177
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3178
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3179
{
C
Chris Wilson 已提交
3180
	uint32_t old_write_domain, old_read_domains;
3181 3182
	int ret;

3183 3184 3185
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3186 3187 3188 3189
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3190
	ret = i915_gem_object_wait_rendering(obj);
3191
	if (ret)
3192
		return ret;
3193

3194
	i915_gem_object_flush_gtt_write_domain(obj);
3195

3196 3197
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3198
	 */
3199
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3200

3201 3202
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3203

3204
	/* Flush the CPU cache if it's still invalid. */
3205
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3206 3207
		i915_gem_clflush_object(obj);

3208
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3209 3210 3211 3212 3213
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3214
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3215 3216 3217 3218 3219

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3220 3221
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3222
	}
3223

C
Chris Wilson 已提交
3224 3225 3226 3227
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3228 3229 3230
	return 0;
}

3231
/**
3232
 * Moves the object from a partially CPU read to a full one.
3233
 *
3234 3235
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3236
 */
3237
static void
3238
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3239
{
3240
	if (!obj->page_cpu_valid)
3241 3242 3243 3244
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3245
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3246 3247
		int i;

3248 3249
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3250
				continue;
3251
			drm_clflush_pages(obj->pages + i, 1);
3252 3253 3254 3255 3256 3257
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3258 3259
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3275
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3276 3277
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3278
	uint32_t old_read_domains;
3279
	int i, ret;
3280

3281
	if (offset == 0 && size == obj->base.size)
3282
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3283

3284 3285 3286 3287
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3288
	ret = i915_gem_object_wait_rendering(obj);
3289
	if (ret)
3290
		return ret;
3291

3292 3293 3294
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3295 3296
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3297
		return 0;
3298

3299 3300 3301
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3302 3303 3304 3305
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3306
			return -ENOMEM;
3307 3308
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3309 3310 3311 3312

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3313 3314
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3315
		if (obj->page_cpu_valid[i])
3316 3317
			continue;

3318
		drm_clflush_pages(obj->pages + i, 1);
3319

3320
		obj->page_cpu_valid[i] = 1;
3321 3322
	}

3323 3324 3325
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3326
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3327

3328 3329
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3330

C
Chris Wilson 已提交
3331 3332
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3333
					    obj->base.write_domain);
C
Chris Wilson 已提交
3334

3335 3336 3337 3338 3339 3340
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3341 3342 3343 3344
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3345 3346 3347
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3348
static int
3349
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3350
{
3351 3352
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3353
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3354 3355 3356 3357
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3358

3359 3360 3361
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3362
	spin_lock(&file_priv->mm.lock);
3363
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3364 3365
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3366

3367 3368
		ring = request->ring;
		seqno = request->seqno;
3369
	}
3370
	spin_unlock(&file_priv->mm.lock);
3371

3372 3373
	if (seqno == 0)
		return 0;
3374

3375
	ret = 0;
3376
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3377 3378 3379 3380 3381
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3382 3383 3384 3385 3386
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3387

3388 3389 3390
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
		}
3391 3392
	}

3393 3394
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3395 3396 3397 3398

	return ret;
}

3399
int
3400 3401
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3402
		    bool map_and_fenceable)
3403
{
3404
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3405
	struct drm_i915_private *dev_priv = dev->dev_private;
3406 3407
	int ret;

3408
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3409
	WARN_ON(i915_verify_lists(dev));
3410

3411 3412 3413 3414
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3415
			     "bo is already pinned with incorrect alignment:"
3416 3417
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3418
			     obj->gtt_offset, alignment,
3419
			     map_and_fenceable,
3420
			     obj->map_and_fenceable);
3421 3422 3423 3424 3425 3426
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3427
	if (obj->gtt_space == NULL) {
3428
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3429
						  map_and_fenceable);
3430
		if (ret)
3431
			return ret;
3432
	}
J
Jesse Barnes 已提交
3433

3434 3435 3436
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3437
				       &dev_priv->mm.pinned_list);
3438
	}
3439
	obj->pin_mappable |= map_and_fenceable;
3440

3441
	WARN_ON(i915_verify_lists(dev));
3442 3443 3444 3445
	return 0;
}

void
3446
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3447
{
3448
	struct drm_device *dev = obj->base.dev;
3449 3450
	drm_i915_private_t *dev_priv = dev->dev_private;

3451
	WARN_ON(i915_verify_lists(dev));
3452 3453
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3454

3455 3456 3457
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3458
				       &dev_priv->mm.inactive_list);
3459
		obj->pin_mappable = false;
3460
	}
3461
	WARN_ON(i915_verify_lists(dev));
3462 3463 3464 3465
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3466
		   struct drm_file *file)
3467 3468
{
	struct drm_i915_gem_pin *args = data;
3469
	struct drm_i915_gem_object *obj;
3470 3471
	int ret;

3472 3473 3474
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3475

3476
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3477
	if (&obj->base == NULL) {
3478 3479
		ret = -ENOENT;
		goto unlock;
3480 3481
	}

3482
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3483
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3484 3485
		ret = -EINVAL;
		goto out;
3486 3487
	}

3488
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3489 3490
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3491 3492
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3493 3494
	}

3495 3496 3497
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3498
		ret = i915_gem_object_pin(obj, args->alignment, true);
3499 3500
		if (ret)
			goto out;
3501 3502 3503 3504 3505
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3506
	i915_gem_object_flush_cpu_write_domain(obj);
3507
	args->offset = obj->gtt_offset;
3508
out:
3509
	drm_gem_object_unreference(&obj->base);
3510
unlock:
3511
	mutex_unlock(&dev->struct_mutex);
3512
	return ret;
3513 3514 3515 3516
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3517
		     struct drm_file *file)
3518 3519
{
	struct drm_i915_gem_pin *args = data;
3520
	struct drm_i915_gem_object *obj;
3521
	int ret;
3522

3523 3524 3525
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3526

3527
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3528
	if (&obj->base == NULL) {
3529 3530
		ret = -ENOENT;
		goto unlock;
3531
	}
3532

3533
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3534 3535
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3536 3537
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3538
	}
3539 3540 3541
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3542 3543
		i915_gem_object_unpin(obj);
	}
3544

3545
out:
3546
	drm_gem_object_unreference(&obj->base);
3547
unlock:
3548
	mutex_unlock(&dev->struct_mutex);
3549
	return ret;
3550 3551 3552 3553
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3554
		    struct drm_file *file)
3555 3556
{
	struct drm_i915_gem_busy *args = data;
3557
	struct drm_i915_gem_object *obj;
3558 3559
	int ret;

3560
	ret = i915_mutex_lock_interruptible(dev);
3561
	if (ret)
3562
		return ret;
3563

3564
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3565
	if (&obj->base == NULL) {
3566 3567
		ret = -ENOENT;
		goto unlock;
3568
	}
3569

3570 3571 3572 3573
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3574
	 */
3575
	args->busy = obj->active;
3576 3577 3578 3579 3580 3581
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3582
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3583
			ret = i915_gem_flush_ring(obj->ring,
3584
						  0, obj->base.write_domain);
3585 3586 3587 3588
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3589 3590 3591
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3592 3593
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (request)
C
Chris Wilson 已提交
3594
				ret = i915_add_request(obj->ring, NULL,request);
3595
			else
3596 3597
				ret = -ENOMEM;
		}
3598 3599 3600 3601 3602 3603

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3604
		i915_gem_retire_requests_ring(obj->ring);
3605

3606
		args->busy = obj->active;
3607
	}
3608

3609
	drm_gem_object_unreference(&obj->base);
3610
unlock:
3611
	mutex_unlock(&dev->struct_mutex);
3612
	return ret;
3613 3614 3615 3616 3617 3618 3619 3620 3621
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

3622 3623 3624 3625 3626
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3627
	struct drm_i915_gem_object *obj;
3628
	int ret;
3629 3630 3631 3632 3633 3634 3635 3636 3637

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3638 3639 3640 3641
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3642
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3643
	if (&obj->base == NULL) {
3644 3645
		ret = -ENOENT;
		goto unlock;
3646 3647
	}

3648
	if (obj->pin_count) {
3649 3650
		ret = -EINVAL;
		goto out;
3651 3652
	}

3653 3654
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3655

3656
	/* if the object is no longer bound, discard its backing storage */
3657 3658
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3659 3660
		i915_gem_object_truncate(obj);

3661
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3662

3663
out:
3664
	drm_gem_object_unreference(&obj->base);
3665
unlock:
3666
	mutex_unlock(&dev->struct_mutex);
3667
	return ret;
3668 3669
}

3670 3671
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3672
{
3673
	struct drm_i915_private *dev_priv = dev->dev_private;
3674
	struct drm_i915_gem_object *obj;
3675

3676 3677 3678
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3679

3680 3681 3682 3683
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3684

3685 3686
	i915_gem_info_add_obj(dev_priv, size);

3687 3688
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3689

3690
	obj->cache_level = I915_CACHE_NONE;
3691
	obj->base.driver_private = NULL;
3692
	obj->fence_reg = I915_FENCE_REG_NONE;
3693
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3694
	INIT_LIST_HEAD(&obj->gtt_list);
3695
	INIT_LIST_HEAD(&obj->ring_list);
3696
	INIT_LIST_HEAD(&obj->exec_list);
3697 3698
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3699 3700
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3701

3702
	return obj;
3703 3704 3705 3706 3707
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3708

3709 3710 3711
	return 0;
}

3712
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3713
{
3714
	struct drm_device *dev = obj->base.dev;
3715 3716
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3717

3718 3719
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3720
		list_move(&obj->mm_list,
3721 3722 3723
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3724

3725 3726
	trace_i915_gem_object_destroy(obj);

3727
	if (obj->base.map_list.map)
3728
		i915_gem_free_mmap_offset(obj);
3729

3730 3731
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3732

3733 3734 3735
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
3736 3737
}

3738
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3739
{
3740 3741
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3742

3743
	while (obj->pin_count > 0)
3744 3745
		i915_gem_object_unpin(obj);

3746
	if (obj->phys_obj)
3747 3748 3749 3750 3751
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3752 3753 3754 3755 3756
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3757

3758
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3759

3760
	if (dev_priv->mm.suspended) {
3761 3762
		mutex_unlock(&dev->struct_mutex);
		return 0;
3763 3764
	}

3765
	ret = i915_gpu_idle(dev);
3766 3767
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3768
		return ret;
3769
	}
3770

3771 3772
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3773
		ret = i915_gem_evict_inactive(dev, false);
3774 3775 3776 3777 3778 3779
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3780 3781
	i915_gem_reset_fences(dev);

3782 3783 3784 3785 3786
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3787
	del_timer_sync(&dev_priv->hangcheck_timer);
3788 3789

	i915_kernel_lost_context(dev);
3790
	i915_gem_cleanup_ringbuffer(dev);
3791

3792 3793
	mutex_unlock(&dev->struct_mutex);

3794 3795 3796
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3797 3798 3799
	return 0;
}

3800 3801 3802 3803 3804
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3805

3806
	ret = intel_init_render_ring_buffer(dev);
3807
	if (ret)
3808
		return ret;
3809 3810

	if (HAS_BSD(dev)) {
3811
		ret = intel_init_bsd_ring_buffer(dev);
3812 3813
		if (ret)
			goto cleanup_render_ring;
3814
	}
3815

3816 3817 3818 3819 3820 3821
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3822 3823
	dev_priv->next_seqno = 1;

3824 3825
	return 0;

3826
cleanup_bsd_ring:
3827
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3828
cleanup_render_ring:
3829
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3830 3831 3832 3833 3834 3835 3836
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3837
	int i;
3838

3839 3840
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3841 3842
}

3843 3844 3845 3846 3847
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3848
	int ret, i;
3849

J
Jesse Barnes 已提交
3850 3851 3852
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3853
	if (atomic_read(&dev_priv->mm.wedged)) {
3854
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3855
		atomic_set(&dev_priv->mm.wedged, 0);
3856 3857 3858
	}

	mutex_lock(&dev->struct_mutex);
3859 3860 3861
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3862 3863
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3864
		return ret;
3865
	}
3866

3867
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3868 3869
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3870 3871 3872 3873
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3874
	mutex_unlock(&dev->struct_mutex);
3875

3876 3877 3878
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3879

3880
	return 0;
3881 3882 3883 3884 3885 3886 3887 3888

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3889 3890 3891 3892 3893 3894
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3895 3896 3897
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3898
	drm_irq_uninstall(dev);
3899
	return i915_gem_idle(dev);
3900 3901 3902 3903 3904 3905 3906
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3907 3908 3909
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3910 3911 3912
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3913 3914
}

3915 3916 3917 3918 3919 3920 3921 3922
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3923 3924 3925
void
i915_gem_load(struct drm_device *dev)
{
3926
	int i;
3927 3928
	drm_i915_private_t *dev_priv = dev->dev_private;

3929
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3930 3931
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3932
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3933
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3934
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3935
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3936 3937
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3938 3939
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3940 3941
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3942
	init_completion(&dev_priv->error_completion);
3943

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3954 3955
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3956
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3957 3958
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3959

3960
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3961 3962 3963 3964
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3965
	/* Initialize fence registers to zero */
3966 3967
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3968
	}
3969

3970
	i915_gem_detect_bit_6_swizzle(dev);
3971
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3972

3973 3974
	dev_priv->mm.interruptible = true;

3975 3976 3977
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3978
}
3979 3980 3981 3982 3983

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3984 3985
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3986 3987 3988 3989 3990 3991 3992 3993
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3994
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3995 3996 3997 3998 3999
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4000
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4013
	kfree(phys_obj);
4014 4015 4016
	return ret;
}

4017
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4042
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4043 4044 4045 4046
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4047
				 struct drm_i915_gem_object *obj)
4048
{
4049
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4050
	char *vaddr;
4051 4052 4053
	int i;
	int page_count;

4054
	if (!obj->phys_obj)
4055
		return;
4056
	vaddr = obj->phys_obj->handle->vaddr;
4057

4058
	page_count = obj->base.size / PAGE_SIZE;
4059
	for (i = 0; i < page_count; i++) {
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4073
	}
4074
	intel_gtt_chipset_flush();
4075

4076 4077
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4078 4079 4080 4081
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4082
			    struct drm_i915_gem_object *obj,
4083 4084
			    int id,
			    int align)
4085
{
4086
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4087 4088 4089 4090 4091 4092 4093 4094
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4095 4096
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4097 4098 4099 4100 4101 4102 4103
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4104
						obj->base.size, align);
4105
		if (ret) {
4106 4107
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4108
			return ret;
4109 4110 4111 4112
		}
	}

	/* bind to the object */
4113 4114
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4115

4116
	page_count = obj->base.size / PAGE_SIZE;
4117 4118

	for (i = 0; i < page_count; i++) {
4119 4120 4121 4122 4123 4124 4125
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
4126

4127
		src = kmap_atomic(page);
4128
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4129
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4130
		kunmap_atomic(src);
4131

4132 4133 4134
		mark_page_accessed(page);
		page_cache_release(page);
	}
4135

4136 4137 4138 4139
	return 0;
}

static int
4140 4141
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4142 4143 4144
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4145
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4146
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4147

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4161

4162
	intel_gtt_chipset_flush();
4163 4164
	return 0;
}
4165

4166
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4167
{
4168
	struct drm_i915_file_private *file_priv = file->driver_priv;
4169 4170 4171 4172 4173

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4174
	spin_lock(&file_priv->mm.lock);
4175 4176 4177 4178 4179 4180 4181 4182 4183
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4184
	spin_unlock(&file_priv->mm.lock);
4185
}
4186

4187 4188 4189 4190 4191 4192 4193
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4194
		      list_empty(&dev_priv->mm.active_list);
4195 4196 4197 4198

	return !lists_empty;
}

4199
static int
4200
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4201
{
4202 4203 4204 4205 4206 4207
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4208
	int nr_to_scan = sc->nr_to_scan;
4209 4210 4211
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4212
		return 0;
4213 4214 4215

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4216 4217 4218 4219 4220 4221 4222
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4223 4224
	}

4225
rescan:
4226
	/* first scan for clean buffers */
4227
	i915_gem_retire_requests(dev);
4228

4229 4230 4231 4232
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4233 4234
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4235
				break;
4236 4237 4238 4239
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4240 4241 4242 4243
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4244 4245
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4246
			nr_to_scan--;
4247
		else
4248 4249 4250 4251
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4252 4253 4254 4255 4256 4257
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4258
		if (i915_gpu_idle(dev) == 0)
4259 4260
			goto rescan;
	}
4261 4262
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4263
}