i915_gem.c 130.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85
				  u64 size)
86
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94
				     u64 size)
95
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

301 302 303 304 305 306 307 308 309 310 311 312 313
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

361 362 363
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
364 365
 */
static __must_check int
366 367 368
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
369 370 371
{
	struct i915_gem_active *active;
	unsigned long active_mask;
372
	int idx;
373

374
	active_mask = __I915_BO_ACTIVE(obj);
375 376 377 378 379 380 381 382 383 384
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

385 386
	for_each_active(active_mask, idx) {
		int ret;
387

388
		ret = i915_gem_active_wait_unlocked(&active[idx],
389 390
						    I915_WAIT_INTERRUPTIBLE,
						    NULL, rps);
391 392
		if (ret)
			return ret;
393 394
	}

395
	return 0;
396 397 398 399 400 401 402 403 404
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

405 406 407 408 409
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
410
	int ret;
411 412 413 414 415 416 417 418 419 420 421 422 423 424

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
425 426 427 428 429
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
430 431 432
	if (ret)
		return ret;

433 434 435 436 437 438
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
439 440 441
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
442 443 444 445 446 447 448 449 450
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
451
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
452
	int ret = 0;
453 454 455 456 457 458 459

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
460

461
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
462 463 464 465 466 467 468 469 470 471
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
472 473 474 475
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
476 477
	}

478
	drm_clflush_virt_range(vaddr, args->size);
479
	i915_gem_chipset_flush(to_i915(dev));
480 481

out:
482
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
483
	return ret;
484 485
}

486 487
void *i915_gem_object_alloc(struct drm_device *dev)
{
488
	struct drm_i915_private *dev_priv = to_i915(dev);
489
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
490 491 492 493
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
494
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
495
	kmem_cache_free(dev_priv->objects, obj);
496 497
}

498 499 500 501 502
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
503
{
504
	struct drm_i915_gem_object *obj;
505 506
	int ret;
	u32 handle;
507

508
	size = roundup(size, PAGE_SIZE);
509 510
	if (size == 0)
		return -EINVAL;
511 512

	/* Allocate the new object */
513
	obj = i915_gem_object_create(dev, size);
514 515
	if (IS_ERR(obj))
		return PTR_ERR(obj);
516

517
	ret = drm_gem_handle_create(file, &obj->base, &handle);
518
	/* drop reference from allocate - handle holds it now */
519
	i915_gem_object_put_unlocked(obj);
520 521
	if (ret)
		return ret;
522

523
	*handle_p = handle;
524 525 526
	return 0;
}

527 528 529 530 531 532
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
533
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
534 535
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
536
			       args->size, &args->handle);
537 538 539 540
}

/**
 * Creates a new mm object and returns a handle to it.
541 542 543
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
544 545 546 547 548 549
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
550

551
	return i915_gem_create(file, dev,
552
			       args->size, &args->handle);
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

581
static inline int
582 583
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

607 608 609 610 611 612
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
613
				    unsigned int *needs_clflush)
614 615 616 617 618
{
	int ret;

	*needs_clflush = 0;

619 620
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
621

622 623 624 625
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

626 627 628 629 630 631
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

632 633
	i915_gem_object_flush_gtt_write_domain(obj);

634 635 636 637 638 639
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
640 641
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
642 643 644

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
645 646 647
		if (ret)
			goto err_unpin;

648
		*needs_clflush = 0;
649 650
	}

651
	/* return with the pages pinned */
652
	return 0;
653 654 655 656

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

672 673 674 675 676 677
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

678 679
	i915_gem_object_flush_gtt_write_domain(obj);

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
697 698 699
		if (ret)
			goto err_unpin;

700 701 702 703 704 705 706 707
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
	obj->dirty = 1;
708
	/* return with the pages pinned */
709
	return 0;
710 711 712 713

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
714 715
}

716 717 718
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
719
static int
720 721 722 723 724 725 726
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

727
	if (unlikely(page_do_bit17_swizzling))
728 729 730 731 732 733 734 735 736 737 738
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

739
	return ret ? -EFAULT : 0;
740 741
}

742 743 744 745
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
746
	if (unlikely(swizzled)) {
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

764 765 766 767 768 769 770 771 772 773 774 775
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
776 777 778
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
779 780 781 782 783 784 785 786 787 788 789

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

790
	return ret ? - EFAULT : 0;
791 792
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
820
	struct drm_i915_private *dev_priv = to_i915(dev);
821
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
822
	struct i915_vma *vma;
823 824 825 826 827 828
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

C
Chris Wilson 已提交
829
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
830 831 832
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
833
		ret = i915_vma_put_fence(vma);
834 835 836 837 838
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
839
	if (IS_ERR(vma)) {
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
895
		if (slow_user_access(&ggtt->mappable, page_base,
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
922
				       node.start, node.size);
923 924 925
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
926
		i915_vma_unpin(vma);
927 928 929 930 931
	}
out:
	return ret;
}

932
static int
933 934 935 936
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
937
{
938
	char __user *user_data;
939
	ssize_t remain;
940
	loff_t offset;
941
	int shmem_page_offset, page_length, ret = 0;
942
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
943
	int prefaulted = 0;
944
	int needs_clflush = 0;
945
	struct sg_page_iter sg_iter;
946

947
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
948 949 950
	if (ret)
		return ret;

951 952
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
953
	offset = args->offset;
954
	remain = args->size;
955

956 957
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
958
		struct page *page = sg_page_iter_page(&sg_iter);
959 960 961 962

		if (remain <= 0)
			break;

963 964 965 966 967
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
968
		shmem_page_offset = offset_in_page(offset);
969 970 971 972
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

973 974 975
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

976 977 978 979 980
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
981 982 983

		mutex_unlock(&dev->struct_mutex);

984
		if (likely(!i915.prefault_disable) && !prefaulted) {
985
			ret = fault_in_multipages_writeable(user_data, remain);
986 987 988 989 990 991 992
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
993

994 995 996
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
997

998
		mutex_lock(&dev->struct_mutex);
999 1000

		if (ret)
1001 1002
			goto out;

1003
next_page:
1004
		remain -= page_length;
1005
		user_data += page_length;
1006 1007 1008
		offset += page_length;
	}

1009
out:
1010
	i915_gem_obj_finish_shmem_access(obj);
1011

1012 1013 1014
	return ret;
}

1015 1016
/**
 * Reads data from the object referenced by handle.
1017 1018 1019
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1020 1021 1022 1023 1024
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1025
		     struct drm_file *file)
1026 1027
{
	struct drm_i915_gem_pread *args = data;
1028
	struct drm_i915_gem_object *obj;
1029
	int ret = 0;
1030

1031 1032 1033 1034
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1035
		       u64_to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	obj = i915_gem_object_lookup(file, args->handle);
1040 1041
	if (!obj)
		return -ENOENT;
1042

1043
	/* Bounds check source.  */
1044 1045
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1046
		ret = -EINVAL;
1047
		goto err;
C
Chris Wilson 已提交
1048 1049
	}

C
Chris Wilson 已提交
1050 1051
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1052 1053 1054 1055 1056 1057 1058 1059
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1060
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1061

1062
	/* pread for non shmem backed objects */
1063 1064
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
1065 1066
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
1067 1068
		intel_runtime_pm_put(to_i915(dev));
	}
1069

1070
	i915_gem_object_put(obj);
1071
	mutex_unlock(&dev->struct_mutex);
1072 1073 1074 1075 1076

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1077
	return ret;
1078 1079
}

1080 1081
/* This is the fast write path which cannot handle
 * page faults in the source data
1082
 */
1083 1084 1085 1086 1087 1088

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1089
{
1090 1091
	void __iomem *vaddr_atomic;
	void *vaddr;
1092
	unsigned long unwritten;
1093

P
Peter Zijlstra 已提交
1094
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1095 1096 1097
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1098
						      user_data, length);
P
Peter Zijlstra 已提交
1099
	io_mapping_unmap_atomic(vaddr_atomic);
1100
	return unwritten;
1101 1102
}

1103 1104 1105
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1106
 * @i915: i915 device private data
1107 1108 1109
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1110
 */
1111
static int
1112
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1113
			 struct drm_i915_gem_object *obj,
1114
			 struct drm_i915_gem_pwrite *args,
1115
			 struct drm_file *file)
1116
{
1117
	struct i915_ggtt *ggtt = &i915->ggtt;
1118
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1119
	struct i915_vma *vma;
1120 1121
	struct drm_mm_node node;
	uint64_t remain, offset;
1122
	char __user *user_data;
1123
	int ret;
1124 1125
	bool hit_slow_path = false;

1126
	if (i915_gem_object_is_tiled(obj))
1127
		return -EFAULT;
D
Daniel Vetter 已提交
1128

C
Chris Wilson 已提交
1129
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1130
				       PIN_MAPPABLE | PIN_NONBLOCK);
1131 1132 1133
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1134
		ret = i915_vma_put_fence(vma);
1135 1136 1137 1138 1139
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1140
	if (IS_ERR(vma)) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}
D
Daniel Vetter 已提交
1153 1154 1155 1156 1157

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1158
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159
	obj->dirty = true;
1160

1161 1162 1163 1164
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1165 1166
		/* Operation in this page
		 *
1167 1168 1169
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1170
		 */
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1184
		/* If we get a fault while copying data, then (presumably) our
1185 1186
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1187 1188
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1189
		 */
1190
		if (fast_user_write(&ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1191
				    page_offset, user_data, page_length)) {
1192 1193
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
1194
			if (slow_user_access(&ggtt->mappable,
1195 1196 1197 1198 1199 1200 1201 1202 1203
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1204
		}
1205

1206 1207 1208
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1209 1210
	}

1211
out_flush:
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1225
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1226
out_unpin:
1227 1228 1229
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1230
				       node.start, node.size);
1231 1232 1233
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1234
		i915_vma_unpin(vma);
1235
	}
D
Daniel Vetter 已提交
1236
out:
1237
	return ret;
1238 1239
}

1240 1241 1242 1243
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1244
static int
1245 1246 1247 1248 1249
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1250
{
1251
	char *vaddr;
1252
	int ret;
1253

1254
	if (unlikely(page_do_bit17_swizzling))
1255
		return -EINVAL;
1256

1257 1258 1259 1260
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1261 1262
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1263 1264 1265 1266
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1267

1268
	return ret ? -EFAULT : 0;
1269 1270
}

1271 1272
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1273
static int
1274 1275 1276 1277 1278
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1279
{
1280 1281
	char *vaddr;
	int ret;
1282

1283
	vaddr = kmap(page);
1284
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1285 1286 1287
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1288 1289
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1290 1291
						user_data,
						page_length);
1292 1293 1294 1295 1296
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1297 1298 1299
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1300
	kunmap(page);
1301

1302
	return ret ? -EFAULT : 0;
1303 1304 1305
}

static int
1306 1307 1308 1309
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1310 1311
{
	ssize_t remain;
1312 1313
	loff_t offset;
	char __user *user_data;
1314
	int shmem_page_offset, page_length, ret = 0;
1315
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1316
	int hit_slowpath = 0;
1317
	unsigned int needs_clflush;
1318
	struct sg_page_iter sg_iter;
1319

1320
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1321 1322 1323
	if (ret)
		return ret;

1324 1325
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1326
	offset = args->offset;
1327
	remain = args->size;
1328

1329 1330
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1331
		struct page *page = sg_page_iter_page(&sg_iter);
1332
		int partial_cacheline_write;
1333

1334 1335 1336
		if (remain <= 0)
			break;

1337 1338 1339 1340 1341
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1342
		shmem_page_offset = offset_in_page(offset);
1343 1344 1345 1346 1347

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1348 1349 1350
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1351
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1352 1353 1354
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1355 1356 1357
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1358 1359 1360
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1361
					needs_clflush & CLFLUSH_AFTER);
1362 1363
		if (ret == 0)
			goto next_page;
1364 1365 1366

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1367 1368 1369
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1370
					needs_clflush & CLFLUSH_AFTER);
1371

1372
		mutex_lock(&dev->struct_mutex);
1373 1374

		if (ret)
1375 1376
			goto out;

1377
next_page:
1378
		remain -= page_length;
1379
		user_data += page_length;
1380
		offset += page_length;
1381 1382
	}

1383
out:
1384
	i915_gem_obj_finish_shmem_access(obj);
1385

1386
	if (hit_slowpath) {
1387 1388 1389 1390 1391
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1392
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1393
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1394
			if (i915_gem_clflush_object(obj, obj->pin_display))
1395
				needs_clflush |= CLFLUSH_AFTER;
1396
		}
1397
	}
1398

1399
	if (needs_clflush & CLFLUSH_AFTER)
1400
		i915_gem_chipset_flush(to_i915(dev));
1401

1402
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1403
	return ret;
1404 1405 1406 1407
}

/**
 * Writes data to the object referenced by handle.
1408 1409 1410
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1411 1412 1413 1414 1415
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1416
		      struct drm_file *file)
1417
{
1418
	struct drm_i915_private *dev_priv = to_i915(dev);
1419
	struct drm_i915_gem_pwrite *args = data;
1420
	struct drm_i915_gem_object *obj;
1421 1422 1423 1424 1425 1426
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1427
		       u64_to_user_ptr(args->data_ptr),
1428 1429 1430
		       args->size))
		return -EFAULT;

1431
	if (likely(!i915.prefault_disable)) {
1432
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1433 1434 1435 1436
						   args->size);
		if (ret)
			return -EFAULT;
	}
1437

1438
	obj = i915_gem_object_lookup(file, args->handle);
1439 1440
	if (!obj)
		return -ENOENT;
1441

1442
	/* Bounds check destination. */
1443 1444
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1445
		ret = -EINVAL;
1446
		goto err;
C
Chris Wilson 已提交
1447 1448
	}

C
Chris Wilson 已提交
1449 1450
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1461
	ret = -EFAULT;
1462 1463 1464 1465 1466 1467
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1468 1469
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1470
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1471 1472 1473
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1474
	}
1475

1476
	if (ret == -EFAULT || ret == -ENOSPC) {
1477 1478
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1479
		else
1480
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1481
	}
1482

1483
	i915_gem_object_put(obj);
1484
	mutex_unlock(&dev->struct_mutex);
1485 1486
	intel_runtime_pm_put(dev_priv);

1487
	return ret;
1488 1489 1490 1491 1492 1493

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1494 1495
}

1496
static inline enum fb_op_origin
1497 1498
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1499 1500
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1501 1502
}

1503
/**
1504 1505
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1506 1507 1508
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1509 1510 1511
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1512
			  struct drm_file *file)
1513 1514
{
	struct drm_i915_gem_set_domain *args = data;
1515
	struct drm_i915_gem_object *obj;
1516 1517
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1518 1519
	int ret;

1520
	/* Only handle setting domains to types used by the CPU. */
1521
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1522 1523 1524 1525 1526 1527 1528 1529
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1530
	obj = i915_gem_object_lookup(file, args->handle);
1531 1532
	if (!obj)
		return -ENOENT;
1533

1534 1535 1536 1537
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1538 1539 1540 1541 1542
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1543
	if (ret)
1544
		goto err;
1545

1546
	if (read_domains & I915_GEM_DOMAIN_GTT)
1547
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1548
	else
1549
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1550

1551
	if (write_domain != 0)
1552
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1553

1554
	i915_gem_object_put(obj);
1555 1556
	mutex_unlock(&dev->struct_mutex);
	return ret;
1557 1558 1559 1560

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1561 1562 1563 1564
}

/**
 * Called when user space has done writes to this buffer
1565 1566 1567
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1568 1569 1570
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1571
			 struct drm_file *file)
1572 1573
{
	struct drm_i915_gem_sw_finish *args = data;
1574
	struct drm_i915_gem_object *obj;
1575
	int err = 0;
1576

1577
	obj = i915_gem_object_lookup(file, args->handle);
1578 1579
	if (!obj)
		return -ENOENT;
1580 1581

	/* Pinned buffers may be scanout, so flush the cache */
1582 1583 1584 1585 1586 1587 1588
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1589

1590 1591
	i915_gem_object_put_unlocked(obj);
	return err;
1592 1593 1594
}

/**
1595 1596 1597 1598 1599
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1600 1601 1602
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1613 1614 1615
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1616
		    struct drm_file *file)
1617 1618
{
	struct drm_i915_gem_mmap *args = data;
1619
	struct drm_i915_gem_object *obj;
1620 1621
	unsigned long addr;

1622 1623 1624
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1625
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1626 1627
		return -ENODEV;

1628 1629
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1630
		return -ENOENT;
1631

1632 1633 1634
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1635
	if (!obj->base.filp) {
1636
		i915_gem_object_put_unlocked(obj);
1637 1638 1639
		return -EINVAL;
	}

1640
	addr = vm_mmap(obj->base.filp, 0, args->size,
1641 1642
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1643 1644 1645 1646
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1647
		if (down_write_killable(&mm->mmap_sem)) {
1648
			i915_gem_object_put_unlocked(obj);
1649 1650
			return -EINTR;
		}
1651 1652 1653 1654 1655 1656 1657
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1658 1659

		/* This may race, but that's ok, it only gets set */
1660
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1661
	}
1662
	i915_gem_object_put_unlocked(obj);
1663 1664 1665 1666 1667 1668 1669 1670
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1731 1732
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1733
 * @area: CPU VMA in question
1734
 * @vmf: fault info
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1746 1747 1748
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1749
 */
C
Chris Wilson 已提交
1750
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1751
{
1752
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1753
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1754
	struct drm_device *dev = obj->base.dev;
1755 1756
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1757
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1758
	struct i915_vma *vma;
1759
	pgoff_t page_offset;
1760
	unsigned int flags;
1761
	int ret;
1762

1763
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1764
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1765 1766
		PAGE_SHIFT;

C
Chris Wilson 已提交
1767 1768
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1769
	/* Try to flush the object off the GPU first without holding the lock.
1770
	 * Upon acquiring the lock, we will perform our sanity checks and then
1771 1772 1773
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1774
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1775
	if (ret)
1776 1777 1778 1779 1780 1781 1782
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1783

1784 1785
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1786
		ret = -EFAULT;
1787
		goto err_unlock;
1788 1789
	}

1790 1791 1792 1793 1794 1795 1796 1797
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1798
	/* Now pin it into the GTT as needed */
1799
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1800 1801
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1802 1803
		unsigned int chunk_size;

1804
		/* Use a partial view if it is bigger than available space */
1805 1806 1807
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
			chunk_size = max(chunk_size, tile_row_pages(obj));
1808

1809 1810 1811 1812
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1813
			min_t(unsigned int, chunk_size,
1814
			      vma_pages(area) - view.params.partial.offset);
1815

1816 1817 1818 1819 1820 1821
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1822 1823 1824 1825 1826
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1827 1828
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1829 1830
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1831
		goto err_unlock;
C
Chris Wilson 已提交
1832
	}
1833

1834 1835
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1836
		goto err_unpin;
1837

1838
	ret = i915_vma_get_fence(vma);
1839
	if (ret)
1840
		goto err_unpin;
1841

1842 1843 1844 1845 1846 1847
	/* Mark as being mmapped into userspace for later revocation */
	spin_lock(&dev_priv->mm.userfault_lock);
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	spin_unlock(&dev_priv->mm.userfault_lock);

1848
	/* Finally, remap it using the new GTT offset */
1849 1850 1851 1852 1853
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1854

1855
err_unpin:
C
Chris Wilson 已提交
1856
	__i915_vma_unpin(vma);
1857
err_unlock:
1858
	mutex_unlock(&dev->struct_mutex);
1859 1860 1861
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1862
	switch (ret) {
1863
	case -EIO:
1864 1865 1866 1867 1868 1869 1870
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1871 1872 1873
			ret = VM_FAULT_SIGBUS;
			break;
		}
1874
	case -EAGAIN:
D
Daniel Vetter 已提交
1875 1876 1877 1878
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1879
		 */
1880 1881
	case 0:
	case -ERESTARTSYS:
1882
	case -EINTR:
1883 1884 1885 1886 1887
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1888 1889
		ret = VM_FAULT_NOPAGE;
		break;
1890
	case -ENOMEM:
1891 1892
		ret = VM_FAULT_OOM;
		break;
1893
	case -ENOSPC:
1894
	case -EFAULT:
1895 1896
		ret = VM_FAULT_SIGBUS;
		break;
1897
	default:
1898
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1899 1900
		ret = VM_FAULT_SIGBUS;
		break;
1901
	}
1902
	return ret;
1903 1904
}

1905 1906 1907 1908
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1909
 * Preserve the reservation of the mmapping with the DRM core code, but
1910 1911 1912 1913 1914 1915 1916 1917 1918
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1919
void
1920
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1921
{
1922 1923 1924
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	bool zap = false;

1925 1926 1927 1928
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
1929
	lockdep_assert_held(&i915->drm.struct_mutex);
1930

1931 1932 1933 1934 1935 1936 1937
	spin_lock(&i915->mm.userfault_lock);
	if (!list_empty(&obj->userfault_link)) {
		list_del_init(&obj->userfault_link);
		zap = true;
	}
	spin_unlock(&i915->mm.userfault_lock);
	if (!zap)
1938
		return;
1939

1940 1941
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1942 1943 1944 1945 1946 1947 1948 1949 1950

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1951 1952
}

1953 1954 1955 1956 1957
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	spin_lock(&dev_priv->mm.userfault_lock);
	while ((obj = list_first_entry_or_null(&dev_priv->mm.userfault_list,
					       struct drm_i915_gem_object,
					       userfault_link))) {
		list_del_init(&obj->userfault_link);
		spin_unlock(&dev_priv->mm.userfault_lock);

		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);

		spin_lock(&dev_priv->mm.userfault_lock);
	}
	spin_unlock(&dev_priv->mm.userfault_lock);
1971 1972
}

1973 1974
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1975
 * @dev_priv: i915 device
1976 1977 1978 1979 1980 1981
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1982 1983
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1984
{
1985
	u64 ggtt_size;
1986

1987 1988
	GEM_BUG_ON(size == 0);

1989
	if (INTEL_GEN(dev_priv) >= 4 ||
1990 1991
	    tiling_mode == I915_TILING_NONE)
		return size;
1992 1993

	/* Previous chips need a power-of-two fence region when tiling */
1994
	if (IS_GEN3(dev_priv))
1995
		ggtt_size = 1024*1024;
1996
	else
1997
		ggtt_size = 512*1024;
1998

1999 2000
	while (ggtt_size < size)
		ggtt_size <<= 1;
2001

2002
	return ggtt_size;
2003 2004
}

2005
/**
2006
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2007
 * @dev_priv: i915 device
2008 2009
 * @size: object size
 * @tiling_mode: tiling mode
2010
 * @fenced: is fenced alignment required or not
2011
 *
2012
 * Return the required global GTT alignment for an object, taking into account
2013
 * potential fence register mapping.
2014
 */
2015
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2016
				int tiling_mode, bool fenced)
2017
{
2018 2019
	GEM_BUG_ON(size == 0);

2020 2021 2022 2023
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2024
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2025
	    tiling_mode == I915_TILING_NONE)
2026 2027
		return 4096;

2028 2029 2030 2031
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2032
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2033 2034
}

2035 2036
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2037
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2038
	int err;
2039

2040 2041 2042
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2043

2044 2045 2046
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2047
	 */
2048
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2049 2050 2051 2052 2053 2054 2055 2056 2057
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2058

2059
	return err;
2060 2061 2062 2063 2064 2065 2066
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2067
int
2068 2069
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2070
		  uint32_t handle,
2071
		  uint64_t *offset)
2072
{
2073
	struct drm_i915_gem_object *obj;
2074 2075
	int ret;

2076
	obj = i915_gem_object_lookup(file, handle);
2077 2078
	if (!obj)
		return -ENOENT;
2079

2080
	ret = i915_gem_object_create_mmap_offset(obj);
2081 2082
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2083

2084
	i915_gem_object_put_unlocked(obj);
2085
	return ret;
2086 2087
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2109
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2110 2111
}

D
Daniel Vetter 已提交
2112 2113 2114
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2115
{
2116
	i915_gem_object_free_mmap_offset(obj);
2117

2118 2119
	if (obj->base.filp == NULL)
		return;
2120

D
Daniel Vetter 已提交
2121 2122 2123 2124 2125
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2126
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2127 2128
	obj->madv = __I915_MADV_PURGED;
}
2129

2130 2131 2132
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2133
{
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2146
	mapping = obj->base.filp->f_mapping,
2147
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2148 2149
}

2150
static void
2151
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2152
{
2153 2154
	struct sgt_iter sgt_iter;
	struct page *page;
2155
	int ret;
2156

2157
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2158

C
Chris Wilson 已提交
2159
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2160
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2161 2162 2163
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2164
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2165 2166 2167
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2168 2169
	i915_gem_gtt_finish_object(obj);

2170
	if (i915_gem_object_needs_bit17_swizzle(obj))
2171 2172
		i915_gem_object_save_bit_17_swizzle(obj);

2173 2174
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2175

2176
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2177
		if (obj->dirty)
2178
			set_page_dirty(page);
2179

2180
		if (obj->madv == I915_MADV_WILLNEED)
2181
			mark_page_accessed(page);
2182

2183
		put_page(page);
2184
	}
2185
	obj->dirty = 0;
2186

2187 2188
	sg_free_table(obj->pages);
	kfree(obj->pages);
2189
}
C
Chris Wilson 已提交
2190

2191
int
2192 2193 2194 2195
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2196
	if (obj->pages == NULL)
2197 2198
		return 0;

2199 2200 2201
	if (obj->pages_pin_count)
		return -EBUSY;

2202
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2203

2204 2205 2206
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2207
	list_del(&obj->global_list);
2208

2209
	if (obj->mapping) {
2210 2211 2212 2213 2214
		void *ptr;

		ptr = ptr_mask_bits(obj->mapping);
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2215
		else
2216 2217
			kunmap(kmap_to_page(ptr));

2218 2219 2220
		obj->mapping = NULL;
	}

2221
	ops->put_pages(obj);
2222
	obj->pages = NULL;
2223

2224
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2225 2226 2227 2228

	return 0;
}

2229
static unsigned int swiotlb_max_size(void)
2230 2231 2232 2233 2234 2235 2236 2237
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2238
static int
C
Chris Wilson 已提交
2239
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2240
{
2241
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2242 2243
	int page_count, i;
	struct address_space *mapping;
2244 2245
	struct sg_table *st;
	struct scatterlist *sg;
2246
	struct sgt_iter sgt_iter;
2247
	struct page *page;
2248
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2249
	unsigned int max_segment;
I
Imre Deak 已提交
2250
	int ret;
C
Chris Wilson 已提交
2251
	gfp_t gfp;
2252

C
Chris Wilson 已提交
2253 2254 2255 2256 2257 2258 2259
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2260 2261
	max_segment = swiotlb_max_size();
	if (!max_segment)
2262
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2263

2264 2265 2266 2267
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2268
	page_count = obj->base.size / PAGE_SIZE;
2269 2270
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2271
		return -ENOMEM;
2272
	}
2273

2274 2275 2276 2277 2278
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2279
	mapping = obj->base.filp->f_mapping;
2280
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282 2283 2284
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2285 2286
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2287 2288 2289 2290 2291
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2292 2293 2294 2295 2296 2297 2298
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2299
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2300 2301
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2302
				goto err_pages;
I
Imre Deak 已提交
2303
			}
C
Chris Wilson 已提交
2304
		}
2305 2306 2307
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2308 2309 2310 2311 2312 2313 2314 2315
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2316 2317 2318

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2319
	}
2320
	if (sg) /* loop terminated early; short sg table */
2321
		sg_mark_end(sg);
2322 2323
	obj->pages = st;

I
Imre Deak 已提交
2324 2325 2326 2327
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2328
	if (i915_gem_object_needs_bit17_swizzle(obj))
2329 2330
		i915_gem_object_do_bit_17_swizzle(obj);

2331
	if (i915_gem_object_is_tiled(obj) &&
2332 2333 2334
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2335 2336 2337
	return 0;

err_pages:
2338
	sg_mark_end(sg);
2339 2340
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2341 2342
	sg_free_table(st);
	kfree(st);
2343 2344 2345 2346 2347 2348 2349 2350 2351

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2352 2353 2354 2355
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2356 2357
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2368
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2369 2370 2371
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2372
	if (obj->pages)
2373 2374
		return 0;

2375
	if (obj->madv != I915_MADV_WILLNEED) {
2376
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2377
		return -EFAULT;
2378 2379
	}

2380 2381
	BUG_ON(obj->pages_pin_count);

2382 2383 2384 2385
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2386
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2387 2388 2389 2390

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2391
	return 0;
2392 2393
}

2394
/* The 'mapping' part of i915_gem_object_pin_map() below */
2395 2396
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2397 2398 2399
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2400 2401
	struct sgt_iter sgt_iter;
	struct page *page;
2402 2403
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2404
	unsigned long i = 0;
2405
	pgprot_t pgprot;
2406 2407 2408
	void *addr;

	/* A single page can always be kmapped */
2409
	if (n_pages == 1 && type == I915_MAP_WB)
2410 2411
		return kmap(sg_page(sgt->sgl));

2412 2413 2414 2415 2416 2417
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2418

2419 2420
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2421 2422 2423 2424

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2425 2426 2427 2428 2429 2430 2431 2432 2433
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2434

2435 2436
	if (pages != stack_pages)
		drm_free_large(pages);
2437 2438 2439 2440 2441

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2442 2443
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2444
{
2445 2446 2447
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2448 2449 2450
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2451
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2452 2453 2454 2455 2456 2457

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2458
	pinned = obj->pages_pin_count > 1;
2459

2460 2461 2462 2463 2464
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2465
		}
2466 2467 2468 2469 2470 2471 2472

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2473 2474
	}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2490 2491
}

2492
static void
2493 2494
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2495
{
2496 2497
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2498

2499
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2500 2501
}

2502
static void
2503 2504
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2505
{
2506 2507 2508
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2509

2510
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2511

2512 2513
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2514
		return;
2515

2516 2517 2518 2519
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2520 2521 2522
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2523

2524
	i915_gem_object_put(obj);
2525 2526
}

2527
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2528
{
2529
	unsigned long elapsed;
2530

2531
	if (ctx->hang_stats.banned)
2532 2533
		return true;

2534
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2535 2536
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2537 2538
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2539 2540 2541 2542 2543
	}

	return false;
}

2544
static void i915_set_reset_status(struct i915_gem_context *ctx,
2545
				  const bool guilty)
2546
{
2547
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2548 2549

	if (guilty) {
2550
		hs->banned = i915_context_is_banned(ctx);
2551 2552 2553 2554
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2555 2556 2557
	}
}

2558
struct drm_i915_gem_request *
2559
i915_gem_find_active_request(struct intel_engine_cs *engine)
2560
{
2561 2562
	struct drm_i915_gem_request *request;

2563 2564 2565 2566 2567 2568 2569 2570
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2571
	list_for_each_entry(request, &engine->request_list, link) {
2572
		if (i915_gem_request_completed(request))
2573
			continue;
2574

2575 2576 2577
		if (!i915_sw_fence_done(&request->submit))
			break;

2578
		return request;
2579
	}
2580 2581 2582 2583

	return NULL;
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2602 2603
{
	struct drm_i915_gem_request *request;
2604
	struct i915_gem_context *incomplete_ctx;
2605 2606
	bool ring_hung;

2607 2608 2609
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2610
	request = i915_gem_find_active_request(engine);
2611
	if (!request)
2612 2613
		return;

2614
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2615 2616 2617
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2618
	i915_set_reset_status(request->ctx, ring_hung);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
			 engine->name, request->fence.seqno);

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2640
	list_for_each_entry_continue(request, &engine->request_list, link)
2641 2642
		if (request->ctx == incomplete_ctx)
			reset_request(request);
2643
}
2644

2645
void i915_gem_reset(struct drm_i915_private *dev_priv)
2646
{
2647
	struct intel_engine_cs *engine;
2648
	enum intel_engine_id id;
2649

2650 2651
	i915_gem_retire_requests(dev_priv);

2652
	for_each_engine(engine, dev_priv, id)
2653 2654 2655
		i915_gem_reset_engine(engine);

	i915_gem_restore_fences(&dev_priv->drm);
2656 2657 2658 2659 2660 2661 2662

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2663 2664 2665 2666 2667 2668 2669 2670 2671
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2672

2673 2674 2675 2676
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2677
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2678

2679 2680 2681 2682 2683 2684
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2685
	if (i915.enable_execlists) {
2686 2687 2688 2689 2690 2691
		spin_lock(&engine->execlist_lock);
		INIT_LIST_HEAD(&engine->execlist_queue);
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		spin_unlock(&engine->execlist_lock);
2692 2693
	}

2694
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2695 2696
}

2697
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2698
{
2699
	struct intel_engine_cs *engine;
2700
	enum intel_engine_id id;
2701

2702 2703
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2704

2705
	i915_gem_context_lost(dev_priv);
2706
	for_each_engine(engine, dev_priv, id)
2707
		i915_gem_cleanup_engine(engine);
2708
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2709

2710
	i915_gem_retire_requests(dev_priv);
2711 2712
}

2713
static void
2714 2715
i915_gem_retire_work_handler(struct work_struct *work)
{
2716
	struct drm_i915_private *dev_priv =
2717
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2718
	struct drm_device *dev = &dev_priv->drm;
2719

2720
	/* Come back later if the device is busy... */
2721
	if (mutex_trylock(&dev->struct_mutex)) {
2722
		i915_gem_retire_requests(dev_priv);
2723
		mutex_unlock(&dev->struct_mutex);
2724
	}
2725 2726 2727 2728 2729

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2730 2731
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2732 2733
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2734
				   round_jiffies_up_relative(HZ));
2735
	}
2736
}
2737

2738 2739 2740 2741
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2742
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2743
	struct drm_device *dev = &dev_priv->drm;
2744
	struct intel_engine_cs *engine;
2745
	enum intel_engine_id id;
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2767

2768
	for_each_engine(engine, dev_priv, id)
2769
		i915_gem_batch_pool_fini(&engine->batch_pool);
2770

2771 2772 2773
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2774

2775 2776 2777 2778 2779
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2780

2781 2782 2783 2784
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2785
	}
2786 2787
}

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2801 2802
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2803 2804 2805
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2829
	struct intel_rps_client *rps = to_rps_client(file);
2830
	struct drm_i915_gem_object *obj;
2831 2832
	unsigned long active;
	int idx, ret = 0;
2833

2834 2835 2836
	if (args->flags != 0)
		return -EINVAL;

2837
	obj = i915_gem_object_lookup(file, args->bo_handle);
2838
	if (!obj)
2839 2840
		return -ENOENT;

2841 2842 2843
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2844 2845
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
						    I915_WAIT_INTERRUPTIBLE,
2846 2847 2848
						    timeout, rps);
		if (ret)
			break;
2849 2850
	}

2851
	i915_gem_object_put_unlocked(obj);
2852
	return ret;
2853 2854
}

2855 2856
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2857
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2858 2859 2860 2861 2862 2863 2864 2865

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2866
int i915_vma_unbind(struct i915_vma *vma)
2867
{
2868
	struct drm_i915_gem_object *obj = vma->obj;
2869
	unsigned long active;
2870
	int ret;
2871

2872 2873 2874 2875
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2876
	if (active) {
2877 2878
		int idx;

2879 2880 2881 2882 2883
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2884
		__i915_vma_pin(vma);
2885

2886 2887 2888 2889
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2890
				break;
2891 2892
		}

2893
		__i915_vma_unpin(vma);
2894 2895 2896
		if (ret)
			return ret;

2897 2898 2899
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2900
	if (i915_vma_is_pinned(vma))
2901 2902
		return -EBUSY;

2903 2904
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2905

2906 2907
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2908

2909
	if (i915_vma_is_map_and_fenceable(vma)) {
2910
		/* release the fence reg _after_ flushing */
2911
		ret = i915_vma_put_fence(vma);
2912 2913
		if (ret)
			return ret;
2914

2915 2916 2917
		/* Force a pagefault for domain tracking on next user access */
		i915_gem_release_mmap(obj);

2918
		__i915_vma_iounmap(vma);
2919
		vma->flags &= ~I915_VMA_CAN_FENCE;
2920
	}
2921

2922 2923 2924 2925
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2926
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2927

2928 2929 2930
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2931 2932 2933 2934
	if (vma->pages != obj->pages) {
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
2935
	}
2936
	vma->pages = NULL;
2937

B
Ben Widawsky 已提交
2938
	/* Since the unbound list is global, only move to that list if
2939
	 * no more VMAs exist. */
2940 2941 2942
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2943

2944 2945 2946 2947 2948 2949
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2950
destroy:
2951
	if (unlikely(i915_vma_is_closed(vma)))
2952 2953
		i915_vma_destroy(vma);

2954
	return 0;
2955 2956
}

2957
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2958
			   unsigned int flags)
2959
{
2960
	struct intel_engine_cs *engine;
2961
	enum intel_engine_id id;
2962
	int ret;
2963

2964
	for_each_engine(engine, dev_priv, id) {
2965 2966 2967
		if (engine->last_context == NULL)
			continue;

2968
		ret = intel_engine_idle(engine, flags);
2969 2970 2971
		if (ret)
			return ret;
	}
2972

2973
	return 0;
2974 2975
}

2976
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2977 2978
				     unsigned long cache_level)
{
2979
	struct drm_mm_node *gtt_space = &vma->node;
2980 2981
	struct drm_mm_node *other;

2982 2983 2984 2985 2986 2987
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2988
	 */
2989
	if (vma->vm->mm.color_adjust == NULL)
2990 2991
		return true;

2992
	if (!drm_mm_node_allocated(gtt_space))
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3009
/**
3010 3011
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3012
 * @size: requested size in bytes (can be larger than the VMA)
3013
 * @alignment: required alignment
3014
 * @flags: mask of PIN_* flags to use
3015 3016 3017 3018 3019 3020 3021
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3022
 */
3023 3024
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3025
{
3026 3027
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3028
	u64 start, end;
3029
	int ret;
3030

3031
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3032
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3033 3034 3035

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3036 3037
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3038

3039 3040 3041 3042
	alignment = max(max(alignment, vma->display_alignment),
			i915_gem_get_ggtt_alignment(dev_priv, size,
						    i915_gem_object_get_tiling(obj),
						    flags & PIN_MAPPABLE));
3043

3044
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3045 3046

	end = vma->vm->total;
3047
	if (flags & PIN_MAPPABLE)
3048
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3049
	if (flags & PIN_ZONE_4G)
3050
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3051

3052 3053 3054
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3055
	 */
3056
	if (size > end) {
3057
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3058
			  size, obj->base.size,
3059
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3060
			  end);
3061
		return -E2BIG;
3062 3063
	}

3064
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3065
	if (ret)
3066
		return ret;
C
Chris Wilson 已提交
3067

3068 3069
	i915_gem_object_pin_pages(obj);

3070
	if (flags & PIN_OFFSET_FIXED) {
3071
		u64 offset = flags & PIN_OFFSET_MASK;
3072
		if (offset & (alignment - 1) || offset > end - size) {
3073
			ret = -EINVAL;
3074
			goto err_unpin;
3075
		}
3076

3077 3078 3079
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3080
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3081 3082 3083
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3084 3085 3086
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3087
		}
3088
	} else {
3089 3090
		u32 search_flag, alloc_flag;

3091 3092 3093 3094 3095 3096 3097
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3098

3099 3100 3101 3102 3103 3104 3105 3106 3107
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3108
search_free:
3109 3110
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3111 3112 3113 3114 3115 3116
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3117
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3118 3119 3120 3121 3122
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3123

3124
			goto err_unpin;
3125
		}
3126 3127 3128

		GEM_BUG_ON(vma->node.start < start);
		GEM_BUG_ON(vma->node.start + vma->node.size > end);
3129
	}
3130
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3131

3132
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3133
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3134
	obj->bind_count++;
3135

3136
	return 0;
B
Ben Widawsky 已提交
3137

3138
err_unpin:
B
Ben Widawsky 已提交
3139
	i915_gem_object_unpin_pages(obj);
3140
	return ret;
3141 3142
}

3143
bool
3144 3145
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3146 3147 3148 3149 3150
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3151
	if (obj->pages == NULL)
3152
		return false;
3153

3154 3155 3156 3157
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3158
	if (obj->stolen || obj->phys_handle)
3159
		return false;
3160

3161 3162 3163 3164 3165 3166 3167 3168
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3169 3170
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3171
		return false;
3172
	}
3173

C
Chris Wilson 已提交
3174
	trace_i915_gem_object_clflush(obj);
3175
	drm_clflush_sg(obj->pages);
3176
	obj->cache_dirty = false;
3177 3178

	return true;
3179 3180 3181 3182
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3183
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3184
{
3185
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3186

3187
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3188 3189
		return;

3190
	/* No actual flushing is required for the GTT write domain.  Writes
3191
	 * to it "immediately" go to main memory as far as we know, so there's
3192
	 * no chipset flush.  It also doesn't land in render cache.
3193 3194 3195 3196
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3197 3198 3199 3200 3201 3202 3203
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3204
	 */
3205
	wmb();
3206
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3207
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3208

3209
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3210

3211
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3212
	trace_i915_gem_object_change_domain(obj,
3213
					    obj->base.read_domains,
3214
					    I915_GEM_DOMAIN_GTT);
3215 3216 3217 3218
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3219
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3220
{
3221
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3222 3223
		return;

3224
	if (i915_gem_clflush_object(obj, obj->pin_display))
3225
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3226

3227
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3228

3229
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3230
	trace_i915_gem_object_change_domain(obj,
3231
					    obj->base.read_domains,
3232
					    I915_GEM_DOMAIN_CPU);
3233 3234
}

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}
}

3253 3254
/**
 * Moves a single object to the GTT read, and possibly write domain.
3255 3256
 * @obj: object to act on
 * @write: ask for write access or read only
3257 3258 3259 3260
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3261
int
3262
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3263
{
C
Chris Wilson 已提交
3264
	uint32_t old_write_domain, old_read_domains;
3265
	int ret;
3266

3267
	ret = i915_gem_object_wait_rendering(obj, !write);
3268 3269 3270
	if (ret)
		return ret;

3271 3272 3273
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3286
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3287

3288 3289 3290 3291 3292 3293 3294
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3295 3296
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3297

3298 3299 3300
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3301 3302
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3303
	if (write) {
3304 3305 3306
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3307 3308
	}

C
Chris Wilson 已提交
3309 3310 3311 3312
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3313
	/* And bump the LRU for this access */
3314
	i915_gem_object_bump_inactive_ggtt(obj);
3315

3316 3317 3318
	return 0;
}

3319 3320
/**
 * Changes the cache-level of an object across all VMA.
3321 3322
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3334 3335 3336
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3337
	struct i915_vma *vma;
3338
	int ret = 0;
3339 3340

	if (obj->cache_level == cache_level)
3341
		goto out;
3342

3343 3344 3345 3346 3347
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3348 3349
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3350 3351 3352
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3353
		if (i915_vma_is_pinned(vma)) {
3354 3355 3356 3357
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3370 3371
	}

3372 3373 3374 3375 3376 3377 3378
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3379
	if (obj->bind_count) {
3380 3381 3382 3383
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3384
		ret = i915_gem_object_wait_rendering(obj, false);
3385 3386 3387
		if (ret)
			return ret;

3388
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3405 3406 3407 3408 3409
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3410 3411 3412 3413 3414 3415 3416 3417
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3418 3419
		}

3420
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3421 3422 3423 3424 3425 3426 3427
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3428 3429
	}

3430
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3431 3432 3433
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3434
out:
3435 3436 3437 3438
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3439
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3440
		if (i915_gem_clflush_object(obj, true))
3441
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3442 3443 3444 3445 3446
	}

	return 0;
}

B
Ben Widawsky 已提交
3447 3448
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3449
{
B
Ben Widawsky 已提交
3450
	struct drm_i915_gem_caching *args = data;
3451 3452
	struct drm_i915_gem_object *obj;

3453 3454
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3455
		return -ENOENT;
3456

3457 3458 3459 3460 3461 3462
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3463 3464 3465 3466
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3467 3468 3469 3470
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3471

3472
	i915_gem_object_put_unlocked(obj);
3473
	return 0;
3474 3475
}

B
Ben Widawsky 已提交
3476 3477
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3478
{
3479
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3480
	struct drm_i915_gem_caching *args = data;
3481 3482 3483 3484
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3485 3486
	switch (args->caching) {
	case I915_CACHING_NONE:
3487 3488
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3489
	case I915_CACHING_CACHED:
3490 3491 3492 3493 3494 3495
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3496
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3497 3498
			return -ENODEV;

3499 3500
		level = I915_CACHE_LLC;
		break;
3501
	case I915_CACHING_DISPLAY:
3502
		level = HAS_WT(dev_priv) ? I915_CACHE_WT : I915_CACHE_NONE;
3503
		break;
3504 3505 3506 3507
	default:
		return -EINVAL;
	}

3508 3509
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3510 3511
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3512
		goto rpm_put;
B
Ben Widawsky 已提交
3513

3514 3515
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3516 3517 3518 3519 3520 3521
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3522
	i915_gem_object_put(obj);
3523 3524
unlock:
	mutex_unlock(&dev->struct_mutex);
3525 3526 3527
rpm_put:
	intel_runtime_pm_put(dev_priv);

3528 3529 3530
	return ret;
}

3531
/*
3532 3533 3534
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3535
 */
C
Chris Wilson 已提交
3536
struct i915_vma *
3537 3538
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3539
				     const struct i915_ggtt_view *view)
3540
{
C
Chris Wilson 已提交
3541
	struct i915_vma *vma;
3542
	u32 old_read_domains, old_write_domain;
3543 3544
	int ret;

3545 3546 3547
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3548
	obj->pin_display++;
3549

3550 3551 3552 3553 3554 3555 3556 3557 3558
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3559
	ret = i915_gem_object_set_cache_level(obj,
3560 3561
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3562 3563
	if (ret) {
		vma = ERR_PTR(ret);
3564
		goto err_unpin_display;
C
Chris Wilson 已提交
3565
	}
3566

3567 3568
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3569 3570 3571 3572
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3573
	 */
3574 3575 3576 3577 3578 3579
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
	if (IS_ERR(vma))
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
C
Chris Wilson 已提交
3580
	if (IS_ERR(vma))
3581
		goto err_unpin_display;
3582

3583 3584
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

C
Chris Wilson 已提交
3585 3586
	WARN_ON(obj->pin_display > i915_vma_pin_count(vma));

3587
	i915_gem_object_flush_cpu_write_domain(obj);
3588

3589
	old_write_domain = obj->base.write_domain;
3590
	old_read_domains = obj->base.read_domains;
3591 3592 3593 3594

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3595
	obj->base.write_domain = 0;
3596
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3597 3598 3599

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3600
					    old_write_domain);
3601

C
Chris Wilson 已提交
3602
	return vma;
3603 3604

err_unpin_display:
3605
	obj->pin_display--;
C
Chris Wilson 已提交
3606
	return vma;
3607 3608 3609
}

void
C
Chris Wilson 已提交
3610
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3611
{
C
Chris Wilson 已提交
3612
	if (WARN_ON(vma->obj->pin_display == 0))
3613 3614
		return;

3615 3616
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3617

3618 3619 3620 3621
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3622 3623
	i915_vma_unpin(vma);
	WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3624 3625
}

3626 3627
/**
 * Moves a single object to the CPU read, and possibly write domain.
3628 3629
 * @obj: object to act on
 * @write: requesting write or read-only access
3630 3631 3632 3633
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3634
int
3635
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3636
{
C
Chris Wilson 已提交
3637
	uint32_t old_write_domain, old_read_domains;
3638 3639
	int ret;

3640
	ret = i915_gem_object_wait_rendering(obj, !write);
3641 3642 3643
	if (ret)
		return ret;

3644 3645 3646
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3647
	i915_gem_object_flush_gtt_write_domain(obj);
3648

3649 3650
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3651

3652
	/* Flush the CPU cache if it's still invalid. */
3653
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3654
		i915_gem_clflush_object(obj, false);
3655

3656
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3657 3658 3659 3660 3661
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3662
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3663 3664 3665 3666 3667

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3668 3669
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3670
	}
3671

C
Chris Wilson 已提交
3672 3673 3674 3675
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3676 3677 3678
	return 0;
}

3679 3680 3681
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3682 3683 3684 3685
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3686 3687 3688
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3689
static int
3690
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3691
{
3692
	struct drm_i915_private *dev_priv = to_i915(dev);
3693
	struct drm_i915_file_private *file_priv = file->driver_priv;
3694
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3695
	struct drm_i915_gem_request *request, *target = NULL;
3696
	int ret;
3697

3698 3699 3700 3701
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3702 3703 3704
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3705

3706
	spin_lock(&file_priv->mm.lock);
3707
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3708 3709
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3710

3711 3712 3713 3714 3715 3716 3717
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3718
		target = request;
3719
	}
3720
	if (target)
3721
		i915_gem_request_get(target);
3722
	spin_unlock(&file_priv->mm.lock);
3723

3724
	if (target == NULL)
3725
		return 0;
3726

3727
	ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
3728
	i915_gem_request_put(target);
3729

3730 3731 3732
	return ret;
}

3733
static bool
3734
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3735
{
3736 3737 3738
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3739 3740 3741 3742
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3743 3744
		return true;

3745
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3746 3747 3748 3749 3750 3751
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3752 3753 3754 3755
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3756 3757 3758
	return false;
}

3759 3760 3761
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3762
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3763 3764 3765
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3766
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3767
					    vma->size,
3768
					    i915_gem_object_get_tiling(obj));
3769
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3770
						      vma->size,
3771
						      i915_gem_object_get_tiling(obj),
3772
						      true);
3773 3774 3775 3776 3777

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3778
		    dev_priv->ggtt.mappable_end);
3779

3780 3781 3782 3783
	if (mappable && fenceable)
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3784 3785
}

3786 3787
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3788
{
3789
	unsigned int bound = vma->flags;
3790 3791
	int ret;

3792
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3793
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3794

3795 3796 3797 3798
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3799

3800
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3801 3802 3803
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3804
	}
3805

3806
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3807
	if (ret)
3808
		goto err;
3809

3810
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3811
		__i915_vma_set_map_and_fenceable(vma);
3812

3813
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3814 3815
	return 0;

3816 3817 3818
err:
	__i915_vma_unpin(vma);
	return ret;
3819 3820
}

C
Chris Wilson 已提交
3821
struct i915_vma *
3822 3823
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3824
			 u64 size,
3825 3826
			 u64 alignment,
			 u64 flags)
3827
{
3828 3829
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3830 3831
	struct i915_vma *vma;
	int ret;
3832

C
Chris Wilson 已提交
3833
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3834
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3835
		return vma;
3836 3837 3838 3839

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3840
			return ERR_PTR(-ENOSPC);
3841

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

3877 3878
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3879 3880 3881
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3882
		     !!(flags & PIN_MAPPABLE),
3883
		     i915_vma_is_map_and_fenceable(vma));
3884 3885
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3886
			return ERR_PTR(ret);
3887 3888
	}

C
Chris Wilson 已提交
3889 3890 3891
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3892

C
Chris Wilson 已提交
3893
	return vma;
3894 3895
}

3896
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3911 3912 3913 3914 3915 3916 3917 3918 3919
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3920 3921
}

3922
static __always_inline unsigned int
3923 3924 3925
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
3926
	struct drm_i915_gem_request *request;
3927

3928 3929 3930
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
3988 3989
}

3990
static __always_inline unsigned int
3991 3992 3993 3994 3995
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3996
static __always_inline unsigned int
3997 3998 3999 4000 4001
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

4002 4003
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4004
		    struct drm_file *file)
4005 4006
{
	struct drm_i915_gem_busy *args = data;
4007
	struct drm_i915_gem_object *obj;
4008
	unsigned long active;
4009

4010
	obj = i915_gem_object_lookup(file, args->handle);
4011 4012
	if (!obj)
		return -ENOENT;
4013

4014
	args->busy = 0;
4015 4016 4017
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
4018

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
4035 4036 4037 4038 4039 4040
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
4041 4042 4043 4044 4045 4046 4047
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
4048 4049 4050 4051 4052
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
4053 4054 4055 4056 4057 4058 4059 4060 4061
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
4062
	}
4063

4064 4065
	i915_gem_object_put_unlocked(obj);
	return 0;
4066 4067 4068 4069 4070 4071
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4072
	return i915_gem_ring_throttle(dev, file_priv);
4073 4074
}

4075 4076 4077 4078
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4079
	struct drm_i915_private *dev_priv = to_i915(dev);
4080
	struct drm_i915_gem_madvise *args = data;
4081
	struct drm_i915_gem_object *obj;
4082
	int ret;
4083 4084 4085 4086 4087 4088 4089 4090 4091

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4092 4093 4094 4095
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4096 4097
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4098 4099
		ret = -ENOENT;
		goto unlock;
4100 4101
	}

4102
	if (obj->pages &&
4103
	    i915_gem_object_is_tiled(obj) &&
4104 4105 4106 4107 4108 4109 4110
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4111 4112
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4113

C
Chris Wilson 已提交
4114
	/* if the object is no longer attached, discard its backing storage */
4115
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4116 4117
		i915_gem_object_truncate(obj);

4118
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4119

4120
	i915_gem_object_put(obj);
4121
unlock:
4122
	mutex_unlock(&dev->struct_mutex);
4123
	return ret;
4124 4125
}

4126 4127
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4128
{
4129 4130
	int i;

4131
	INIT_LIST_HEAD(&obj->global_list);
4132
	INIT_LIST_HEAD(&obj->userfault_link);
4133
	for (i = 0; i < I915_NUM_ENGINES; i++)
4134 4135 4136 4137
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
4138
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4139
	INIT_LIST_HEAD(&obj->vma_list);
4140
	INIT_LIST_HEAD(&obj->batch_pool_link);
4141

4142 4143
	obj->ops = ops;

4144
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4145 4146
	obj->madv = I915_MADV_WILLNEED;

4147
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4148 4149
}

4150
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4151
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4152 4153 4154 4155
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4156 4157 4158 4159 4160 4161
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
i915_gem_object_create(struct drm_device *dev, u64 size)
4162
{
4163
	struct drm_i915_gem_object *obj;
4164
	struct address_space *mapping;
D
Daniel Vetter 已提交
4165
	gfp_t mask;
4166
	int ret;
4167

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4179
	obj = i915_gem_object_alloc(dev);
4180
	if (obj == NULL)
4181
		return ERR_PTR(-ENOMEM);
4182

4183 4184 4185
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4186

4187 4188 4189 4190 4191 4192 4193
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4194
	mapping = obj->base.filp->f_mapping;
4195
	mapping_set_gfp_mask(mapping, mask);
4196

4197
	i915_gem_object_init(obj, &i915_gem_object_ops);
4198

4199 4200
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4201

4202 4203
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4219 4220
	trace_i915_gem_object_create(obj);

4221
	return obj;
4222 4223 4224 4225 4226

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4227 4228
}

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4253
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4254
{
4255
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4256
	struct drm_device *dev = obj->base.dev;
4257
	struct drm_i915_private *dev_priv = to_i915(dev);
4258
	struct i915_vma *vma, *next;
4259

4260 4261
	intel_runtime_pm_get(dev_priv);

4262 4263
	trace_i915_gem_object_destroy(obj);

4264 4265 4266 4267 4268 4269 4270
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4271
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4272
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4273
		GEM_BUG_ON(i915_vma_is_active(vma));
4274
		vma->flags &= ~I915_VMA_PIN_MASK;
4275
		i915_vma_close(vma);
4276
	}
4277
	GEM_BUG_ON(obj->bind_count);
4278

B
Ben Widawsky 已提交
4279 4280 4281 4282 4283
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4284
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4285

4286 4287
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4288
	    i915_gem_object_is_tiled(obj))
4289 4290
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4291 4292
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4293
	if (discard_backing_storage(obj))
4294
		obj->madv = I915_MADV_DONTNEED;
4295
	i915_gem_object_put_pages(obj);
4296

4297 4298
	BUG_ON(obj->pages);

4299 4300
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4301

4302 4303 4304
	if (obj->ops->release)
		obj->ops->release(obj);

4305 4306
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4307

4308
	kfree(obj->bit_17);
4309
	i915_gem_object_free(obj);
4310 4311

	intel_runtime_pm_put(dev_priv);
4312 4313
}

4314
int i915_gem_suspend(struct drm_device *dev)
4315
{
4316
	struct drm_i915_private *dev_priv = to_i915(dev);
4317
	int ret;
4318

4319 4320
	intel_suspend_gt_powersave(dev_priv);

4321
	mutex_lock(&dev->struct_mutex);
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4335 4336 4337
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4338
	if (ret)
4339
		goto err;
4340

4341
	i915_gem_retire_requests(dev_priv);
4342

4343
	i915_gem_context_lost(dev_priv);
4344 4345
	mutex_unlock(&dev->struct_mutex);

4346
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4347 4348
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4349

4350 4351 4352
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4353
	WARN_ON(dev_priv->gt.awake);
4354

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
	if (HAS_HW_CONTEXTS(dev)) {
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4379
	return 0;
4380 4381 4382 4383

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4384 4385
}

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4397
	dev_priv->gt.resume(dev_priv);
4398 4399 4400 4401

	mutex_unlock(&dev->struct_mutex);
}

4402 4403
void i915_gem_init_swizzling(struct drm_device *dev)
{
4404
	struct drm_i915_private *dev_priv = to_i915(dev);
4405

4406
	if (INTEL_INFO(dev)->gen < 5 ||
4407 4408 4409 4410 4411 4412
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4413
	if (IS_GEN5(dev_priv))
4414 4415
		return;

4416
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4417
	if (IS_GEN6(dev_priv))
4418
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4419
	else if (IS_GEN7(dev_priv))
4420
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4421
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4422
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4423 4424
	else
		BUG();
4425
}
D
Daniel Vetter 已提交
4426

4427
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4428 4429 4430 4431 4432 4433 4434
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4435
static void init_unused_rings(struct drm_i915_private *dev_priv)
4436
{
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4449 4450 4451
	}
}

4452 4453 4454
int
i915_gem_init_hw(struct drm_device *dev)
{
4455
	struct drm_i915_private *dev_priv = to_i915(dev);
4456
	struct intel_engine_cs *engine;
4457
	enum intel_engine_id id;
C
Chris Wilson 已提交
4458
	int ret;
4459

4460 4461 4462
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4463
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4464
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4465

4466
	if (IS_HASWELL(dev_priv))
4467
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4468
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4469

4470
	if (HAS_PCH_NOP(dev_priv)) {
4471
		if (IS_IVYBRIDGE(dev_priv)) {
4472 4473 4474 4475 4476 4477 4478 4479
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4480 4481
	}

4482 4483
	i915_gem_init_swizzling(dev);

4484 4485 4486 4487 4488 4489
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4490
	init_unused_rings(dev_priv);
4491

4492
	BUG_ON(!dev_priv->kernel_context);
4493

4494 4495 4496 4497 4498 4499 4500
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4501
	for_each_engine(engine, dev_priv, id) {
4502
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4503
		if (ret)
4504
			goto out;
D
Daniel Vetter 已提交
4505
	}
4506

4507 4508
	intel_mocs_init_l3cc_table(dev);

4509
	/* We can't enable contexts until all firmware is loaded */
4510 4511 4512
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4513

4514 4515
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4516
	return ret;
4517 4518
}

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4540 4541
int i915_gem_init(struct drm_device *dev)
{
4542
	struct drm_i915_private *dev_priv = to_i915(dev);
4543 4544 4545
	int ret;

	mutex_lock(&dev->struct_mutex);
4546
	spin_lock_init(&dev_priv->mm.userfault_lock);
4547

4548
	if (!i915.enable_execlists) {
4549
		dev_priv->gt.resume = intel_legacy_submission_resume;
4550
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4551
	} else {
4552
		dev_priv->gt.resume = intel_lr_context_resume;
4553
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4554 4555
	}

4556 4557 4558 4559 4560 4561 4562 4563
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4564
	i915_gem_init_userptr(dev_priv);
4565 4566 4567 4568

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4569

4570
	ret = i915_gem_context_init(dev);
4571 4572
	if (ret)
		goto out_unlock;
4573

4574
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4575
	if (ret)
4576
		goto out_unlock;
4577

4578
	ret = i915_gem_init_hw(dev);
4579
	if (ret == -EIO) {
4580
		/* Allow engine initialisation to fail by marking the GPU as
4581 4582 4583 4584
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4585
		i915_gem_set_wedged(dev_priv);
4586
		ret = 0;
4587
	}
4588 4589

out_unlock:
4590
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4591
	mutex_unlock(&dev->struct_mutex);
4592

4593
	return ret;
4594 4595
}

4596
void
4597
i915_gem_cleanup_engines(struct drm_device *dev)
4598
{
4599
	struct drm_i915_private *dev_priv = to_i915(dev);
4600
	struct intel_engine_cs *engine;
4601
	enum intel_engine_id id;
4602

4603
	for_each_engine(engine, dev_priv, id)
4604
		dev_priv->gt.cleanup_engine(engine);
4605 4606
}

4607 4608 4609
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4610
	struct drm_device *dev = &dev_priv->drm;
4611
	int i;
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4622
	if (intel_vgpu_active(dev_priv))
4623 4624 4625 4626
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4627 4628 4629 4630 4631 4632 4633
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4634 4635 4636 4637 4638
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4639
void
4640
i915_gem_load_init(struct drm_device *dev)
4641
{
4642
	struct drm_i915_private *dev_priv = to_i915(dev);
4643

4644
	dev_priv->objects =
4645 4646 4647 4648
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4649 4650 4651 4652 4653
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4654 4655 4656
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4657 4658 4659
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4660
				  NULL);
4661

4662
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4663 4664
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4665
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4666
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4667
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4668
			  i915_gem_retire_work_handler);
4669
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4670
			  i915_gem_idle_work_handler);
4671
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4672
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4673

4674 4675
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4676
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4677

4678 4679
	dev_priv->mm.interruptible = true;

4680 4681
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4682
	spin_lock_init(&dev_priv->fb_tracking.lock);
4683
}
4684

4685 4686 4687 4688 4689 4690 4691
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4692 4693 4694

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4695 4696
}

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4710 4711 4712
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4713 4714 4715 4716 4717
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4728 4729 4730
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4731 4732
	 */

4733 4734
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4735

4736 4737 4738 4739 4740
	for (p = phases; *p; p++) {
		list_for_each_entry(obj, *p, global_list) {
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4741
	}
4742
	mutex_unlock(&dev_priv->drm.struct_mutex);
4743 4744 4745 4746

	return 0;
}

4747
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4748
{
4749
	struct drm_i915_file_private *file_priv = file->driver_priv;
4750
	struct drm_i915_gem_request *request;
4751 4752 4753 4754 4755

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4756
	spin_lock(&file_priv->mm.lock);
4757
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4758
		request->file_priv = NULL;
4759
	spin_unlock(&file_priv->mm.lock);
4760

4761
	if (!list_empty(&file_priv->rps.link)) {
4762
		spin_lock(&to_i915(dev)->rps.client_lock);
4763
		list_del(&file_priv->rps.link);
4764
		spin_unlock(&to_i915(dev)->rps.client_lock);
4765
	}
4766 4767 4768 4769 4770
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4771
	int ret;
4772 4773 4774 4775 4776 4777 4778 4779

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4780
	file_priv->dev_priv = to_i915(dev);
4781
	file_priv->file = file;
4782
	INIT_LIST_HEAD(&file_priv->rps.link);
4783 4784 4785 4786

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4787
	file_priv->bsd_engine = -1;
4788

4789 4790 4791
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4792

4793
	return ret;
4794 4795
}

4796 4797
/**
 * i915_gem_track_fb - update frontbuffer tracking
4798 4799 4800
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4801 4802 4803 4804
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4805 4806 4807 4808
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4809 4810 4811 4812 4813 4814 4815 4816 4817
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4818
	if (old) {
4819 4820
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4821 4822 4823
	}

	if (new) {
4824 4825
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4826 4827 4828
	}
}

4829 4830 4831 4832 4833 4834 4835
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4836
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4837 4838 4839 4840 4841 4842 4843
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4854
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4855
	if (IS_ERR(obj))
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4869
	obj->dirty = 1;		/* Backing store is now out of date */
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4881
	i915_gem_object_put(obj);
4882 4883
	return ERR_PTR(ret);
}