i915_gem.c 110.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
44 45
						    bool map_and_fenceable,
						    bool nonblocking);
46 47
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
48
				struct drm_i915_gem_pwrite *args,
49
				struct drm_file *file);
50

51 52 53 54 55 56
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
C
Chris Wilson 已提交
59 60
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62

63 64 65 66 67 68 69 70
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
71
	obj->fence_dirty = false;
72 73 74
	obj->fence_reg = I915_FENCE_REG_NONE;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

90 91
static int
i915_gem_wait_for_error(struct drm_device *dev)
92 93 94 95 96 97 98 99 100
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

101 102 103 104 105 106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
111
		return ret;
112
	}
113

114 115 116 117 118 119 120 121 122 123 124
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128 129 130
{
	int ret;

131
	ret = i915_gem_wait_for_error(dev);
132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

139
	WARN_ON(i915_verify_lists(dev));
140 141
	return 0;
}
142

143
static inline bool
144
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145
{
C
Chris Wilson 已提交
146
	return obj->gtt_space && !obj->active;
147 148
}

J
Jesse Barnes 已提交
149 150
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
151
		    struct drm_file *file)
J
Jesse Barnes 已提交
152 153
{
	struct drm_i915_gem_init *args = data;
154

155 156 157
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

158 159 160
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
161

162 163 164 165
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
166
	mutex_lock(&dev->struct_mutex);
167 168
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
169 170
	mutex_unlock(&dev->struct_mutex);

171
	return 0;
172 173
}

174 175
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176
			    struct drm_file *file)
177
{
178
	struct drm_i915_private *dev_priv = dev->dev_private;
179
	struct drm_i915_gem_get_aperture *args = data;
180 181
	struct drm_i915_gem_object *obj;
	size_t pinned;
182

183
	pinned = 0;
184
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
185
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186 187
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
188
	mutex_unlock(&dev->struct_mutex);
189

190
	args->aper_size = dev_priv->mm.gtt_total;
191
	args->aper_available_size = args->aper_size - pinned;
192

193 194 195
	return 0;
}

196 197 198 199 200
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
201
{
202
	struct drm_i915_gem_object *obj;
203 204
	int ret;
	u32 handle;
205

206
	size = roundup(size, PAGE_SIZE);
207 208
	if (size == 0)
		return -EINVAL;
209 210

	/* Allocate the new object */
211
	obj = i915_gem_alloc_object(dev, size);
212 213 214
	if (obj == NULL)
		return -ENOMEM;

215
	ret = drm_gem_handle_create(file, &obj->base, &handle);
216
	if (ret) {
217 218
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219
		kfree(obj);
220
		return ret;
221
	}
222

223
	/* drop reference from allocate - handle holds it now */
224
	drm_gem_object_unreference(&obj->base);
225 226
	trace_i915_gem_object_create(obj);

227
	*handle_p = handle;
228 229 230
	return 0;
}

231 232 233 234 235 236
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
237
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
258

259 260 261 262
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

263
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264
{
265
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266 267

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268
		obj->tiling_mode != I915_TILING_NONE;
269 270
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

297
static inline int
298 299
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

323 324 325
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
326
static int
327 328 329 330 331 332 333
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

334
	if (unlikely(page_do_bit17_swizzling))
335 336 337 338 339 340 341 342 343 344 345 346 347 348
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

349 350 351 352
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
353
	if (unlikely(swizzled)) {
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

371 372 373 374 375 376 377 378 379 380 381 382
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
383 384 385
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
386 387 388 389 390 391 392 393 394 395 396 397 398 399

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

400
static int
401 402 403 404
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
405
{
406
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
407
	char __user *user_data;
408
	ssize_t remain;
409
	loff_t offset;
410
	int shmem_page_offset, page_length, ret = 0;
411
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412
	int hit_slowpath = 0;
413
	int prefaulted = 0;
414
	int needs_clflush = 0;
415
	int release_page;
416

417
	user_data = (char __user *) (uintptr_t) args->data_ptr;
418 419
	remain = args->size;

420
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421

422 423 424 425 426 427 428
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
C
Chris Wilson 已提交
429 430 431 432 433
		if (obj->gtt_space) {
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
			if (ret)
				return ret;
		}
434
	}
435

436
	offset = args->offset;
437 438

	while (remain > 0) {
439 440
		struct page *page;

441 442 443 444 445
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
446
		shmem_page_offset = offset_in_page(offset);
447 448 449 450
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

451 452 453 454 455 456 457 458 459 460
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
461
		}
462

463 464 465
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

466 467 468 469 470
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
471 472

		hit_slowpath = 1;
473
		page_cache_get(page);
474 475
		mutex_unlock(&dev->struct_mutex);

476
		if (!prefaulted) {
477
			ret = fault_in_multipages_writeable(user_data, remain);
478 479 480 481 482 483 484
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
485

486 487 488
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
489

490
		mutex_lock(&dev->struct_mutex);
491
		page_cache_release(page);
492
next_page:
493
		mark_page_accessed(page);
494 495
		if (release_page)
			page_cache_release(page);
496

497 498 499 500 501
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

502
		remain -= page_length;
503
		user_data += page_length;
504 505 506
		offset += page_length;
	}

507
out:
508 509 510 511 512
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
513 514 515 516

	return ret;
}

517 518 519 520 521 522 523
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
524
		     struct drm_file *file)
525 526
{
	struct drm_i915_gem_pread *args = data;
527
	struct drm_i915_gem_object *obj;
528
	int ret = 0;
529

530 531 532 533 534 535 536 537
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

538
	ret = i915_mutex_lock_interruptible(dev);
539
	if (ret)
540
		return ret;
541

542
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
543
	if (&obj->base == NULL) {
544 545
		ret = -ENOENT;
		goto unlock;
546
	}
547

548
	/* Bounds check source.  */
549 550
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
551
		ret = -EINVAL;
552
		goto out;
C
Chris Wilson 已提交
553 554
	}

555 556 557 558 559 560 561 562
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
563 564
	trace_i915_gem_object_pread(obj, args->offset, args->size);

565
	ret = i915_gem_shmem_pread(dev, obj, args, file);
566

567
out:
568
	drm_gem_object_unreference(&obj->base);
569
unlock:
570
	mutex_unlock(&dev->struct_mutex);
571
	return ret;
572 573
}

574 575
/* This is the fast write path which cannot handle
 * page faults in the source data
576
 */
577 578 579 580 581 582

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
583
{
584 585
	void __iomem *vaddr_atomic;
	void *vaddr;
586
	unsigned long unwritten;
587

P
Peter Zijlstra 已提交
588
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
589 590 591
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
592
						      user_data, length);
P
Peter Zijlstra 已提交
593
	io_mapping_unmap_atomic(vaddr_atomic);
594
	return unwritten;
595 596
}

597 598 599 600
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
601
static int
602 603
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
604
			 struct drm_i915_gem_pwrite *args,
605
			 struct drm_file *file)
606
{
607
	drm_i915_private_t *dev_priv = dev->dev_private;
608
	ssize_t remain;
609
	loff_t offset, page_base;
610
	char __user *user_data;
D
Daniel Vetter 已提交
611 612
	int page_offset, page_length, ret;

613
	ret = i915_gem_object_pin(obj, 0, true, true);
D
Daniel Vetter 已提交
614 615 616 617 618 619 620 621 622 623
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
624 625 626 627

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

628
	offset = obj->gtt_offset + args->offset;
629 630 631 632

	while (remain > 0) {
		/* Operation in this page
		 *
633 634 635
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
636
		 */
637 638
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
639 640 641 642 643
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
644 645
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
646
		 */
647
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
648 649 650 651
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
652

653 654 655
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
656 657
	}

D
Daniel Vetter 已提交
658 659 660
out_unpin:
	i915_gem_object_unpin(obj);
out:
661
	return ret;
662 663
}

664 665 666 667
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
668
static int
669 670 671 672 673
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
674
{
675
	char *vaddr;
676
	int ret;
677

678
	if (unlikely(page_do_bit17_swizzling))
679
		return -EINVAL;
680

681 682 683 684 685 686 687 688 689 690 691
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
692 693 694 695

	return ret;
}

696 697
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
698
static int
699 700 701 702 703
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
704
{
705 706
	char *vaddr;
	int ret;
707

708
	vaddr = kmap(page);
709
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
710 711 712
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
713 714
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
715 716
						user_data,
						page_length);
717 718 719 720 721
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
722 723 724
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
725
	kunmap(page);
726

727
	return ret;
728 729 730
}

static int
731 732 733 734
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
735
{
736
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
737
	ssize_t remain;
738 739
	loff_t offset;
	char __user *user_data;
740
	int shmem_page_offset, page_length, ret = 0;
741
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
742
	int hit_slowpath = 0;
743 744
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
745
	int release_page;
746

747
	user_data = (char __user *) (uintptr_t) args->data_ptr;
748 749
	remain = args->size;

750
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
751

752 753 754 755 756 757 758
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
C
Chris Wilson 已提交
759 760 761 762 763
		if (obj->gtt_space) {
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
			if (ret)
				return ret;
		}
764 765 766 767 768 769 770
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

771
	offset = args->offset;
772
	obj->dirty = 1;
773

774
	while (remain > 0) {
775
		struct page *page;
776
		int partial_cacheline_write;
777

778 779 780 781 782
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
783
		shmem_page_offset = offset_in_page(offset);
784 785 786 787 788

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

789 790 791 792 793 794 795
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

796 797 798 799 800 801 802 803 804 805
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
806 807
		}

808 809 810
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

811 812 813 814 815 816
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
817 818

		hit_slowpath = 1;
819
		page_cache_get(page);
820 821
		mutex_unlock(&dev->struct_mutex);

822 823 824 825
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
826

827
		mutex_lock(&dev->struct_mutex);
828
		page_cache_release(page);
829
next_page:
830 831
		set_page_dirty(page);
		mark_page_accessed(page);
832 833
		if (release_page)
			page_cache_release(page);
834

835 836 837 838 839
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

840
		remain -= page_length;
841
		user_data += page_length;
842
		offset += page_length;
843 844
	}

845
out:
846 847 848 849 850 851 852 853 854 855
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
856
	}
857

858 859 860
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

861
	return ret;
862 863 864 865 866 867 868 869 870
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
871
		      struct drm_file *file)
872 873
{
	struct drm_i915_gem_pwrite *args = data;
874
	struct drm_i915_gem_object *obj;
875 876 877 878 879 880 881 882 883 884
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

885 886
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
887 888
	if (ret)
		return -EFAULT;
889

890
	ret = i915_mutex_lock_interruptible(dev);
891
	if (ret)
892
		return ret;
893

894
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
895
	if (&obj->base == NULL) {
896 897
		ret = -ENOENT;
		goto unlock;
898
	}
899

900
	/* Bounds check destination. */
901 902
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
903
		ret = -EINVAL;
904
		goto out;
C
Chris Wilson 已提交
905 906
	}

907 908 909 910 911 912 913 914
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
915 916
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
917
	ret = -EFAULT;
918 919 920 921 922 923
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
924
	if (obj->phys_obj) {
925
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
926 927 928
		goto out;
	}

929
	if (obj->cache_level == I915_CACHE_NONE &&
930
	    obj->tiling_mode == I915_TILING_NONE &&
931
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
933 934 935
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
936
	}
937

938
	if (ret == -EFAULT || ret == -ENOSPC)
D
Daniel Vetter 已提交
939
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
940

941
out:
942
	drm_gem_object_unreference(&obj->base);
943
unlock:
944
	mutex_unlock(&dev->struct_mutex);
945 946 947
	return ret;
}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
int
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
		     bool interruptible)
{
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

		/* Recovery complete, but still wedged means reset failure. */
		if (recovery_complete)
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
	if (seqno == ring->outstanding_lazy_request)
		ret = i915_add_request(ring, NULL, NULL);

	return ret;
}

/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
			bool interruptible, struct timespec *timeout)
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
	int ret;

	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);

		ret = i915_gem_check_wedge(dev_priv, interruptible);
		if (ret)
			end = ret;
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
	case -EIO:
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

	ret = i915_gem_check_wedge(dev_priv, interruptible);
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

	return __wait_seqno(ring, seqno, interruptible, NULL);
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct intel_ring_buffer *ring = obj->ring;
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

	i915_gem_retire_requests_ring(ring);

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
	}

	return 0;
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring = obj->ring;
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_gem_check_wedge(dev_priv, true);
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

	mutex_unlock(&dev->struct_mutex);
	ret = __wait_seqno(ring, seqno, true, NULL);
	mutex_lock(&dev->struct_mutex);

	i915_gem_retire_requests_ring(ring);

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
	}

	return ret;
}

1182
/**
1183 1184
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1185 1186 1187
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1188
			  struct drm_file *file)
1189 1190
{
	struct drm_i915_gem_set_domain *args = data;
1191
	struct drm_i915_gem_object *obj;
1192 1193
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1194 1195
	int ret;

1196
	/* Only handle setting domains to types used by the CPU. */
1197
	if (write_domain & I915_GEM_GPU_DOMAINS)
1198 1199
		return -EINVAL;

1200
	if (read_domains & I915_GEM_GPU_DOMAINS)
1201 1202 1203 1204 1205 1206 1207 1208
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1209
	ret = i915_mutex_lock_interruptible(dev);
1210
	if (ret)
1211
		return ret;
1212

1213
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1214
	if (&obj->base == NULL) {
1215 1216
		ret = -ENOENT;
		goto unlock;
1217
	}
1218

1219 1220 1221 1222 1223 1224 1225 1226
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
	if (ret)
		goto unref;

1227 1228
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1229 1230 1231 1232 1233 1234 1235

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1236
	} else {
1237
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1238 1239
	}

1240
unref:
1241
	drm_gem_object_unreference(&obj->base);
1242
unlock:
1243 1244 1245 1246 1247 1248 1249 1250 1251
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1252
			 struct drm_file *file)
1253 1254
{
	struct drm_i915_gem_sw_finish *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257
	int ret = 0;

1258
	ret = i915_mutex_lock_interruptible(dev);
1259
	if (ret)
1260
		return ret;
1261

1262
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1263
	if (&obj->base == NULL) {
1264 1265
		ret = -ENOENT;
		goto unlock;
1266 1267 1268
	}

	/* Pinned buffers may be scanout, so flush the cache */
1269
	if (obj->pin_count)
1270 1271
		i915_gem_object_flush_cpu_write_domain(obj);

1272
	drm_gem_object_unreference(&obj->base);
1273
unlock:
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1287
		    struct drm_file *file)
1288 1289 1290 1291 1292
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1293
	obj = drm_gem_object_lookup(dev, file, args->handle);
1294
	if (obj == NULL)
1295
		return -ENOENT;
1296

1297 1298 1299 1300 1301 1302 1303 1304
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1305
	addr = vm_mmap(obj->filp, 0, args->size,
1306 1307
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1308
	drm_gem_object_unreference_unlocked(obj);
1309 1310 1311 1312 1313 1314 1315 1316
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1335 1336
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1337
	drm_i915_private_t *dev_priv = dev->dev_private;
1338 1339 1340
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1341
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1342 1343 1344 1345 1346

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1347 1348 1349
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1350

C
Chris Wilson 已提交
1351 1352
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1353
	/* Now bind it into the GTT if needed */
1354 1355 1356 1357
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1358
	}
1359
	if (!obj->gtt_space) {
1360
		ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1361 1362
		if (ret)
			goto unlock;
1363

1364 1365 1366 1367
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1368

1369 1370 1371
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1372
	ret = i915_gem_object_get_fence(obj);
1373 1374
	if (ret)
		goto unlock;
1375

1376 1377
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1378

1379 1380
	obj->fault_mappable = true;

1381
	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1382 1383 1384 1385
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1386
unlock:
1387
	mutex_unlock(&dev->struct_mutex);
1388
out:
1389
	switch (ret) {
1390
	case -EIO:
1391 1392 1393 1394 1395
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
		if (!atomic_read(&dev_priv->mm.wedged))
			return VM_FAULT_SIGBUS;
1396
	case -EAGAIN:
1397 1398 1399 1400 1401 1402 1403
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1404
		set_need_resched();
1405 1406
	case 0:
	case -ERESTARTSYS:
1407
	case -EINTR:
1408
		return VM_FAULT_NOPAGE;
1409 1410 1411
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1412
		return VM_FAULT_SIGBUS;
1413 1414 1415
	}
}

1416 1417 1418 1419
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1420
 * Preserve the reservation of the mmapping with the DRM core code, but
1421 1422 1423 1424 1425 1426 1427 1428 1429
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1430
void
1431
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1432
{
1433 1434
	if (!obj->fault_mappable)
		return;
1435

1436 1437 1438 1439
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1440

1441
	obj->fault_mappable = false;
1442 1443
}

1444
static uint32_t
1445
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446
{
1447
	uint32_t gtt_size;
1448 1449

	if (INTEL_INFO(dev)->gen >= 4 ||
1450 1451
	    tiling_mode == I915_TILING_NONE)
		return size;
1452 1453 1454

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1455
		gtt_size = 1024*1024;
1456
	else
1457
		gtt_size = 512*1024;
1458

1459 1460
	while (gtt_size < size)
		gtt_size <<= 1;
1461

1462
	return gtt_size;
1463 1464
}

1465 1466 1467 1468 1469
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1470
 * potential fence register mapping.
1471 1472
 */
static uint32_t
1473 1474 1475
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1476 1477 1478 1479 1480
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1481
	if (INTEL_INFO(dev)->gen >= 4 ||
1482
	    tiling_mode == I915_TILING_NONE)
1483 1484
		return 4096;

1485 1486 1487 1488
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1489
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1490 1491
}

1492 1493 1494
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1495 1496 1497
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1498 1499 1500 1501
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1502
uint32_t
1503 1504 1505
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1506 1507 1508 1509 1510
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1511
	    tiling_mode == I915_TILING_NONE)
1512 1513
		return 4096;

1514 1515 1516
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1517
	 */
1518
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1519 1520
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

	if (obj->base.map_list.map)
		return 0;

	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
		return ret;

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
		return ret;

	i915_gem_shrink_all(dev_priv);
	return drm_gem_create_mmap_offset(&obj->base);
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	if (!obj->base.map_list.map)
		return;

	drm_gem_free_mmap_offset(&obj->base);
}

1557
int
1558 1559 1560 1561
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1562
{
1563
	struct drm_i915_private *dev_priv = dev->dev_private;
1564
	struct drm_i915_gem_object *obj;
1565 1566
	int ret;

1567
	ret = i915_mutex_lock_interruptible(dev);
1568
	if (ret)
1569
		return ret;
1570

1571
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1572
	if (&obj->base == NULL) {
1573 1574 1575
		ret = -ENOENT;
		goto unlock;
	}
1576

1577
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1578
		ret = -E2BIG;
1579
		goto out;
1580 1581
	}

1582
	if (obj->madv != I915_MADV_WILLNEED) {
1583
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1584 1585
		ret = -EINVAL;
		goto out;
1586 1587
	}

1588 1589 1590
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1591

1592
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1593

1594
out:
1595
	drm_gem_object_unreference(&obj->base);
1596
unlock:
1597
	mutex_unlock(&dev->struct_mutex);
1598
	return ret;
1599 1600
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

D
Daniel Vetter 已提交
1625 1626 1627
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1628 1629 1630
{
	struct inode *inode;

1631
	i915_gem_object_free_mmap_offset(obj);
1632

1633 1634
	if (obj->base.filp == NULL)
		return;
1635

D
Daniel Vetter 已提交
1636 1637 1638 1639 1640
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1641
	inode = obj->base.filp->f_path.dentry->d_inode;
D
Daniel Vetter 已提交
1642
	shmem_truncate_range(inode, 0, (loff_t)-1);
1643

D
Daniel Vetter 已提交
1644 1645
	obj->madv = __I915_MADV_PURGED;
}
1646

D
Daniel Vetter 已提交
1647 1648 1649 1650
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
1651 1652
}

1653
static void
1654
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1655
{
1656
	int page_count = obj->base.size / PAGE_SIZE;
C
Chris Wilson 已提交
1657
	int ret, i;
1658

1659
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1660

C
Chris Wilson 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		i915_gem_clflush_object(obj);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1671
	if (i915_gem_object_needs_bit17_swizzle(obj))
1672 1673
		i915_gem_object_save_bit_17_swizzle(obj);

1674 1675
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1676 1677

	for (i = 0; i < page_count; i++) {
1678 1679
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1680

1681 1682
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1683

1684
		page_cache_release(obj->pages[i]);
1685
	}
1686
	obj->dirty = 0;
1687

1688 1689
	drm_free_large(obj->pages);
	obj->pages = NULL;
1690
}
C
Chris Wilson 已提交
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700
static int
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

	if (obj->sg_table || obj->pages == NULL)
		return 0;

	BUG_ON(obj->gtt_space);
C
Chris Wilson 已提交
1701

1702 1703 1704
	if (obj->pages_pin_count)
		return -EBUSY;

1705 1706 1707
	ops->put_pages(obj);

	list_del(&obj->gtt_list);
C
Chris Wilson 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	if (i915_gem_object_is_purgeable(obj))
		i915_gem_object_truncate(obj);

	return 0;
}

static long
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
	struct drm_i915_gem_object *obj, *next;
	long count = 0;

	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.unbound_list,
				 gtt_list) {
		if (i915_gem_object_is_purgeable(obj) &&
1724
		    i915_gem_object_put_pages(obj) == 0) {
C
Chris Wilson 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
			count += obj->base.size >> PAGE_SHIFT;
			if (count >= target)
				return count;
		}
	}

	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj) &&
		    i915_gem_object_unbind(obj) == 0 &&
1736
		    i915_gem_object_put_pages(obj) == 0) {
C
Chris Wilson 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
			count += obj->base.size >> PAGE_SHIFT;
			if (count >= target)
				return count;
		}
	}

	return count;
}

static void
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj, *next;

	i915_gem_evict_everything(dev_priv->dev);

	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1754
		i915_gem_object_put_pages(obj);
D
Daniel Vetter 已提交
1755 1756
}

1757
static int
C
Chris Wilson 已提交
1758
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1759
{
C
Chris Wilson 已提交
1760
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1761 1762 1763
	int page_count, i;
	struct address_space *mapping;
	struct page *page;
C
Chris Wilson 已提交
1764
	gfp_t gfp;
1765

C
Chris Wilson 已提交
1766 1767 1768 1769 1770 1771 1772
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

1773 1774 1775
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1776 1777 1778
	page_count = obj->base.size / PAGE_SIZE;
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1779 1780
		return -ENOMEM;

C
Chris Wilson 已提交
1781 1782 1783
	/* Fail silently without starting the shrinker */
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	gfp = mapping_gfp_mask(mapping);
S
Sedat Dilek 已提交
1784
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
C
Chris Wilson 已提交
1785
	gfp &= ~(__GFP_IO | __GFP_WAIT);
1786
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
			i915_gem_purge(dev_priv, page_count);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
S
Sedat Dilek 已提交
1797
			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
C
Chris Wilson 已提交
1798 1799 1800 1801 1802 1803 1804
			gfp |= __GFP_IO | __GFP_WAIT;

			i915_gem_shrink_all(dev_priv);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
			if (IS_ERR(page))
				goto err_pages;

S
Sedat Dilek 已提交
1805
			gfp |= __GFP_NORETRY | __GFP_NOWARN;
C
Chris Wilson 已提交
1806 1807
			gfp &= ~(__GFP_IO | __GFP_WAIT);
		}
1808

1809
		obj->pages[i] = page;
1810 1811
	}

1812
	if (i915_gem_object_needs_bit17_swizzle(obj))
1813 1814 1815 1816 1817 1818
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1819
		page_cache_release(obj->pages[i]);
1820

1821 1822
	drm_free_large(obj->pages);
	obj->pages = NULL;
1823
	return PTR_ERR(page);
1824 1825
}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

	if (obj->sg_table || obj->pages)
		return 0;

1843 1844
	BUG_ON(obj->pages_pin_count);

1845 1846 1847 1848 1849 1850 1851 1852
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
	return 0;
}

1853
void
1854
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1855 1856
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1857
{
1858
	struct drm_device *dev = obj->base.dev;
1859
	struct drm_i915_private *dev_priv = dev->dev_private;
1860

1861
	BUG_ON(ring == NULL);
1862
	obj->ring = ring;
1863 1864

	/* Add a reference if we're newly entering the active list. */
1865 1866 1867
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1868
	}
1869

1870
	/* Move from whatever list we were on to the tail of execution. */
1871 1872
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1873

1874
	obj->last_read_seqno = seqno;
1875

1876
	if (obj->fenced_gpu_access) {
1877 1878
		obj->last_fenced_seqno = seqno;

1879 1880 1881 1882 1883 1884 1885 1886
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1887 1888 1889 1890 1891 1892 1893 1894 1895
	}
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1896
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1897
	BUG_ON(!obj->active);
1898

1899 1900 1901 1902 1903
	if (obj->pin_count) /* are we a framebuffer? */
		intel_mark_fb_idle(obj);

	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

1904
	list_del_init(&obj->ring_list);
1905 1906
	obj->ring = NULL;

1907 1908 1909 1910 1911
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
1912 1913 1914 1915 1916 1917
	obj->fenced_gpu_access = false;

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1918
}
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1942
int
C
Chris Wilson 已提交
1943
i915_add_request(struct intel_ring_buffer *ring,
1944
		 struct drm_file *file,
C
Chris Wilson 已提交
1945
		 struct drm_i915_gem_request *request)
1946
{
C
Chris Wilson 已提交
1947
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1948
	uint32_t seqno;
1949
	u32 request_ring_position;
1950
	int was_empty;
1951 1952
	int ret;

1953 1954 1955 1956 1957 1958 1959
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
1960 1961 1962
	ret = intel_ring_flush_all_caches(ring);
	if (ret)
		return ret;
1963

1964 1965 1966 1967 1968 1969
	if (request == NULL) {
		request = kmalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;
	}

1970
	seqno = i915_gem_next_request_seqno(ring);
1971

1972 1973 1974 1975 1976 1977 1978
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1979
	ret = ring->add_request(ring, &seqno);
1980 1981 1982 1983
	if (ret) {
		kfree(request);
		return ret;
	}
1984

C
Chris Wilson 已提交
1985
	trace_i915_gem_request_add(ring, seqno);
1986 1987

	request->seqno = seqno;
1988
	request->ring = ring;
1989
	request->tail = request_ring_position;
1990
	request->emitted_jiffies = jiffies;
1991 1992
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);
1993
	request->file_priv = NULL;
1994

C
Chris Wilson 已提交
1995 1996 1997
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1998
		spin_lock(&file_priv->mm.lock);
1999
		request->file_priv = file_priv;
2000
		list_add_tail(&request->client_list,
2001
			      &file_priv->mm.request_list);
2002
		spin_unlock(&file_priv->mm.lock);
2003
	}
2004

2005
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
2006

B
Ben Gamari 已提交
2007
	if (!dev_priv->mm.suspended) {
2008 2009 2010 2011 2012
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
2013
		if (was_empty) {
2014 2015
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
2016 2017
			intel_mark_busy(dev_priv->dev);
		}
B
Ben Gamari 已提交
2018
	}
2019

2020
	return 0;
2021 2022
}

2023 2024
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2025
{
2026
	struct drm_i915_file_private *file_priv = request->file_priv;
2027

2028 2029
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2030

2031
	spin_lock(&file_priv->mm.lock);
2032 2033 2034 2035
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
2036
	spin_unlock(&file_priv->mm.lock);
2037 2038
}

2039 2040
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
2041
{
2042 2043
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
2044

2045 2046 2047
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
2048

2049
		list_del(&request->list);
2050
		i915_gem_request_remove_from_client(request);
2051 2052
		kfree(request);
	}
2053

2054
	while (!list_empty(&ring->active_list)) {
2055
		struct drm_i915_gem_object *obj;
2056

2057 2058 2059
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2060

2061
		i915_gem_object_move_to_inactive(obj);
2062 2063 2064
	}
}

2065 2066 2067 2068 2069
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2070
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2071
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2072

2073
		i915_gem_write_fence(dev, i, NULL);
2074

2075 2076
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
2077

2078 2079 2080
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
2081
	}
2082 2083

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2084 2085
}

2086
void i915_gem_reset(struct drm_device *dev)
2087
{
2088
	struct drm_i915_private *dev_priv = dev->dev_private;
2089
	struct drm_i915_gem_object *obj;
2090
	struct intel_ring_buffer *ring;
2091
	int i;
2092

2093 2094
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
2095 2096 2097 2098

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
2099
	list_for_each_entry(obj,
2100
			    &dev_priv->mm.inactive_list,
2101
			    mm_list)
2102
	{
2103
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2104
	}
2105 2106

	/* The fence registers are invalidated so clear them out */
2107
	i915_gem_reset_fences(dev);
2108 2109 2110 2111 2112
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2113
void
C
Chris Wilson 已提交
2114
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2115 2116
{
	uint32_t seqno;
2117
	int i;
2118

C
Chris Wilson 已提交
2119
	if (list_empty(&ring->request_list))
2120 2121
		return;

C
Chris Wilson 已提交
2122
	WARN_ON(i915_verify_lists(ring->dev));
2123

2124
	seqno = ring->get_seqno(ring, true);
2125

2126
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2127 2128
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;
2129

2130
	while (!list_empty(&ring->request_list)) {
2131
		struct drm_i915_gem_request *request;
2132

2133
		request = list_first_entry(&ring->request_list,
2134 2135
					   struct drm_i915_gem_request,
					   list);
2136

2137
		if (!i915_seqno_passed(seqno, request->seqno))
2138
			break;
2139

C
Chris Wilson 已提交
2140
		trace_i915_gem_request_retire(ring, request->seqno);
2141 2142 2143 2144 2145 2146
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
2147

2148
		list_del(&request->list);
2149
		i915_gem_request_remove_from_client(request);
2150
		kfree(request);
2151 2152
	}

2153 2154 2155 2156
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
2157
		struct drm_i915_gem_object *obj;
2158

2159
		obj = list_first_entry(&ring->active_list,
2160 2161
				      struct drm_i915_gem_object,
				      ring_list);
2162

2163
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2164 2165
			break;

2166
		i915_gem_object_move_to_inactive(obj);
2167
	}
2168

C
Chris Wilson 已提交
2169 2170
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2171
		ring->irq_put(ring);
C
Chris Wilson 已提交
2172
		ring->trace_irq_seqno = 0;
2173
	}
2174

C
Chris Wilson 已提交
2175
	WARN_ON(i915_verify_lists(ring->dev));
2176
}
2177

2178 2179 2180 2181
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2182
	struct intel_ring_buffer *ring;
2183
	int i;
2184

2185 2186
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
2187 2188
}

2189
static void
2190 2191 2192 2193
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
2194
	struct intel_ring_buffer *ring;
2195 2196
	bool idle;
	int i;
2197 2198 2199 2200

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;
2201

2202 2203 2204 2205 2206 2207
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2208
	i915_gem_retire_requests(dev);
2209

2210 2211
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
2212
	 */
2213
	idle = true;
2214
	for_each_ring(ring, dev_priv, i) {
2215 2216
		if (ring->gpu_caches_dirty)
			i915_add_request(ring, NULL, NULL);
2217 2218

		idle &= list_empty(&ring->request_list);
2219 2220
	}

2221
	if (!dev_priv->mm.suspended && !idle)
2222
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2223 2224
	if (idle)
		intel_mark_idle(dev);
2225

2226 2227 2228
	mutex_unlock(&dev->struct_mutex);
}

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2240
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2241 2242
		if (ret)
			return ret;
2243

2244 2245 2246 2247 2248 2249
		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
	struct intel_ring_buffer *ring = NULL;
2278
	struct timespec timeout_stack, *timeout = NULL;
2279 2280 2281
	u32 seqno = 0;
	int ret = 0;

2282 2283 2284 2285
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2297 2298
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2299 2300 2301 2302
	if (ret)
		goto out;

	if (obj->active) {
2303
		seqno = obj->last_read_seqno;
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

2321 2322 2323 2324 2325
	ret = __wait_seqno(ring, seqno, true, timeout);
	if (timeout) {
		WARN_ON(!timespec_valid(timeout));
		args->timeout_ns = timespec_to_ns(timeout);
	}
2326 2327 2328 2329 2330 2331 2332 2333
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2357
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2358
		return i915_gem_object_wait_rendering(obj, false);
2359 2360 2361

	idx = intel_ring_sync_index(from, to);

2362
	seqno = obj->last_read_seqno;
2363 2364 2365
	if (seqno <= from->sync_seqno[idx])
		return 0;

2366 2367 2368
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2369

2370
	ret = to->sync_to(to, from, seqno);
2371 2372
	if (!ret)
		from->sync_seqno[idx] = seqno;
2373

2374
	return ret;
2375 2376
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2387 2388 2389
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2401 2402 2403
/**
 * Unbinds an object from the GTT aperture.
 */
2404
int
2405
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2406
{
2407
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2408 2409
	int ret = 0;

2410
	if (obj->gtt_space == NULL)
2411 2412
		return 0;

2413 2414
	if (obj->pin_count)
		return -EBUSY;
2415

2416 2417
	BUG_ON(obj->pages == NULL);

2418
	ret = i915_gem_object_finish_gpu(obj);
2419
	if (ret)
2420 2421 2422 2423 2424 2425
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2426
	i915_gem_object_finish_gtt(obj);
2427

2428
	/* release the fence reg _after_ flushing */
2429
	ret = i915_gem_object_put_fence(obj);
2430
	if (ret)
2431
		return ret;
2432

C
Chris Wilson 已提交
2433 2434
	trace_i915_gem_object_unbind(obj);

2435 2436
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2437 2438 2439 2440
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2441
	i915_gem_gtt_finish_object(obj);
2442

C
Chris Wilson 已提交
2443 2444
	list_del(&obj->mm_list);
	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2445
	/* Avoid an unnecessary call to unbind on rebind. */
2446
	obj->map_and_fenceable = true;
2447

2448 2449 2450
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2451

C
Chris Wilson 已提交
2452
	return 0;
2453 2454
}

2455
static int i915_ring_idle(struct intel_ring_buffer *ring)
2456
{
2457
	if (list_empty(&ring->active_list))
2458 2459
		return 0;

2460
	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2461 2462
}

2463
int i915_gpu_idle(struct drm_device *dev)
2464 2465
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2466
	struct intel_ring_buffer *ring;
2467
	int ret, i;
2468 2469

	/* Flush everything onto the inactive list. */
2470
	for_each_ring(ring, dev_priv, i) {
2471
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2472 2473
		if (ret)
			return ret;
2474 2475

		ret = i915_ring_idle(ring);
2476 2477
		if (ret)
			return ret;
2478
	}
2479

2480
	return 0;
2481 2482
}

2483 2484
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2485 2486 2487 2488
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2489 2490
	if (obj) {
		u32 size = obj->gtt_space->size;
2491

2492 2493 2494 2495 2496
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2497

2498 2499 2500 2501 2502
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2503

2504 2505
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2506 2507
}

2508 2509
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2510 2511 2512 2513
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2514 2515
	if (obj) {
		u32 size = obj->gtt_space->size;
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2526

2527 2528
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2529 2530
}

2531 2532
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2533 2534
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2535
	u32 val;
2536

2537 2538 2539 2540
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2541

2542 2543 2544 2545 2546
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2547

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2573 2574
}

2575 2576
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2577 2578 2579 2580
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2581 2582 2583
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2584

2585 2586 2587 2588 2589
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2590

2591 2592
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2593

2594 2595 2596 2597 2598 2599 2600 2601
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2602

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2619 2620
}

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2647
static int
C
Chris Wilson 已提交
2648
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2649
{
2650
	if (obj->last_fenced_seqno) {
2651
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2652 2653
		if (ret)
			return ret;
2654 2655 2656 2657

		obj->last_fenced_seqno = 0;
	}

2658 2659 2660 2661 2662 2663
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2664
	obj->fenced_gpu_access = false;
2665 2666 2667 2668 2669 2670
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2671
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2672 2673
	int ret;

C
Chris Wilson 已提交
2674
	ret = i915_gem_object_flush_fence(obj);
2675 2676 2677
	if (ret)
		return ret;

2678 2679
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2680

2681 2682 2683 2684
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2685 2686 2687 2688 2689

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2690
i915_find_fence_reg(struct drm_device *dev)
2691 2692
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2693
	struct drm_i915_fence_reg *reg, *avail;
2694
	int i;
2695 2696

	/* First try to find a free reg */
2697
	avail = NULL;
2698 2699 2700
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2701
			return reg;
2702

2703
		if (!reg->pin_count)
2704
			avail = reg;
2705 2706
	}

2707 2708
	if (avail == NULL)
		return NULL;
2709 2710

	/* None available, try to steal one or wait for a user to finish */
2711
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2712
		if (reg->pin_count)
2713 2714
			continue;

C
Chris Wilson 已提交
2715
		return reg;
2716 2717
	}

C
Chris Wilson 已提交
2718
	return NULL;
2719 2720
}

2721
/**
2722
 * i915_gem_object_get_fence - set up fencing for an object
2723 2724 2725 2726 2727 2728 2729 2730 2731
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2732 2733
 *
 * For an untiled surface, this removes any existing fence.
2734
 */
2735
int
2736
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2737
{
2738
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2739
	struct drm_i915_private *dev_priv = dev->dev_private;
2740
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2741
	struct drm_i915_fence_reg *reg;
2742
	int ret;
2743

2744 2745 2746
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2747
	if (obj->fence_dirty) {
2748 2749 2750 2751
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2752

2753
	/* Just update our place in the LRU if our fence is getting reused. */
2754 2755
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2756
		if (!obj->fence_dirty) {
2757 2758 2759 2760 2761 2762 2763 2764
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2765

2766 2767 2768 2769
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2770 2771 2772
			if (ret)
				return ret;

2773
			i915_gem_object_fence_lost(old);
2774
		}
2775
	} else
2776 2777
		return 0;

2778
	i915_gem_object_update_fence(obj, reg, enable);
2779
	obj->fence_dirty = false;
2780

2781
	return 0;
2782 2783
}

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
				     struct drm_mm_node *gtt_space,
				     unsigned long cache_level)
{
	struct drm_mm_node *other;

	/* On non-LLC machines we have to be careful when putting differing
	 * types of snoopable memory together to avoid the prefetcher
	 * crossing memory domains and dieing.
	 */
	if (HAS_LLC(dev))
		return true;

	if (gtt_space == NULL)
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	int err = 0;

	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
		if (obj->gtt_space == NULL) {
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
			err++;
			continue;
		}

		if (obj->cache_level != obj->gtt_space->color) {
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
			       obj->gtt_space->start,
			       obj->gtt_space->start + obj->gtt_space->size,
			       obj->cache_level,
			       obj->gtt_space->color);
			err++;
			continue;
		}

		if (!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level)) {
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
			       obj->gtt_space->start,
			       obj->gtt_space->start + obj->gtt_space->size,
			       obj->cache_level);
			err++;
			continue;
		}
	}

	WARN_ON(err);
#endif
}

2854 2855 2856 2857
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2858
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2859
			    unsigned alignment,
2860 2861
			    bool map_and_fenceable,
			    bool nonblocking)
2862
{
2863
	struct drm_device *dev = obj->base.dev;
2864 2865
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2866
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2867
	bool mappable, fenceable;
2868
	int ret;
2869

2870
	if (obj->madv != I915_MADV_WILLNEED) {
2871 2872 2873 2874
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2885

2886
	if (alignment == 0)
2887 2888
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2889
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2890 2891 2892 2893
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2894
	size = map_and_fenceable ? fence_size : obj->base.size;
2895

2896 2897 2898
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2899
	if (obj->base.size >
2900
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2901 2902 2903 2904
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2905
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
2906 2907 2908
	if (ret)
		return ret;

2909
 search_free:
2910
	if (map_and_fenceable)
2911
		free_space =
2912 2913 2914 2915
			drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
							  size, alignment, obj->cache_level,
							  0, dev_priv->mm.gtt_mappable_end,
							  false);
2916
	else
2917 2918 2919
		free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
						      size, alignment, obj->cache_level,
						      false);
2920 2921

	if (free_space != NULL) {
2922
		if (map_and_fenceable)
2923
			obj->gtt_space =
2924
				drm_mm_get_block_range_generic(free_space,
2925
							       size, alignment, obj->cache_level,
2926
							       0, dev_priv->mm.gtt_mappable_end,
2927
							       false);
2928
		else
2929
			obj->gtt_space =
2930 2931 2932
				drm_mm_get_block_generic(free_space,
							 size, alignment, obj->cache_level,
							 false);
2933
	}
2934
	if (obj->gtt_space == NULL) {
2935
		ret = i915_gem_evict_something(dev, size, alignment,
2936
					       obj->cache_level,
2937 2938
					       map_and_fenceable,
					       nonblocking);
2939
		if (ret)
2940
			return ret;
2941

2942 2943
		goto search_free;
	}
2944 2945 2946 2947 2948 2949 2950
	if (WARN_ON(!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level))) {
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
		return -EINVAL;
	}
2951 2952


2953
	ret = i915_gem_gtt_prepare_object(obj);
2954
	if (ret) {
2955 2956
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
C
Chris Wilson 已提交
2957
		return ret;
2958 2959
	}

2960 2961
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2962

C
Chris Wilson 已提交
2963
	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2964
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2965

2966
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2967

2968
	fenceable =
2969
		obj->gtt_space->size == fence_size &&
2970
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2971

2972
	mappable =
2973
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2974

2975
	obj->map_and_fenceable = mappable && fenceable;
2976

C
Chris Wilson 已提交
2977
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2978
	i915_gem_verify_gtt(dev);
2979 2980 2981 2982
	return 0;
}

void
2983
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2984 2985 2986 2987 2988
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2989
	if (obj->pages == NULL)
2990 2991
		return;

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
3003
	trace_i915_gem_object_clflush(obj);
3004

3005
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
3006 3007
}

3008 3009
/** Flushes the GTT write domain for the object if it's dirty. */
static void
3010
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3011
{
C
Chris Wilson 已提交
3012 3013
	uint32_t old_write_domain;

3014
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3015 3016
		return;

3017
	/* No actual flushing is required for the GTT write domain.  Writes
3018 3019
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3020 3021 3022 3023
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3024
	 */
3025 3026
	wmb();

3027 3028
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3029 3030

	trace_i915_gem_object_change_domain(obj,
3031
					    obj->base.read_domains,
C
Chris Wilson 已提交
3032
					    old_write_domain);
3033 3034 3035 3036
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3037
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3038
{
C
Chris Wilson 已提交
3039
	uint32_t old_write_domain;
3040

3041
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3042 3043 3044
		return;

	i915_gem_clflush_object(obj);
3045
	intel_gtt_chipset_flush();
3046 3047
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3048 3049

	trace_i915_gem_object_change_domain(obj,
3050
					    obj->base.read_domains,
C
Chris Wilson 已提交
3051
					    old_write_domain);
3052 3053
}

3054 3055 3056 3057 3058 3059
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3060
int
3061
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3062
{
3063
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
3064
	uint32_t old_write_domain, old_read_domains;
3065
	int ret;
3066

3067
	/* Not valid to be called on unbound objects. */
3068
	if (obj->gtt_space == NULL)
3069 3070
		return -EINVAL;

3071 3072 3073
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3074 3075 3076
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
3077

3078
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3079

3080 3081
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3082

3083 3084 3085
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3086 3087
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3088
	if (write) {
3089 3090 3091
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3092 3093
	}

C
Chris Wilson 已提交
3094 3095 3096 3097
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3098 3099 3100 3101
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

3102 3103 3104
	return 0;
}

3105 3106 3107
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3108 3109
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3120 3121 3122 3123 3124 3125
	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3137
		if (INTEL_INFO(dev)->gen < 6) {
3138 3139 3140 3141 3142
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3143 3144
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
3145 3146 3147
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
3148 3149

		obj->gtt_space->color = cache_level;
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
3176
	i915_gem_verify_gtt(dev);
3177 3178 3179
	return 0;
}

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
				struct drm_file *file)
{
	struct drm_i915_gem_cacheing *args = data;
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	args->cacheing = obj->cache_level != I915_CACHE_NONE;

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
				struct drm_file *file)
{
	struct drm_i915_gem_cacheing *args = data;
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	switch (args->cacheing) {
	case I915_CACHEING_NONE:
		level = I915_CACHE_NONE;
		break;
	case I915_CACHEING_CACHED:
		level = I915_CACHE_LLC;
		break;
	default:
		return -EINVAL;
	}

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3242
/*
3243 3244 3245
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3246 3247
 */
int
3248 3249
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3250
				     struct intel_ring_buffer *pipelined)
3251
{
3252
	u32 old_read_domains, old_write_domain;
3253 3254
	int ret;

3255
	if (pipelined != obj->ring) {
3256 3257
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3258 3259 3260
			return ret;
	}

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3274 3275 3276 3277
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3278
	ret = i915_gem_object_pin(obj, alignment, true, false);
3279 3280 3281
	if (ret)
		return ret;

3282 3283
	i915_gem_object_flush_cpu_write_domain(obj);

3284
	old_write_domain = obj->base.write_domain;
3285
	old_read_domains = obj->base.read_domains;
3286 3287 3288 3289

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3290
	obj->base.write_domain = 0;
3291
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3292 3293 3294

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3295
					    old_write_domain);
3296 3297 3298 3299

	return 0;
}

3300
int
3301
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3302
{
3303 3304
	int ret;

3305
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3306 3307
		return 0;

3308
	ret = i915_gem_object_wait_rendering(obj, false);
3309 3310 3311
	if (ret)
		return ret;

3312 3313
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3314
	return 0;
3315 3316
}

3317 3318 3319 3320 3321 3322
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3323
int
3324
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3325
{
C
Chris Wilson 已提交
3326
	uint32_t old_write_domain, old_read_domains;
3327 3328
	int ret;

3329 3330 3331
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3332 3333 3334
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
3335

3336
	i915_gem_object_flush_gtt_write_domain(obj);
3337

3338 3339
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3340

3341
	/* Flush the CPU cache if it's still invalid. */
3342
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3343 3344
		i915_gem_clflush_object(obj);

3345
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3346 3347 3348 3349 3350
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3351
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3352 3353 3354 3355 3356

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3357 3358
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3359
	}
3360

C
Chris Wilson 已提交
3361 3362 3363 3364
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3365 3366 3367
	return 0;
}

3368 3369 3370
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3371 3372 3373 3374
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3375 3376 3377
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3378
static int
3379
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3380
{
3381 3382
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3383
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3384 3385 3386 3387
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3388

3389 3390 3391
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3392
	spin_lock(&file_priv->mm.lock);
3393
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3394 3395
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3396

3397 3398
		ring = request->ring;
		seqno = request->seqno;
3399
	}
3400
	spin_unlock(&file_priv->mm.lock);
3401

3402 3403
	if (seqno == 0)
		return 0;
3404

3405
	ret = __wait_seqno(ring, seqno, true, NULL);
3406 3407
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3408 3409 3410 3411

	return ret;
}

3412
int
3413 3414
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3415 3416
		    bool map_and_fenceable,
		    bool nonblocking)
3417 3418 3419
{
	int ret;

3420
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3421

3422 3423 3424 3425
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3426
			     "bo is already pinned with incorrect alignment:"
3427 3428
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3429
			     obj->gtt_offset, alignment,
3430
			     map_and_fenceable,
3431
			     obj->map_and_fenceable);
3432 3433 3434 3435 3436 3437
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3438
	if (obj->gtt_space == NULL) {
3439
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3440 3441
						  map_and_fenceable,
						  nonblocking);
3442
		if (ret)
3443
			return ret;
3444
	}
J
Jesse Barnes 已提交
3445

3446 3447 3448
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3449
	obj->pin_count++;
3450
	obj->pin_mappable |= map_and_fenceable;
3451 3452 3453 3454 3455

	return 0;
}

void
3456
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3457
{
3458 3459
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3460

3461
	if (--obj->pin_count == 0)
3462
		obj->pin_mappable = false;
3463 3464 3465 3466
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3467
		   struct drm_file *file)
3468 3469
{
	struct drm_i915_gem_pin *args = data;
3470
	struct drm_i915_gem_object *obj;
3471 3472
	int ret;

3473 3474 3475
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3476

3477
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3478
	if (&obj->base == NULL) {
3479 3480
		ret = -ENOENT;
		goto unlock;
3481 3482
	}

3483
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3484
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3485 3486
		ret = -EINVAL;
		goto out;
3487 3488
	}

3489
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3490 3491
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3492 3493
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3494 3495
	}

3496 3497 3498
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3499
		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3500 3501
		if (ret)
			goto out;
3502 3503 3504 3505 3506
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3507
	i915_gem_object_flush_cpu_write_domain(obj);
3508
	args->offset = obj->gtt_offset;
3509
out:
3510
	drm_gem_object_unreference(&obj->base);
3511
unlock:
3512
	mutex_unlock(&dev->struct_mutex);
3513
	return ret;
3514 3515 3516 3517
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3518
		     struct drm_file *file)
3519 3520
{
	struct drm_i915_gem_pin *args = data;
3521
	struct drm_i915_gem_object *obj;
3522
	int ret;
3523

3524 3525 3526
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3527

3528
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3529
	if (&obj->base == NULL) {
3530 3531
		ret = -ENOENT;
		goto unlock;
3532
	}
3533

3534
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3535 3536
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3537 3538
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3539
	}
3540 3541 3542
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3543 3544
		i915_gem_object_unpin(obj);
	}
3545

3546
out:
3547
	drm_gem_object_unreference(&obj->base);
3548
unlock:
3549
	mutex_unlock(&dev->struct_mutex);
3550
	return ret;
3551 3552 3553 3554
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3555
		    struct drm_file *file)
3556 3557
{
	struct drm_i915_gem_busy *args = data;
3558
	struct drm_i915_gem_object *obj;
3559 3560
	int ret;

3561
	ret = i915_mutex_lock_interruptible(dev);
3562
	if (ret)
3563
		return ret;
3564

3565
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3566
	if (&obj->base == NULL) {
3567 3568
		ret = -ENOENT;
		goto unlock;
3569
	}
3570

3571 3572 3573 3574
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3575
	 */
3576
	ret = i915_gem_object_flush_active(obj);
3577

3578
	args->busy = obj->active;
3579 3580 3581 3582
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
3583

3584
	drm_gem_object_unreference(&obj->base);
3585
unlock:
3586
	mutex_unlock(&dev->struct_mutex);
3587
	return ret;
3588 3589 3590 3591 3592 3593
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3594
	return i915_gem_ring_throttle(dev, file_priv);
3595 3596
}

3597 3598 3599 3600 3601
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3602
	struct drm_i915_gem_object *obj;
3603
	int ret;
3604 3605 3606 3607 3608 3609 3610 3611 3612

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3613 3614 3615 3616
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3617
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3618
	if (&obj->base == NULL) {
3619 3620
		ret = -ENOENT;
		goto unlock;
3621 3622
	}

3623
	if (obj->pin_count) {
3624 3625
		ret = -EINVAL;
		goto out;
3626 3627
	}

3628 3629
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3630

C
Chris Wilson 已提交
3631 3632
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3633 3634
		i915_gem_object_truncate(obj);

3635
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3636

3637
out:
3638
	drm_gem_object_unreference(&obj->base);
3639
unlock:
3640
	mutex_unlock(&dev->struct_mutex);
3641
	return ret;
3642 3643
}

3644 3645
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3646 3647 3648 3649 3650 3651
{
	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->gtt_list);
	INIT_LIST_HEAD(&obj->ring_list);
	INIT_LIST_HEAD(&obj->exec_list);

3652 3653
	obj->ops = ops;

3654 3655 3656 3657 3658 3659 3660 3661
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

3662 3663 3664 3665 3666
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3667 3668
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3669
{
3670
	struct drm_i915_gem_object *obj;
3671
	struct address_space *mapping;
3672
	u32 mask;
3673

3674 3675 3676
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3677

3678 3679 3680 3681
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3682

3683 3684 3685 3686 3687 3688 3689
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3690
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3691
	mapping_set_gfp_mask(mapping, mask);
3692

3693
	i915_gem_object_init(obj, &i915_gem_object_ops);
3694

3695 3696
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3697

3698 3699
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3715
	return obj;
3716 3717 3718 3719 3720
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3721

3722 3723 3724
	return 0;
}

3725
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3726
{
3727
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3728
	struct drm_device *dev = obj->base.dev;
3729
	drm_i915_private_t *dev_priv = dev->dev_private;
3730

3731 3732
	trace_i915_gem_object_destroy(obj);

3733 3734 3735
	if (gem_obj->import_attach)
		drm_prime_gem_destroy(gem_obj, obj->sg_table);

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3751
	obj->pages_pin_count = 0;
3752
	i915_gem_object_put_pages(obj);
3753
	i915_gem_object_free_mmap_offset(obj);
3754

3755 3756
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3757

3758 3759
	kfree(obj->bit_17);
	kfree(obj);
3760 3761
}

3762 3763 3764 3765 3766
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3767

3768
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3769

3770
	if (dev_priv->mm.suspended) {
3771 3772
		mutex_unlock(&dev->struct_mutex);
		return 0;
3773 3774
	}

3775
	ret = i915_gpu_idle(dev);
3776 3777
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3778
		return ret;
3779
	}
3780
	i915_gem_retire_requests(dev);
3781

3782
	/* Under UMS, be paranoid and evict. */
3783
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
3784
		i915_gem_evict_everything(dev);
3785

3786 3787
	i915_gem_reset_fences(dev);

3788 3789 3790 3791 3792
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3793
	del_timer_sync(&dev_priv->hangcheck_timer);
3794 3795

	i915_kernel_lost_context(dev);
3796
	i915_gem_cleanup_ringbuffer(dev);
3797

3798 3799
	mutex_unlock(&dev->struct_mutex);

3800 3801 3802
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3803 3804 3805
	return 0;
}

B
Ben Widawsky 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
void i915_gem_l3_remap(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 misccpctl;
	int i;

	if (!IS_IVYBRIDGE(dev))
		return;

	if (!dev_priv->mm.l3_remap_info)
		return;

	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	POSTING_READ(GEN7_MISCCPCTL);

	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG("0x%x was already programmed to %x\n",
				  GEN7_L3LOG_BASE + i, remap);
		if (remap && !dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
	}

	/* Make sure all the writes land before disabling dop clock gating */
	POSTING_READ(GEN7_L3LOG_BASE);

	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

3838 3839 3840 3841
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3842
	if (INTEL_INFO(dev)->gen < 5 ||
3843 3844 3845 3846 3847 3848
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3849 3850 3851
	if (IS_GEN5(dev))
		return;

3852 3853
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3854
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3855
	else
3856
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3857
}
D
Daniel Vetter 已提交
3858 3859 3860 3861 3862 3863

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3864 3865 3866
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3867 3868 3869 3870 3871
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3890 3891 3892 3893
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3894 3895 3896 3897
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3898 3899 3900 3901 3902

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3903 3904
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3905
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3906 3907 3908 3909 3910
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3911
	for_each_ring(ring, dev_priv, i) {
D
Daniel Vetter 已提交
3912 3913
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3914
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3915 3916 3917 3918 3919 3920

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

3937
int
3938
i915_gem_init_hw(struct drm_device *dev)
3939 3940 3941
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3942

D
Daniel Vetter 已提交
3943 3944 3945
	if (!intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
3946 3947
	i915_gem_l3_remap(dev);

3948 3949
	i915_gem_init_swizzling(dev);

3950
	ret = intel_init_render_ring_buffer(dev);
3951
	if (ret)
3952
		return ret;
3953 3954

	if (HAS_BSD(dev)) {
3955
		ret = intel_init_bsd_ring_buffer(dev);
3956 3957
		if (ret)
			goto cleanup_render_ring;
3958
	}
3959

3960
	if (intel_enable_blt(dev)) {
3961 3962 3963 3964 3965
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3966 3967
	dev_priv->next_seqno = 1;

3968 3969 3970 3971 3972
	/*
	 * XXX: There was some w/a described somewhere suggesting loading
	 * contexts before PPGTT.
	 */
	i915_gem_context_init(dev);
D
Daniel Vetter 已提交
3973 3974
	i915_gem_init_ppgtt(dev);

3975 3976
	return 0;

3977
cleanup_bsd_ring:
3978
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3979
cleanup_render_ring:
3980
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3981 3982 3983
	return ret;
}

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

4043 4044 4045
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
4046 4047 4048
	return 0;
}

4049 4050 4051 4052
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4053
	struct intel_ring_buffer *ring;
4054
	int i;
4055

4056 4057
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
4058 4059
}

4060 4061 4062 4063 4064
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4065
	int ret;
4066

J
Jesse Barnes 已提交
4067 4068 4069
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4070
	if (atomic_read(&dev_priv->mm.wedged)) {
4071
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4072
		atomic_set(&dev_priv->mm.wedged, 0);
4073 4074 4075
	}

	mutex_lock(&dev->struct_mutex);
4076 4077
	dev_priv->mm.suspended = 0;

4078
	ret = i915_gem_init_hw(dev);
4079 4080
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4081
		return ret;
4082
	}
4083

4084
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4085 4086
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	mutex_unlock(&dev->struct_mutex);
4087

4088 4089 4090
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4091

4092
	return 0;
4093 4094 4095 4096 4097 4098 4099 4100

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4101 4102 4103 4104 4105 4106
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4107 4108 4109
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4110
	drm_irq_uninstall(dev);
4111
	return i915_gem_idle(dev);
4112 4113 4114 4115 4116 4117 4118
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4119 4120 4121
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4122 4123 4124
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4125 4126
}

4127 4128 4129 4130 4131 4132 4133
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4134 4135 4136
void
i915_gem_load(struct drm_device *dev)
{
4137
	int i;
4138 4139
	drm_i915_private_t *dev_priv = dev->dev_private;

4140
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4141
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4142 4143
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4144
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4145 4146
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4147
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4148
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4149 4150
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4151
	init_completion(&dev_priv->error_completion);
4152

4153 4154
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
4155 4156
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4157 4158
	}

4159 4160
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4161
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4162 4163
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4164

4165
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4166 4167 4168 4169
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4170
	/* Initialize fence registers to zero */
4171
	i915_gem_reset_fences(dev);
4172

4173
	i915_gem_detect_bit_6_swizzle(dev);
4174
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4175

4176 4177
	dev_priv->mm.interruptible = true;

4178 4179 4180
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
4181
}
4182 4183 4184 4185 4186

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4187 4188
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4189 4190 4191 4192 4193 4194 4195 4196
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4197
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4198 4199 4200 4201 4202
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4203
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4216
	kfree(phys_obj);
4217 4218 4219
	return ret;
}

4220
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4245
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4246 4247 4248 4249
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4250
				 struct drm_i915_gem_object *obj)
4251
{
4252
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4253
	char *vaddr;
4254 4255 4256
	int i;
	int page_count;

4257
	if (!obj->phys_obj)
4258
		return;
4259
	vaddr = obj->phys_obj->handle->vaddr;
4260

4261
	page_count = obj->base.size / PAGE_SIZE;
4262
	for (i = 0; i < page_count; i++) {
4263
		struct page *page = shmem_read_mapping_page(mapping, i);
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4275
	}
4276
	intel_gtt_chipset_flush();
4277

4278 4279
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4280 4281 4282 4283
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4284
			    struct drm_i915_gem_object *obj,
4285 4286
			    int id,
			    int align)
4287
{
4288
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4289 4290 4291 4292 4293 4294 4295 4296
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4297 4298
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4299 4300 4301 4302 4303 4304 4305
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4306
						obj->base.size, align);
4307
		if (ret) {
4308 4309
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4310
			return ret;
4311 4312 4313 4314
		}
	}

	/* bind to the object */
4315 4316
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4317

4318
	page_count = obj->base.size / PAGE_SIZE;
4319 4320

	for (i = 0; i < page_count; i++) {
4321 4322 4323
		struct page *page;
		char *dst, *src;

4324
		page = shmem_read_mapping_page(mapping, i);
4325 4326
		if (IS_ERR(page))
			return PTR_ERR(page);
4327

4328
		src = kmap_atomic(page);
4329
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4330
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4331
		kunmap_atomic(src);
4332

4333 4334 4335
		mark_page_accessed(page);
		page_cache_release(page);
	}
4336

4337 4338 4339 4340
	return 0;
}

static int
4341 4342
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4343 4344 4345
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4346
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4347
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4348

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4362

4363
	intel_gtt_chipset_flush();
4364 4365
	return 0;
}
4366

4367
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4368
{
4369
	struct drm_i915_file_private *file_priv = file->driver_priv;
4370 4371 4372 4373 4374

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4375
	spin_lock(&file_priv->mm.lock);
4376 4377 4378 4379 4380 4381 4382 4383 4384
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4385
	spin_unlock(&file_priv->mm.lock);
4386
}
4387 4388

static int
4389
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4390
{
4391 4392 4393 4394 4395
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
4396
	struct drm_i915_gem_object *obj;
4397
	int nr_to_scan = sc->nr_to_scan;
4398 4399 4400
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4401
		return 0;
4402

C
Chris Wilson 已提交
4403 4404 4405 4406
	if (nr_to_scan) {
		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
		if (nr_to_scan > 0)
			i915_gem_shrink_all(dev_priv);
4407 4408
	}

4409
	cnt = 0;
C
Chris Wilson 已提交
4410
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4411 4412
		if (obj->pages_pin_count == 0)
			cnt += obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
4413
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4414
		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
C
Chris Wilson 已提交
4415
			cnt += obj->base.size >> PAGE_SHIFT;
4416 4417

	mutex_unlock(&dev->struct_mutex);
C
Chris Wilson 已提交
4418
	return cnt;
4419
}